]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/rdma/ib_verbs.h
IB/umem: Use the correct mm during ib_umem_release
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66
67 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
69 extern struct workqueue_struct *ib_wq;
70 extern struct workqueue_struct *ib_comp_wq;
71
72 union ib_gid {
73 u8 raw[16];
74 struct {
75 __be64 subnet_prefix;
76 __be64 interface_id;
77 } global;
78 };
79
80 extern union ib_gid zgid;
81
82 enum ib_gid_type {
83 /* If link layer is Ethernet, this is RoCE V1 */
84 IB_GID_TYPE_IB = 0,
85 IB_GID_TYPE_ROCE = 0,
86 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
87 IB_GID_TYPE_SIZE
88 };
89
90 #define ROCE_V2_UDP_DPORT 4791
91 struct ib_gid_attr {
92 enum ib_gid_type gid_type;
93 struct net_device *ndev;
94 };
95
96 enum rdma_node_type {
97 /* IB values map to NodeInfo:NodeType. */
98 RDMA_NODE_IB_CA = 1,
99 RDMA_NODE_IB_SWITCH,
100 RDMA_NODE_IB_ROUTER,
101 RDMA_NODE_RNIC,
102 RDMA_NODE_USNIC,
103 RDMA_NODE_USNIC_UDP,
104 };
105
106 enum {
107 /* set the local administered indication */
108 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
109 };
110
111 enum rdma_transport_type {
112 RDMA_TRANSPORT_IB,
113 RDMA_TRANSPORT_IWARP,
114 RDMA_TRANSPORT_USNIC,
115 RDMA_TRANSPORT_USNIC_UDP
116 };
117
118 enum rdma_protocol_type {
119 RDMA_PROTOCOL_IB,
120 RDMA_PROTOCOL_IBOE,
121 RDMA_PROTOCOL_IWARP,
122 RDMA_PROTOCOL_USNIC_UDP
123 };
124
125 __attribute_const__ enum rdma_transport_type
126 rdma_node_get_transport(enum rdma_node_type node_type);
127
128 enum rdma_network_type {
129 RDMA_NETWORK_IB,
130 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
131 RDMA_NETWORK_IPV4,
132 RDMA_NETWORK_IPV6
133 };
134
135 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
136 {
137 if (network_type == RDMA_NETWORK_IPV4 ||
138 network_type == RDMA_NETWORK_IPV6)
139 return IB_GID_TYPE_ROCE_UDP_ENCAP;
140
141 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
142 return IB_GID_TYPE_IB;
143 }
144
145 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
146 union ib_gid *gid)
147 {
148 if (gid_type == IB_GID_TYPE_IB)
149 return RDMA_NETWORK_IB;
150
151 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
152 return RDMA_NETWORK_IPV4;
153 else
154 return RDMA_NETWORK_IPV6;
155 }
156
157 enum rdma_link_layer {
158 IB_LINK_LAYER_UNSPECIFIED,
159 IB_LINK_LAYER_INFINIBAND,
160 IB_LINK_LAYER_ETHERNET,
161 };
162
163 enum ib_device_cap_flags {
164 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
165 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
166 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
167 IB_DEVICE_RAW_MULTI = (1 << 3),
168 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
169 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
170 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
171 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
172 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
173 /* Not in use, former INIT_TYPE = (1 << 9),*/
174 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
175 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
176 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
177 IB_DEVICE_SRQ_RESIZE = (1 << 13),
178 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
179
180 /*
181 * This device supports a per-device lkey or stag that can be
182 * used without performing a memory registration for the local
183 * memory. Note that ULPs should never check this flag, but
184 * instead of use the local_dma_lkey flag in the ib_pd structure,
185 * which will always contain a usable lkey.
186 */
187 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
188 /* Reserved, old SEND_W_INV = (1 << 16),*/
189 IB_DEVICE_MEM_WINDOW = (1 << 17),
190 /*
191 * Devices should set IB_DEVICE_UD_IP_SUM if they support
192 * insertion of UDP and TCP checksum on outgoing UD IPoIB
193 * messages and can verify the validity of checksum for
194 * incoming messages. Setting this flag implies that the
195 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
196 */
197 IB_DEVICE_UD_IP_CSUM = (1 << 18),
198 IB_DEVICE_UD_TSO = (1 << 19),
199 IB_DEVICE_XRC = (1 << 20),
200
201 /*
202 * This device supports the IB "base memory management extension",
203 * which includes support for fast registrations (IB_WR_REG_MR,
204 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
205 * also be set by any iWarp device which must support FRs to comply
206 * to the iWarp verbs spec. iWarp devices also support the
207 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
208 * stag.
209 */
210 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
211 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
212 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
213 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
214 IB_DEVICE_RC_IP_CSUM = (1 << 25),
215 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
216 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
217 /*
218 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
219 * support execution of WQEs that involve synchronization
220 * of I/O operations with single completion queue managed
221 * by hardware.
222 */
223 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
224 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
225 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
226 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
227 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
228 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
229 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
231 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
232 /* The device supports padding incoming writes to cacheline. */
233 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
234 };
235
236 enum ib_signature_prot_cap {
237 IB_PROT_T10DIF_TYPE_1 = 1,
238 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
239 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
240 };
241
242 enum ib_signature_guard_cap {
243 IB_GUARD_T10DIF_CRC = 1,
244 IB_GUARD_T10DIF_CSUM = 1 << 1,
245 };
246
247 enum ib_atomic_cap {
248 IB_ATOMIC_NONE,
249 IB_ATOMIC_HCA,
250 IB_ATOMIC_GLOB
251 };
252
253 enum ib_odp_general_cap_bits {
254 IB_ODP_SUPPORT = 1 << 0,
255 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
256 };
257
258 enum ib_odp_transport_cap_bits {
259 IB_ODP_SUPPORT_SEND = 1 << 0,
260 IB_ODP_SUPPORT_RECV = 1 << 1,
261 IB_ODP_SUPPORT_WRITE = 1 << 2,
262 IB_ODP_SUPPORT_READ = 1 << 3,
263 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
264 };
265
266 struct ib_odp_caps {
267 uint64_t general_caps;
268 struct {
269 uint32_t rc_odp_caps;
270 uint32_t uc_odp_caps;
271 uint32_t ud_odp_caps;
272 } per_transport_caps;
273 };
274
275 struct ib_rss_caps {
276 /* Corresponding bit will be set if qp type from
277 * 'enum ib_qp_type' is supported, e.g.
278 * supported_qpts |= 1 << IB_QPT_UD
279 */
280 u32 supported_qpts;
281 u32 max_rwq_indirection_tables;
282 u32 max_rwq_indirection_table_size;
283 };
284
285 enum ib_tm_cap_flags {
286 /* Support tag matching on RC transport */
287 IB_TM_CAP_RC = 1 << 0,
288 };
289
290 struct ib_tm_caps {
291 /* Max size of RNDV header */
292 u32 max_rndv_hdr_size;
293 /* Max number of entries in tag matching list */
294 u32 max_num_tags;
295 /* From enum ib_tm_cap_flags */
296 u32 flags;
297 /* Max number of outstanding list operations */
298 u32 max_ops;
299 /* Max number of SGE in tag matching entry */
300 u32 max_sge;
301 };
302
303 enum ib_cq_creation_flags {
304 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
305 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
306 };
307
308 struct ib_cq_init_attr {
309 unsigned int cqe;
310 int comp_vector;
311 u32 flags;
312 };
313
314 enum ib_cq_attr_mask {
315 IB_CQ_MODERATE = 1 << 0,
316 };
317
318 struct ib_cq_caps {
319 u16 max_cq_moderation_count;
320 u16 max_cq_moderation_period;
321 };
322
323 struct ib_device_attr {
324 u64 fw_ver;
325 __be64 sys_image_guid;
326 u64 max_mr_size;
327 u64 page_size_cap;
328 u32 vendor_id;
329 u32 vendor_part_id;
330 u32 hw_ver;
331 int max_qp;
332 int max_qp_wr;
333 u64 device_cap_flags;
334 int max_sge;
335 int max_sge_rd;
336 int max_cq;
337 int max_cqe;
338 int max_mr;
339 int max_pd;
340 int max_qp_rd_atom;
341 int max_ee_rd_atom;
342 int max_res_rd_atom;
343 int max_qp_init_rd_atom;
344 int max_ee_init_rd_atom;
345 enum ib_atomic_cap atomic_cap;
346 enum ib_atomic_cap masked_atomic_cap;
347 int max_ee;
348 int max_rdd;
349 int max_mw;
350 int max_raw_ipv6_qp;
351 int max_raw_ethy_qp;
352 int max_mcast_grp;
353 int max_mcast_qp_attach;
354 int max_total_mcast_qp_attach;
355 int max_ah;
356 int max_fmr;
357 int max_map_per_fmr;
358 int max_srq;
359 int max_srq_wr;
360 int max_srq_sge;
361 unsigned int max_fast_reg_page_list_len;
362 u16 max_pkeys;
363 u8 local_ca_ack_delay;
364 int sig_prot_cap;
365 int sig_guard_cap;
366 struct ib_odp_caps odp_caps;
367 uint64_t timestamp_mask;
368 uint64_t hca_core_clock; /* in KHZ */
369 struct ib_rss_caps rss_caps;
370 u32 max_wq_type_rq;
371 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
372 struct ib_tm_caps tm_caps;
373 struct ib_cq_caps cq_caps;
374 };
375
376 enum ib_mtu {
377 IB_MTU_256 = 1,
378 IB_MTU_512 = 2,
379 IB_MTU_1024 = 3,
380 IB_MTU_2048 = 4,
381 IB_MTU_4096 = 5
382 };
383
384 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
385 {
386 switch (mtu) {
387 case IB_MTU_256: return 256;
388 case IB_MTU_512: return 512;
389 case IB_MTU_1024: return 1024;
390 case IB_MTU_2048: return 2048;
391 case IB_MTU_4096: return 4096;
392 default: return -1;
393 }
394 }
395
396 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
397 {
398 if (mtu >= 4096)
399 return IB_MTU_4096;
400 else if (mtu >= 2048)
401 return IB_MTU_2048;
402 else if (mtu >= 1024)
403 return IB_MTU_1024;
404 else if (mtu >= 512)
405 return IB_MTU_512;
406 else
407 return IB_MTU_256;
408 }
409
410 enum ib_port_state {
411 IB_PORT_NOP = 0,
412 IB_PORT_DOWN = 1,
413 IB_PORT_INIT = 2,
414 IB_PORT_ARMED = 3,
415 IB_PORT_ACTIVE = 4,
416 IB_PORT_ACTIVE_DEFER = 5
417 };
418
419 enum ib_port_cap_flags {
420 IB_PORT_SM = 1 << 1,
421 IB_PORT_NOTICE_SUP = 1 << 2,
422 IB_PORT_TRAP_SUP = 1 << 3,
423 IB_PORT_OPT_IPD_SUP = 1 << 4,
424 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
425 IB_PORT_SL_MAP_SUP = 1 << 6,
426 IB_PORT_MKEY_NVRAM = 1 << 7,
427 IB_PORT_PKEY_NVRAM = 1 << 8,
428 IB_PORT_LED_INFO_SUP = 1 << 9,
429 IB_PORT_SM_DISABLED = 1 << 10,
430 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
431 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
432 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
433 IB_PORT_CM_SUP = 1 << 16,
434 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
435 IB_PORT_REINIT_SUP = 1 << 18,
436 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
437 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
438 IB_PORT_DR_NOTICE_SUP = 1 << 21,
439 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
440 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
441 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
442 IB_PORT_CLIENT_REG_SUP = 1 << 25,
443 IB_PORT_IP_BASED_GIDS = 1 << 26,
444 };
445
446 enum ib_port_width {
447 IB_WIDTH_1X = 1,
448 IB_WIDTH_4X = 2,
449 IB_WIDTH_8X = 4,
450 IB_WIDTH_12X = 8
451 };
452
453 static inline int ib_width_enum_to_int(enum ib_port_width width)
454 {
455 switch (width) {
456 case IB_WIDTH_1X: return 1;
457 case IB_WIDTH_4X: return 4;
458 case IB_WIDTH_8X: return 8;
459 case IB_WIDTH_12X: return 12;
460 default: return -1;
461 }
462 }
463
464 enum ib_port_speed {
465 IB_SPEED_SDR = 1,
466 IB_SPEED_DDR = 2,
467 IB_SPEED_QDR = 4,
468 IB_SPEED_FDR10 = 8,
469 IB_SPEED_FDR = 16,
470 IB_SPEED_EDR = 32,
471 IB_SPEED_HDR = 64
472 };
473
474 /**
475 * struct rdma_hw_stats
476 * @timestamp - Used by the core code to track when the last update was
477 * @lifespan - Used by the core code to determine how old the counters
478 * should be before being updated again. Stored in jiffies, defaults
479 * to 10 milliseconds, drivers can override the default be specifying
480 * their own value during their allocation routine.
481 * @name - Array of pointers to static names used for the counters in
482 * directory.
483 * @num_counters - How many hardware counters there are. If name is
484 * shorter than this number, a kernel oops will result. Driver authors
485 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
486 * in their code to prevent this.
487 * @value - Array of u64 counters that are accessed by the sysfs code and
488 * filled in by the drivers get_stats routine
489 */
490 struct rdma_hw_stats {
491 unsigned long timestamp;
492 unsigned long lifespan;
493 const char * const *names;
494 int num_counters;
495 u64 value[];
496 };
497
498 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
499 /**
500 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
501 * for drivers.
502 * @names - Array of static const char *
503 * @num_counters - How many elements in array
504 * @lifespan - How many milliseconds between updates
505 */
506 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
507 const char * const *names, int num_counters,
508 unsigned long lifespan)
509 {
510 struct rdma_hw_stats *stats;
511
512 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
513 GFP_KERNEL);
514 if (!stats)
515 return NULL;
516 stats->names = names;
517 stats->num_counters = num_counters;
518 stats->lifespan = msecs_to_jiffies(lifespan);
519
520 return stats;
521 }
522
523
524 /* Define bits for the various functionality this port needs to be supported by
525 * the core.
