]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/rdma/ib_verbs.h
0f1813c1368795994e012d00c607499879c130aa
[mirror_ubuntu-artful-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/uaccess.h>
63 #include <linux/cgroup_rdma.h>
64
65 extern struct workqueue_struct *ib_wq;
66 extern struct workqueue_struct *ib_comp_wq;
67
68 union ib_gid {
69 u8 raw[16];
70 struct {
71 __be64 subnet_prefix;
72 __be64 interface_id;
73 } global;
74 };
75
76 extern union ib_gid zgid;
77
78 enum ib_gid_type {
79 /* If link layer is Ethernet, this is RoCE V1 */
80 IB_GID_TYPE_IB = 0,
81 IB_GID_TYPE_ROCE = 0,
82 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
83 IB_GID_TYPE_SIZE
84 };
85
86 #define ROCE_V2_UDP_DPORT 4791
87 struct ib_gid_attr {
88 enum ib_gid_type gid_type;
89 struct net_device *ndev;
90 };
91
92 enum rdma_node_type {
93 /* IB values map to NodeInfo:NodeType. */
94 RDMA_NODE_IB_CA = 1,
95 RDMA_NODE_IB_SWITCH,
96 RDMA_NODE_IB_ROUTER,
97 RDMA_NODE_RNIC,
98 RDMA_NODE_USNIC,
99 RDMA_NODE_USNIC_UDP,
100 };
101
102 enum {
103 /* set the local administered indication */
104 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
105 };
106
107 enum rdma_transport_type {
108 RDMA_TRANSPORT_IB,
109 RDMA_TRANSPORT_IWARP,
110 RDMA_TRANSPORT_USNIC,
111 RDMA_TRANSPORT_USNIC_UDP
112 };
113
114 enum rdma_protocol_type {
115 RDMA_PROTOCOL_IB,
116 RDMA_PROTOCOL_IBOE,
117 RDMA_PROTOCOL_IWARP,
118 RDMA_PROTOCOL_USNIC_UDP
119 };
120
121 __attribute_const__ enum rdma_transport_type
122 rdma_node_get_transport(enum rdma_node_type node_type);
123
124 enum rdma_network_type {
125 RDMA_NETWORK_IB,
126 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
127 RDMA_NETWORK_IPV4,
128 RDMA_NETWORK_IPV6
129 };
130
131 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
132 {
133 if (network_type == RDMA_NETWORK_IPV4 ||
134 network_type == RDMA_NETWORK_IPV6)
135 return IB_GID_TYPE_ROCE_UDP_ENCAP;
136
137 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
138 return IB_GID_TYPE_IB;
139 }
140
141 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
142 union ib_gid *gid)
143 {
144 if (gid_type == IB_GID_TYPE_IB)
145 return RDMA_NETWORK_IB;
146
147 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
148 return RDMA_NETWORK_IPV4;
149 else
150 return RDMA_NETWORK_IPV6;
151 }
152
153 enum rdma_link_layer {
154 IB_LINK_LAYER_UNSPECIFIED,
155 IB_LINK_LAYER_INFINIBAND,
156 IB_LINK_LAYER_ETHERNET,
157 };
158
159 enum ib_device_cap_flags {
160 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
161 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
162 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
163 IB_DEVICE_RAW_MULTI = (1 << 3),
164 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
165 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
166 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
167 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
168 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
169 IB_DEVICE_INIT_TYPE = (1 << 9),
170 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
171 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
172 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
173 IB_DEVICE_SRQ_RESIZE = (1 << 13),
174 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
175
176 /*
177 * This device supports a per-device lkey or stag that can be
178 * used without performing a memory registration for the local
179 * memory. Note that ULPs should never check this flag, but
180 * instead of use the local_dma_lkey flag in the ib_pd structure,
181 * which will always contain a usable lkey.
182 */
183 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
184 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
185 IB_DEVICE_MEM_WINDOW = (1 << 17),
186 /*
187 * Devices should set IB_DEVICE_UD_IP_SUM if they support
188 * insertion of UDP and TCP checksum on outgoing UD IPoIB
189 * messages and can verify the validity of checksum for
190 * incoming messages. Setting this flag implies that the
191 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
192 */
193 IB_DEVICE_UD_IP_CSUM = (1 << 18),
194 IB_DEVICE_UD_TSO = (1 << 19),
195 IB_DEVICE_XRC = (1 << 20),
196
197 /*
198 * This device supports the IB "base memory management extension",
199 * which includes support for fast registrations (IB_WR_REG_MR,
200 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
201 * also be set by any iWarp device which must support FRs to comply
202 * to the iWarp verbs spec. iWarp devices also support the
203 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
204 * stag.
205 */
206 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
207 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
208 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
209 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
210 IB_DEVICE_RC_IP_CSUM = (1 << 25),
211 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
212 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
213 /*
214 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
215 * support execution of WQEs that involve synchronization
216 * of I/O operations with single completion queue managed
217 * by hardware.
218 */
219 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
220 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
221 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
222 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
223 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
224 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
225 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
226 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
227 };
228
229 enum ib_signature_prot_cap {
230 IB_PROT_T10DIF_TYPE_1 = 1,
231 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
232 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
233 };
234
235 enum ib_signature_guard_cap {
236 IB_GUARD_T10DIF_CRC = 1,
237 IB_GUARD_T10DIF_CSUM = 1 << 1,
238 };
239
240 enum ib_atomic_cap {
241 IB_ATOMIC_NONE,
242 IB_ATOMIC_HCA,
243 IB_ATOMIC_GLOB
244 };
245
246 enum ib_odp_general_cap_bits {
247 IB_ODP_SUPPORT = 1 << 0,
248 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
249 };
250
251 enum ib_odp_transport_cap_bits {
252 IB_ODP_SUPPORT_SEND = 1 << 0,
253 IB_ODP_SUPPORT_RECV = 1 << 1,
254 IB_ODP_SUPPORT_WRITE = 1 << 2,
255 IB_ODP_SUPPORT_READ = 1 << 3,
256 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
257 };
258
259 struct ib_odp_caps {
260 uint64_t general_caps;
261 struct {
262 uint32_t rc_odp_caps;
263 uint32_t uc_odp_caps;
264 uint32_t ud_odp_caps;
265 } per_transport_caps;
266 };
267
268 struct ib_rss_caps {
269 /* Corresponding bit will be set if qp type from
270 * 'enum ib_qp_type' is supported, e.g.
271 * supported_qpts |= 1 << IB_QPT_UD
272 */
273 u32 supported_qpts;
274 u32 max_rwq_indirection_tables;
275 u32 max_rwq_indirection_table_size;
276 };
277
278 enum ib_cq_creation_flags {
279 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
280 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
281 };
282
283 struct ib_cq_init_attr {
284 unsigned int cqe;
285 int comp_vector;
286 u32 flags;
287 };
288
289 struct ib_device_attr {
290 u64 fw_ver;
291 __be64 sys_image_guid;
292 u64 max_mr_size;
293 u64 page_size_cap;
294 u32 vendor_id;
295 u32 vendor_part_id;
296 u32 hw_ver;
297 int max_qp;
298 int max_qp_wr;
299 u64 device_cap_flags;
300 int max_sge;
301 int max_sge_rd;
302 int max_cq;
303 int max_cqe;
304 int max_mr;
305 int max_pd;
306 int max_qp_rd_atom;
307 int max_ee_rd_atom;
308 int max_res_rd_atom;
309 int max_qp_init_rd_atom;
310 int max_ee_init_rd_atom;
311 enum ib_atomic_cap atomic_cap;
312 enum ib_atomic_cap masked_atomic_cap;
313 int max_ee;
314 int max_rdd;
315 int max_mw;
316 int max_raw_ipv6_qp;
317 int max_raw_ethy_qp;
318 int max_mcast_grp;
319 int max_mcast_qp_attach;
320 int max_total_mcast_qp_attach;
321 int max_ah;
322 int max_fmr;
323 int max_map_per_fmr;
324 int max_srq;
325 int max_srq_wr;
326 int max_srq_sge;
327 unsigned int max_fast_reg_page_list_len;
328 u16 max_pkeys;
329 u8 local_ca_ack_delay;
330 int sig_prot_cap;
331 int sig_guard_cap;
332 struct ib_odp_caps odp_caps;
333 uint64_t timestamp_mask;
334 uint64_t hca_core_clock; /* in KHZ */
335 struct ib_rss_caps rss_caps;
336 u32 max_wq_type_rq;
337 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
338 };
339
340 enum ib_mtu {
341 IB_MTU_256 = 1,
342 IB_MTU_512 = 2,
343 IB_MTU_1024 = 3,
344 IB_MTU_2048 = 4,
345 IB_MTU_4096 = 5
346 };
347
348 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
349 {
350 switch (mtu) {
351 case IB_MTU_256: return 256;
352 case IB_MTU_512: return 512;
353 case IB_MTU_1024: return 1024;
354 case IB_MTU_2048: return 2048;
355 case IB_MTU_4096: return 4096;
356 default: return -1;
357 }
358 }
359
360 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
361 {
362 if (mtu >= 4096)
363 return IB_MTU_4096;
364 else if (mtu >= 2048)
365 return IB_MTU_2048;
366 else if (mtu >= 1024)
367 return IB_MTU_1024;
368 else if (mtu >= 512)
369 return IB_MTU_512;
370 else
371 return IB_MTU_256;
372 }
373
374 enum ib_port_state {
375 IB_PORT_NOP = 0,
376 IB_PORT_DOWN = 1,
377 IB_PORT_INIT = 2,
378 IB_PORT_ARMED = 3,
379 IB_PORT_ACTIVE = 4,
380 IB_PORT_ACTIVE_DEFER = 5
381 };
382
383 enum ib_port_cap_flags {
384 IB_PORT_SM = 1 << 1,
385 IB_PORT_NOTICE_SUP = 1 << 2,
386 IB_PORT_TRAP_SUP = 1 << 3,
387 IB_PORT_OPT_IPD_SUP = 1 << 4,
388 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
389 IB_PORT_SL_MAP_SUP = 1 << 6,
390 IB_PORT_MKEY_NVRAM = 1 << 7,
391 IB_PORT_PKEY_NVRAM = 1 << 8,
392 IB_PORT_LED_INFO_SUP = 1 << 9,
393 IB_PORT_SM_DISABLED = 1 << 10,
394 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
395 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
396 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
397 IB_PORT_CM_SUP = 1 << 16,
398 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
399 IB_PORT_REINIT_SUP = 1 << 18,
400 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
401 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
402 IB_PORT_DR_NOTICE_SUP = 1 << 21,
403 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
404 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
405 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
406 IB_PORT_CLIENT_REG_SUP = 1 << 25,
407 IB_PORT_IP_BASED_GIDS = 1 << 26,
408 };
409
410 enum ib_port_width {
411 IB_WIDTH_1X = 1,
412 IB_WIDTH_4X = 2,
413 IB_WIDTH_8X = 4,
414 IB_WIDTH_12X = 8
415 };
416
417 static inline int ib_width_enum_to_int(enum ib_port_width width)
418 {
419 switch (width) {
420 case IB_WIDTH_1X: return 1;
421 case IB_WIDTH_4X: return 4;
422 case IB_WIDTH_8X: return 8;
423 case IB_WIDTH_12X: return 12;
424 default: return -1;
425 }
426 }
427
428 enum ib_port_speed {
429 IB_SPEED_SDR = 1,
430 IB_SPEED_DDR = 2,
431 IB_SPEED_QDR = 4,
432 IB_SPEED_FDR10 = 8,
433 IB_SPEED_FDR = 16,
434 IB_SPEED_EDR = 32
435 };
436
437 /**
438 * struct rdma_hw_stats
439 * @timestamp - Used by the core code to track when the last update was
440 * @lifespan - Used by the core code to determine how old the counters
441 * should be before being updated again. Stored in jiffies, defaults
442 * to 10 milliseconds, drivers can override the default be specifying
443 * their own value during their allocation routine.
444 * @name - Array of pointers to static names used for the counters in
445 * directory.
446 * @num_counters - How many hardware counters there are. If name is
447 * shorter than this number, a kernel oops will result. Driver authors
448 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
449 * in their code to prevent this.
450 * @value - Array of u64 counters that are accessed by the sysfs code and
451 * filled in by the drivers get_stats routine
452 */
453 struct rdma_hw_stats {
454 unsigned long timestamp;
455 unsigned long lifespan;
456 const char * const *names;
457 int num_counters;
458 u64 value[];
459 };
460
461 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
462 /**
463 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
464 * for drivers.
465 * @names - Array of static const char *
466 * @num_counters - How many elements in array
467 * @lifespan - How many milliseconds between updates
468 */
469 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
470 const char * const *names, int num_counters,
471 unsigned long lifespan)
472 {
473 struct rdma_hw_stats *stats;
474
475 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
476 GFP_KERNEL);
477 if (!stats)
478 return NULL;
479 stats->names = names;
480 stats->num_counters = num_counters;
481 stats->lifespan = msecs_to_jiffies(lifespan);
482
483 return stats;
484 }
485
486
487 /* Define bits for the various functionality this port needs to be supported by
488 * the core.