526 */
527 /* Management 0x00000FFF */
528 #define RDMA_CORE_CAP_IB_MAD 0x00000001
529 #define RDMA_CORE_CAP_IB_SMI 0x00000002
530 #define RDMA_CORE_CAP_IB_CM 0x00000004
531 #define RDMA_CORE_CAP_IW_CM 0x00000008
532 #define RDMA_CORE_CAP_IB_SA 0x00000010
533 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
534
535 /* Address format 0x000FF000 */
536 #define RDMA_CORE_CAP_AF_IB 0x00001000
537 #define RDMA_CORE_CAP_ETH_AH 0x00002000
538 #define RDMA_CORE_CAP_OPA_AH 0x00004000
539
540 /* Protocol 0xFFF00000 */
541 #define RDMA_CORE_CAP_PROT_IB 0x00100000
542 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
543 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
544 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
545 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
546 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
547
548 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
549 | RDMA_CORE_CAP_IB_MAD \
550 | RDMA_CORE_CAP_IB_SMI \
551 | RDMA_CORE_CAP_IB_CM \
552 | RDMA_CORE_CAP_IB_SA \
553 | RDMA_CORE_CAP_AF_IB)
554 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
555 | RDMA_CORE_CAP_IB_MAD \
556 | RDMA_CORE_CAP_IB_CM \
557 | RDMA_CORE_CAP_AF_IB \
558 | RDMA_CORE_CAP_ETH_AH)
559 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
560 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
561 | RDMA_CORE_CAP_IB_MAD \
562 | RDMA_CORE_CAP_IB_CM \
563 | RDMA_CORE_CAP_AF_IB \
564 | RDMA_CORE_CAP_ETH_AH)
565 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
566 | RDMA_CORE_CAP_IW_CM)
567 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
568 | RDMA_CORE_CAP_OPA_MAD)
569
570 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
571
572 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
573
574 struct ib_port_attr {
575 u64 subnet_prefix;
576 enum ib_port_state state;
577 enum ib_mtu max_mtu;
578 enum ib_mtu active_mtu;
579 int gid_tbl_len;
580 u32 port_cap_flags;
581 u32 max_msg_sz;
582 u32 bad_pkey_cntr;
583 u32 qkey_viol_cntr;
584 u16 pkey_tbl_len;
585 u32 sm_lid;
586 u32 lid;
587 u8 lmc;
588 u8 max_vl_num;
589 u8 sm_sl;
590 u8 subnet_timeout;
591 u8 init_type_reply;
592 u8 active_width;
593 u8 active_speed;
594 u8 phys_state;
595 bool grh_required;
596 };
597
598 enum ib_device_modify_flags {
599 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
600 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
601 };
602
603 #define IB_DEVICE_NODE_DESC_MAX 64
604
605 struct ib_device_modify {
606 u64 sys_image_guid;
607 char node_desc[IB_DEVICE_NODE_DESC_MAX];
608 };
609
610 enum ib_port_modify_flags {
611 IB_PORT_SHUTDOWN = 1,
612 IB_PORT_INIT_TYPE = (1<<2),
613 IB_PORT_RESET_QKEY_CNTR = (1<<3),
614 IB_PORT_OPA_MASK_CHG = (1<<4)
615 };
616
617 struct ib_port_modify {
618 u32 set_port_cap_mask;
619 u32 clr_port_cap_mask;
620 u8 init_type;
621 };
622
623 enum ib_event_type {
624 IB_EVENT_CQ_ERR,
625 IB_EVENT_QP_FATAL,
626 IB_EVENT_QP_REQ_ERR,
627 IB_EVENT_QP_ACCESS_ERR,
628 IB_EVENT_COMM_EST,
629 IB_EVENT_SQ_DRAINED,
630 IB_EVENT_PATH_MIG,
631 IB_EVENT_PATH_MIG_ERR,
632 IB_EVENT_DEVICE_FATAL,
633 IB_EVENT_PORT_ACTIVE,
634 IB_EVENT_PORT_ERR,
635 IB_EVENT_LID_CHANGE,
636 IB_EVENT_PKEY_CHANGE,
637 IB_EVENT_SM_CHANGE,
638 IB_EVENT_SRQ_ERR,
639 IB_EVENT_SRQ_LIMIT_REACHED,
640 IB_EVENT_QP_LAST_WQE_REACHED,
641 IB_EVENT_CLIENT_REREGISTER,
642 IB_EVENT_GID_CHANGE,
643 IB_EVENT_WQ_FATAL,
644 };
645
646 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
647
648 struct ib_event {
649 struct ib_device *device;
650 union {
651 struct ib_cq *cq;
652 struct ib_qp *qp;
653 struct ib_srq *srq;
654 struct ib_wq *wq;
655 u8 port_num;
656 } element;
657 enum ib_event_type event;
658 };
659
660 struct ib_event_handler {
661 struct ib_device *device;
662 void (*handler)(struct ib_event_handler *, struct ib_event *);
663 struct list_head list;
664 };
665
666 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
667 do { \
668 (_ptr)->device = _device; \
669 (_ptr)->handler = _handler; \
670 INIT_LIST_HEAD(&(_ptr)->list); \
671 } while (0)
672
673 struct ib_global_route {
674 union ib_gid dgid;
675 u32 flow_label;
676 u8 sgid_index;
677 u8 hop_limit;
678 u8 traffic_class;
679 };
680
681 struct ib_grh {
682 __be32 version_tclass_flow;
683 __be16 paylen;
684 u8 next_hdr;
685 u8 hop_limit;
686 union ib_gid sgid;
687 union ib_gid dgid;
688 };
689
690 union rdma_network_hdr {
691 struct ib_grh ibgrh;
692 struct {
693 /* The IB spec states that if it's IPv4, the header
694 * is located in the last 20 bytes of the header.
695 */
696 u8 reserved[20];
697 struct iphdr roce4grh;
698 };
699 };
700
701 #define IB_QPN_MASK 0xFFFFFF
702
703 enum {
704 IB_MULTICAST_QPN = 0xffffff
705 };
706
707 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
708 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
709
710 enum ib_ah_flags {
711 IB_AH_GRH = 1
712 };
713
714 enum ib_rate {
715 IB_RATE_PORT_CURRENT = 0,
716 IB_RATE_2_5_GBPS = 2,
717 IB_RATE_5_GBPS = 5,
718 IB_RATE_10_GBPS = 3,
719 IB_RATE_20_GBPS = 6,
720 IB_RATE_30_GBPS = 4,
721 IB_RATE_40_GBPS = 7,
722 IB_RATE_60_GBPS = 8,
723 IB_RATE_80_GBPS = 9,
724 IB_RATE_120_GBPS = 10,
725 IB_RATE_14_GBPS = 11,
726 IB_RATE_56_GBPS = 12,
727 IB_RATE_112_GBPS = 13,
728 IB_RATE_168_GBPS = 14,
729 IB_RATE_25_GBPS = 15,
730 IB_RATE_100_GBPS = 16,
731 IB_RATE_200_GBPS = 17,
732 IB_RATE_300_GBPS = 18
733 };
734
735 /**
736 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
737 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
738 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
739 * @rate: rate to convert.
740 */
741 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
742
743 /**
744 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
745 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
746 * @rate: rate to convert.
747 */
748 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
749
750
751 /**
752 * enum ib_mr_type - memory region type
753 * @IB_MR_TYPE_MEM_REG: memory region that is used for
754 * normal registration
755 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
756 * signature operations (data-integrity
757 * capable regions)
758 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
759 * register any arbitrary sg lists (without
760 * the normal mr constraints - see
761 * ib_map_mr_sg)
762 */
763 enum ib_mr_type {
764 IB_MR_TYPE_MEM_REG,
765 IB_MR_TYPE_SIGNATURE,
766 IB_MR_TYPE_SG_GAPS,
767 };
768
769 /**
770 * Signature types
771 * IB_SIG_TYPE_NONE: Unprotected.
772 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
773 */
774 enum ib_signature_type {
775 IB_SIG_TYPE_NONE,
776 IB_SIG_TYPE_T10_DIF,
777 };
778
779 /**
780 * Signature T10-DIF block-guard types
781 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
782 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
783 */
784 enum ib_t10_dif_bg_type {
785 IB_T10DIF_CRC,
786 IB_T10DIF_CSUM
787 };
788
789 /**
790 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
791 * domain.
792 * @bg_type: T10-DIF block guard type (CRC|CSUM)
793 * @pi_interval: protection information interval.
794 * @bg: seed of guard computation.
795 * @app_tag: application tag of guard block
796 * @ref_tag: initial guard block reference tag.
797 * @ref_remap: Indicate wethear the reftag increments each block
798 * @app_escape: Indicate to skip block check if apptag=0xffff
799 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
800 * @apptag_check_mask: check bitmask of application tag.
801 */
802 struct ib_t10_dif_domain {
803 enum ib_t10_dif_bg_type bg_type;
804 u16 pi_interval;
805 u16 bg;
806 u16 app_tag;
807 u32 ref_tag;
808 bool ref_remap;
809 bool app_escape;
810 bool ref_escape;
811 u16 apptag_check_mask;
812 };
813
814 /**
815 * struct ib_sig_domain - Parameters for signature domain
816 * @sig_type: specific signauture type
817 * @sig: union of all signature domain attributes that may
818 * be used to set domain layout.
819 */
820 struct ib_sig_domain {
821 enum ib_signature_type sig_type;
822 union {
823 struct ib_t10_dif_domain dif;
824 } sig;
825 };
826
827 /**
828 * struct ib_sig_attrs - Parameters for signature handover operation
829 * @check_mask: bitmask for signature byte check (8 bytes)
830 * @mem: memory domain layout desciptor.
831 * @wire: wire domain layout desciptor.
832 */
833 struct ib_sig_attrs {
834 u8 check_mask;
835 struct ib_sig_domain mem;
836 struct ib_sig_domain wire;
837 };
838
839 enum ib_sig_err_type {
840 IB_SIG_BAD_GUARD,
841 IB_SIG_BAD_REFTAG,
842 IB_SIG_BAD_APPTAG,
843 };
844
845 /**
846 * struct ib_sig_err - signature error descriptor
847 */
848 struct ib_sig_err {
849 enum ib_sig_err_type err_type;
850 u32 expected;
851 u32 actual;
852 u64 sig_err_offset;
853 u32 key;
854 };
855
856 enum ib_mr_status_check {
857 IB_MR_CHECK_SIG_STATUS = 1,
858 };
859
860 /**
861 * struct ib_mr_status - Memory region status container
862 *
863 * @fail_status: Bitmask of MR checks status. For each
864 * failed check a corresponding status bit is set.
865 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
866 * failure.
867 */
868 struct ib_mr_status {
869 u32 fail_status;
870 struct ib_sig_err sig_err;
871 };
872
873 /**
874 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
875 * enum.
876 * @mult: multiple to convert.
877 */
878 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
879
880 enum rdma_ah_attr_type {
881 RDMA_AH_ATTR_TYPE_UNDEFINED,
882 RDMA_AH_ATTR_TYPE_IB,
883 RDMA_AH_ATTR_TYPE_ROCE,
884 RDMA_AH_ATTR_TYPE_OPA,
885 };
886
887 struct ib_ah_attr {
888 u16 dlid;
889 u8 src_path_bits;
890 };
891
892 struct roce_ah_attr {
893 u8 dmac[ETH_ALEN];
894 };
895
896 struct opa_ah_attr {
897 u32 dlid;
898 u8 src_path_bits;
899 bool make_grd;
900 };
901
902 struct rdma_ah_attr {
903 struct ib_global_route grh;
904 u8 sl;
905 u8 static_rate;
906 u8 port_num;
907 u8 ah_flags;
908 enum rdma_ah_attr_type type;
909 union {
910 struct ib_ah_attr ib;
911 struct roce_ah_attr roce;
912 struct opa_ah_attr opa;
913 };
914 };
915
916 enum ib_wc_status {
917 IB_WC_SUCCESS,
918 IB_WC_LOC_LEN_ERR,
919 IB_WC_LOC_QP_OP_ERR,
920 IB_WC_LOC_EEC_OP_ERR,
921 IB_WC_LOC_PROT_ERR,
922 IB_WC_WR_FLUSH_ERR,
923 IB_WC_MW_BIND_ERR,
924 IB_WC_BAD_RESP_ERR,
925 IB_WC_LOC_ACCESS_ERR,
926 IB_WC_REM_INV_REQ_ERR,
927 IB_WC_REM_ACCESS_ERR,
928 IB_WC_REM_OP_ERR,
929 IB_WC_RETRY_EXC_ERR,
930 IB_WC_RNR_RETRY_EXC_ERR,
931 IB_WC_LOC_RDD_VIOL_ERR,
932 IB_WC_REM_INV_RD_REQ_ERR,
933 IB_WC_REM_ABORT_ERR,
934 IB_WC_INV_EECN_ERR,
935 IB_WC_INV_EEC_STATE_ERR,
936 IB_WC_FATAL_ERR,
937 IB_WC_RESP_TIMEOUT_ERR,
938 IB_WC_GENERAL_ERR
939 };
940
941 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
942
943 enum ib_wc_opcode {
944 IB_WC_SEND,
945 IB_WC_RDMA_WRITE,
946 IB_WC_RDMA_READ,
947 IB_WC_COMP_SWAP,
948 IB_WC_FETCH_ADD,
949 IB_WC_LSO,
950 IB_WC_LOCAL_INV,
951 IB_WC_REG_MR,
952 IB_WC_MASKED_COMP_SWAP,
953 IB_WC_MASKED_FETCH_ADD,
954 /*
955 * Set value of IB_WC_RECV so consumers can test if a completion is a
956 * receive by testing (opcode & IB_WC_RECV).
957 */
958 IB_WC_RECV = 1 << 7,
959 IB_WC_RECV_RDMA_WITH_IMM
960 };
961
962 enum ib_wc_flags {
963 IB_WC_GRH = 1,
964 IB_WC_WITH_IMM = (1<<1),
965 IB_WC_WITH_INVALIDATE = (1<<2),
966 IB_WC_IP_CSUM_OK = (1<<3),
967 IB_WC_WITH_SMAC = (1<<4),
968 IB_WC_WITH_VLAN = (1<<5),
969 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
970 };
971
972 struct ib_wc {
973 union {
974 u64 wr_id;
975 struct ib_cqe *wr_cqe;
976 };
977 enum ib_wc_status status;
978 enum ib_wc_opcode opcode;
979 u32 vendor_err;
980 u32 byte_len;
981 struct ib_qp *qp;
982 union {
983 __be32 imm_data;
984 u32 invalidate_rkey;
985 } ex;
986 u32 src_qp;
987 u32 slid;
988 int wc_flags;
989 u16 pkey_index;
990 u8 sl;
991 u8 dlid_path_bits;
992 u8 port_num; /* valid only for DR SMPs on switches */
993 u8 smac[ETH_ALEN];
994 u16 vlan_id;
995 u8 network_hdr_type;
996 };
997
998 enum ib_cq_notify_flags {
999 IB_CQ_SOLICITED = 1 << 0,
1000 IB_CQ_NEXT_COMP = 1 << 1,
1001 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1002 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1003 };
1004
1005 enum ib_srq_type {
1006 IB_SRQT_BASIC,
1007 IB_SRQT_XRC,
1008 IB_SRQT_TM,
1009 };
1010
1011 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1012 {
1013 return srq_type == IB_SRQT_XRC ||
1014 srq_type == IB_SRQT_TM;
1015 }
1016
1017 enum ib_srq_attr_mask {
1018 IB_SRQ_MAX_WR = 1 << 0,
1019 IB_SRQ_LIMIT = 1 << 1,
1020 };
1021
1022 struct ib_srq_attr {
1023 u32 max_wr;
1024 u32 max_sge;
1025 u32 srq_limit;
1026 };
1027
1028 struct ib_srq_init_attr {
1029 void (*event_handler)(struct ib_event *, void *);
1030 void *srq_context;
1031 struct ib_srq_attr attr;
1032 enum ib_srq_type srq_type;
1033
1034 struct {
1035 struct ib_cq *cq;
1036 union {
1037 struct {
1038 struct ib_xrcd *xrcd;
1039 } xrc;
1040
1041 struct {
1042 u32 max_num_tags;
1043 } tag_matching;
1044 };
1045 } ext;
1046 };
1047
1048 struct ib_qp_cap {
1049 u32 max_send_wr;
1050 u32 max_recv_wr;
1051 u32 max_send_sge;
1052 u32 max_recv_sge;
1053 u32 max_inline_data;
1054
1055 /*
1056 * Maximum number of rdma_rw_ctx structures in flight at a time.
1057 * ib_create_qp() will calculate the right amount of neededed WRs
1058 * and MRs based on this.
1059 */
1060 u32 max_rdma_ctxs;
1061 };
1062
1063 enum ib_sig_type {
1064 IB_SIGNAL_ALL_WR,
1065 IB_SIGNAL_REQ_WR
1066 };
1067
1068 enum ib_qp_type {
1069 /*
1070 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1071 * here (and in that order) since the MAD layer uses them as
1072 * indices into a 2-entry table.
1073 */
1074 IB_QPT_SMI,
1075 IB_QPT_GSI,
1076
1077 IB_QPT_RC,
1078 IB_QPT_UC,
1079 IB_QPT_UD,
1080 IB_QPT_RAW_IPV6,
1081 IB_QPT_RAW_ETHERTYPE,
1082 IB_QPT_RAW_PACKET = 8,
1083 IB_QPT_XRC_INI = 9,
1084 IB_QPT_XRC_TGT,
1085 IB_QPT_MAX,
1086 /* Reserve a range for qp types internal to the low level driver.
1087 * These qp types will not be visible at the IB core layer, so the
1088 * IB_QPT_MAX usages should not be affected in the core layer
1089 */
1090 IB_QPT_RESERVED1 = 0x1000,
1091 IB_QPT_RESERVED2,
1092 IB_QPT_RESERVED3,
1093 IB_QPT_RESERVED4,
1094 IB_QPT_RESERVED5,
1095 IB_QPT_RESERVED6,
1096 IB_QPT_RESERVED7,
1097 IB_QPT_RESERVED8,
1098 IB_QPT_RESERVED9,
1099 IB_QPT_RESERVED10,
1100 };
1101
1102 enum ib_qp_create_flags {
1103 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1104 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1105 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1106 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1107 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1108 IB_QP_CREATE_NETIF_QP = 1 << 5,
1109 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1110 /* FREE = 1 << 7, */
1111 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1112 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1113 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1114 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1115 /* reserve bits 26-31 for low level drivers' internal use */
1116 IB_QP_CREATE_RESERVED_START = 1 << 26,
1117 IB_QP_CREATE_RESERVED_END = 1 << 31,
1118 };
1119
1120 /*
1121 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1122 * callback to destroy the passed in QP.
1123 */
1124
1125 struct ib_qp_init_attr {
1126 void (*event_handler)(struct ib_event *, void *);
1127 void *qp_context;
1128 struct ib_cq *send_cq;
1129 struct ib_cq *recv_cq;
1130 struct ib_srq *srq;
1131 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1132 struct ib_qp_cap cap;
1133 enum ib_sig_type sq_sig_type;
1134 enum ib_qp_type qp_type;
1135 enum ib_qp_create_flags create_flags;
1136
1137 /*
1138 * Only needed for special QP types, or when using the RW API.
1139 */
1140 u8 port_num;
1141 struct ib_rwq_ind_table *rwq_ind_tbl;
1142 u32 source_qpn;
1143 };
1144
1145 struct ib_qp_open_attr {
1146 void (*event_handler)(struct ib_event *, void *);
1147 void *qp_context;
1148 u32 qp_num;
1149 enum ib_qp_type qp_type;
1150 };
1151
1152 enum ib_rnr_timeout {
1153 IB_RNR_TIMER_655_36 = 0,
1154 IB_RNR_TIMER_000_01 = 1,
1155 IB_RNR_TIMER_000_02 = 2,
1156 IB_RNR_TIMER_000_03 = 3,
1157 IB_RNR_TIMER_000_04 = 4,
1158 IB_RNR_TIMER_000_06 = 5,
1159 IB_RNR_TIMER_000_08 = 6,
1160 IB_RNR_TIMER_000_12 = 7,
1161 IB_RNR_TIMER_000_16 = 8,
1162 IB_RNR_TIMER_000_24 = 9,
1163 IB_RNR_TIMER_000_32 = 10,
1164 IB_RNR_TIMER_000_48 = 11,
1165 IB_RNR_TIMER_000_64 = 12,
1166 IB_RNR_TIMER_000_96 = 13,
1167 IB_RNR_TIMER_001_28 = 14,
1168 IB_RNR_TIMER_001_92 = 15,
1169 IB_RNR_TIMER_002_56 = 16,
1170 IB_RNR_TIMER_003_84 = 17,
1171 IB_RNR_TIMER_005_12 = 18,
1172 IB_RNR_TIMER_007_68 = 19,
1173 IB_RNR_TIMER_010_24 = 20,
1174 IB_RNR_TIMER_015_36 = 21,
1175 IB_RNR_TIMER_020_48 = 22,
1176 IB_RNR_TIMER_030_72 = 23,
1177 IB_RNR_TIMER_040_96 = 24,
1178 IB_RNR_TIMER_061_44 = 25,
1179 IB_RNR_TIMER_081_92 = 26,
1180 IB_RNR_TIMER_122_88 = 27,
1181 IB_RNR_TIMER_163_84 = 28,
1182 IB_RNR_TIMER_245_76 = 29,
1183 IB_RNR_TIMER_327_68 = 30,
1184 IB_RNR_TIMER_491_52 = 31
1185 };
1186
1187 enum ib_qp_attr_mask {
1188 IB_QP_STATE = 1,
1189 IB_QP_CUR_STATE = (1<<1),
1190 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1191 IB_QP_ACCESS_FLAGS = (1<<3),
1192 IB_QP_PKEY_INDEX = (1<<4),
1193 IB_QP_PORT = (1<<5),
1194 IB_QP_QKEY = (1<<6),
1195 IB_QP_AV = (1<<7),
1196 IB_QP_PATH_MTU = (1<<8),
1197 IB_QP_TIMEOUT = (1<<9),
1198 IB_QP_RETRY_CNT = (1<<10),
1199 IB_QP_RNR_RETRY = (1<<11),
1200 IB_QP_RQ_PSN = (1<<12),
1201 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1202 IB_QP_ALT_PATH = (1<<14),
1203 IB_QP_MIN_RNR_TIMER = (1<<15),
1204 IB_QP_SQ_PSN = (1<<16),
1205 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1206 IB_QP_PATH_MIG_STATE = (1<<18),
1207 IB_QP_CAP = (1<<19),
1208 IB_QP_DEST_QPN = (1<<20),
1209 IB_QP_RESERVED1 = (1<<21),
1210 IB_QP_RESERVED2 = (1<<22),
1211 IB_QP_RESERVED3 = (1<<23),
1212 IB_QP_RESERVED4 = (1<<24),
1213 IB_QP_RATE_LIMIT = (1<<25),
1214 };
1215
1216 enum ib_qp_state {
1217 IB_QPS_RESET,
1218 IB_QPS_INIT,
1219 IB_QPS_RTR,
1220 IB_QPS_RTS,
1221 IB_QPS_SQD,
1222 IB_QPS_SQE,
1223 IB_QPS_ERR
1224 };
1225
1226 enum ib_mig_state {
1227 IB_MIG_MIGRATED,
1228 IB_MIG_REARM,
1229 IB_MIG_ARMED
1230 };
1231
1232 enum ib_mw_type {
1233 IB_MW_TYPE_1 = 1,
1234 IB_MW_TYPE_2 = 2
1235 };
1236
1237 struct ib_qp_attr {
1238 enum ib_qp_state qp_state;
1239 enum ib_qp_state cur_qp_state;
1240 enum ib_mtu path_mtu;
1241 enum ib_mig_state path_mig_state;
1242 u32 qkey;
1243 u32 rq_psn;
1244 u32 sq_psn;
1245 u32 dest_qp_num;
1246 int qp_access_flags;
1247 struct ib_qp_cap cap;
1248 struct rdma_ah_attr ah_attr;
1249 struct rdma_ah_attr alt_ah_attr;
1250 u16 pkey_index;
1251 u16 alt_pkey_index;
1252 u8 en_sqd_async_notify;
1253 u8 sq_draining;
1254 u8 max_rd_atomic;
1255 u8 max_dest_rd_atomic;
1256 u8 min_rnr_timer;
1257 u8 port_num;
1258 u8 timeout;
1259 u8 retry_cnt;
1260 u8 rnr_retry;
1261 u8 alt_port_num;
1262 u8 alt_timeout;
1263 u32 rate_limit;
1264 };
1265
1266 enum ib_wr_opcode {
1267 IB_WR_RDMA_WRITE,
1268 IB_WR_RDMA_WRITE_WITH_IMM,
1269 IB_WR_SEND,
1270 IB_WR_SEND_WITH_IMM,
1271 IB_WR_RDMA_READ,
1272 IB_WR_ATOMIC_CMP_AND_SWP,
1273 IB_WR_ATOMIC_FETCH_AND_ADD,
1274 IB_WR_LSO,
1275 IB_WR_SEND_WITH_INV,
1276 IB_WR_RDMA_READ_WITH_INV,
1277 IB_WR_LOCAL_INV,
1278 IB_WR_REG_MR,
1279 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1280 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1281 IB_WR_REG_SIG_MR,
1282 /* reserve values for low level drivers' internal use.
1283 * These values will not be used at all in the ib core layer.
1284 */
1285 IB_WR_RESERVED1 = 0xf0,
1286 IB_WR_RESERVED2,
1287 IB_WR_RESERVED3,
1288 IB_WR_RESERVED4,
1289 IB_WR_RESERVED5,
1290 IB_WR_RESERVED6,
1291 IB_WR_RESERVED7,
1292 IB_WR_RESERVED8,
1293 IB_WR_RESERVED9,
1294 IB_WR_RESERVED10,
1295 };
1296
1297 enum ib_send_flags {
1298 IB_SEND_FENCE = 1,
1299 IB_SEND_SIGNALED = (1<<1),
1300 IB_SEND_SOLICITED = (1<<2),
1301 IB_SEND_INLINE = (1<<3),
1302 IB_SEND_IP_CSUM = (1<<4),
1303
1304 /* reserve bits 26-31 for low level drivers' internal use */
1305 IB_SEND_RESERVED_START = (1 << 26),
1306 IB_SEND_RESERVED_END = (1 << 31),
1307 };
1308
1309 struct ib_sge {
1310 u64 addr;
1311 u32 length;
1312 u32 lkey;
1313 };
1314
1315 struct ib_cqe {
1316 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1317 };
1318
1319 struct ib_send_wr {
1320 struct ib_send_wr *next;
1321 union {
1322 u64 wr_id;
1323 struct ib_cqe *wr_cqe;
1324 };
1325 struct ib_sge *sg_list;
1326 int num_sge;
1327 enum ib_wr_opcode opcode;
1328 int send_flags;
1329 union {
1330 __be32 imm_data;
1331 u32 invalidate_rkey;
1332 } ex;
1333 };
1334
1335 struct ib_rdma_wr {
1336 struct ib_send_wr wr;
1337 u64 remote_addr;
1338 u32 rkey;
1339 };
1340
1341 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1342 {
1343 return container_of(wr, struct ib_rdma_wr, wr);
1344 }
1345
1346 struct ib_atomic_wr {
1347 struct ib_send_wr wr;
1348 u64 remote_addr;
1349 u64 compare_add;
1350 u64 swap;
1351 u64 compare_add_mask;
1352 u64 swap_mask;
1353 u32 rkey;
1354 };
1355
1356 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1357 {
1358 return container_of(wr, struct ib_atomic_wr, wr);
1359 }
1360
1361 struct ib_ud_wr {
1362 struct ib_send_wr wr;
1363 struct ib_ah *ah;
1364 void *header;
1365 int hlen;
1366 int mss;
1367 u32 remote_qpn;
1368 u32 remote_qkey;
1369 u16 pkey_index; /* valid for GSI only */
1370 u8 port_num; /* valid for DR SMPs on switch only */
1371 };
1372
1373 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1374 {
1375 return container_of(wr, struct ib_ud_wr, wr);
1376 }
1377
1378 struct ib_reg_wr {
1379 struct ib_send_wr wr;
1380 struct ib_mr *mr;
1381 u32 key;
1382 int access;
1383 };
1384
1385 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1386 {
1387 return container_of(wr, struct ib_reg_wr, wr);
1388 }
1389
1390 struct ib_sig_handover_wr {
1391 struct ib_send_wr wr;
1392 struct ib_sig_attrs *sig_attrs;
1393 struct ib_mr *sig_mr;
1394 int access_flags;
1395 struct ib_sge *prot;
1396 };
1397
1398 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1399 {
1400 return container_of(wr, struct ib_sig_handover_wr, wr);
1401 }
1402
1403 struct ib_recv_wr {
1404 struct ib_recv_wr *next;
1405 union {
1406 u64 wr_id;
1407 struct ib_cqe *wr_cqe;
1408 };
1409 struct ib_sge *sg_list;
1410 int num_sge;
1411 };
1412
1413 enum ib_access_flags {
1414 IB_ACCESS_LOCAL_WRITE = 1,
1415 IB_ACCESS_REMOTE_WRITE = (1<<1),
1416 IB_ACCESS_REMOTE_READ = (1<<2),
1417 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1418 IB_ACCESS_MW_BIND = (1<<4),
1419 IB_ZERO_BASED = (1<<5),
1420 IB_ACCESS_ON_DEMAND = (1<<6),
1421 IB_ACCESS_HUGETLB = (1<<7),
1422 };
1423
1424 /*
1425 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1426 * are hidden here instead of a uapi header!