489 */
490 /* Management 0x00000FFF */
491 #define RDMA_CORE_CAP_IB_MAD 0x00000001
492 #define RDMA_CORE_CAP_IB_SMI 0x00000002
493 #define RDMA_CORE_CAP_IB_CM 0x00000004
494 #define RDMA_CORE_CAP_IW_CM 0x00000008
495 #define RDMA_CORE_CAP_IB_SA 0x00000010
496 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
497
498 /* Address format 0x000FF000 */
499 #define RDMA_CORE_CAP_AF_IB 0x00001000
500 #define RDMA_CORE_CAP_ETH_AH 0x00002000
501
502 /* Protocol 0xFFF00000 */
503 #define RDMA_CORE_CAP_PROT_IB 0x00100000
504 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
505 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
506 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
507 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
508 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
509
510 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
511 | RDMA_CORE_CAP_IB_MAD \
512 | RDMA_CORE_CAP_IB_SMI \
513 | RDMA_CORE_CAP_IB_CM \
514 | RDMA_CORE_CAP_IB_SA \
515 | RDMA_CORE_CAP_AF_IB)
516 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
517 | RDMA_CORE_CAP_IB_MAD \
518 | RDMA_CORE_CAP_IB_CM \
519 | RDMA_CORE_CAP_AF_IB \
520 | RDMA_CORE_CAP_ETH_AH)
521 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
522 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
523 | RDMA_CORE_CAP_IB_MAD \
524 | RDMA_CORE_CAP_IB_CM \
525 | RDMA_CORE_CAP_AF_IB \
526 | RDMA_CORE_CAP_ETH_AH)
527 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
528 | RDMA_CORE_CAP_IW_CM)
529 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
530 | RDMA_CORE_CAP_OPA_MAD)
531
532 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
533
534 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
535
536 struct ib_port_attr {
537 u64 subnet_prefix;
538 enum ib_port_state state;
539 enum ib_mtu max_mtu;
540 enum ib_mtu active_mtu;
541 int gid_tbl_len;
542 u32 port_cap_flags;
543 u32 max_msg_sz;
544 u32 bad_pkey_cntr;
545 u32 qkey_viol_cntr;
546 u16 pkey_tbl_len;
547 u16 lid;
548 u16 sm_lid;
549 u8 lmc;
550 u8 max_vl_num;
551 u8 sm_sl;
552 u8 subnet_timeout;
553 u8 init_type_reply;
554 u8 active_width;
555 u8 active_speed;
556 u8 phys_state;
557 bool grh_required;
558 };
559
560 enum ib_device_modify_flags {
561 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
562 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
563 };
564
565 #define IB_DEVICE_NODE_DESC_MAX 64
566
567 struct ib_device_modify {
568 u64 sys_image_guid;
569 char node_desc[IB_DEVICE_NODE_DESC_MAX];
570 };
571
572 enum ib_port_modify_flags {
573 IB_PORT_SHUTDOWN = 1,
574 IB_PORT_INIT_TYPE = (1<<2),
575 IB_PORT_RESET_QKEY_CNTR = (1<<3)
576 };
577
578 struct ib_port_modify {
579 u32 set_port_cap_mask;
580 u32 clr_port_cap_mask;
581 u8 init_type;
582 };
583
584 enum ib_event_type {
585 IB_EVENT_CQ_ERR,
586 IB_EVENT_QP_FATAL,
587 IB_EVENT_QP_REQ_ERR,
588 IB_EVENT_QP_ACCESS_ERR,
589 IB_EVENT_COMM_EST,
590 IB_EVENT_SQ_DRAINED,
591 IB_EVENT_PATH_MIG,
592 IB_EVENT_PATH_MIG_ERR,
593 IB_EVENT_DEVICE_FATAL,
594 IB_EVENT_PORT_ACTIVE,
595 IB_EVENT_PORT_ERR,
596 IB_EVENT_LID_CHANGE,
597 IB_EVENT_PKEY_CHANGE,
598 IB_EVENT_SM_CHANGE,
599 IB_EVENT_SRQ_ERR,
600 IB_EVENT_SRQ_LIMIT_REACHED,
601 IB_EVENT_QP_LAST_WQE_REACHED,
602 IB_EVENT_CLIENT_REREGISTER,
603 IB_EVENT_GID_CHANGE,
604 IB_EVENT_WQ_FATAL,
605 };
606
607 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
608
609 struct ib_event {
610 struct ib_device *device;
611 union {
612 struct ib_cq *cq;
613 struct ib_qp *qp;
614 struct ib_srq *srq;
615 struct ib_wq *wq;
616 u8 port_num;
617 } element;
618 enum ib_event_type event;
619 };
620
621 struct ib_event_handler {
622 struct ib_device *device;
623 void (*handler)(struct ib_event_handler *, struct ib_event *);
624 struct list_head list;
625 };
626
627 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
628 do { \
629 (_ptr)->device = _device; \
630 (_ptr)->handler = _handler; \
631 INIT_LIST_HEAD(&(_ptr)->list); \
632 } while (0)
633
634 struct ib_global_route {
635 union ib_gid dgid;
636 u32 flow_label;
637 u8 sgid_index;
638 u8 hop_limit;
639 u8 traffic_class;
640 };
641
642 struct ib_grh {
643 __be32 version_tclass_flow;
644 __be16 paylen;
645 u8 next_hdr;
646 u8 hop_limit;
647 union ib_gid sgid;
648 union ib_gid dgid;
649 };
650
651 union rdma_network_hdr {
652 struct ib_grh ibgrh;
653 struct {
654 /* The IB spec states that if it's IPv4, the header
655 * is located in the last 20 bytes of the header.
656 */
657 u8 reserved[20];
658 struct iphdr roce4grh;
659 };
660 };
661
662 enum {
663 IB_MULTICAST_QPN = 0xffffff
664 };
665
666 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
667 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
668
669 enum ib_ah_flags {
670 IB_AH_GRH = 1
671 };
672
673 enum ib_rate {
674 IB_RATE_PORT_CURRENT = 0,
675 IB_RATE_2_5_GBPS = 2,
676 IB_RATE_5_GBPS = 5,
677 IB_RATE_10_GBPS = 3,
678 IB_RATE_20_GBPS = 6,
679 IB_RATE_30_GBPS = 4,
680 IB_RATE_40_GBPS = 7,
681 IB_RATE_60_GBPS = 8,
682 IB_RATE_80_GBPS = 9,
683 IB_RATE_120_GBPS = 10,
684 IB_RATE_14_GBPS = 11,
685 IB_RATE_56_GBPS = 12,
686 IB_RATE_112_GBPS = 13,
687 IB_RATE_168_GBPS = 14,
688 IB_RATE_25_GBPS = 15,
689 IB_RATE_100_GBPS = 16,
690 IB_RATE_200_GBPS = 17,
691 IB_RATE_300_GBPS = 18
692 };
693
694 /**
695 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
696 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
697 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
698 * @rate: rate to convert.
699 */
700 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
701
702 /**
703 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
704 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
705 * @rate: rate to convert.
706 */
707 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
708
709
710 /**
711 * enum ib_mr_type - memory region type
712 * @IB_MR_TYPE_MEM_REG: memory region that is used for
713 * normal registration
714 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
715 * signature operations (data-integrity
716 * capable regions)
717 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
718 * register any arbitrary sg lists (without
719 * the normal mr constraints - see
720 * ib_map_mr_sg)
721 */
722 enum ib_mr_type {
723 IB_MR_TYPE_MEM_REG,
724 IB_MR_TYPE_SIGNATURE,
725 IB_MR_TYPE_SG_GAPS,
726 };
727
728 /**
729 * Signature types
730 * IB_SIG_TYPE_NONE: Unprotected.
731 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
732 */
733 enum ib_signature_type {
734 IB_SIG_TYPE_NONE,
735 IB_SIG_TYPE_T10_DIF,
736 };
737
738 /**
739 * Signature T10-DIF block-guard types
740 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
741 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
742 */
743 enum ib_t10_dif_bg_type {
744 IB_T10DIF_CRC,
745 IB_T10DIF_CSUM
746 };
747
748 /**
749 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
750 * domain.
751 * @bg_type: T10-DIF block guard type (CRC|CSUM)
752 * @pi_interval: protection information interval.
753 * @bg: seed of guard computation.
754 * @app_tag: application tag of guard block
755 * @ref_tag: initial guard block reference tag.
756 * @ref_remap: Indicate wethear the reftag increments each block
757 * @app_escape: Indicate to skip block check if apptag=0xffff
758 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
759 * @apptag_check_mask: check bitmask of application tag.
760 */
761 struct ib_t10_dif_domain {
762 enum ib_t10_dif_bg_type bg_type;
763 u16 pi_interval;
764 u16 bg;
765 u16 app_tag;
766 u32 ref_tag;
767 bool ref_remap;
768 bool app_escape;
769 bool ref_escape;
770 u16 apptag_check_mask;
771 };
772
773 /**
774 * struct ib_sig_domain - Parameters for signature domain
775 * @sig_type: specific signauture type
776 * @sig: union of all signature domain attributes that may
777 * be used to set domain layout.
778 */
779 struct ib_sig_domain {
780 enum ib_signature_type sig_type;
781 union {
782 struct ib_t10_dif_domain dif;
783 } sig;
784 };
785
786 /**
787 * struct ib_sig_attrs - Parameters for signature handover operation
788 * @check_mask: bitmask for signature byte check (8 bytes)
789 * @mem: memory domain layout desciptor.
790 * @wire: wire domain layout desciptor.
791 */
792 struct ib_sig_attrs {
793 u8 check_mask;
794 struct ib_sig_domain mem;
795 struct ib_sig_domain wire;
796 };
797
798 enum ib_sig_err_type {
799 IB_SIG_BAD_GUARD,
800 IB_SIG_BAD_REFTAG,
801 IB_SIG_BAD_APPTAG,
802 };
803
804 /**
805 * struct ib_sig_err - signature error descriptor
806 */
807 struct ib_sig_err {
808 enum ib_sig_err_type err_type;
809 u32 expected;
810 u32 actual;
811 u64 sig_err_offset;
812 u32 key;
813 };
814
815 enum ib_mr_status_check {
816 IB_MR_CHECK_SIG_STATUS = 1,
817 };
818
819 /**
820 * struct ib_mr_status - Memory region status container
821 *
822 * @fail_status: Bitmask of MR checks status. For each
823 * failed check a corresponding status bit is set.
824 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
825 * failure.
826 */
827 struct ib_mr_status {
828 u32 fail_status;
829 struct ib_sig_err sig_err;
830 };
831
832 /**
833 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
834 * enum.
835 * @mult: multiple to convert.
836 */
837 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
838
839 struct ib_ah_attr {
840 struct ib_global_route grh;
841 u16 dlid;
842 u8 sl;
843 u8 src_path_bits;
844 u8 static_rate;
845 u8 ah_flags;
846 u8 port_num;
847 u8 dmac[ETH_ALEN];
848 };
849
850 enum ib_wc_status {
851 IB_WC_SUCCESS,
852 IB_WC_LOC_LEN_ERR,
853 IB_WC_LOC_QP_OP_ERR,
854 IB_WC_LOC_EEC_OP_ERR,
855 IB_WC_LOC_PROT_ERR,
856 IB_WC_WR_FLUSH_ERR,
857 IB_WC_MW_BIND_ERR,
858 IB_WC_BAD_RESP_ERR,
859 IB_WC_LOC_ACCESS_ERR,
860 IB_WC_REM_INV_REQ_ERR,
861 IB_WC_REM_ACCESS_ERR,
862 IB_WC_REM_OP_ERR,
863 IB_WC_RETRY_EXC_ERR,
864 IB_WC_RNR_RETRY_EXC_ERR,
865 IB_WC_LOC_RDD_VIOL_ERR,
866 IB_WC_REM_INV_RD_REQ_ERR,
867 IB_WC_REM_ABORT_ERR,
868 IB_WC_INV_EECN_ERR,
869 IB_WC_INV_EEC_STATE_ERR,
870 IB_WC_FATAL_ERR,
871 IB_WC_RESP_TIMEOUT_ERR,
872 IB_WC_GENERAL_ERR
873 };
874
875 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
876
877 enum ib_wc_opcode {
878 IB_WC_SEND,
879 IB_WC_RDMA_WRITE,
880 IB_WC_RDMA_READ,
881 IB_WC_COMP_SWAP,
882 IB_WC_FETCH_ADD,
883 IB_WC_LSO,
884 IB_WC_LOCAL_INV,
885 IB_WC_REG_MR,
886 IB_WC_MASKED_COMP_SWAP,
887 IB_WC_MASKED_FETCH_ADD,
888 /*
889 * Set value of IB_WC_RECV so consumers can test if a completion is a
890 * receive by testing (opcode & IB_WC_RECV).