1427 */
1428 enum ib_mr_rereg_flags {
1429 IB_MR_REREG_TRANS = 1,
1430 IB_MR_REREG_PD = (1<<1),
1431 IB_MR_REREG_ACCESS = (1<<2),
1432 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1433 };
1434
1435 struct ib_fmr_attr {
1436 int max_pages;
1437 int max_maps;
1438 u8 page_shift;
1439 };
1440
1441 struct ib_umem;
1442
1443 enum rdma_remove_reason {
1444 /* Userspace requested uobject deletion. Call could fail */
1445 RDMA_REMOVE_DESTROY,
1446 /* Context deletion. This call should delete the actual object itself */
1447 RDMA_REMOVE_CLOSE,
1448 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1449 RDMA_REMOVE_DRIVER_REMOVE,
1450 /* Context is being cleaned-up, but commit was just completed */
1451 RDMA_REMOVE_DURING_CLEANUP,
1452 };
1453
1454 struct ib_rdmacg_object {
1455 #ifdef CONFIG_CGROUP_RDMA
1456 struct rdma_cgroup *cg; /* owner rdma cgroup */
1457 #endif
1458 };
1459
1460 struct ib_ucontext {
1461 struct ib_device *device;
1462 struct ib_uverbs_file *ufile;
1463 int closing;
1464
1465 /* locking the uobjects_list */
1466 struct mutex uobjects_lock;
1467 struct list_head uobjects;
1468 /* protects cleanup process from other actions */
1469 struct rw_semaphore cleanup_rwsem;
1470 enum rdma_remove_reason cleanup_reason;
1471
1472 struct pid *tgid;
1473 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1474 struct rb_root_cached umem_tree;
1475 /*
1476 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1477 * mmu notifiers registration.
1478 */
1479 struct rw_semaphore umem_rwsem;
1480 void (*invalidate_range)(struct ib_umem *umem,
1481 unsigned long start, unsigned long end);
1482
1483 struct mmu_notifier mn;
1484 atomic_t notifier_count;
1485 /* A list of umems that don't have private mmu notifier counters yet. */
1486 struct list_head no_private_counters;
1487 int odp_mrs_count;
1488 #endif
1489
1490 struct ib_rdmacg_object cg_obj;
1491 };
1492
1493 struct ib_uobject {
1494 u64 user_handle; /* handle given to us by userspace */
1495 struct ib_ucontext *context; /* associated user context */
1496 void *object; /* containing object */
1497 struct list_head list; /* link to context's list */
1498 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1499 int id; /* index into kernel idr */
1500 struct kref ref;
1501 atomic_t usecnt; /* protects exclusive access */
1502 struct rcu_head rcu; /* kfree_rcu() overhead */
1503
1504 const struct uverbs_obj_type *type;
1505 };
1506
1507 struct ib_uobject_file {
1508 struct ib_uobject uobj;
1509 /* ufile contains the lock between context release and file close */
1510 struct ib_uverbs_file *ufile;
1511 };
1512
1513 struct ib_udata {
1514 const void __user *inbuf;
1515 void __user *outbuf;
1516 size_t inlen;
1517 size_t outlen;
1518 };
1519
1520 struct ib_pd {
1521 u32 local_dma_lkey;
1522 u32 flags;
1523 struct ib_device *device;
1524 struct ib_uobject *uobject;
1525 atomic_t usecnt; /* count all resources */
1526
1527 u32 unsafe_global_rkey;
1528
1529 /*
1530 * Implementation details of the RDMA core, don't use in drivers:
1531 */
1532 struct ib_mr *__internal_mr;
1533 };
1534
1535 struct ib_xrcd {
1536 struct ib_device *device;
1537 atomic_t usecnt; /* count all exposed resources */
1538 struct inode *inode;
1539
1540 struct mutex tgt_qp_mutex;
1541 struct list_head tgt_qp_list;
1542 };
1543
1544 struct ib_ah {
1545 struct ib_device *device;
1546 struct ib_pd *pd;
1547 struct ib_uobject *uobject;
1548 enum rdma_ah_attr_type type;
1549 };
1550
1551 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1552
1553 enum ib_poll_context {
1554 IB_POLL_DIRECT, /* caller context, no hw completions */
1555 IB_POLL_SOFTIRQ, /* poll from softirq context */
1556 IB_POLL_WORKQUEUE, /* poll from workqueue */
1557 };
1558
1559 struct ib_cq {
1560 struct ib_device *device;
1561 struct ib_uobject *uobject;
1562 ib_comp_handler comp_handler;
1563 void (*event_handler)(struct ib_event *, void *);
1564 void *cq_context;
1565 int cqe;
1566 atomic_t usecnt; /* count number of work queues */
1567 enum ib_poll_context poll_ctx;
1568 struct ib_wc *wc;
1569 union {
1570 struct irq_poll iop;
1571 struct work_struct work;
1572 };
1573 };
1574
1575 struct ib_srq {
1576 struct ib_device *device;
1577 struct ib_pd *pd;
1578 struct ib_uobject *uobject;
1579 void (*event_handler)(struct ib_event *, void *);
1580 void *srq_context;
1581 enum ib_srq_type srq_type;
1582 atomic_t usecnt;
1583
1584 struct {
1585 struct ib_cq *cq;
1586 union {
1587 struct {
1588 struct ib_xrcd *xrcd;
1589 u32 srq_num;
1590 } xrc;
1591 };
1592 } ext;
1593 };
1594
1595 enum ib_raw_packet_caps {
1596 /* Strip cvlan from incoming packet and report it in the matching work
1597 * completion is supported.
1598 */
1599 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1600 /* Scatter FCS field of an incoming packet to host memory is supported.
1601 */
1602 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1603 /* Checksum offloads are supported (for both send and receive). */
1604 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1605 /* When a packet is received for an RQ with no receive WQEs, the
1606 * packet processing is delayed.
1607 */
1608 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1609 };
1610
1611 enum ib_wq_type {
1612 IB_WQT_RQ
1613 };
1614
1615 enum ib_wq_state {
1616 IB_WQS_RESET,
1617 IB_WQS_RDY,
1618 IB_WQS_ERR
1619 };
1620
1621 struct ib_wq {
1622 struct ib_device *device;
1623 struct ib_uobject *uobject;
1624 void *wq_context;
1625 void (*event_handler)(struct ib_event *, void *);
1626 struct ib_pd *pd;
1627 struct ib_cq *cq;
1628 u32 wq_num;
1629 enum ib_wq_state state;
1630 enum ib_wq_type wq_type;
1631 atomic_t usecnt;
1632 };
1633
1634 enum ib_wq_flags {
1635 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1636 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1637 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1638 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1639 };
1640
1641 struct ib_wq_init_attr {
1642 void *wq_context;
1643 enum ib_wq_type wq_type;
1644 u32 max_wr;
1645 u32 max_sge;
1646 struct ib_cq *cq;
1647 void (*event_handler)(struct ib_event *, void *);
1648 u32 create_flags; /* Use enum ib_wq_flags */
1649 };
1650
1651 enum ib_wq_attr_mask {
1652 IB_WQ_STATE = 1 << 0,
1653 IB_WQ_CUR_STATE = 1 << 1,
1654 IB_WQ_FLAGS = 1 << 2,
1655 };
1656
1657 struct ib_wq_attr {
1658 enum ib_wq_state wq_state;
1659 enum ib_wq_state curr_wq_state;
1660 u32 flags; /* Use enum ib_wq_flags */
1661 u32 flags_mask; /* Use enum ib_wq_flags */
1662 };
1663
1664 struct ib_rwq_ind_table {
1665 struct ib_device *device;
1666 struct ib_uobject *uobject;
1667 atomic_t usecnt;
1668 u32 ind_tbl_num;
1669 u32 log_ind_tbl_size;
1670 struct ib_wq **ind_tbl;
1671 };
1672
1673 struct ib_rwq_ind_table_init_attr {
1674 u32 log_ind_tbl_size;
1675 /* Each entry is a pointer to Receive Work Queue */
1676 struct ib_wq **ind_tbl;
1677 };
1678
1679 enum port_pkey_state {
1680 IB_PORT_PKEY_NOT_VALID = 0,
1681 IB_PORT_PKEY_VALID = 1,
1682 IB_PORT_PKEY_LISTED = 2,
1683 };
1684
1685 struct ib_qp_security;
1686
1687 struct ib_port_pkey {
1688 enum port_pkey_state state;
1689 u16 pkey_index;
1690 u8 port_num;
1691 struct list_head qp_list;
1692 struct list_head to_error_list;
1693 struct ib_qp_security *sec;
1694 };
1695
1696 struct ib_ports_pkeys {
1697 struct ib_port_pkey main;
1698 struct ib_port_pkey alt;
1699 };
1700
1701 struct ib_qp_security {
1702 struct ib_qp *qp;
1703 struct ib_device *dev;
1704 /* Hold this mutex when changing port and pkey settings. */
1705 struct mutex mutex;
1706 struct ib_ports_pkeys *ports_pkeys;
1707 /* A list of all open shared QP handles. Required to enforce security
1708 * properly for all users of a shared QP.
1709 */
1710 struct list_head shared_qp_list;
1711 void *security;
1712 bool destroying;
1713 atomic_t error_list_count;
1714 struct completion error_complete;
1715 int error_comps_pending;
1716 };
1717
1718 /*
1719 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1720 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1721 */
1722 struct ib_qp {
1723 struct ib_device *device;
1724 struct ib_pd *pd;
1725 struct ib_cq *send_cq;
1726 struct ib_cq *recv_cq;
1727 spinlock_t mr_lock;
1728 int mrs_used;
1729 struct list_head rdma_mrs;
1730 struct list_head sig_mrs;
1731 struct ib_srq *srq;
1732 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1733 struct list_head xrcd_list;
1734
1735 /* count times opened, mcast attaches, flow attaches */
1736 atomic_t usecnt;
1737 struct list_head open_list;
1738 struct ib_qp *real_qp;
1739 struct ib_uobject *uobject;
1740 void (*event_handler)(struct ib_event *, void *);
1741 void *qp_context;
1742 u32 qp_num;
1743 u32 max_write_sge;
1744 u32 max_read_sge;
1745 enum ib_qp_type qp_type;
1746 struct ib_rwq_ind_table *rwq_ind_tbl;
1747 struct ib_qp_security *qp_sec;
1748 u8 port;
1749 };
1750
1751 struct ib_mr {
1752 struct ib_device *device;
1753 struct ib_pd *pd;
1754 u32 lkey;
1755 u32 rkey;
1756 u64 iova;
1757 u64 length;
1758 unsigned int page_size;
1759 bool need_inval;
1760 union {
1761 struct ib_uobject *uobject; /* user */
1762 struct list_head qp_entry; /* FR */
1763 };
1764 };
1765
1766 struct ib_mw {
1767 struct ib_device *device;
1768 struct ib_pd *pd;
1769 struct ib_uobject *uobject;
1770 u32 rkey;
1771 enum ib_mw_type type;
1772 };
1773
1774 struct ib_fmr {
1775 struct ib_device *device;
1776 struct ib_pd *pd;
1777 struct list_head list;
1778 u32 lkey;
1779 u32 rkey;
1780 };
1781
1782 /* Supported steering options */
1783 enum ib_flow_attr_type {
1784 /* steering according to rule specifications */
1785 IB_FLOW_ATTR_NORMAL = 0x0,
1786 /* default unicast and multicast rule -
1787 * receive all Eth traffic which isn't steered to any QP
1788 */
1789 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1790 /* default multicast rule -
1791 * receive all Eth multicast traffic which isn't steered to any QP
1792 */
1793 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1794 /* sniffer rule - receive all port traffic */
1795 IB_FLOW_ATTR_SNIFFER = 0x3
1796 };
1797
1798 /* Supported steering header types */
1799 enum ib_flow_spec_type {
1800 /* L2 headers*/
1801 IB_FLOW_SPEC_ETH = 0x20,
1802 IB_FLOW_SPEC_IB = 0x22,
1803 /* L3 header*/
1804 IB_FLOW_SPEC_IPV4 = 0x30,
1805 IB_FLOW_SPEC_IPV6 = 0x31,
1806 /* L4 headers*/
1807 IB_FLOW_SPEC_TCP = 0x40,
1808 IB_FLOW_SPEC_UDP = 0x41,
1809 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1810 IB_FLOW_SPEC_INNER = 0x100,
1811 /* Actions */
1812 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1813 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1814 };
1815 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1816 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1817
1818 /* Flow steering rule priority is set according to it's domain.
1819 * Lower domain value means higher priority.