891 */
892 IB_WC_RECV = 1 << 7,
893 IB_WC_RECV_RDMA_WITH_IMM
894 };
895
896 enum ib_wc_flags {
897 IB_WC_GRH = 1,
898 IB_WC_WITH_IMM = (1<<1),
899 IB_WC_WITH_INVALIDATE = (1<<2),
900 IB_WC_IP_CSUM_OK = (1<<3),
901 IB_WC_WITH_SMAC = (1<<4),
902 IB_WC_WITH_VLAN = (1<<5),
903 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
904 };
905
906 struct ib_wc {
907 union {
908 u64 wr_id;
909 struct ib_cqe *wr_cqe;
910 };
911 enum ib_wc_status status;
912 enum ib_wc_opcode opcode;
913 u32 vendor_err;
914 u32 byte_len;
915 struct ib_qp *qp;
916 union {
917 __be32 imm_data;
918 u32 invalidate_rkey;
919 } ex;
920 u32 src_qp;
921 int wc_flags;
922 u16 pkey_index;
923 u16 slid;
924 u8 sl;
925 u8 dlid_path_bits;
926 u8 port_num; /* valid only for DR SMPs on switches */
927 u8 smac[ETH_ALEN];
928 u16 vlan_id;
929 u8 network_hdr_type;
930 };
931
932 enum ib_cq_notify_flags {
933 IB_CQ_SOLICITED = 1 << 0,
934 IB_CQ_NEXT_COMP = 1 << 1,
935 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
936 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
937 };
938
939 enum ib_srq_type {
940 IB_SRQT_BASIC,
941 IB_SRQT_XRC
942 };
943
944 enum ib_srq_attr_mask {
945 IB_SRQ_MAX_WR = 1 << 0,
946 IB_SRQ_LIMIT = 1 << 1,
947 };
948
949 struct ib_srq_attr {
950 u32 max_wr;
951 u32 max_sge;
952 u32 srq_limit;
953 };
954
955 struct ib_srq_init_attr {
956 void (*event_handler)(struct ib_event *, void *);
957 void *srq_context;
958 struct ib_srq_attr attr;
959 enum ib_srq_type srq_type;
960
961 union {
962 struct {
963 struct ib_xrcd *xrcd;
964 struct ib_cq *cq;
965 } xrc;
966 } ext;
967 };
968
969 struct ib_qp_cap {
970 u32 max_send_wr;
971 u32 max_recv_wr;
972 u32 max_send_sge;
973 u32 max_recv_sge;
974 u32 max_inline_data;
975
976 /*
977 * Maximum number of rdma_rw_ctx structures in flight at a time.
978 * ib_create_qp() will calculate the right amount of neededed WRs
979 * and MRs based on this.
980 */
981 u32 max_rdma_ctxs;
982 };
983
984 enum ib_sig_type {
985 IB_SIGNAL_ALL_WR,
986 IB_SIGNAL_REQ_WR
987 };
988
989 enum ib_qp_type {
990 /*
991 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
992 * here (and in that order) since the MAD layer uses them as
993 * indices into a 2-entry table.
994 */
995 IB_QPT_SMI,
996 IB_QPT_GSI,
997
998 IB_QPT_RC,
999 IB_QPT_UC,
1000 IB_QPT_UD,
1001 IB_QPT_RAW_IPV6,
1002 IB_QPT_RAW_ETHERTYPE,
1003 IB_QPT_RAW_PACKET = 8,
1004 IB_QPT_XRC_INI = 9,
1005 IB_QPT_XRC_TGT,
1006 IB_QPT_MAX,
1007 /* Reserve a range for qp types internal to the low level driver.
1008 * These qp types will not be visible at the IB core layer, so the
1009 * IB_QPT_MAX usages should not be affected in the core layer
1010 */
1011 IB_QPT_RESERVED1 = 0x1000,
1012 IB_QPT_RESERVED2,
1013 IB_QPT_RESERVED3,
1014 IB_QPT_RESERVED4,
1015 IB_QPT_RESERVED5,
1016 IB_QPT_RESERVED6,
1017 IB_QPT_RESERVED7,
1018 IB_QPT_RESERVED8,
1019 IB_QPT_RESERVED9,
1020 IB_QPT_RESERVED10,
1021 };
1022
1023 enum ib_qp_create_flags {
1024 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1025 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1026 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1027 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1028 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1029 IB_QP_CREATE_NETIF_QP = 1 << 5,
1030 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1031 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
1032 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1033 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1034 /* reserve bits 26-31 for low level drivers' internal use */
1035 IB_QP_CREATE_RESERVED_START = 1 << 26,
1036 IB_QP_CREATE_RESERVED_END = 1 << 31,
1037 };
1038
1039 /*
1040 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1041 * callback to destroy the passed in QP.
1042 */
1043
1044 struct ib_qp_init_attr {
1045 void (*event_handler)(struct ib_event *, void *);
1046 void *qp_context;
1047 struct ib_cq *send_cq;
1048 struct ib_cq *recv_cq;
1049 struct ib_srq *srq;
1050 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1051 struct ib_qp_cap cap;
1052 enum ib_sig_type sq_sig_type;
1053 enum ib_qp_type qp_type;
1054 enum ib_qp_create_flags create_flags;
1055
1056 /*
1057 * Only needed for special QP types, or when using the RW API.
1058 */
1059 u8 port_num;
1060 struct ib_rwq_ind_table *rwq_ind_tbl;
1061 };
1062
1063 struct ib_qp_open_attr {
1064 void (*event_handler)(struct ib_event *, void *);
1065 void *qp_context;
1066 u32 qp_num;
1067 enum ib_qp_type qp_type;
1068 };
1069
1070 enum ib_rnr_timeout {
1071 IB_RNR_TIMER_655_36 = 0,
1072 IB_RNR_TIMER_000_01 = 1,
1073 IB_RNR_TIMER_000_02 = 2,
1074 IB_RNR_TIMER_000_03 = 3,
1075 IB_RNR_TIMER_000_04 = 4,
1076 IB_RNR_TIMER_000_06 = 5,
1077 IB_RNR_TIMER_000_08 = 6,
1078 IB_RNR_TIMER_000_12 = 7,
1079 IB_RNR_TIMER_000_16 = 8,
1080 IB_RNR_TIMER_000_24 = 9,
1081 IB_RNR_TIMER_000_32 = 10,
1082 IB_RNR_TIMER_000_48 = 11,
1083 IB_RNR_TIMER_000_64 = 12,
1084 IB_RNR_TIMER_000_96 = 13,
1085 IB_RNR_TIMER_001_28 = 14,
1086 IB_RNR_TIMER_001_92 = 15,
1087 IB_RNR_TIMER_002_56 = 16,
1088 IB_RNR_TIMER_003_84 = 17,
1089 IB_RNR_TIMER_005_12 = 18,
1090 IB_RNR_TIMER_007_68 = 19,
1091 IB_RNR_TIMER_010_24 = 20,
1092 IB_RNR_TIMER_015_36 = 21,
1093 IB_RNR_TIMER_020_48 = 22,
1094 IB_RNR_TIMER_030_72 = 23,
1095 IB_RNR_TIMER_040_96 = 24,
1096 IB_RNR_TIMER_061_44 = 25,
1097 IB_RNR_TIMER_081_92 = 26,
1098 IB_RNR_TIMER_122_88 = 27,
1099 IB_RNR_TIMER_163_84 = 28,
1100 IB_RNR_TIMER_245_76 = 29,
1101 IB_RNR_TIMER_327_68 = 30,
1102 IB_RNR_TIMER_491_52 = 31
1103 };
1104
1105 enum ib_qp_attr_mask {
1106 IB_QP_STATE = 1,
1107 IB_QP_CUR_STATE = (1<<1),
1108 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1109 IB_QP_ACCESS_FLAGS = (1<<3),
1110 IB_QP_PKEY_INDEX = (1<<4),
1111 IB_QP_PORT = (1<<5),
1112 IB_QP_QKEY = (1<<6),
1113 IB_QP_AV = (1<<7),
1114 IB_QP_PATH_MTU = (1<<8),
1115 IB_QP_TIMEOUT = (1<<9),
1116 IB_QP_RETRY_CNT = (1<<10),
1117 IB_QP_RNR_RETRY = (1<<11),
1118 IB_QP_RQ_PSN = (1<<12),
1119 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1120 IB_QP_ALT_PATH = (1<<14),
1121 IB_QP_MIN_RNR_TIMER = (1<<15),
1122 IB_QP_SQ_PSN = (1<<16),
1123 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1124 IB_QP_PATH_MIG_STATE = (1<<18),
1125 IB_QP_CAP = (1<<19),
1126 IB_QP_DEST_QPN = (1<<20),
1127 IB_QP_RESERVED1 = (1<<21),
1128 IB_QP_RESERVED2 = (1<<22),
1129 IB_QP_RESERVED3 = (1<<23),
1130 IB_QP_RESERVED4 = (1<<24),
1131 IB_QP_RATE_LIMIT = (1<<25),
1132 };
1133
1134 enum ib_qp_state {
1135 IB_QPS_RESET,
1136 IB_QPS_INIT,
1137 IB_QPS_RTR,
1138 IB_QPS_RTS,
1139 IB_QPS_SQD,
1140 IB_QPS_SQE,
1141 IB_QPS_ERR
1142 };
1143
1144 enum ib_mig_state {
1145 IB_MIG_MIGRATED,
1146 IB_MIG_REARM,
1147 IB_MIG_ARMED
1148 };
1149
1150 enum ib_mw_type {
1151 IB_MW_TYPE_1 = 1,
1152 IB_MW_TYPE_2 = 2
1153 };
1154
1155 struct ib_qp_attr {
1156 enum ib_qp_state qp_state;
1157 enum ib_qp_state cur_qp_state;
1158 enum ib_mtu path_mtu;
1159 enum ib_mig_state path_mig_state;
1160 u32 qkey;
1161 u32 rq_psn;
1162 u32 sq_psn;
1163 u32 dest_qp_num;
1164 int qp_access_flags;
1165 struct ib_qp_cap cap;
1166 struct ib_ah_attr ah_attr;
1167 struct ib_ah_attr alt_ah_attr;
1168 u16 pkey_index;
1169 u16 alt_pkey_index;
1170 u8 en_sqd_async_notify;
1171 u8 sq_draining;
1172 u8 max_rd_atomic;
1173 u8 max_dest_rd_atomic;
1174 u8 min_rnr_timer;
1175 u8 port_num;
1176 u8 timeout;
1177 u8 retry_cnt;
1178 u8 rnr_retry;
1179 u8 alt_port_num;
1180 u8 alt_timeout;
1181 u32 rate_limit;
1182 };
1183
1184 enum ib_wr_opcode {
1185 IB_WR_RDMA_WRITE,
1186 IB_WR_RDMA_WRITE_WITH_IMM,
1187 IB_WR_SEND,
1188 IB_WR_SEND_WITH_IMM,
1189 IB_WR_RDMA_READ,
1190 IB_WR_ATOMIC_CMP_AND_SWP,
1191 IB_WR_ATOMIC_FETCH_AND_ADD,
1192 IB_WR_LSO,
1193 IB_WR_SEND_WITH_INV,
1194 IB_WR_RDMA_READ_WITH_INV,
1195 IB_WR_LOCAL_INV,
1196 IB_WR_REG_MR,
1197 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1198 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1199 IB_WR_REG_SIG_MR,
1200 /* reserve values for low level drivers' internal use.
1201 * These values will not be used at all in the ib core layer.
1202 */
1203 IB_WR_RESERVED1 = 0xf0,
1204 IB_WR_RESERVED2,
1205 IB_WR_RESERVED3,
1206 IB_WR_RESERVED4,
1207 IB_WR_RESERVED5,
1208 IB_WR_RESERVED6,
1209 IB_WR_RESERVED7,
1210 IB_WR_RESERVED8,
1211 IB_WR_RESERVED9,
1212 IB_WR_RESERVED10,
1213 };
1214
1215 enum ib_send_flags {
1216 IB_SEND_FENCE = 1,
1217 IB_SEND_SIGNALED = (1<<1),
1218 IB_SEND_SOLICITED = (1<<2),
1219 IB_SEND_INLINE = (1<<3),
1220 IB_SEND_IP_CSUM = (1<<4),
1221
1222 /* reserve bits 26-31 for low level drivers' internal use */
1223 IB_SEND_RESERVED_START = (1 << 26),
1224 IB_SEND_RESERVED_END = (1 << 31),
1225 };
1226
1227 struct ib_sge {
1228 u64 addr;
1229 u32 length;
1230 u32 lkey;
1231 };
1232
1233 struct ib_cqe {
1234 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1235 };
1236
1237 struct ib_send_wr {
1238 struct ib_send_wr *next;
1239 union {
1240 u64 wr_id;
1241 struct ib_cqe *wr_cqe;
1242 };
1243 struct ib_sge *sg_list;
1244 int num_sge;
1245 enum ib_wr_opcode opcode;
1246 int send_flags;
1247 union {
1248 __be32 imm_data;
1249 u32 invalidate_rkey;
1250 } ex;
1251 };
1252
1253 struct ib_rdma_wr {
1254 struct ib_send_wr wr;
1255 u64 remote_addr;
1256 u32 rkey;
1257 };
1258
1259 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1260 {
1261 return container_of(wr, struct ib_rdma_wr, wr);
1262 }
1263
1264 struct ib_atomic_wr {
1265 struct ib_send_wr wr;
1266 u64 remote_addr;
1267 u64 compare_add;
1268 u64 swap;
1269 u64 compare_add_mask;
1270 u64 swap_mask;
1271 u32 rkey;
1272 };
1273
1274 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1275 {
1276 return container_of(wr, struct ib_atomic_wr, wr);
1277 }
1278
1279 struct ib_ud_wr {
1280 struct ib_send_wr wr;
1281 struct ib_ah *ah;
1282 void *header;
1283 int hlen;
1284 int mss;
1285 u32 remote_qpn;
1286 u32 remote_qkey;
1287 u16 pkey_index; /* valid for GSI only */
1288 u8 port_num; /* valid for DR SMPs on switch only */
1289 };
1290
1291 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1292 {
1293 return container_of(wr, struct ib_ud_wr, wr);
1294 }
1295
1296 struct ib_reg_wr {
1297 struct ib_send_wr wr;
1298 struct ib_mr *mr;
1299 u32 key;
1300 int access;
1301 };
1302
1303 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1304 {
1305 return container_of(wr, struct ib_reg_wr, wr);
1306 }
1307
1308 struct ib_sig_handover_wr {
1309 struct ib_send_wr wr;
1310 struct ib_sig_attrs *sig_attrs;
1311 struct ib_mr *sig_mr;
1312 int access_flags;
1313 struct ib_sge *prot;
1314 };
1315
1316 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1317 {
1318 return container_of(wr, struct ib_sig_handover_wr, wr);
1319 }
1320
1321 struct ib_recv_wr {
1322 struct ib_recv_wr *next;
1323 union {
1324 u64 wr_id;
1325 struct ib_cqe *wr_cqe;
1326 };
1327 struct ib_sge *sg_list;
1328 int num_sge;
1329 };
1330
1331 enum ib_access_flags {
1332 IB_ACCESS_LOCAL_WRITE = 1,
1333 IB_ACCESS_REMOTE_WRITE = (1<<1),
1334 IB_ACCESS_REMOTE_READ = (1<<2),
1335 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1336 IB_ACCESS_MW_BIND = (1<<4),
1337 IB_ZERO_BASED = (1<<5),
1338 IB_ACCESS_ON_DEMAND = (1<<6),
1339 };
1340
1341 /*
1342 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1343 * are hidden here instead of a uapi header!
1344 */
1345 enum ib_mr_rereg_flags {
1346 IB_MR_REREG_TRANS = 1,
1347 IB_MR_REREG_PD = (1<<1),
1348 IB_MR_REREG_ACCESS = (1<<2),
1349 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1350 };
1351
1352 struct ib_fmr_attr {
1353 int max_pages;
1354 int max_maps;
1355 u8 page_shift;
1356 };
1357
1358 struct ib_umem;
1359
1360 struct ib_rdmacg_object {
1361 #ifdef CONFIG_CGROUP_RDMA
1362 struct rdma_cgroup *cg; /* owner rdma cgroup */
1363 #endif
1364 };
1365
1366 struct ib_ucontext {
1367 struct ib_device *device;
1368 struct list_head pd_list;
1369 struct list_head mr_list;
1370 struct list_head mw_list;
1371 struct list_head cq_list;
1372 struct list_head qp_list;
1373 struct list_head srq_list;
1374 struct list_head ah_list;
1375 struct list_head xrcd_list;
1376 struct list_head rule_list;
1377 struct list_head wq_list;
1378 struct list_head rwq_ind_tbl_list;
1379 int closing;
1380
1381 struct pid *tgid;
1382 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1383 struct rb_root umem_tree;
1384 /*
1385 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1386 * mmu notifiers registration.
1387 */
1388 struct rw_semaphore umem_rwsem;
1389 void (*invalidate_range)(struct ib_umem *umem,
1390 unsigned long start, unsigned long end);
1391
1392 struct mmu_notifier mn;
1393 atomic_t notifier_count;
1394 /* A list of umems that don't have private mmu notifier counters yet. */
1395 struct list_head no_private_counters;
1396 int odp_mrs_count;
1397 #endif
1398
1399 struct ib_rdmacg_object cg_obj;
1400 };
1401
1402 struct ib_uobject {
1403 u64 user_handle; /* handle given to us by userspace */
1404 struct ib_ucontext *context; /* associated user context */
1405 void *object; /* containing object */
1406 struct list_head list; /* link to context's list */
1407 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1408 int id; /* index into kernel idr */
1409 struct kref ref;
1410 struct rw_semaphore mutex; /* protects .live */
1411 struct rcu_head rcu; /* kfree_rcu() overhead */
1412 int live;
1413 };
1414
1415 struct ib_udata {
1416 const void __user *inbuf;
1417 void __user *outbuf;
1418 size_t inlen;
1419 size_t outlen;
1420 };
1421
1422 struct ib_pd {
1423 u32 local_dma_lkey;
1424 u32 flags;
1425 struct ib_device *device;
1426 struct ib_uobject *uobject;
1427 atomic_t usecnt; /* count all resources */
1428
1429 u32 unsafe_global_rkey;
1430
1431 /*
1432 * Implementation details of the RDMA core, don't use in drivers:
1433 */
1434 struct ib_mr *__internal_mr;
1435 };
1436
1437 struct ib_xrcd {
1438 struct ib_device *device;
1439 atomic_t usecnt; /* count all exposed resources */
1440 struct inode *inode;
1441
1442 struct mutex tgt_qp_mutex;
1443 struct list_head tgt_qp_list;
1444 };
1445
1446 struct ib_ah {
1447 struct ib_device *device;
1448 struct ib_pd *pd;
1449 struct ib_uobject *uobject;
1450 };
1451
1452 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1453
1454 enum ib_poll_context {
1455 IB_POLL_DIRECT, /* caller context, no hw completions */
1456 IB_POLL_SOFTIRQ, /* poll from softirq context */
1457 IB_POLL_WORKQUEUE, /* poll from workqueue */
1458 };
1459
1460 struct ib_cq {
1461 struct ib_device *device;
1462 struct ib_uobject *uobject;
1463 ib_comp_handler comp_handler;
1464 void (*event_handler)(struct ib_event *, void *);
1465 void *cq_context;
1466 int cqe;
1467 atomic_t usecnt; /* count number of work queues */
1468 enum ib_poll_context poll_ctx;
1469 struct ib_wc *wc;
1470 union {
1471 struct irq_poll iop;
1472 struct work_struct work;
1473 };
1474 };
1475
1476 struct ib_srq {
1477 struct ib_device *device;
1478 struct ib_pd *pd;
1479 struct ib_uobject *uobject;
1480 void (*event_handler)(struct ib_event *, void *);
1481 void *srq_context;
1482 enum ib_srq_type srq_type;
1483 atomic_t usecnt;
1484
1485 union {
1486 struct {
1487 struct ib_xrcd *xrcd;
1488 struct ib_cq *cq;
1489 u32 srq_num;
1490 } xrc;
1491 } ext;
1492 };
1493
1494 enum ib_raw_packet_caps {
1495 /* Strip cvlan from incoming packet and report it in the matching work
1496 * completion is supported.
1497 */
1498 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1499 /* Scatter FCS field of an incoming packet to host memory is supported.
1500 */
1501 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1502 /* Checksum offloads are supported (for both send and receive). */
1503 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1504 };
1505
1506 enum ib_wq_type {
1507 IB_WQT_RQ
1508 };
1509
1510 enum ib_wq_state {
1511 IB_WQS_RESET,
1512 IB_WQS_RDY,
1513 IB_WQS_ERR
1514 };
1515
1516 struct ib_wq {
1517 struct ib_device *device;
1518 struct ib_uobject *uobject;
1519 void *wq_context;
1520 void (*event_handler)(struct ib_event *, void *);
1521 struct ib_pd *pd;
1522 struct ib_cq *cq;
1523 u32 wq_num;
1524 enum ib_wq_state state;
1525 enum ib_wq_type wq_type;
1526 atomic_t usecnt;
1527 };
1528
1529 enum ib_wq_flags {
1530 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1531 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1532 };
1533
1534 struct ib_wq_init_attr {
1535 void *wq_context;
1536 enum ib_wq_type wq_type;
1537 u32 max_wr;
1538 u32 max_sge;
1539 struct ib_cq *cq;
1540 void (*event_handler)(struct ib_event *, void *);
1541 u32 create_flags; /* Use enum ib_wq_flags */
1542 };
1543
1544 enum ib_wq_attr_mask {
1545 IB_WQ_STATE = 1 << 0,
1546 IB_WQ_CUR_STATE = 1 << 1,
1547 IB_WQ_FLAGS = 1 << 2,
1548 };
1549
1550 struct ib_wq_attr {
1551 enum ib_wq_state wq_state;
1552 enum ib_wq_state curr_wq_state;
1553 u32 flags; /* Use enum ib_wq_flags */
1554 u32 flags_mask; /* Use enum ib_wq_flags */
1555 };
1556
1557 struct ib_rwq_ind_table {
1558 struct ib_device *device;
1559 struct ib_uobject *uobject;
1560 atomic_t usecnt;
1561 u32 ind_tbl_num;
1562 u32 log_ind_tbl_size;
1563 struct ib_wq **ind_tbl;
1564 };
1565
1566 struct ib_rwq_ind_table_init_attr {
1567 u32 log_ind_tbl_size;
1568 /* Each entry is a pointer to Receive Work Queue */
1569 struct ib_wq **ind_tbl;
1570 };
1571
1572 /*
1573 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1574 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1575 */
1576 struct ib_qp {
1577 struct ib_device *device;
1578 struct ib_pd *pd;
1579 struct ib_cq *send_cq;
1580 struct ib_cq *recv_cq;
1581 spinlock_t mr_lock;
1582 int mrs_used;
1583 struct list_head rdma_mrs;
1584 struct list_head sig_mrs;
1585 struct ib_srq *srq;
1586 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1587 struct list_head xrcd_list;
1588
1589 /* count times opened, mcast attaches, flow attaches */
1590 atomic_t usecnt;
1591 struct list_head open_list;
1592 struct ib_qp *real_qp;
1593 struct ib_uobject *uobject;
1594 void (*event_handler)(struct ib_event *, void *);
1595 void *qp_context;
1596 u32 qp_num;
1597 u32 max_write_sge;
1598 u32 max_read_sge;
1599 enum ib_qp_type qp_type;
1600 struct ib_rwq_ind_table *rwq_ind_tbl;
1601 };
1602
1603 struct ib_mr {
1604 struct ib_device *device;
1605 struct ib_pd *pd;
1606 u32 lkey;
1607 u32 rkey;
1608 u64 iova;
1609 u32 length;
1610 unsigned int page_size;
1611 bool need_inval;
1612 union {
1613 struct ib_uobject *uobject; /* user */
1614 struct list_head qp_entry; /* FR */
1615 };
1616 };
1617
1618 struct ib_mw {
1619 struct ib_device *device;
1620 struct ib_pd *pd;
1621 struct ib_uobject *uobject;
1622 u32 rkey;
1623 enum ib_mw_type type;
1624 };
1625
1626 struct ib_fmr {
1627 struct ib_device *device;
1628 struct ib_pd *pd;
1629 struct list_head list;
1630 u32 lkey;
1631 u32 rkey;
1632 };
1633
1634 /* Supported steering options */
1635 enum ib_flow_attr_type {
1636 /* steering according to rule specifications */
1637 IB_FLOW_ATTR_NORMAL = 0x0,
1638 /* default unicast and multicast rule -
1639 * receive all Eth traffic which isn't steered to any QP
1640 */
1641 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1642 /* default multicast rule -
1643 * receive all Eth multicast traffic which isn't steered to any QP
1644 */
1645 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1646 /* sniffer rule - receive all port traffic */
1647 IB_FLOW_ATTR_SNIFFER = 0x3
1648 };
1649
1650 /* Supported steering header types */
1651 enum ib_flow_spec_type {
1652 /* L2 headers*/
1653 IB_FLOW_SPEC_ETH = 0x20,
1654 IB_FLOW_SPEC_IB = 0x22,
1655 /* L3 header*/
1656 IB_FLOW_SPEC_IPV4 = 0x30,
1657 IB_FLOW_SPEC_IPV6 = 0x31,
1658 /* L4 headers*/
1659 IB_FLOW_SPEC_TCP = 0x40,
1660 IB_FLOW_SPEC_UDP = 0x41,
1661 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1662 IB_FLOW_SPEC_INNER = 0x100,
1663 /* Actions */
1664 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1665 };
1666 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1667 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1668
1669 /* Flow steering rule priority is set according to it's domain.
1670 * Lower domain value means higher priority.