1820 */
1821 enum ib_flow_domain {
1822 IB_FLOW_DOMAIN_USER,
1823 IB_FLOW_DOMAIN_ETHTOOL,
1824 IB_FLOW_DOMAIN_RFS,
1825 IB_FLOW_DOMAIN_NIC,
1826 IB_FLOW_DOMAIN_NUM /* Must be last */
1827 };
1828
1829 enum ib_flow_flags {
1830 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1831 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1832 };
1833
1834 struct ib_flow_eth_filter {
1835 u8 dst_mac[6];
1836 u8 src_mac[6];
1837 __be16 ether_type;
1838 __be16 vlan_tag;
1839 /* Must be last */
1840 u8 real_sz[0];
1841 };
1842
1843 struct ib_flow_spec_eth {
1844 u32 type;
1845 u16 size;
1846 struct ib_flow_eth_filter val;
1847 struct ib_flow_eth_filter mask;
1848 };
1849
1850 struct ib_flow_ib_filter {
1851 __be16 dlid;
1852 __u8 sl;
1853 /* Must be last */
1854 u8 real_sz[0];
1855 };
1856
1857 struct ib_flow_spec_ib {
1858 u32 type;
1859 u16 size;
1860 struct ib_flow_ib_filter val;
1861 struct ib_flow_ib_filter mask;
1862 };
1863
1864 /* IPv4 header flags */
1865 enum ib_ipv4_flags {
1866 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1867 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1868 last have this flag set */
1869 };
1870
1871 struct ib_flow_ipv4_filter {
1872 __be32 src_ip;
1873 __be32 dst_ip;
1874 u8 proto;
1875 u8 tos;
1876 u8 ttl;
1877 u8 flags;
1878 /* Must be last */
1879 u8 real_sz[0];
1880 };
1881
1882 struct ib_flow_spec_ipv4 {
1883 u32 type;
1884 u16 size;
1885 struct ib_flow_ipv4_filter val;
1886 struct ib_flow_ipv4_filter mask;
1887 };
1888
1889 struct ib_flow_ipv6_filter {
1890 u8 src_ip[16];
1891 u8 dst_ip[16];
1892 __be32 flow_label;
1893 u8 next_hdr;
1894 u8 traffic_class;
1895 u8 hop_limit;
1896 /* Must be last */
1897 u8 real_sz[0];
1898 };
1899
1900 struct ib_flow_spec_ipv6 {
1901 u32 type;
1902 u16 size;
1903 struct ib_flow_ipv6_filter val;
1904 struct ib_flow_ipv6_filter mask;
1905 };
1906
1907 struct ib_flow_tcp_udp_filter {
1908 __be16 dst_port;
1909 __be16 src_port;
1910 /* Must be last */
1911 u8 real_sz[0];
1912 };
1913
1914 struct ib_flow_spec_tcp_udp {
1915 u32 type;
1916 u16 size;
1917 struct ib_flow_tcp_udp_filter val;
1918 struct ib_flow_tcp_udp_filter mask;
1919 };
1920
1921 struct ib_flow_tunnel_filter {
1922 __be32 tunnel_id;
1923 u8 real_sz[0];
1924 };
1925
1926 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1927 * the tunnel_id from val has the vni value
1928 */
1929 struct ib_flow_spec_tunnel {
1930 u32 type;
1931 u16 size;
1932 struct ib_flow_tunnel_filter val;
1933 struct ib_flow_tunnel_filter mask;
1934 };
1935
1936 struct ib_flow_spec_action_tag {
1937 enum ib_flow_spec_type type;
1938 u16 size;
1939 u32 tag_id;
1940 };
1941
1942 struct ib_flow_spec_action_drop {
1943 enum ib_flow_spec_type type;
1944 u16 size;
1945 };
1946
1947 union ib_flow_spec {
1948 struct {
1949 u32 type;
1950 u16 size;
1951 };
1952 struct ib_flow_spec_eth eth;
1953 struct ib_flow_spec_ib ib;
1954 struct ib_flow_spec_ipv4 ipv4;
1955 struct ib_flow_spec_tcp_udp tcp_udp;
1956 struct ib_flow_spec_ipv6 ipv6;
1957 struct ib_flow_spec_tunnel tunnel;
1958 struct ib_flow_spec_action_tag flow_tag;
1959 struct ib_flow_spec_action_drop drop;
1960 };
1961
1962 struct ib_flow_attr {
1963 enum ib_flow_attr_type type;
1964 u16 size;
1965 u16 priority;
1966 u32 flags;
1967 u8 num_of_specs;
1968 u8 port;
1969 /* Following are the optional layers according to user request
1970 * struct ib_flow_spec_xxx
1971 * struct ib_flow_spec_yyy
1972 */
1973 };
1974
1975 struct ib_flow {
1976 struct ib_qp *qp;
1977 struct ib_uobject *uobject;
1978 };
1979
1980 struct ib_mad_hdr;
1981 struct ib_grh;
1982
1983 enum ib_process_mad_flags {
1984 IB_MAD_IGNORE_MKEY = 1,
1985 IB_MAD_IGNORE_BKEY = 2,
1986 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1987 };
1988
1989 enum ib_mad_result {
1990 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1991 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1992 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1993 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1994 };
1995
1996 struct ib_port_cache {
1997 u64 subnet_prefix;
1998 struct ib_pkey_cache *pkey;
1999 struct ib_gid_table *gid;
2000 u8 lmc;
2001 enum ib_port_state port_state;
2002 };
2003
2004 struct ib_cache {
2005 rwlock_t lock;
2006 struct ib_event_handler event_handler;
2007 struct ib_port_cache *ports;
2008 };
2009
2010 struct iw_cm_verbs;
2011
2012 struct ib_port_immutable {
2013 int pkey_tbl_len;
2014 int gid_tbl_len;
2015 u32 core_cap_flags;
2016 u32 max_mad_size;
2017 };
2018
2019 /* rdma netdev type - specifies protocol type */
2020 enum rdma_netdev_t {
2021 RDMA_NETDEV_OPA_VNIC,
2022 RDMA_NETDEV_IPOIB,
2023 };
2024
2025 /**
2026 * struct rdma_netdev - rdma netdev
2027 * For cases where netstack interfacing is required.
2028 */
2029 struct rdma_netdev {
2030 void *clnt_priv;
2031 struct ib_device *hca;
2032 u8 port_num;
2033
2034 /* cleanup function must be specified */
2035 void (*free_rdma_netdev)(struct net_device *netdev);
2036
2037 /* control functions */
2038 void (*set_id)(struct net_device *netdev, int id);
2039 /* send packet */
2040 int (*send)(struct net_device *dev, struct sk_buff *skb,
2041 struct ib_ah *address, u32 dqpn);
2042 /* multicast */
2043 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2044 union ib_gid *gid, u16 mlid,
2045 int set_qkey, u32 qkey);
2046 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2047 union ib_gid *gid, u16 mlid);
2048 };
2049
2050 struct ib_port_pkey_list {
2051 /* Lock to hold while modifying the list. */
2052 spinlock_t list_lock;
2053 struct list_head pkey_list;
2054 };
2055
2056 struct ib_device {
2057 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2058 struct device *dma_device;
2059
2060 char name[IB_DEVICE_NAME_MAX];
2061
2062 struct list_head event_handler_list;
2063 spinlock_t event_handler_lock;
2064
2065 spinlock_t client_data_lock;
2066 struct list_head core_list;
2067 /* Access to the client_data_list is protected by the client_data_lock
2068 * spinlock and the lists_rwsem read-write semaphore */
2069 struct list_head client_data_list;
2070
2071 struct ib_cache cache;
2072 /**
2073 * port_immutable is indexed by port number
2074 */
2075 struct ib_port_immutable *port_immutable;
2076
2077 int num_comp_vectors;
2078
2079 struct ib_port_pkey_list *port_pkey_list;
2080
2081 struct iw_cm_verbs *iwcm;
2082
2083 /**
2084 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2085 * driver initialized data. The struct is kfree()'ed by the sysfs
2086 * core when the device is removed. A lifespan of -1 in the return
2087 * struct tells the core to set a default lifespan.
2088 */
2089 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2090 u8 port_num);
2091 /**
2092 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2093 * @index - The index in the value array we wish to have updated, or
2094 * num_counters if we want all stats updated
2095 * Return codes -
2096 * < 0 - Error, no counters updated
2097 * index - Updated the single counter pointed to by index
2098 * num_counters - Updated all counters (will reset the timestamp
2099 * and prevent further calls for lifespan milliseconds)
2100 * Drivers are allowed to update all counters in leiu of just the
2101 * one given in index at their option
2102 */
2103 int (*get_hw_stats)(struct ib_device *device,
2104 struct rdma_hw_stats *stats,
2105 u8 port, int index);
2106 int (*query_device)(struct ib_device *device,
2107 struct ib_device_attr *device_attr,
2108 struct ib_udata *udata);
2109 int (*query_port)(struct ib_device *device,
2110 u8 port_num,
2111 struct ib_port_attr *port_attr);
2112 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2113 u8 port_num);
2114 /* When calling get_netdev, the HW vendor's driver should return the
2115 * net device of device @device at port @port_num or NULL if such
2116 * a net device doesn't exist. The vendor driver should call dev_hold
2117 * on this net device. The HW vendor's device driver must guarantee
2118 * that this function returns NULL before the net device reaches
2119 * NETDEV_UNREGISTER_FINAL state.
2120 */
2121 struct net_device *(*get_netdev)(struct ib_device *device,
2122 u8 port_num);
2123 int (*query_gid)(struct ib_device *device,
2124 u8 port_num, int index,
2125 union ib_gid *gid);
2126 /* When calling add_gid, the HW vendor's driver should
2127 * add the gid of device @device at gid index @index of
2128 * port @port_num to be @gid. Meta-info of that gid (for example,
2129 * the network device related to this gid is available
2130 * at @attr. @context allows the HW vendor driver to store extra
2131 * information together with a GID entry. The HW vendor may allocate
2132 * memory to contain this information and store it in @context when a
2133 * new GID entry is written to. Params are consistent until the next
2134 * call of add_gid or delete_gid. The function should return 0 on
2135 * success or error otherwise. The function could be called
2136 * concurrently for different ports. This function is only called
2137 * when roce_gid_table is used.
2138 */
2139 int (*add_gid)(struct ib_device *device,
2140 u8 port_num,
2141 unsigned int index,
2142 const union ib_gid *gid,
2143 const struct ib_gid_attr *attr,
2144 void **context);
2145 /* When calling del_gid, the HW vendor's driver should delete the
2146 * gid of device @device at gid index @index of port @port_num.
2147 * Upon the deletion of a GID entry, the HW vendor must free any
2148 * allocated memory. The caller will clear @context afterwards.
2149 * This function is only called when roce_gid_table is used.
2150 */
2151 int (*del_gid)(struct ib_device *device,
2152 u8 port_num,
2153 unsigned int index,
2154 void **context);
2155 int (*query_pkey)(struct ib_device *device,
2156 u8 port_num, u16 index, u16 *pkey);
2157 int (*modify_device)(struct ib_device *device,
2158 int device_modify_mask,
2159 struct ib_device_modify *device_modify);
2160 int (*modify_port)(struct ib_device *device,
2161 u8 port_num, int port_modify_mask,
2162 struct ib_port_modify *port_modify);
2163 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2164 struct ib_udata *udata);
2165 int (*dealloc_ucontext)(struct ib_ucontext *context);
2166 int (*mmap)(struct ib_ucontext *context,
2167 struct vm_area_struct *vma);
2168 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2169 struct ib_ucontext *context,
2170 struct ib_udata *udata);
2171 int (*dealloc_pd)(struct ib_pd *pd);
2172 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2173 struct rdma_ah_attr *ah_attr,
2174 struct ib_udata *udata);
2175 int (*modify_ah)(struct ib_ah *ah,
2176 struct rdma_ah_attr *ah_attr);
2177 int (*query_ah)(struct ib_ah *ah,
2178 struct rdma_ah_attr *ah_attr);
2179 int (*destroy_ah)(struct ib_ah *ah);
2180 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2181 struct ib_srq_init_attr *srq_init_attr,
2182 struct ib_udata *udata);
2183 int (*modify_srq)(struct ib_srq *srq,
2184 struct ib_srq_attr *srq_attr,
2185 enum ib_srq_attr_mask srq_attr_mask,
2186 struct ib_udata *udata);
2187 int (*query_srq)(struct ib_srq *srq,
2188 struct ib_srq_attr *srq_attr);
2189 int (*destroy_srq)(struct ib_srq *srq);
2190 int (*post_srq_recv)(struct ib_srq *srq,
2191 struct ib_recv_wr *recv_wr,
2192 struct ib_recv_wr **bad_recv_wr);
2193 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2194 struct ib_qp_init_attr *qp_init_attr,
2195 struct ib_udata *udata);
2196 int (*modify_qp)(struct ib_qp *qp,
2197 struct ib_qp_attr *qp_attr,
2198 int qp_attr_mask,
2199 struct ib_udata *udata);
2200 int (*query_qp)(struct ib_qp *qp,
2201 struct ib_qp_attr *qp_attr,
2202 int qp_attr_mask,
2203 struct ib_qp_init_attr *qp_init_attr);
2204 int (*destroy_qp)(struct ib_qp *qp);
2205 int (*post_send)(struct ib_qp *qp,
2206 struct ib_send_wr *send_wr,
2207 struct ib_send_wr **bad_send_wr);
2208 int (*post_recv)(struct ib_qp *qp,
2209 struct ib_recv_wr *recv_wr,
2210 struct ib_recv_wr **bad_recv_wr);
2211 struct ib_cq * (*create_cq)(struct ib_device *device,
2212 const struct ib_cq_init_attr *attr,
2213 struct ib_ucontext *context,
2214 struct ib_udata *udata);
2215 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2216 u16 cq_period);
2217 int (*destroy_cq)(struct ib_cq *cq);
2218 int (*resize_cq)(struct ib_cq *cq, int cqe,
2219 struct ib_udata *udata);
2220 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2221 struct ib_wc *wc);
2222 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2223 int (*req_notify_cq)(struct ib_cq *cq,
2224 enum ib_cq_notify_flags flags);
2225 int (*req_ncomp_notif)(struct ib_cq *cq,
2226 int wc_cnt);
2227 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2228 int mr_access_flags);
2229 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2230 u64 start, u64 length,
2231 u64 virt_addr,
2232 int mr_access_flags,
2233 struct ib_udata *udata);
2234 int (*rereg_user_mr)(struct ib_mr *mr,
2235 int flags,
2236 u64 start, u64 length,
2237 u64 virt_addr,
2238 int mr_access_flags,
2239 struct ib_pd *pd,
2240 struct ib_udata *udata);
2241 int (*dereg_mr)(struct ib_mr *mr);
2242 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2243 enum ib_mr_type mr_type,
2244 u32 max_num_sg);
2245 int (*map_mr_sg)(struct ib_mr *mr,
2246 struct scatterlist *sg,
2247 int sg_nents,
2248 unsigned int *sg_offset);
2249 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2250 enum ib_mw_type type,
2251 struct ib_udata *udata);
2252 int (*dealloc_mw)(struct ib_mw *mw);
2253 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2254 int mr_access_flags,
2255 struct ib_fmr_attr *fmr_attr);
2256 int (*map_phys_fmr)(struct ib_fmr *fmr,
2257 u64 *page_list, int list_len,
2258 u64 iova);
2259 int (*unmap_fmr)(struct list_head *fmr_list);
2260 int (*dealloc_fmr)(struct ib_fmr *fmr);
2261 int (*attach_mcast)(struct ib_qp *qp,
2262 union ib_gid *gid,
2263 u16 lid);
2264 int (*detach_mcast)(struct ib_qp *qp,
2265 union ib_gid *gid,
2266 u16 lid);
2267 int (*process_mad)(struct ib_device *device,
2268 int process_mad_flags,
2269 u8 port_num,
2270 const struct ib_wc *in_wc,
2271 const struct ib_grh *in_grh,
2272 const struct ib_mad_hdr *in_mad,
2273 size_t in_mad_size,
2274 struct ib_mad_hdr *out_mad,
2275 size_t *out_mad_size,
2276 u16 *out_mad_pkey_index);
2277 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2278 struct ib_ucontext *ucontext,
2279 struct ib_udata *udata);
2280 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2281 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2282 struct ib_flow_attr
2283 *flow_attr,
2284 int domain);
2285 int (*destroy_flow)(struct ib_flow *flow_id);
2286 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2287 struct ib_mr_status *mr_status);
2288 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2289 void (*drain_rq)(struct ib_qp *qp);
2290 void (*drain_sq)(struct ib_qp *qp);
2291 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2292 int state);
2293 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2294 struct ifla_vf_info *ivf);
2295 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2296 struct ifla_vf_stats *stats);
2297 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2298 int type);
2299 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2300 struct ib_wq_init_attr *init_attr,
2301 struct ib_udata *udata);
2302 int (*destroy_wq)(struct ib_wq *wq);
2303 int (*modify_wq)(struct ib_wq *wq,
2304 struct ib_wq_attr *attr,
2305 u32 wq_attr_mask,
2306 struct ib_udata *udata);
2307 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2308 struct ib_rwq_ind_table_init_attr *init_attr,
2309 struct ib_udata *udata);
2310 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2311 /**
2312 * rdma netdev operation
2313 *
2314 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2315 * doesn't support the specified rdma netdev type.