1671 */
1672 enum ib_flow_domain {
1673 IB_FLOW_DOMAIN_USER,
1674 IB_FLOW_DOMAIN_ETHTOOL,
1675 IB_FLOW_DOMAIN_RFS,
1676 IB_FLOW_DOMAIN_NIC,
1677 IB_FLOW_DOMAIN_NUM /* Must be last */
1678 };
1679
1680 enum ib_flow_flags {
1681 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1682 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1683 };
1684
1685 struct ib_flow_eth_filter {
1686 u8 dst_mac[6];
1687 u8 src_mac[6];
1688 __be16 ether_type;
1689 __be16 vlan_tag;
1690 /* Must be last */
1691 u8 real_sz[0];
1692 };
1693
1694 struct ib_flow_spec_eth {
1695 u32 type;
1696 u16 size;
1697 struct ib_flow_eth_filter val;
1698 struct ib_flow_eth_filter mask;
1699 };
1700
1701 struct ib_flow_ib_filter {
1702 __be16 dlid;
1703 __u8 sl;
1704 /* Must be last */
1705 u8 real_sz[0];
1706 };
1707
1708 struct ib_flow_spec_ib {
1709 u32 type;
1710 u16 size;
1711 struct ib_flow_ib_filter val;
1712 struct ib_flow_ib_filter mask;
1713 };
1714
1715 /* IPv4 header flags */
1716 enum ib_ipv4_flags {
1717 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1718 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1719 last have this flag set */
1720 };
1721
1722 struct ib_flow_ipv4_filter {
1723 __be32 src_ip;
1724 __be32 dst_ip;
1725 u8 proto;
1726 u8 tos;
1727 u8 ttl;
1728 u8 flags;
1729 /* Must be last */
1730 u8 real_sz[0];
1731 };
1732
1733 struct ib_flow_spec_ipv4 {
1734 u32 type;
1735 u16 size;
1736 struct ib_flow_ipv4_filter val;
1737 struct ib_flow_ipv4_filter mask;
1738 };
1739
1740 struct ib_flow_ipv6_filter {
1741 u8 src_ip[16];
1742 u8 dst_ip[16];
1743 __be32 flow_label;
1744 u8 next_hdr;
1745 u8 traffic_class;
1746 u8 hop_limit;
1747 /* Must be last */
1748 u8 real_sz[0];
1749 };
1750
1751 struct ib_flow_spec_ipv6 {
1752 u32 type;
1753 u16 size;
1754 struct ib_flow_ipv6_filter val;
1755 struct ib_flow_ipv6_filter mask;
1756 };
1757
1758 struct ib_flow_tcp_udp_filter {
1759 __be16 dst_port;
1760 __be16 src_port;
1761 /* Must be last */
1762 u8 real_sz[0];
1763 };
1764
1765 struct ib_flow_spec_tcp_udp {
1766 u32 type;
1767 u16 size;
1768 struct ib_flow_tcp_udp_filter val;
1769 struct ib_flow_tcp_udp_filter mask;
1770 };
1771
1772 struct ib_flow_tunnel_filter {
1773 __be32 tunnel_id;
1774 u8 real_sz[0];
1775 };
1776
1777 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1778 * the tunnel_id from val has the vni value
1779 */
1780 struct ib_flow_spec_tunnel {
1781 u32 type;
1782 u16 size;
1783 struct ib_flow_tunnel_filter val;
1784 struct ib_flow_tunnel_filter mask;
1785 };
1786
1787 struct ib_flow_spec_action_tag {
1788 enum ib_flow_spec_type type;
1789 u16 size;
1790 u32 tag_id;
1791 };
1792
1793 union ib_flow_spec {
1794 struct {
1795 u32 type;
1796 u16 size;
1797 };
1798 struct ib_flow_spec_eth eth;
1799 struct ib_flow_spec_ib ib;
1800 struct ib_flow_spec_ipv4 ipv4;
1801 struct ib_flow_spec_tcp_udp tcp_udp;
1802 struct ib_flow_spec_ipv6 ipv6;
1803 struct ib_flow_spec_tunnel tunnel;
1804 struct ib_flow_spec_action_tag flow_tag;
1805 };
1806
1807 struct ib_flow_attr {
1808 enum ib_flow_attr_type type;
1809 u16 size;
1810 u16 priority;
1811 u32 flags;
1812 u8 num_of_specs;
1813 u8 port;
1814 /* Following are the optional layers according to user request
1815 * struct ib_flow_spec_xxx
1816 * struct ib_flow_spec_yyy
1817 */
1818 };
1819
1820 struct ib_flow {
1821 struct ib_qp *qp;
1822 struct ib_uobject *uobject;
1823 };
1824
1825 struct ib_mad_hdr;
1826 struct ib_grh;
1827
1828 enum ib_process_mad_flags {
1829 IB_MAD_IGNORE_MKEY = 1,
1830 IB_MAD_IGNORE_BKEY = 2,
1831 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1832 };
1833
1834 enum ib_mad_result {
1835 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1836 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1837 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1838 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1839 };
1840
1841 #define IB_DEVICE_NAME_MAX 64
1842
1843 struct ib_port_cache {
1844 struct ib_pkey_cache *pkey;
1845 struct ib_gid_table *gid;
1846 u8 lmc;
1847 enum ib_port_state port_state;
1848 };
1849
1850 struct ib_cache {
1851 rwlock_t lock;
1852 struct ib_event_handler event_handler;
1853 struct ib_port_cache *ports;
1854 };
1855
1856 struct iw_cm_verbs;
1857
1858 struct ib_port_immutable {
1859 int pkey_tbl_len;
1860 int gid_tbl_len;
1861 u32 core_cap_flags;
1862 u32 max_mad_size;
1863 };
1864
1865 struct ib_device {
1866 char name[IB_DEVICE_NAME_MAX];
1867
1868 struct list_head event_handler_list;
1869 spinlock_t event_handler_lock;
1870
1871 spinlock_t client_data_lock;
1872 struct list_head core_list;
1873 /* Access to the client_data_list is protected by the client_data_lock
1874 * spinlock and the lists_rwsem read-write semaphore */
1875 struct list_head client_data_list;
1876
1877 struct ib_cache cache;
1878 /**
1879 * port_immutable is indexed by port number
1880 */
1881 struct ib_port_immutable *port_immutable;
1882
1883 int num_comp_vectors;
1884
1885 struct iw_cm_verbs *iwcm;
1886
1887 /**
1888 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1889 * driver initialized data. The struct is kfree()'ed by the sysfs
1890 * core when the device is removed. A lifespan of -1 in the return
1891 * struct tells the core to set a default lifespan.
1892 */
1893 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1894 u8 port_num);
1895 /**
1896 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1897 * @index - The index in the value array we wish to have updated, or
1898 * num_counters if we want all stats updated
1899 * Return codes -
1900 * < 0 - Error, no counters updated
1901 * index - Updated the single counter pointed to by index
1902 * num_counters - Updated all counters (will reset the timestamp
1903 * and prevent further calls for lifespan milliseconds)
1904 * Drivers are allowed to update all counters in leiu of just the
1905 * one given in index at their option
1906 */
1907 int (*get_hw_stats)(struct ib_device *device,
1908 struct rdma_hw_stats *stats,
1909 u8 port, int index);
1910 int (*query_device)(struct ib_device *device,
1911 struct ib_device_attr *device_attr,
1912 struct ib_udata *udata);
1913 int (*query_port)(struct ib_device *device,
1914 u8 port_num,
1915 struct ib_port_attr *port_attr);
1916 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1917 u8 port_num);
1918 /* When calling get_netdev, the HW vendor's driver should return the
1919 * net device of device @device at port @port_num or NULL if such
1920 * a net device doesn't exist. The vendor driver should call dev_hold
1921 * on this net device. The HW vendor's device driver must guarantee
1922 * that this function returns NULL before the net device reaches
1923 * NETDEV_UNREGISTER_FINAL state.
1924 */
1925 struct net_device *(*get_netdev)(struct ib_device *device,
1926 u8 port_num);
1927 int (*query_gid)(struct ib_device *device,
1928 u8 port_num, int index,
1929 union ib_gid *gid);
1930 /* When calling add_gid, the HW vendor's driver should
1931 * add the gid of device @device at gid index @index of
1932 * port @port_num to be @gid. Meta-info of that gid (for example,
1933 * the network device related to this gid is available
1934 * at @attr. @context allows the HW vendor driver to store extra
1935 * information together with a GID entry. The HW vendor may allocate
1936 * memory to contain this information and store it in @context when a
1937 * new GID entry is written to. Params are consistent until the next
1938 * call of add_gid or delete_gid. The function should return 0 on
1939 * success or error otherwise. The function could be called
1940 * concurrently for different ports. This function is only called
1941 * when roce_gid_table is used.
1942 */
1943 int (*add_gid)(struct ib_device *device,
1944 u8 port_num,
1945 unsigned int index,
1946 const union ib_gid *gid,
1947 const struct ib_gid_attr *attr,
1948 void **context);
1949 /* When calling del_gid, the HW vendor's driver should delete the
1950 * gid of device @device at gid index @index of port @port_num.
1951 * Upon the deletion of a GID entry, the HW vendor must free any
1952 * allocated memory. The caller will clear @context afterwards.
1953 * This function is only called when roce_gid_table is used.
1954 */
1955 int (*del_gid)(struct ib_device *device,
1956 u8 port_num,
1957 unsigned int index,
1958 void **context);
1959 int (*query_pkey)(struct ib_device *device,
1960 u8 port_num, u16 index, u16 *pkey);
1961 int (*modify_device)(struct ib_device *device,
1962 int device_modify_mask,
1963 struct ib_device_modify *device_modify);
1964 int (*modify_port)(struct ib_device *device,
1965 u8 port_num, int port_modify_mask,
1966 struct ib_port_modify *port_modify);
1967 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1968 struct ib_udata *udata);
1969 int (*dealloc_ucontext)(struct ib_ucontext *context);
1970 int (*mmap)(struct ib_ucontext *context,
1971 struct vm_area_struct *vma);
1972 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1973 struct ib_ucontext *context,
1974 struct ib_udata *udata);
1975 int (*dealloc_pd)(struct ib_pd *pd);
1976 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1977 struct ib_ah_attr *ah_attr,
1978 struct ib_udata *udata);
1979 int (*modify_ah)(struct ib_ah *ah,
1980 struct ib_ah_attr *ah_attr);
1981 int (*query_ah)(struct ib_ah *ah,
1982 struct ib_ah_attr *ah_attr);
1983 int (*destroy_ah)(struct ib_ah *ah);
1984 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1985 struct ib_srq_init_attr *srq_init_attr,
1986 struct ib_udata *udata);
1987 int (*modify_srq)(struct ib_srq *srq,
1988 struct ib_srq_attr *srq_attr,
1989 enum ib_srq_attr_mask srq_attr_mask,
1990 struct ib_udata *udata);
1991 int (*query_srq)(struct ib_srq *srq,
1992 struct ib_srq_attr *srq_attr);
1993 int (*destroy_srq)(struct ib_srq *srq);
1994 int (*post_srq_recv)(struct ib_srq *srq,
1995 struct ib_recv_wr *recv_wr,
1996 struct ib_recv_wr **bad_recv_wr);
1997 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1998 struct ib_qp_init_attr *qp_init_attr,
1999 struct ib_udata *udata);
2000 int (*modify_qp)(struct ib_qp *qp,
2001 struct ib_qp_attr *qp_attr,
2002 int qp_attr_mask,
2003 struct ib_udata *udata);
2004 int (*query_qp)(struct ib_qp *qp,
2005 struct ib_qp_attr *qp_attr,
2006 int qp_attr_mask,
2007 struct ib_qp_init_attr *qp_init_attr);
2008 int (*destroy_qp)(struct ib_qp *qp);
2009 int (*post_send)(struct ib_qp *qp,
2010 struct ib_send_wr *send_wr,
2011 struct ib_send_wr **bad_send_wr);
2012 int (*post_recv)(struct ib_qp *qp,
2013 struct ib_recv_wr *recv_wr,
2014 struct ib_recv_wr **bad_recv_wr);
2015 struct ib_cq * (*create_cq)(struct ib_device *device,
2016 const struct ib_cq_init_attr *attr,
2017 struct ib_ucontext *context,
2018 struct ib_udata *udata);
2019 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2020 u16 cq_period);
2021 int (*destroy_cq)(struct ib_cq *cq);
2022 int (*resize_cq)(struct ib_cq *cq, int cqe,
2023 struct ib_udata *udata);
2024 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2025 struct ib_wc *wc);
2026 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2027 int (*req_notify_cq)(struct ib_cq *cq,
2028 enum ib_cq_notify_flags flags);
2029 int (*req_ncomp_notif)(struct ib_cq *cq,
2030 int wc_cnt);
2031 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2032 int mr_access_flags);
2033 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2034 u64 start, u64 length,
2035 u64 virt_addr,
2036 int mr_access_flags,
2037 struct ib_udata *udata);
2038 int (*rereg_user_mr)(struct ib_mr *mr,
2039 int flags,
2040 u64 start, u64 length,
2041 u64 virt_addr,
2042 int mr_access_flags,
2043 struct ib_pd *pd,
2044 struct ib_udata *udata);
2045 int (*dereg_mr)(struct ib_mr *mr);
2046 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2047 enum ib_mr_type mr_type,
2048 u32 max_num_sg);
2049 int (*map_mr_sg)(struct ib_mr *mr,
2050 struct scatterlist *sg,
2051 int sg_nents,
2052 unsigned int *sg_offset);
2053 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2054 enum ib_mw_type type,
2055 struct ib_udata *udata);
2056 int (*dealloc_mw)(struct ib_mw *mw);
2057 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2058 int mr_access_flags,
2059 struct ib_fmr_attr *fmr_attr);
2060 int (*map_phys_fmr)(struct ib_fmr *fmr,
2061 u64 *page_list, int list_len,
2062 u64 iova);
2063 int (*unmap_fmr)(struct list_head *fmr_list);
2064 int (*dealloc_fmr)(struct ib_fmr *fmr);
2065 int (*attach_mcast)(struct ib_qp *qp,
2066 union ib_gid *gid,
2067 u16 lid);
2068 int (*detach_mcast)(struct ib_qp *qp,
2069 union ib_gid *gid,
2070 u16 lid);
2071 int (*process_mad)(struct ib_device *device,
2072 int process_mad_flags,
2073 u8 port_num,
2074 const struct ib_wc *in_wc,
2075 const struct ib_grh *in_grh,
2076 const struct ib_mad_hdr *in_mad,
2077 size_t in_mad_size,
2078 struct ib_mad_hdr *out_mad,
2079 size_t *out_mad_size,
2080 u16 *out_mad_pkey_index);
2081 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2082 struct ib_ucontext *ucontext,
2083 struct ib_udata *udata);
2084 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2085 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2086 struct ib_flow_attr
2087 *flow_attr,
2088 int domain);
2089 int (*destroy_flow)(struct ib_flow *flow_id);
2090 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2091 struct ib_mr_status *mr_status);
2092 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2093 void (*drain_rq)(struct ib_qp *qp);
2094 void (*drain_sq)(struct ib_qp *qp);
2095 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2096 int state);
2097 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2098 struct ifla_vf_info *ivf);
2099 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2100 struct ifla_vf_stats *stats);
2101 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2102 int type);
2103 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2104 struct ib_wq_init_attr *init_attr,
2105 struct ib_udata *udata);
2106 int (*destroy_wq)(struct ib_wq *wq);
2107 int (*modify_wq)(struct ib_wq *wq,
2108 struct ib_wq_attr *attr,
2109 u32 wq_attr_mask,
2110 struct ib_udata *udata);
2111 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2112 struct ib_rwq_ind_table_init_attr *init_attr,
2113 struct ib_udata *udata);
2114 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2115
2116 struct module *owner;
2117 struct device dev;
2118 struct kobject *ports_parent;
2119 struct list_head port_list;
2120
2121 enum {
2122 IB_DEV_UNINITIALIZED,
2123 IB_DEV_REGISTERED,
2124 IB_DEV_UNREGISTERED
2125 } reg_state;
2126
2127 int uverbs_abi_ver;
2128 u64 uverbs_cmd_mask;
2129 u64 uverbs_ex_cmd_mask;
2130
2131 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2132 __be64 node_guid;
2133 u32 local_dma_lkey;
2134 u16 is_switch:1;
2135 u8 node_type;
2136 u8 phys_port_cnt;
2137 struct ib_device_attr attrs;
2138 struct attribute_group *hw_stats_ag;
2139 struct rdma_hw_stats *hw_stats;
2140
2141 #ifdef CONFIG_CGROUP_RDMA
2142 struct rdmacg_device cg_device;
2143 #endif
2144
2145 /**
2146 * The following mandatory functions are used only at device
2147 * registration. Keep functions such as these at the end of this
2148 * structure to avoid cache line misses when accessing struct ib_device
2149 * in fast paths.
2150 */
2151 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2152 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2153 };
2154
2155 struct ib_client {
2156 char *name;
2157 void (*add) (struct ib_device *);
2158 void (*remove)(struct ib_device *, void *client_data);
2159
2160 /* Returns the net_dev belonging to this ib_client and matching the
2161 * given parameters.
2162 * @dev: An RDMA device that the net_dev use for communication.
2163 * @port: A physical port number on the RDMA device.
2164 * @pkey: P_Key that the net_dev uses if applicable.
2165 * @gid: A GID that the net_dev uses to communicate.
2166 * @addr: An IP address the net_dev is configured with.
2167 * @client_data: The device's client data set by ib_set_client_data().
2168 *
2169 * An ib_client that implements a net_dev on top of RDMA devices
2170 * (such as IP over IB) should implement this callback, allowing the
2171 * rdma_cm module to find the right net_dev for a given request.
2172 *
2173 * The caller is responsible for calling dev_put on the returned
2174 * netdev. */
2175 struct net_device *(*get_net_dev_by_params)(
2176 struct ib_device *dev,
2177 u8 port,
2178 u16 pkey,
2179 const union ib_gid *gid,
2180 const struct sockaddr *addr,
2181 void *client_data);
2182 struct list_head list;
2183 };
2184
2185 struct ib_device *ib_alloc_device(size_t size);
2186 void ib_dealloc_device(struct ib_device *device);
2187
2188 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2189
2190 int ib_register_device(struct ib_device *device,
2191 int (*port_callback)(struct ib_device *,
2192 u8, struct kobject *));
2193 void ib_unregister_device(struct ib_device *device);
2194
2195 int ib_register_client (struct ib_client *client);
2196 void ib_unregister_client(struct ib_client *client);
2197
2198 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2199 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2200 void *data);
2201
2202 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2203 {
2204 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2205 }
2206
2207 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2208 {
2209 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2210 }
2211
2212 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2213 size_t offset,
2214 size_t len)
2215 {
2216 const void __user *p = udata->inbuf + offset;
2217 bool ret;
2218 u8 *buf;
2219
2220 if (len > USHRT_MAX)
2221 return false;
2222
2223 buf = memdup_user(p, len);
2224 if (IS_ERR(buf))
2225 return false;
2226
2227 ret = !memchr_inv(buf, 0, len);
2228 kfree(buf);
2229 return ret;
2230 }
2231
2232 /**
2233 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2234 * contains all required attributes and no attributes not allowed for
2235 * the given QP state transition.
2236 * @cur_state: Current QP state
2237 * @next_state: Next QP state
2238 * @type: QP type
2239 * @mask: Mask of supplied QP attributes
2240 * @ll : link layer of port
2241 *
2242 * This function is a helper function that a low-level driver's
2243 * modify_qp method can use to validate the consumer's input. It
2244 * checks that cur_state and next_state are valid QP states, that a
2245 * transition from cur_state to next_state is allowed by the IB spec,
2246 * and that the attribute mask supplied is allowed for the transition.
2247 */
2248 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2249 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2250 enum rdma_link_layer ll);
2251
2252 int ib_register_event_handler (struct ib_event_handler *event_handler);
2253 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2254 void ib_dispatch_event(struct ib_event *event);
2255
2256 int ib_query_port(struct ib_device *device,
2257 u8 port_num, struct ib_port_attr *port_attr);
2258
2259 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2260 u8 port_num);
2261
2262 /**
2263 * rdma_cap_ib_switch - Check if the device is IB switch
2264 * @device: Device to check
2265 *
2266 * Device driver is responsible for setting is_switch bit on
2267 * in ib_device structure at init time.
2268 *
2269 * Return: true if the device is IB switch.
2270 */
2271 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2272 {
2273 return device->is_switch;
2274 }
2275
2276 /**
2277 * rdma_start_port - Return the first valid port number for the device
2278 * specified
2279 *
2280 * @device: Device to be checked
2281 *
2282 * Return start port number
2283 */
2284 static inline u8 rdma_start_port(const struct ib_device *device)
2285 {
2286 return rdma_cap_ib_switch(device) ? 0 : 1;
2287 }
2288
2289 /**
2290 * rdma_end_port - Return the last valid port number for the device
2291 * specified
2292 *
2293 * @device: Device to be checked
2294 *
2295 * Return last port number
2296 */
2297 static inline u8 rdma_end_port(const struct ib_device *device)
2298 {
2299 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2300 }
2301
2302 static inline int rdma_is_port_valid(const struct ib_device *device,
2303 unsigned int port)
2304 {
2305 return (port >= rdma_start_port(device) &&
2306 port <= rdma_end_port(device));
2307 }
2308
2309 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2310 {
2311 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2312 }
2313
2314 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2315 {
2316 return device->port_immutable[port_num].core_cap_flags &
2317 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2318 }
2319
2320 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2321 {
2322 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2323 }
2324
2325 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2326 {
2327 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2328 }
2329
2330 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2331 {
2332 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2333 }
2334
2335 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2336 {
2337 return rdma_protocol_ib(device, port_num) ||
2338 rdma_protocol_roce(device, port_num);
2339 }
2340
2341 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2342 {
2343 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2344 }
2345
2346 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2347 {
2348 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2349 }
2350
2351 /**
2352 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2353 * Management Datagrams.
2354 * @device: Device to check
2355 * @port_num: Port number to check
2356 *
2357 * Management Datagrams (MAD) are a required part of the InfiniBand
2358 * specification and are supported on all InfiniBand devices. A slightly
2359 * extended version are also supported on OPA interfaces.
2360 *
2361 * Return: true if the port supports sending/receiving of MAD packets.
2362 */
2363 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2364 {
2365 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2366 }
2367
2368 /**
2369 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2370 * Management Datagrams.
2371 * @device: Device to check
2372 * @port_num: Port number to check
2373 *
2374 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2375 * datagrams with their own versions. These OPA MADs share many but not all of
2376 * the characteristics of InfiniBand MADs.
2377 *
2378 * OPA MADs differ in the following ways:
2379 *
2380 * 1) MADs are variable size up to 2K
2381 * IBTA defined MADs remain fixed at 256 bytes
2382 * 2) OPA SMPs must carry valid PKeys
2383 * 3) OPA SMP packets are a different format
2384 *
2385 * Return: true if the port supports OPA MAD packet formats.
2386 */
2387 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2388 {
2389 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2390 == RDMA_CORE_CAP_OPA_MAD;
2391 }
2392
2393 /**
2394 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2395 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2396 * @device: Device to check
2397 * @port_num: Port number to check
2398 *
2399 * Each InfiniBand node is required to provide a Subnet Management Agent
2400 * that the subnet manager can access. Prior to the fabric being fully
2401 * configured by the subnet manager, the SMA is accessed via a well known
2402 * interface called the Subnet Management Interface (SMI). This interface
2403 * uses directed route packets to communicate with the SM to get around the
2404 * chicken and egg problem of the SM needing to know what's on the fabric
2405 * in order to configure the fabric, and needing to configure the fabric in
2406 * order to send packets to the devices on the fabric. These directed
2407 * route packets do not need the fabric fully configured in order to reach
2408 * their destination. The SMI is the only method allowed to send
2409 * directed route packets on an InfiniBand fabric.
2410 *
2411 * Return: true if the port provides an SMI.
2412 */
2413 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2414 {
2415 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2416 }
2417
2418 /**
2419 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2420 * Communication Manager.
2421 * @device: Device to check
2422 * @port_num: Port number to check
2423 *
2424 * The InfiniBand Communication Manager is one of many pre-defined General
2425 * Service Agents (GSA) that are accessed via the General Service
2426 * Interface (GSI). It's role is to facilitate establishment of connections
2427 * between nodes as well as other management related tasks for established
2428 * connections.
2429 *
2430 * Return: true if the port supports an IB CM (this does not guarantee that
2431 * a CM is actually running however).
2432 */
2433 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2434 {
2435 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2436 }
2437
2438 /**
2439 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2440 * Communication Manager.
2441 * @device: Device to check
2442 * @port_num: Port number to check
2443 *
2444 * Similar to above, but specific to iWARP connections which have a different
2445 * managment protocol than InfiniBand.
2446 *
2447 * Return: true if the port supports an iWARP CM (this does not guarantee that
2448 * a CM is actually running however).
2449 */
2450 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2451 {
2452 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2453 }
2454
2455 /**
2456 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2457 * Subnet Administration.
2458 * @device: Device to check
2459 * @port_num: Port number to check
2460 *
2461 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2462 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2463 * fabrics, devices should resolve routes to other hosts by contacting the
2464 * SA to query the proper route.
2465 *
2466 * Return: true if the port should act as a client to the fabric Subnet
2467 * Administration interface. This does not imply that the SA service is
2468 * running locally.
2469 */
2470 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2471 {
2472 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2473 }
2474
2475 /**
2476 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2477 * Multicast.
2478 * @device: Device to check
2479 * @port_num: Port number to check
2480 *
2481 * InfiniBand multicast registration is more complex than normal IPv4 or
2482 * IPv6 multicast registration. Each Host Channel Adapter must register
2483 * with the Subnet Manager when it wishes to join a multicast group. It
2484 * should do so only once regardless of how many queue pairs it subscribes
2485 * to this group. And it should leave the group only after all queue pairs
2486 * attached to the group have been detached.
2487 *
2488 * Return: true if the port must undertake the additional adminstrative
2489 * overhead of registering/unregistering with the SM and tracking of the
2490 * total number of queue pairs attached to the multicast group.
2491 */
2492 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2493 {
2494 return rdma_cap_ib_sa(device, port_num);
2495 }
2496
2497 /**
2498 * rdma_cap_af_ib - Check if the port of device has the capability
2499 * Native Infiniband Address.
2500 * @device: Device to check
2501 * @port_num: Port number to check
2502 *
2503 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2504 * GID. RoCE uses a different mechanism, but still generates a GID via
2505 * a prescribed mechanism and port specific data.
2506 *
2507 * Return: true if the port uses a GID address to identify devices on the
2508 * network.
2509 */
2510 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2511 {
2512 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2513 }
2514
2515 /**
2516 * rdma_cap_eth_ah - Check if the port of device has the capability
2517 * Ethernet Address Handle.
2518 * @device: Device to check
2519 * @port_num: Port number to check
2520 *
2521 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2522 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2523 * port. Normally, packet headers are generated by the sending host
2524 * adapter, but when sending connectionless datagrams, we must manually
2525 * inject the proper headers for the fabric we are communicating over.
2526 *
2527 * Return: true if we are running as a RoCE port and must force the
2528 * addition of a Global Route Header built from our Ethernet Address
2529 * Handle into our header list for connectionless packets.
2530 */
2531 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2532 {
2533 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2534 }
2535
2536 /**
2537 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2538 *
2539 * @device: Device
2540 * @port_num: Port number
2541 *
2542 * This MAD size includes the MAD headers and MAD payload. No other headers
2543 * are included.
2544 *
2545 * Return the max MAD size required by the Port. Will return 0 if the port
2546 * does not support MADs
2547 */
2548 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2549 {
2550 return device->port_immutable[port_num].max_mad_size;
2551 }
2552
2553 /**
2554 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2555 * @device: Device to check
2556 * @port_num: Port number to check
2557 *
2558 * RoCE GID table mechanism manages the various GIDs for a device.
2559 *
2560 * NOTE: if allocating the port's GID table has failed, this call will still
2561 * return true, but any RoCE GID table API will fail.