2316 */
2317 struct net_device *(*alloc_rdma_netdev)(
2318 struct ib_device *device,
2319 u8 port_num,
2320 enum rdma_netdev_t type,
2321 const char *name,
2322 unsigned char name_assign_type,
2323 void (*setup)(struct net_device *));
2324
2325 struct module *owner;
2326 struct device dev;
2327 struct kobject *ports_parent;
2328 struct list_head port_list;
2329
2330 enum {
2331 IB_DEV_UNINITIALIZED,
2332 IB_DEV_REGISTERED,
2333 IB_DEV_UNREGISTERED
2334 } reg_state;
2335
2336 int uverbs_abi_ver;
2337 u64 uverbs_cmd_mask;
2338 u64 uverbs_ex_cmd_mask;
2339
2340 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2341 __be64 node_guid;
2342 u32 local_dma_lkey;
2343 u16 is_switch:1;
2344 u8 node_type;
2345 u8 phys_port_cnt;
2346 struct ib_device_attr attrs;
2347 struct attribute_group *hw_stats_ag;
2348 struct rdma_hw_stats *hw_stats;
2349
2350 #ifdef CONFIG_CGROUP_RDMA
2351 struct rdmacg_device cg_device;
2352 #endif
2353
2354 u32 index;
2355
2356 /**
2357 * The following mandatory functions are used only at device
2358 * registration. Keep functions such as these at the end of this
2359 * structure to avoid cache line misses when accessing struct ib_device
2360 * in fast paths.
2361 */
2362 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2363 void (*get_dev_fw_str)(struct ib_device *, char *str);
2364 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2365 int comp_vector);
2366
2367 struct uverbs_root_spec *specs_root;
2368 };
2369
2370 struct ib_client {
2371 char *name;
2372 void (*add) (struct ib_device *);
2373 void (*remove)(struct ib_device *, void *client_data);
2374
2375 /* Returns the net_dev belonging to this ib_client and matching the
2376 * given parameters.
2377 * @dev: An RDMA device that the net_dev use for communication.
2378 * @port: A physical port number on the RDMA device.
2379 * @pkey: P_Key that the net_dev uses if applicable.
2380 * @gid: A GID that the net_dev uses to communicate.
2381 * @addr: An IP address the net_dev is configured with.
2382 * @client_data: The device's client data set by ib_set_client_data().
2383 *
2384 * An ib_client that implements a net_dev on top of RDMA devices
2385 * (such as IP over IB) should implement this callback, allowing the
2386 * rdma_cm module to find the right net_dev for a given request.
2387 *
2388 * The caller is responsible for calling dev_put on the returned
2389 * netdev. */
2390 struct net_device *(*get_net_dev_by_params)(
2391 struct ib_device *dev,
2392 u8 port,
2393 u16 pkey,
2394 const union ib_gid *gid,
2395 const struct sockaddr *addr,
2396 void *client_data);
2397 struct list_head list;
2398 };
2399
2400 struct ib_device *ib_alloc_device(size_t size);
2401 void ib_dealloc_device(struct ib_device *device);
2402
2403 void ib_get_device_fw_str(struct ib_device *device, char *str);
2404
2405 int ib_register_device(struct ib_device *device,
2406 int (*port_callback)(struct ib_device *,
2407 u8, struct kobject *));
2408 void ib_unregister_device(struct ib_device *device);
2409
2410 int ib_register_client (struct ib_client *client);
2411 void ib_unregister_client(struct ib_client *client);
2412
2413 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2414 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2415 void *data);
2416
2417 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2418 {
2419 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2420 }
2421
2422 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2423 {
2424 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2425 }
2426
2427 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2428 size_t offset,
2429 size_t len)
2430 {
2431 const void __user *p = udata->inbuf + offset;
2432 bool ret;
2433 u8 *buf;
2434
2435 if (len > USHRT_MAX)
2436 return false;
2437
2438 buf = memdup_user(p, len);
2439 if (IS_ERR(buf))
2440 return false;
2441
2442 ret = !memchr_inv(buf, 0, len);
2443 kfree(buf);
2444 return ret;
2445 }
2446
2447 /**
2448 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2449 * contains all required attributes and no attributes not allowed for
2450 * the given QP state transition.
2451 * @cur_state: Current QP state
2452 * @next_state: Next QP state
2453 * @type: QP type
2454 * @mask: Mask of supplied QP attributes
2455 * @ll : link layer of port
2456 *
2457 * This function is a helper function that a low-level driver's
2458 * modify_qp method can use to validate the consumer's input. It
2459 * checks that cur_state and next_state are valid QP states, that a
2460 * transition from cur_state to next_state is allowed by the IB spec,
2461 * and that the attribute mask supplied is allowed for the transition.
2462 */
2463 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2464 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2465 enum rdma_link_layer ll);
2466
2467 void ib_register_event_handler(struct ib_event_handler *event_handler);
2468 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2469 void ib_dispatch_event(struct ib_event *event);
2470
2471 int ib_query_port(struct ib_device *device,
2472 u8 port_num, struct ib_port_attr *port_attr);
2473
2474 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2475 u8 port_num);
2476
2477 /**
2478 * rdma_cap_ib_switch - Check if the device is IB switch
2479 * @device: Device to check
2480 *
2481 * Device driver is responsible for setting is_switch bit on
2482 * in ib_device structure at init time.
2483 *
2484 * Return: true if the device is IB switch.
2485 */
2486 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2487 {
2488 return device->is_switch;
2489 }
2490
2491 /**
2492 * rdma_start_port - Return the first valid port number for the device
2493 * specified
2494 *
2495 * @device: Device to be checked
2496 *
2497 * Return start port number
2498 */
2499 static inline u8 rdma_start_port(const struct ib_device *device)
2500 {
2501 return rdma_cap_ib_switch(device) ? 0 : 1;
2502 }
2503
2504 /**
2505 * rdma_end_port - Return the last valid port number for the device
2506 * specified
2507 *
2508 * @device: Device to be checked
2509 *
2510 * Return last port number
2511 */
2512 static inline u8 rdma_end_port(const struct ib_device *device)
2513 {
2514 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2515 }
2516
2517 static inline int rdma_is_port_valid(const struct ib_device *device,
2518 unsigned int port)
2519 {
2520 return (port >= rdma_start_port(device) &&
2521 port <= rdma_end_port(device));
2522 }
2523
2524 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2525 {
2526 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2527 }
2528
2529 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2530 {
2531 return device->port_immutable[port_num].core_cap_flags &
2532 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2533 }
2534
2535 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2536 {
2537 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2538 }
2539
2540 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2541 {
2542 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2543 }
2544
2545 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2546 {
2547 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2548 }
2549
2550 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2551 {
2552 return rdma_protocol_ib(device, port_num) ||
2553 rdma_protocol_roce(device, port_num);
2554 }
2555
2556 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2557 {
2558 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2559 }
2560
2561 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2562 {
2563 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2564 }
2565
2566 /**
2567 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2568 * Management Datagrams.
2569 * @device: Device to check
2570 * @port_num: Port number to check
2571 *
2572 * Management Datagrams (MAD) are a required part of the InfiniBand
2573 * specification and are supported on all InfiniBand devices. A slightly
2574 * extended version are also supported on OPA interfaces.
2575 *
2576 * Return: true if the port supports sending/receiving of MAD packets.
2577 */
2578 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2579 {
2580 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2581 }
2582
2583 /**
2584 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2585 * Management Datagrams.
2586 * @device: Device to check
2587 * @port_num: Port number to check
2588 *
2589 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2590 * datagrams with their own versions. These OPA MADs share many but not all of
2591 * the characteristics of InfiniBand MADs.
2592 *
2593 * OPA MADs differ in the following ways:
2594 *
2595 * 1) MADs are variable size up to 2K
2596 * IBTA defined MADs remain fixed at 256 bytes
2597 * 2) OPA SMPs must carry valid PKeys
2598 * 3) OPA SMP packets are a different format
2599 *
2600 * Return: true if the port supports OPA MAD packet formats.
2601 */
2602 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2603 {
2604 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2605 == RDMA_CORE_CAP_OPA_MAD;
2606 }
2607
2608 /**
2609 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2610 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2611 * @device: Device to check
2612 * @port_num: Port number to check
2613 *
2614 * Each InfiniBand node is required to provide a Subnet Management Agent
2615 * that the subnet manager can access. Prior to the fabric being fully
2616 * configured by the subnet manager, the SMA is accessed via a well known
2617 * interface called the Subnet Management Interface (SMI). This interface
2618 * uses directed route packets to communicate with the SM to get around the
2619 * chicken and egg problem of the SM needing to know what's on the fabric
2620 * in order to configure the fabric, and needing to configure the fabric in
2621 * order to send packets to the devices on the fabric. These directed
2622 * route packets do not need the fabric fully configured in order to reach
2623 * their destination. The SMI is the only method allowed to send
2624 * directed route packets on an InfiniBand fabric.
2625 *
2626 * Return: true if the port provides an SMI.
2627 */
2628 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2629 {
2630 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2631 }
2632
2633 /**
2634 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2635 * Communication Manager.
2636 * @device: Device to check
2637 * @port_num: Port number to check
2638 *
2639 * The InfiniBand Communication Manager is one of many pre-defined General
2640 * Service Agents (GSA) that are accessed via the General Service
2641 * Interface (GSI). It's role is to facilitate establishment of connections
2642 * between nodes as well as other management related tasks for established
2643 * connections.
2644 *
2645 * Return: true if the port supports an IB CM (this does not guarantee that
2646 * a CM is actually running however).
2647 */
2648 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2649 {
2650 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2651 }
2652
2653 /**
2654 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2655 * Communication Manager.
2656 * @device: Device to check
2657 * @port_num: Port number to check
2658 *
2659 * Similar to above, but specific to iWARP connections which have a different
2660 * managment protocol than InfiniBand.
2661 *
2662 * Return: true if the port supports an iWARP CM (this does not guarantee that
2663 * a CM is actually running however).
2664 */
2665 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2666 {
2667 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2668 }
2669
2670 /**
2671 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2672 * Subnet Administration.
2673 * @device: Device to check
2674 * @port_num: Port number to check
2675 *
2676 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2677 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2678 * fabrics, devices should resolve routes to other hosts by contacting the
2679 * SA to query the proper route.
2680 *
2681 * Return: true if the port should act as a client to the fabric Subnet
2682 * Administration interface. This does not imply that the SA service is
2683 * running locally.
2684 */
2685 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2686 {
2687 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2688 }
2689
2690 /**
2691 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2692 * Multicast.
2693 * @device: Device to check
2694 * @port_num: Port number to check
2695 *
2696 * InfiniBand multicast registration is more complex than normal IPv4 or
2697 * IPv6 multicast registration. Each Host Channel Adapter must register
2698 * with the Subnet Manager when it wishes to join a multicast group. It
2699 * should do so only once regardless of how many queue pairs it subscribes
2700 * to this group. And it should leave the group only after all queue pairs
2701 * attached to the group have been detached.
2702 *
2703 * Return: true if the port must undertake the additional adminstrative
2704 * overhead of registering/unregistering with the SM and tracking of the
2705 * total number of queue pairs attached to the multicast group.
2706 */
2707 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2708 {
2709 return rdma_cap_ib_sa(device, port_num);
2710 }
2711
2712 /**
2713 * rdma_cap_af_ib - Check if the port of device has the capability
2714 * Native Infiniband Address.
2715 * @device: Device to check
2716 * @port_num: Port number to check
2717 *
2718 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2719 * GID. RoCE uses a different mechanism, but still generates a GID via
2720 * a prescribed mechanism and port specific data.
2721 *
2722 * Return: true if the port uses a GID address to identify devices on the
2723 * network.
2724 */
2725 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2726 {
2727 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2728 }
2729
2730 /**
2731 * rdma_cap_eth_ah - Check if the port of device has the capability
2732 * Ethernet Address Handle.
2733 * @device: Device to check
2734 * @port_num: Port number to check
2735 *
2736 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2737 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2738 * port. Normally, packet headers are generated by the sending host
2739 * adapter, but when sending connectionless datagrams, we must manually
2740 * inject the proper headers for the fabric we are communicating over.
2741 *
2742 * Return: true if we are running as a RoCE port and must force the
2743 * addition of a Global Route Header built from our Ethernet Address
2744 * Handle into our header list for connectionless packets.
2745 */
2746 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2747 {
2748 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2749 }
2750
2751 /**
2752 * rdma_cap_opa_ah - Check if the port of device supports
2753 * OPA Address handles
2754 * @device: Device to check
2755 * @port_num: Port number to check
2756 *
2757 * Return: true if we are running on an OPA device which supports
2758 * the extended OPA addressing.
2759 */
2760 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2761 {
2762 return (device->port_immutable[port_num].core_cap_flags &
2763 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2764 }
2765
2766 /**
2767 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2768 *
2769 * @device: Device
2770 * @port_num: Port number
2771 *
2772 * This MAD size includes the MAD headers and MAD payload. No other headers
2773 * are included.
2774 *
2775 * Return the max MAD size required by the Port. Will return 0 if the port
2776 * does not support MADs
2777 */
2778 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2779 {
2780 return device->port_immutable[port_num].max_mad_size;
2781 }
2782
2783 /**
2784 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2785 * @device: Device to check
2786 * @port_num: Port number to check
2787 *
2788 * RoCE GID table mechanism manages the various GIDs for a device.
2789 *
2790 * NOTE: if allocating the port's GID table has failed, this call will still
2791 * return true, but any RoCE GID table API will fail.
2792 *
2793 * Return: true if the port uses RoCE GID table mechanism in order to manage
2794 * its GIDs.
2795 */
2796 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2797 u8 port_num)
2798 {
2799 return rdma_protocol_roce(device, port_num) &&
2800 device->add_gid && device->del_gid;
2801 }
2802
2803 /*
2804 * Check if the device supports READ W/ INVALIDATE.
2805 */
2806 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2807 {
2808 /*
2809 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2810 * has support for it yet.
2811 */
2812 return rdma_protocol_iwarp(dev, port_num);
2813 }
2814
2815 int ib_query_gid(struct ib_device *device,
2816 u8 port_num, int index, union ib_gid *gid,
2817 struct ib_gid_attr *attr);
2818
2819 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2820 int state);
2821 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2822 struct ifla_vf_info *info);
2823 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2824 struct ifla_vf_stats *stats);
2825 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2826 int type);
2827
2828 int ib_query_pkey(struct ib_device *device,
2829 u8 port_num, u16 index, u16 *pkey);
2830
2831 int ib_modify_device(struct ib_device *device,
2832 int device_modify_mask,
2833 struct ib_device_modify *device_modify);
2834
2835 int ib_modify_port(struct ib_device *device,
2836 u8 port_num, int port_modify_mask,
2837 struct ib_port_modify *port_modify);
2838
2839 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2840 enum ib_gid_type gid_type, struct net_device *ndev,
2841 u8 *port_num, u16 *index);
2842
2843 int ib_find_pkey(struct ib_device *device,
2844 u8 port_num, u16 pkey, u16 *index);
2845
2846 enum ib_pd_flags {
2847 /*
2848 * Create a memory registration for all memory in the system and place
2849 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2850 * ULPs to avoid the overhead of dynamic MRs.
2851 *
2852 * This flag is generally considered unsafe and must only be used in
2853 * extremly trusted environments. Every use of it will log a warning
2854 * in the kernel log.
2855 */
2856 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2857 };
2858
2859 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2860 const char *caller);
2861 #define ib_alloc_pd(device, flags) \
2862 __ib_alloc_pd((device), (flags), __func__)
2863 void ib_dealloc_pd(struct ib_pd *pd);
2864
2865 /**
2866 * rdma_create_ah - Creates an address handle for the given address vector.
2867 * @pd: The protection domain associated with the address handle.
2868 * @ah_attr: The attributes of the address vector.
2869 *
2870 * The address handle is used to reference a local or global destination
2871 * in all UD QP post sends.
2872 */
2873 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2874
2875 /**
2876 * rdma_create_user_ah - Creates an address handle for the given address vector.
2877 * It resolves destination mac address for ah attribute of RoCE type.
2878 * @pd: The protection domain associated with the address handle.
2879 * @ah_attr: The attributes of the address vector.
2880 * @udata: pointer to user's input output buffer information need by
2881 * provider driver.
2882 *
2883 * It returns 0 on success and returns appropriate error code on error.
2884 * The address handle is used to reference a local or global destination
2885 * in all UD QP post sends.
2886 */
2887 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
2888 struct rdma_ah_attr *ah_attr,
2889 struct ib_udata *udata);
2890 /**
2891 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2892 * work completion.
2893 * @hdr: the L3 header to parse
2894 * @net_type: type of header to parse
2895 * @sgid: place to store source gid
2896 * @dgid: place to store destination gid
2897 */
2898 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2899 enum rdma_network_type net_type,
2900 union ib_gid *sgid, union ib_gid *dgid);
2901
2902 /**
2903 * ib_get_rdma_header_version - Get the header version
2904 * @hdr: the L3 header to parse
2905 */
2906 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2907
2908 /**
2909 * ib_init_ah_from_wc - Initializes address handle attributes from a
2910 * work completion.
2911 * @device: Device on which the received message arrived.
2912 * @port_num: Port on which the received message arrived.
2913 * @wc: Work completion associated with the received message.
2914 * @grh: References the received global route header. This parameter is
2915 * ignored unless the work completion indicates that the GRH is valid.
2916 * @ah_attr: Returned attributes that can be used when creating an address
2917 * handle for replying to the message.
2918 */
2919 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2920 const struct ib_wc *wc, const struct ib_grh *grh,
2921 struct rdma_ah_attr *ah_attr);
2922
2923 /**
2924 * ib_create_ah_from_wc - Creates an address handle associated with the
2925 * sender of the specified work completion.
2926 * @pd: The protection domain associated with the address handle.
2927 * @wc: Work completion information associated with a received message.
2928 * @grh: References the received global route header. This parameter is
2929 * ignored unless the work completion indicates that the GRH is valid.
2930 * @port_num: The outbound port number to associate with the address.
2931 *
2932 * The address handle is used to reference a local or global destination
2933 * in all UD QP post sends.
2934 */
2935 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2936 const struct ib_grh *grh, u8 port_num);
2937
2938 /**
2939 * rdma_modify_ah - Modifies the address vector associated with an address
2940 * handle.
2941 * @ah: The address handle to modify.
2942 * @ah_attr: The new address vector attributes to associate with the
2943 * address handle.
2944 */
2945 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2946
2947 /**
2948 * rdma_query_ah - Queries the address vector associated with an address
2949 * handle.
2950 * @ah: The address handle to query.
2951 * @ah_attr: The address vector attributes associated with the address
2952 * handle.
2953 */
2954 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2955
2956 /**
2957 * rdma_destroy_ah - Destroys an address handle.
2958 * @ah: The address handle to destroy.
2959 */
2960 int rdma_destroy_ah(struct ib_ah *ah);
2961
2962 /**
2963 * ib_create_srq - Creates a SRQ associated with the specified protection
2964 * domain.
2965 * @pd: The protection domain associated with the SRQ.
2966 * @srq_init_attr: A list of initial attributes required to create the
2967 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2968 * the actual capabilities of the created SRQ.
2969 *
2970 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2971 * requested size of the SRQ, and set to the actual values allocated
2972 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2973 * will always be at least as large as the requested values.
2974 */
2975 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2976 struct ib_srq_init_attr *srq_init_attr);
2977
2978 /**
2979 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2980 * @srq: The SRQ to modify.
2981 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2982 * the current values of selected SRQ attributes are returned.
2983 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2984 * are being modified.
2985 *
2986 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2987 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2988 * the number of receives queued drops below the limit.
2989 */
2990 int ib_modify_srq(struct ib_srq *srq,
2991 struct ib_srq_attr *srq_attr,
2992 enum ib_srq_attr_mask srq_attr_mask);
2993
2994 /**
2995 * ib_query_srq - Returns the attribute list and current values for the
2996 * specified SRQ.
2997 * @srq: The SRQ to query.
2998 * @srq_attr: The attributes of the specified SRQ.
2999 */
3000 int ib_query_srq(struct ib_srq *srq,
3001 struct ib_srq_attr *srq_attr);
3002
3003 /**
3004 * ib_destroy_srq - Destroys the specified SRQ.
3005 * @srq: The SRQ to destroy.
3006 */
3007 int ib_destroy_srq(struct ib_srq *srq);
3008
3009 /**
3010 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3011 * @srq: The SRQ to post the work request on.
3012 * @recv_wr: A list of work requests to post on the receive queue.
3013 * @bad_recv_wr: On an immediate failure, this parameter will reference
3014 * the work request that failed to be posted on the QP.
3015 */
3016 static inline int ib_post_srq_recv(struct ib_srq *srq,
3017 struct ib_recv_wr *recv_wr,
3018 struct ib_recv_wr **bad_recv_wr)
3019 {
3020 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3021 }
3022
3023 /**
3024 * ib_create_qp - Creates a QP associated with the specified protection
3025 * domain.
3026 * @pd: The protection domain associated with the QP.
3027 * @qp_init_attr: A list of initial attributes required to create the
3028 * QP. If QP creation succeeds, then the attributes are updated to
3029 * the actual capabilities of the created QP.
3030 */
3031 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3032 struct ib_qp_init_attr *qp_init_attr);
3033
3034 /**
3035 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3036 * @qp: The QP to modify.
3037 * @attr: On input, specifies the QP attributes to modify. On output,
3038 * the current values of selected QP attributes are returned.
3039 * @attr_mask: A bit-mask used to specify which attributes of the QP
3040 * are being modified.
3041 * @udata: pointer to user's input output buffer information
3042 * are being modified.
3043 * It returns 0 on success and returns appropriate error code on error.
3044 */
3045 int ib_modify_qp_with_udata(struct ib_qp *qp,
3046 struct ib_qp_attr *attr,
3047 int attr_mask,
3048 struct ib_udata *udata);
3049
3050 /**
3051 * ib_modify_qp - Modifies the attributes for the specified QP and then
3052 * transitions the QP to the given state.
3053 * @qp: The QP to modify.
3054 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3055 * the current values of selected QP attributes are returned.
3056 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3057 * are being modified.
3058 */
3059 int ib_modify_qp(struct ib_qp *qp,
3060 struct ib_qp_attr *qp_attr,
3061 int qp_attr_mask);
3062
3063 /**
3064 * ib_query_qp - Returns the attribute list and current values for the
3065 * specified QP.
3066 * @qp: The QP to query.
3067 * @qp_attr: The attributes of the specified QP.
3068 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3069 * @qp_init_attr: Additional attributes of the selected QP.
3070 *
3071 * The qp_attr_mask may be used to limit the query to gathering only the
3072 * selected attributes.
3073 */
3074 int ib_query_qp(struct ib_qp *qp,
3075 struct ib_qp_attr *qp_attr,
3076 int qp_attr_mask,
3077 struct ib_qp_init_attr *qp_init_attr);
3078
3079 /**
3080 * ib_destroy_qp - Destroys the specified QP.
3081 * @qp: The QP to destroy.
3082 */
3083 int ib_destroy_qp(struct ib_qp *qp);
3084
3085 /**
3086 * ib_open_qp - Obtain a reference to an existing sharable QP.
3087 * @xrcd - XRC domain
3088 * @qp_open_attr: Attributes identifying the QP to open.
3089 *
3090 * Returns a reference to a sharable QP.
3091 */
3092 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3093 struct ib_qp_open_attr *qp_open_attr);
3094
3095 /**
3096 * ib_close_qp - Release an external reference to a QP.
3097 * @qp: The QP handle to release
3098 *
3099 * The opened QP handle is released by the caller. The underlying
3100 * shared QP is not destroyed until all internal references are released.
3101 */
3102 int ib_close_qp(struct ib_qp *qp);
3103
3104 /**
3105 * ib_post_send - Posts a list of work requests to the send queue of
3106 * the specified QP.
3107 * @qp: The QP to post the work request on.
3108 * @send_wr: A list of work requests to post on the send queue.
3109 * @bad_send_wr: On an immediate failure, this parameter will reference
3110 * the work request that failed to be posted on the QP.
3111 *
3112 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3113 * error is returned, the QP state shall not be affected,
3114 * ib_post_send() will return an immediate error after queueing any
3115 * earlier work requests in the list.
3116 */
3117 static inline int ib_post_send(struct ib_qp *qp,
3118 struct ib_send_wr *send_wr,
3119 struct ib_send_wr **bad_send_wr)
3120 {
3121 return qp->device->post_send(qp, send_wr, bad_send_wr);
3122 }
3123
3124 /**
3125 * ib_post_recv - Posts a list of work requests to the receive queue of
3126 * the specified QP.
3127 * @qp: The QP to post the work request on.
3128 * @recv_wr: A list of work requests to post on the receive queue.
3129 * @bad_recv_wr: On an immediate failure, this parameter will reference
3130 * the work request that failed to be posted on the QP.
3131 */
3132 static inline int ib_post_recv(struct ib_qp *qp,
3133 struct ib_recv_wr *recv_wr,
3134 struct ib_recv_wr **bad_recv_wr)
3135 {
3136 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3137 }
3138
3139 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3140 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
3141 void ib_free_cq(struct ib_cq *cq);
3142 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3143
3144 /**
3145 * ib_create_cq - Creates a CQ on the specified device.
3146 * @device: The device on which to create the CQ.
3147 * @comp_handler: A user-specified callback that is invoked when a
3148 * completion event occurs on the CQ.
3149 * @event_handler: A user-specified callback that is invoked when an
3150 * asynchronous event not associated with a completion occurs on the CQ.
3151 * @cq_context: Context associated with the CQ returned to the user via
3152 * the associated completion and event handlers.
3153 * @cq_attr: The attributes the CQ should be created upon.
3154 *
3155 * Users can examine the cq structure to determine the actual CQ size.
3156 */
3157 struct ib_cq *ib_create_cq(struct ib_device *device,
3158 ib_comp_handler comp_handler,
3159 void (*event_handler)(struct ib_event *, void *),
3160 void *cq_context,
3161 const struct ib_cq_init_attr *cq_attr);
3162
3163 /**
3164 * ib_resize_cq - Modifies the capacity of the CQ.
3165 * @cq: The CQ to resize.
3166 * @cqe: The minimum size of the CQ.
3167 *
3168 * Users can examine the cq structure to determine the actual CQ size.
3169 */
3170 int ib_resize_cq(struct ib_cq *cq, int cqe);
3171
3172 /**
3173 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3174 * @cq: The CQ to modify.
3175 * @cq_count: number of CQEs that will trigger an event
3176 * @cq_period: max period of time in usec before triggering an event
3177 *
3178 */
3179 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3180
3181 /**
3182 * ib_destroy_cq - Destroys the specified CQ.
3183 * @cq: The CQ to destroy.
3184 */
3185 int ib_destroy_cq(struct ib_cq *cq);
3186
3187 /**
3188 * ib_poll_cq - poll a CQ for completion(s)
3189 * @cq:the CQ being polled
3190 * @num_entries:maximum number of completions to return
3191 * @wc:array of at least @num_entries &struct ib_wc where completions
3192 * will be returned
3193 *
3194 * Poll a CQ for (possibly multiple) completions. If the return value
3195 * is < 0, an error occurred. If the return value is >= 0, it is the
3196 * number of completions returned. If the return value is
3197 * non-negative and < num_entries, then the CQ was emptied.
3198 */
3199 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3200 struct ib_wc *wc)
3201 {
3202 return cq->device->poll_cq(cq, num_entries, wc);
3203 }
3204
3205 /**
3206 * ib_peek_cq - Returns the number of unreaped completions currently
3207 * on the specified CQ.
3208 * @cq: The CQ to peek.
3209 * @wc_cnt: A minimum number of unreaped completions to check for.
3210 *
3211 * If the number of unreaped completions is greater than or equal to wc_cnt,
3212 * this function returns wc_cnt, otherwise, it returns the actual number of
3213 * unreaped completions.
3214 */
3215 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3216
3217 /**
3218 * ib_req_notify_cq - Request completion notification on a CQ.
3219 * @cq: The CQ to generate an event for.
3220 * @flags:
3221 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3222 * to request an event on the next solicited event or next work
3223 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3224 * may also be |ed in to request a hint about missed events, as
3225 * described below.