2562 *
2563 * Return: true if the port uses RoCE GID table mechanism in order to manage
2564 * its GIDs.
2565 */
2566 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2567 u8 port_num)
2568 {
2569 return rdma_protocol_roce(device, port_num) &&
2570 device->add_gid && device->del_gid;
2571 }
2572
2573 /*
2574 * Check if the device supports READ W/ INVALIDATE.
2575 */
2576 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2577 {
2578 /*
2579 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2580 * has support for it yet.
2581 */
2582 return rdma_protocol_iwarp(dev, port_num);
2583 }
2584
2585 int ib_query_gid(struct ib_device *device,
2586 u8 port_num, int index, union ib_gid *gid,
2587 struct ib_gid_attr *attr);
2588
2589 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2590 int state);
2591 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2592 struct ifla_vf_info *info);
2593 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2594 struct ifla_vf_stats *stats);
2595 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2596 int type);
2597
2598 int ib_query_pkey(struct ib_device *device,
2599 u8 port_num, u16 index, u16 *pkey);
2600
2601 int ib_modify_device(struct ib_device *device,
2602 int device_modify_mask,
2603 struct ib_device_modify *device_modify);
2604
2605 int ib_modify_port(struct ib_device *device,
2606 u8 port_num, int port_modify_mask,
2607 struct ib_port_modify *port_modify);
2608
2609 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2610 enum ib_gid_type gid_type, struct net_device *ndev,
2611 u8 *port_num, u16 *index);
2612
2613 int ib_find_pkey(struct ib_device *device,
2614 u8 port_num, u16 pkey, u16 *index);
2615
2616 enum ib_pd_flags {
2617 /*
2618 * Create a memory registration for all memory in the system and place
2619 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2620 * ULPs to avoid the overhead of dynamic MRs.
2621 *
2622 * This flag is generally considered unsafe and must only be used in
2623 * extremly trusted environments. Every use of it will log a warning
2624 * in the kernel log.
2625 */
2626 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2627 };
2628
2629 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2630 const char *caller);
2631 #define ib_alloc_pd(device, flags) \
2632 __ib_alloc_pd((device), (flags), __func__)
2633 void ib_dealloc_pd(struct ib_pd *pd);
2634
2635 /**
2636 * ib_create_ah - Creates an address handle for the given address vector.
2637 * @pd: The protection domain associated with the address handle.
2638 * @ah_attr: The attributes of the address vector.
2639 *
2640 * The address handle is used to reference a local or global destination
2641 * in all UD QP post sends.
2642 */
2643 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2644
2645 /**
2646 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2647 * work completion.
2648 * @hdr: the L3 header to parse
2649 * @net_type: type of header to parse
2650 * @sgid: place to store source gid
2651 * @dgid: place to store destination gid
2652 */
2653 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2654 enum rdma_network_type net_type,
2655 union ib_gid *sgid, union ib_gid *dgid);
2656
2657 /**
2658 * ib_get_rdma_header_version - Get the header version
2659 * @hdr: the L3 header to parse
2660 */
2661 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2662
2663 /**
2664 * ib_init_ah_from_wc - Initializes address handle attributes from a
2665 * work completion.
2666 * @device: Device on which the received message arrived.
2667 * @port_num: Port on which the received message arrived.
2668 * @wc: Work completion associated with the received message.
2669 * @grh: References the received global route header. This parameter is
2670 * ignored unless the work completion indicates that the GRH is valid.
2671 * @ah_attr: Returned attributes that can be used when creating an address
2672 * handle for replying to the message.
2673 */
2674 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2675 const struct ib_wc *wc, const struct ib_grh *grh,
2676 struct ib_ah_attr *ah_attr);
2677
2678 /**
2679 * ib_create_ah_from_wc - Creates an address handle associated with the
2680 * sender of the specified work completion.
2681 * @pd: The protection domain associated with the address handle.
2682 * @wc: Work completion information associated with a received message.
2683 * @grh: References the received global route header. This parameter is
2684 * ignored unless the work completion indicates that the GRH is valid.
2685 * @port_num: The outbound port number to associate with the address.
2686 *
2687 * The address handle is used to reference a local or global destination
2688 * in all UD QP post sends.
2689 */
2690 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2691 const struct ib_grh *grh, u8 port_num);
2692
2693 /**
2694 * ib_modify_ah - Modifies the address vector associated with an address
2695 * handle.
2696 * @ah: The address handle to modify.
2697 * @ah_attr: The new address vector attributes to associate with the
2698 * address handle.
2699 */
2700 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2701
2702 /**
2703 * ib_query_ah - Queries the address vector associated with an address
2704 * handle.
2705 * @ah: The address handle to query.
2706 * @ah_attr: The address vector attributes associated with the address
2707 * handle.
2708 */
2709 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2710
2711 /**
2712 * ib_destroy_ah - Destroys an address handle.
2713 * @ah: The address handle to destroy.
2714 */
2715 int ib_destroy_ah(struct ib_ah *ah);
2716
2717 /**
2718 * ib_create_srq - Creates a SRQ associated with the specified protection
2719 * domain.
2720 * @pd: The protection domain associated with the SRQ.
2721 * @srq_init_attr: A list of initial attributes required to create the
2722 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2723 * the actual capabilities of the created SRQ.
2724 *
2725 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2726 * requested size of the SRQ, and set to the actual values allocated
2727 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2728 * will always be at least as large as the requested values.
2729 */
2730 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2731 struct ib_srq_init_attr *srq_init_attr);
2732
2733 /**
2734 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2735 * @srq: The SRQ to modify.
2736 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2737 * the current values of selected SRQ attributes are returned.
2738 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2739 * are being modified.
2740 *
2741 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2742 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2743 * the number of receives queued drops below the limit.
2744 */
2745 int ib_modify_srq(struct ib_srq *srq,
2746 struct ib_srq_attr *srq_attr,
2747 enum ib_srq_attr_mask srq_attr_mask);
2748
2749 /**
2750 * ib_query_srq - Returns the attribute list and current values for the
2751 * specified SRQ.
2752 * @srq: The SRQ to query.
2753 * @srq_attr: The attributes of the specified SRQ.
2754 */
2755 int ib_query_srq(struct ib_srq *srq,
2756 struct ib_srq_attr *srq_attr);
2757
2758 /**
2759 * ib_destroy_srq - Destroys the specified SRQ.
2760 * @srq: The SRQ to destroy.
2761 */
2762 int ib_destroy_srq(struct ib_srq *srq);
2763
2764 /**
2765 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2766 * @srq: The SRQ to post the work request on.
2767 * @recv_wr: A list of work requests to post on the receive queue.
2768 * @bad_recv_wr: On an immediate failure, this parameter will reference
2769 * the work request that failed to be posted on the QP.
2770 */
2771 static inline int ib_post_srq_recv(struct ib_srq *srq,
2772 struct ib_recv_wr *recv_wr,
2773 struct ib_recv_wr **bad_recv_wr)
2774 {
2775 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2776 }
2777
2778 /**
2779 * ib_create_qp - Creates a QP associated with the specified protection
2780 * domain.
2781 * @pd: The protection domain associated with the QP.
2782 * @qp_init_attr: A list of initial attributes required to create the
2783 * QP. If QP creation succeeds, then the attributes are updated to
2784 * the actual capabilities of the created QP.
2785 */
2786 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2787 struct ib_qp_init_attr *qp_init_attr);
2788
2789 /**
2790 * ib_modify_qp - Modifies the attributes for the specified QP and then
2791 * transitions the QP to the given state.
2792 * @qp: The QP to modify.
2793 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2794 * the current values of selected QP attributes are returned.
2795 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2796 * are being modified.
2797 */
2798 int ib_modify_qp(struct ib_qp *qp,
2799 struct ib_qp_attr *qp_attr,
2800 int qp_attr_mask);
2801
2802 /**
2803 * ib_query_qp - Returns the attribute list and current values for the
2804 * specified QP.
2805 * @qp: The QP to query.
2806 * @qp_attr: The attributes of the specified QP.
2807 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2808 * @qp_init_attr: Additional attributes of the selected QP.
2809 *
2810 * The qp_attr_mask may be used to limit the query to gathering only the
2811 * selected attributes.
2812 */
2813 int ib_query_qp(struct ib_qp *qp,
2814 struct ib_qp_attr *qp_attr,
2815 int qp_attr_mask,
2816 struct ib_qp_init_attr *qp_init_attr);
2817
2818 /**
2819 * ib_destroy_qp - Destroys the specified QP.
2820 * @qp: The QP to destroy.
2821 */
2822 int ib_destroy_qp(struct ib_qp *qp);
2823
2824 /**
2825 * ib_open_qp - Obtain a reference to an existing sharable QP.
2826 * @xrcd - XRC domain
2827 * @qp_open_attr: Attributes identifying the QP to open.
2828 *
2829 * Returns a reference to a sharable QP.
2830 */
2831 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2832 struct ib_qp_open_attr *qp_open_attr);
2833
2834 /**
2835 * ib_close_qp - Release an external reference to a QP.
2836 * @qp: The QP handle to release
2837 *
2838 * The opened QP handle is released by the caller. The underlying
2839 * shared QP is not destroyed until all internal references are released.
2840 */
2841 int ib_close_qp(struct ib_qp *qp);
2842
2843 /**
2844 * ib_post_send - Posts a list of work requests to the send queue of
2845 * the specified QP.
2846 * @qp: The QP to post the work request on.
2847 * @send_wr: A list of work requests to post on the send queue.
2848 * @bad_send_wr: On an immediate failure, this parameter will reference
2849 * the work request that failed to be posted on the QP.
2850 *
2851 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2852 * error is returned, the QP state shall not be affected,
2853 * ib_post_send() will return an immediate error after queueing any
2854 * earlier work requests in the list.
2855 */
2856 static inline int ib_post_send(struct ib_qp *qp,
2857 struct ib_send_wr *send_wr,
2858 struct ib_send_wr **bad_send_wr)
2859 {
2860 return qp->device->post_send(qp, send_wr, bad_send_wr);
2861 }
2862
2863 /**
2864 * ib_post_recv - Posts a list of work requests to the receive queue of
2865 * the specified QP.
2866 * @qp: The QP to post the work request on.
2867 * @recv_wr: A list of work requests to post on the receive queue.
2868 * @bad_recv_wr: On an immediate failure, this parameter will reference
2869 * the work request that failed to be posted on the QP.
2870 */
2871 static inline int ib_post_recv(struct ib_qp *qp,
2872 struct ib_recv_wr *recv_wr,
2873 struct ib_recv_wr **bad_recv_wr)
2874 {
2875 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2876 }
2877
2878 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2879 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2880 void ib_free_cq(struct ib_cq *cq);
2881 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2882
2883 /**
2884 * ib_create_cq - Creates a CQ on the specified device.
2885 * @device: The device on which to create the CQ.
2886 * @comp_handler: A user-specified callback that is invoked when a
2887 * completion event occurs on the CQ.
2888 * @event_handler: A user-specified callback that is invoked when an
2889 * asynchronous event not associated with a completion occurs on the CQ.
2890 * @cq_context: Context associated with the CQ returned to the user via
2891 * the associated completion and event handlers.
2892 * @cq_attr: The attributes the CQ should be created upon.
2893 *
2894 * Users can examine the cq structure to determine the actual CQ size.
2895 */
2896 struct ib_cq *ib_create_cq(struct ib_device *device,
2897 ib_comp_handler comp_handler,
2898 void (*event_handler)(struct ib_event *, void *),
2899 void *cq_context,
2900 const struct ib_cq_init_attr *cq_attr);
2901
2902 /**
2903 * ib_resize_cq - Modifies the capacity of the CQ.
2904 * @cq: The CQ to resize.
2905 * @cqe: The minimum size of the CQ.
2906 *
2907 * Users can examine the cq structure to determine the actual CQ size.
2908 */
2909 int ib_resize_cq(struct ib_cq *cq, int cqe);
2910
2911 /**
2912 * ib_modify_cq - Modifies moderation params of the CQ
2913 * @cq: The CQ to modify.
2914 * @cq_count: number of CQEs that will trigger an event
2915 * @cq_period: max period of time in usec before triggering an event
2916 *
2917 */
2918 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2919
2920 /**
2921 * ib_destroy_cq - Destroys the specified CQ.
2922 * @cq: The CQ to destroy.
2923 */
2924 int ib_destroy_cq(struct ib_cq *cq);
2925
2926 /**
2927 * ib_poll_cq - poll a CQ for completion(s)
2928 * @cq:the CQ being polled
2929 * @num_entries:maximum number of completions to return
2930 * @wc:array of at least @num_entries &struct ib_wc where completions
2931 * will be returned
2932 *
2933 * Poll a CQ for (possibly multiple) completions. If the return value
2934 * is < 0, an error occurred. If the return value is >= 0, it is the
2935 * number of completions returned. If the return value is
2936 * non-negative and < num_entries, then the CQ was emptied.
2937 */
2938 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2939 struct ib_wc *wc)
2940 {
2941 return cq->device->poll_cq(cq, num_entries, wc);
2942 }
2943
2944 /**
2945 * ib_peek_cq - Returns the number of unreaped completions currently
2946 * on the specified CQ.
2947 * @cq: The CQ to peek.
2948 * @wc_cnt: A minimum number of unreaped completions to check for.
2949 *
2950 * If the number of unreaped completions is greater than or equal to wc_cnt,
2951 * this function returns wc_cnt, otherwise, it returns the actual number of
2952 * unreaped completions.
2953 */
2954 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2955
2956 /**
2957 * ib_req_notify_cq - Request completion notification on a CQ.
2958 * @cq: The CQ to generate an event for.
2959 * @flags:
2960 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2961 * to request an event on the next solicited event or next work
2962 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2963 * may also be |ed in to request a hint about missed events, as
2964 * described below.
2965 *
2966 * Return Value:
2967 * < 0 means an error occurred while requesting notification
2968 * == 0 means notification was requested successfully, and if
2969 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2970 * were missed and it is safe to wait for another event. In
2971 * this case is it guaranteed that any work completions added
2972 * to the CQ since the last CQ poll will trigger a completion
2973 * notification event.
2974 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2975 * in. It means that the consumer must poll the CQ again to
2976 * make sure it is empty to avoid missing an event because of a
2977 * race between requesting notification and an entry being
2978 * added to the CQ. This return value means it is possible
2979 * (but not guaranteed) that a work completion has been added
2980 * to the CQ since the last poll without triggering a
2981 * completion notification event.
2982 */
2983 static inline int ib_req_notify_cq(struct ib_cq *cq,
2984 enum ib_cq_notify_flags flags)
2985 {
2986 return cq->device->req_notify_cq(cq, flags);
2987 }
2988
2989 /**
2990 * ib_req_ncomp_notif - Request completion notification when there are
2991 * at least the specified number of unreaped completions on the CQ.
2992 * @cq: The CQ to generate an event for.
2993 * @wc_cnt: The number of unreaped completions that should be on the
2994 * CQ before an event is generated.
2995 */
2996 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2997 {
2998 return cq->device->req_ncomp_notif ?
2999 cq->device->req_ncomp_notif(cq, wc_cnt) :
3000 -ENOSYS;
3001 }
3002
3003 /**
3004 * ib_dma_mapping_error - check a DMA addr for error
3005 * @dev: The device for which the dma_addr was created
3006 * @dma_addr: The DMA address to check
3007 */
3008 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3009 {
3010 return dma_mapping_error(&dev->dev, dma_addr);
3011 }
3012
3013 /**
3014 * ib_dma_map_single - Map a kernel virtual address to DMA address
3015 * @dev: The device for which the dma_addr is to be created
3016 * @cpu_addr: The kernel virtual address
3017 * @size: The size of the region in bytes
3018 * @direction: The direction of the DMA
3019 */
3020 static inline u64 ib_dma_map_single(struct ib_device *dev,
3021 void *cpu_addr, size_t size,
3022 enum dma_data_direction direction)
3023 {
3024 return dma_map_single(&dev->dev, cpu_addr, size, direction);
3025 }
3026
3027 /**
3028 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3029 * @dev: The device for which the DMA address was created
3030 * @addr: The DMA address
3031 * @size: The size of the region in bytes
3032 * @direction: The direction of the DMA
3033 */
3034 static inline void ib_dma_unmap_single(struct ib_device *dev,
3035 u64 addr, size_t size,
3036 enum dma_data_direction direction)
3037 {
3038 dma_unmap_single(&dev->dev, addr, size, direction);
3039 }
3040
3041 /**
3042 * ib_dma_map_page - Map a physical page to DMA address
3043 * @dev: The device for which the dma_addr is to be created
3044 * @page: The page to be mapped
3045 * @offset: The offset within the page
3046 * @size: The size of the region in bytes
3047 * @direction: The direction of the DMA
3048 */
3049 static inline u64 ib_dma_map_page(struct ib_device *dev,
3050 struct page *page,
3051 unsigned long offset,
3052 size_t size,
3053 enum dma_data_direction direction)
3054 {
3055 return dma_map_page(&dev->dev, page, offset, size, direction);
3056 }
3057
3058 /**
3059 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3060 * @dev: The device for which the DMA address was created
3061 * @addr: The DMA address
3062 * @size: The size of the region in bytes
3063 * @direction: The direction of the DMA
3064 */
3065 static inline void ib_dma_unmap_page(struct ib_device *dev,
3066 u64 addr, size_t size,
3067 enum dma_data_direction direction)
3068 {
3069 dma_unmap_page(&dev->dev, addr, size, direction);
3070 }
3071
3072 /**
3073 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3074 * @dev: The device for which the DMA addresses are to be created
3075 * @sg: The array of scatter/gather entries
3076 * @nents: The number of scatter/gather entries
3077 * @direction: The direction of the DMA
3078 */
3079 static inline int ib_dma_map_sg(struct ib_device *dev,
3080 struct scatterlist *sg, int nents,
3081 enum dma_data_direction direction)
3082 {
3083 return dma_map_sg(&dev->dev, sg, nents, direction);
3084 }
3085
3086 /**
3087 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3088 * @dev: The device for which the DMA addresses were created
3089 * @sg: The array of scatter/gather entries
3090 * @nents: The number of scatter/gather entries
3091 * @direction: The direction of the DMA
3092 */
3093 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3094 struct scatterlist *sg, int nents,
3095 enum dma_data_direction direction)
3096 {
3097 dma_unmap_sg(&dev->dev, sg, nents, direction);
3098 }
3099
3100 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3101 struct scatterlist *sg, int nents,
3102 enum dma_data_direction direction,
3103 unsigned long dma_attrs)
3104 {
3105 return dma_map_sg_attrs(&dev->dev, sg, nents, direction, dma_attrs);
3106 }
3107
3108 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3109 struct scatterlist *sg, int nents,
3110 enum dma_data_direction direction,
3111 unsigned long dma_attrs)
3112 {
3113 dma_unmap_sg_attrs(&dev->dev, sg, nents, direction, dma_attrs);
3114 }
3115 /**
3116 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3117 * @dev: The device for which the DMA addresses were created
3118 * @sg: The scatter/gather entry
3119 *
3120 * Note: this function is obsolete. To do: change all occurrences of
3121 * ib_sg_dma_address() into sg_dma_address().
3122 */
3123 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3124 struct scatterlist *sg)
3125 {
3126 return sg_dma_address(sg);
3127 }
3128
3129 /**
3130 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3131 * @dev: The device for which the DMA addresses were created
3132 * @sg: The scatter/gather entry
3133 *
3134 * Note: this function is obsolete. To do: change all occurrences of
3135 * ib_sg_dma_len() into sg_dma_len().
3136 */
3137 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3138 struct scatterlist *sg)
3139 {
3140 return sg_dma_len(sg);
3141 }
3142
3143 /**
3144 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3145 * @dev: The device for which the DMA address was created
3146 * @addr: The DMA address
3147 * @size: The size of the region in bytes
3148 * @dir: The direction of the DMA
3149 */
3150 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3151 u64 addr,
3152 size_t size,
3153 enum dma_data_direction dir)
3154 {
3155 dma_sync_single_for_cpu(&dev->dev, addr, size, dir);
3156 }
3157
3158 /**
3159 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3160 * @dev: The device for which the DMA address was created
3161 * @addr: The DMA address
3162 * @size: The size of the region in bytes
3163 * @dir: The direction of the DMA
3164 */
3165 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3166 u64 addr,
3167 size_t size,
3168 enum dma_data_direction dir)
3169 {
3170 dma_sync_single_for_device(&dev->dev, addr, size, dir);
3171 }
3172
3173 /**
3174 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3175 * @dev: The device for which the DMA address is requested
3176 * @size: The size of the region to allocate in bytes
3177 * @dma_handle: A pointer for returning the DMA address of the region
3178 * @flag: memory allocator flags
3179 */
3180 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3181 size_t size,
3182 dma_addr_t *dma_handle,
3183 gfp_t flag)
3184 {
3185 return dma_alloc_coherent(&dev->dev, size, dma_handle, flag);
3186 }
3187
3188 /**
3189 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3190 * @dev: The device for which the DMA addresses were allocated
3191 * @size: The size of the region
3192 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3193 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3194 */
3195 static inline void ib_dma_free_coherent(struct ib_device *dev,
3196 size_t size, void *cpu_addr,
3197 dma_addr_t dma_handle)
3198 {
3199 dma_free_coherent(&dev->dev, size, cpu_addr, dma_handle);
3200 }
3201
3202 /**
3203 * ib_dereg_mr - Deregisters a memory region and removes it from the
3204 * HCA translation table.
3205 * @mr: The memory region to deregister.
3206 *
3207 * This function can fail, if the memory region has memory windows bound to it.
3208 */
3209 int ib_dereg_mr(struct ib_mr *mr);
3210
3211 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3212 enum ib_mr_type mr_type,
3213 u32 max_num_sg);
3214
3215 /**
3216 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3217 * R_Key and L_Key.
3218 * @mr - struct ib_mr pointer to be updated.
3219 * @newkey - new key to be used.
3220 */
3221 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3222 {
3223 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3224 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3225 }
3226
3227 /**
3228 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3229 * for calculating a new rkey for type 2 memory windows.
3230 * @rkey - the rkey to increment.
3231 */
3232 static inline u32 ib_inc_rkey(u32 rkey)
3233 {
3234 const u32 mask = 0x000000ff;
3235 return ((rkey + 1) & mask) | (rkey & ~mask);
3236 }
3237
3238 /**
3239 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3240 * @pd: The protection domain associated with the unmapped region.
3241 * @mr_access_flags: Specifies the memory access rights.
3242 * @fmr_attr: Attributes of the unmapped region.
3243 *
3244 * A fast memory region must be mapped before it can be used as part of
3245 * a work request.
3246 */
3247 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3248 int mr_access_flags,
3249 struct ib_fmr_attr *fmr_attr);
3250
3251 /**
3252 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3253 * @fmr: The fast memory region to associate with the pages.
3254 * @page_list: An array of physical pages to map to the fast memory region.
3255 * @list_len: The number of pages in page_list.
3256 * @iova: The I/O virtual address to use with the mapped region.
3257 */
3258 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3259 u64 *page_list, int list_len,
3260 u64 iova)
3261 {
3262 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3263 }
3264
3265 /**
3266 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3267 * @fmr_list: A linked list of fast memory regions to unmap.
3268 */
3269 int ib_unmap_fmr(struct list_head *fmr_list);
3270
3271 /**
3272 * ib_dealloc_fmr - Deallocates a fast memory region.
3273 * @fmr: The fast memory region to deallocate.
3274 */
3275 int ib_dealloc_fmr(struct ib_fmr *fmr);
3276
3277 /**
3278 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3279 * @qp: QP to attach to the multicast group. The QP must be type
3280 * IB_QPT_UD.
3281 * @gid: Multicast group GID.
3282 * @lid: Multicast group LID in host byte order.
3283 *
3284 * In order to send and receive multicast packets, subnet
3285 * administration must have created the multicast group and configured
3286 * the fabric appropriately. The port associated with the specified
3287 * QP must also be a member of the multicast group.
3288 */
3289 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3290
3291 /**
3292 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3293 * @qp: QP to detach from the multicast group.
3294 * @gid: Multicast group GID.
3295 * @lid: Multicast group LID in host byte order.
3296 */
3297 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3298
3299 /**
3300 * ib_alloc_xrcd - Allocates an XRC domain.
3301 * @device: The device on which to allocate the XRC domain.
3302 */
3303 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3304
3305 /**
3306 * ib_dealloc_xrcd - Deallocates an XRC domain.
3307 * @xrcd: The XRC domain to deallocate.
3308 */
3309 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3310
3311 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3312 struct ib_flow_attr *flow_attr, int domain);
3313 int ib_destroy_flow(struct ib_flow *flow_id);
3314
3315 static inline int ib_check_mr_access(int flags)
3316 {
3317 /*
3318 * Local write permission is required if remote write or
3319 * remote atomic permission is also requested.
3320 */
3321 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3322 !(flags & IB_ACCESS_LOCAL_WRITE))
3323 return -EINVAL;
3324
3325 return 0;
3326 }
3327
3328 /**
3329 * ib_check_mr_status: lightweight check of MR status.
3330 * This routine may provide status checks on a selected
3331 * ib_mr. first use is for signature status check.
3332 *
3333 * @mr: A memory region.
3334 * @check_mask: Bitmask of which checks to perform from
3335 * ib_mr_status_check enumeration.
3336 * @mr_status: The container of relevant status checks.
3337 * failed checks will be indicated in the status bitmask
3338 * and the relevant info shall be in the error item.
3339 */
3340 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3341 struct ib_mr_status *mr_status);
3342
3343 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3344 u16 pkey, const union ib_gid *gid,
3345 const struct sockaddr *addr);
3346 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3347 struct ib_wq_init_attr *init_attr);
3348 int ib_destroy_wq(struct ib_wq *wq);
3349 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3350 u32 wq_attr_mask);
3351 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3352 struct ib_rwq_ind_table_init_attr*
3353 wq_ind_table_init_attr);
3354 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3355
3356 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3357 unsigned int *sg_offset, unsigned int page_size);
3358
3359 static inline int
3360 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3361 unsigned int *sg_offset, unsigned int page_size)
3362 {
3363 int n;
3364
3365 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3366 mr->iova = 0;
3367
3368 return n;
3369 }
3370
3371 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3372 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3373
3374 void ib_drain_rq(struct ib_qp *qp);
3375 void ib_drain_sq(struct ib_qp *qp);
3376 void ib_drain_qp(struct ib_qp *qp);
3377
3378 int ib_resolve_eth_dmac(struct ib_device *device,
3379 struct ib_ah_attr *ah_attr);
3380 #endif /* IB_VERBS_H */