3226 *
3227 * Return Value:
3228 * < 0 means an error occurred while requesting notification
3229 * == 0 means notification was requested successfully, and if
3230 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3231 * were missed and it is safe to wait for another event. In
3232 * this case is it guaranteed that any work completions added
3233 * to the CQ since the last CQ poll will trigger a completion
3234 * notification event.
3235 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3236 * in. It means that the consumer must poll the CQ again to
3237 * make sure it is empty to avoid missing an event because of a
3238 * race between requesting notification and an entry being
3239 * added to the CQ. This return value means it is possible
3240 * (but not guaranteed) that a work completion has been added
3241 * to the CQ since the last poll without triggering a
3242 * completion notification event.
3243 */
3244 static inline int ib_req_notify_cq(struct ib_cq *cq,
3245 enum ib_cq_notify_flags flags)
3246 {
3247 return cq->device->req_notify_cq(cq, flags);
3248 }
3249
3250 /**
3251 * ib_req_ncomp_notif - Request completion notification when there are
3252 * at least the specified number of unreaped completions on the CQ.
3253 * @cq: The CQ to generate an event for.
3254 * @wc_cnt: The number of unreaped completions that should be on the
3255 * CQ before an event is generated.
3256 */
3257 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3258 {
3259 return cq->device->req_ncomp_notif ?
3260 cq->device->req_ncomp_notif(cq, wc_cnt) :
3261 -ENOSYS;
3262 }
3263
3264 /**
3265 * ib_dma_mapping_error - check a DMA addr for error
3266 * @dev: The device for which the dma_addr was created
3267 * @dma_addr: The DMA address to check
3268 */
3269 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3270 {
3271 return dma_mapping_error(dev->dma_device, dma_addr);
3272 }
3273
3274 /**
3275 * ib_dma_map_single - Map a kernel virtual address to DMA address
3276 * @dev: The device for which the dma_addr is to be created
3277 * @cpu_addr: The kernel virtual address
3278 * @size: The size of the region in bytes
3279 * @direction: The direction of the DMA
3280 */
3281 static inline u64 ib_dma_map_single(struct ib_device *dev,
3282 void *cpu_addr, size_t size,
3283 enum dma_data_direction direction)
3284 {
3285 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3286 }
3287
3288 /**
3289 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3290 * @dev: The device for which the DMA address was created
3291 * @addr: The DMA address
3292 * @size: The size of the region in bytes
3293 * @direction: The direction of the DMA
3294 */
3295 static inline void ib_dma_unmap_single(struct ib_device *dev,
3296 u64 addr, size_t size,
3297 enum dma_data_direction direction)
3298 {
3299 dma_unmap_single(dev->dma_device, addr, size, direction);
3300 }
3301
3302 /**
3303 * ib_dma_map_page - Map a physical page to DMA address
3304 * @dev: The device for which the dma_addr is to be created
3305 * @page: The page to be mapped
3306 * @offset: The offset within the page
3307 * @size: The size of the region in bytes
3308 * @direction: The direction of the DMA
3309 */
3310 static inline u64 ib_dma_map_page(struct ib_device *dev,
3311 struct page *page,
3312 unsigned long offset,
3313 size_t size,
3314 enum dma_data_direction direction)
3315 {
3316 return dma_map_page(dev->dma_device, page, offset, size, direction);
3317 }
3318
3319 /**
3320 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3321 * @dev: The device for which the DMA address was created
3322 * @addr: The DMA address
3323 * @size: The size of the region in bytes
3324 * @direction: The direction of the DMA
3325 */
3326 static inline void ib_dma_unmap_page(struct ib_device *dev,
3327 u64 addr, size_t size,
3328 enum dma_data_direction direction)
3329 {
3330 dma_unmap_page(dev->dma_device, addr, size, direction);
3331 }
3332
3333 /**
3334 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3335 * @dev: The device for which the DMA addresses are to be created
3336 * @sg: The array of scatter/gather entries
3337 * @nents: The number of scatter/gather entries
3338 * @direction: The direction of the DMA
3339 */
3340 static inline int ib_dma_map_sg(struct ib_device *dev,
3341 struct scatterlist *sg, int nents,
3342 enum dma_data_direction direction)
3343 {
3344 return dma_map_sg(dev->dma_device, sg, nents, direction);
3345 }
3346
3347 /**
3348 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3349 * @dev: The device for which the DMA addresses were created
3350 * @sg: The array of scatter/gather entries
3351 * @nents: The number of scatter/gather entries
3352 * @direction: The direction of the DMA
3353 */
3354 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3355 struct scatterlist *sg, int nents,
3356 enum dma_data_direction direction)
3357 {
3358 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3359 }
3360
3361 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3362 struct scatterlist *sg, int nents,
3363 enum dma_data_direction direction,
3364 unsigned long dma_attrs)
3365 {
3366 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3367 dma_attrs);
3368 }
3369
3370 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3371 struct scatterlist *sg, int nents,
3372 enum dma_data_direction direction,
3373 unsigned long dma_attrs)
3374 {
3375 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3376 }
3377 /**
3378 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3379 * @dev: The device for which the DMA addresses were created
3380 * @sg: The scatter/gather entry
3381 *
3382 * Note: this function is obsolete. To do: change all occurrences of
3383 * ib_sg_dma_address() into sg_dma_address().
3384 */
3385 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3386 struct scatterlist *sg)
3387 {
3388 return sg_dma_address(sg);
3389 }
3390
3391 /**
3392 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3393 * @dev: The device for which the DMA addresses were created
3394 * @sg: The scatter/gather entry
3395 *
3396 * Note: this function is obsolete. To do: change all occurrences of
3397 * ib_sg_dma_len() into sg_dma_len().
3398 */
3399 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3400 struct scatterlist *sg)
3401 {
3402 return sg_dma_len(sg);
3403 }
3404
3405 /**
3406 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3407 * @dev: The device for which the DMA address was created
3408 * @addr: The DMA address
3409 * @size: The size of the region in bytes
3410 * @dir: The direction of the DMA
3411 */
3412 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3413 u64 addr,
3414 size_t size,
3415 enum dma_data_direction dir)
3416 {
3417 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3418 }
3419
3420 /**
3421 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3422 * @dev: The device for which the DMA address was created
3423 * @addr: The DMA address
3424 * @size: The size of the region in bytes
3425 * @dir: The direction of the DMA
3426 */
3427 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3428 u64 addr,
3429 size_t size,
3430 enum dma_data_direction dir)
3431 {
3432 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3433 }
3434
3435 /**
3436 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3437 * @dev: The device for which the DMA address is requested
3438 * @size: The size of the region to allocate in bytes
3439 * @dma_handle: A pointer for returning the DMA address of the region
3440 * @flag: memory allocator flags
3441 */
3442 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3443 size_t size,
3444 dma_addr_t *dma_handle,
3445 gfp_t flag)
3446 {
3447 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3448 }
3449
3450 /**
3451 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3452 * @dev: The device for which the DMA addresses were allocated
3453 * @size: The size of the region
3454 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3455 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3456 */
3457 static inline void ib_dma_free_coherent(struct ib_device *dev,
3458 size_t size, void *cpu_addr,
3459 dma_addr_t dma_handle)
3460 {
3461 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3462 }
3463
3464 /**
3465 * ib_dereg_mr - Deregisters a memory region and removes it from the
3466 * HCA translation table.
3467 * @mr: The memory region to deregister.
3468 *
3469 * This function can fail, if the memory region has memory windows bound to it.
3470 */
3471 int ib_dereg_mr(struct ib_mr *mr);
3472
3473 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3474 enum ib_mr_type mr_type,
3475 u32 max_num_sg);
3476
3477 /**
3478 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3479 * R_Key and L_Key.
3480 * @mr - struct ib_mr pointer to be updated.
3481 * @newkey - new key to be used.
3482 */
3483 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3484 {
3485 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3486 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3487 }
3488
3489 /**
3490 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3491 * for calculating a new rkey for type 2 memory windows.
3492 * @rkey - the rkey to increment.
3493 */
3494 static inline u32 ib_inc_rkey(u32 rkey)
3495 {
3496 const u32 mask = 0x000000ff;
3497 return ((rkey + 1) & mask) | (rkey & ~mask);
3498 }
3499
3500 /**
3501 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3502 * @pd: The protection domain associated with the unmapped region.
3503 * @mr_access_flags: Specifies the memory access rights.
3504 * @fmr_attr: Attributes of the unmapped region.
3505 *
3506 * A fast memory region must be mapped before it can be used as part of
3507 * a work request.
3508 */
3509 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3510 int mr_access_flags,
3511 struct ib_fmr_attr *fmr_attr);
3512
3513 /**
3514 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3515 * @fmr: The fast memory region to associate with the pages.
3516 * @page_list: An array of physical pages to map to the fast memory region.
3517 * @list_len: The number of pages in page_list.
3518 * @iova: The I/O virtual address to use with the mapped region.
3519 */
3520 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3521 u64 *page_list, int list_len,
3522 u64 iova)
3523 {
3524 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3525 }
3526
3527 /**
3528 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3529 * @fmr_list: A linked list of fast memory regions to unmap.
3530 */
3531 int ib_unmap_fmr(struct list_head *fmr_list);
3532
3533 /**
3534 * ib_dealloc_fmr - Deallocates a fast memory region.
3535 * @fmr: The fast memory region to deallocate.
3536 */
3537 int ib_dealloc_fmr(struct ib_fmr *fmr);
3538
3539 /**
3540 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3541 * @qp: QP to attach to the multicast group. The QP must be type
3542 * IB_QPT_UD.
3543 * @gid: Multicast group GID.
3544 * @lid: Multicast group LID in host byte order.
3545 *
3546 * In order to send and receive multicast packets, subnet
3547 * administration must have created the multicast group and configured
3548 * the fabric appropriately. The port associated with the specified
3549 * QP must also be a member of the multicast group.
3550 */
3551 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3552
3553 /**
3554 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3555 * @qp: QP to detach from the multicast group.
3556 * @gid: Multicast group GID.
3557 * @lid: Multicast group LID in host byte order.
3558 */
3559 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3560
3561 /**
3562 * ib_alloc_xrcd - Allocates an XRC domain.
3563 * @device: The device on which to allocate the XRC domain.
3564 */
3565 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3566
3567 /**
3568 * ib_dealloc_xrcd - Deallocates an XRC domain.
3569 * @xrcd: The XRC domain to deallocate.
3570 */
3571 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3572
3573 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3574 struct ib_flow_attr *flow_attr, int domain);
3575 int ib_destroy_flow(struct ib_flow *flow_id);
3576
3577 static inline int ib_check_mr_access(int flags)
3578 {
3579 /*
3580 * Local write permission is required if remote write or
3581 * remote atomic permission is also requested.
3582 */
3583 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3584 !(flags & IB_ACCESS_LOCAL_WRITE))
3585 return -EINVAL;
3586
3587 return 0;
3588 }
3589
3590 /**
3591 * ib_check_mr_status: lightweight check of MR status.
3592 * This routine may provide status checks on a selected
3593 * ib_mr. first use is for signature status check.
3594 *
3595 * @mr: A memory region.
3596 * @check_mask: Bitmask of which checks to perform from
3597 * ib_mr_status_check enumeration.
3598 * @mr_status: The container of relevant status checks.
3599 * failed checks will be indicated in the status bitmask
3600 * and the relevant info shall be in the error item.
3601 */
3602 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3603 struct ib_mr_status *mr_status);
3604
3605 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3606 u16 pkey, const union ib_gid *gid,
3607 const struct sockaddr *addr);
3608 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3609 struct ib_wq_init_attr *init_attr);
3610 int ib_destroy_wq(struct ib_wq *wq);
3611 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3612 u32 wq_attr_mask);
3613 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3614 struct ib_rwq_ind_table_init_attr*
3615 wq_ind_table_init_attr);
3616 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3617
3618 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3619 unsigned int *sg_offset, unsigned int page_size);
3620
3621 static inline int
3622 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3623 unsigned int *sg_offset, unsigned int page_size)
3624 {
3625 int n;
3626
3627 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3628 mr->iova = 0;
3629
3630 return n;
3631 }
3632
3633 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3634 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3635
3636 void ib_drain_rq(struct ib_qp *qp);
3637 void ib_drain_sq(struct ib_qp *qp);
3638 void ib_drain_qp(struct ib_qp *qp);
3639
3640 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3641
3642 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3643 {
3644 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3645 return attr->roce.dmac;
3646 return NULL;
3647 }
3648
3649 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3650 {
3651 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3652 attr->ib.dlid = (u16)dlid;
3653 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3654 attr->opa.dlid = dlid;
3655 }
3656
3657 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3658 {
3659 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3660 return attr->ib.dlid;
3661 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3662 return attr->opa.dlid;
3663 return 0;
3664 }
3665
3666 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3667 {
3668 attr->sl = sl;
3669 }
3670
3671 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3672 {
3673 return attr->sl;
3674 }
3675
3676 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3677 u8 src_path_bits)
3678 {
3679 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3680 attr->ib.src_path_bits = src_path_bits;
3681 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3682 attr->opa.src_path_bits = src_path_bits;
3683 }
3684
3685 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3686 {
3687 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3688 return attr->ib.src_path_bits;
3689 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3690 return attr->opa.src_path_bits;
3691 return 0;
3692 }
3693
3694 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3695 bool make_grd)
3696 {
3697 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3698 attr->opa.make_grd = make_grd;
3699 }
3700
3701 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3702 {
3703 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3704 return attr->opa.make_grd;
3705 return false;
3706 }
3707
3708 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3709 {
3710 attr->port_num = port_num;
3711 }
3712
3713 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3714 {
3715 return attr->port_num;
3716 }
3717
3718 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3719 u8 static_rate)
3720 {
3721 attr->static_rate = static_rate;
3722 }
3723
3724 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3725 {
3726 return attr->static_rate;
3727 }
3728
3729 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3730 enum ib_ah_flags flag)
3731 {
3732 attr->ah_flags = flag;
3733 }
3734
3735 static inline enum ib_ah_flags
3736 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3737 {
3738 return attr->ah_flags;
3739 }
3740
3741 static inline const struct ib_global_route
3742 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3743 {
3744 return &attr->grh;
3745 }
3746
3747 /*To retrieve and modify the grh */
3748 static inline struct ib_global_route
3749 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3750 {
3751 return &attr->grh;
3752 }
3753
3754 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3755 {
3756 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3757
3758 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3759 }
3760
3761 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3762 __be64 prefix)
3763 {
3764 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3765
3766 grh->dgid.global.subnet_prefix = prefix;
3767 }
3768
3769 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3770 __be64 if_id)
3771 {
3772 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3773
3774 grh->dgid.global.interface_id = if_id;
3775 }
3776
3777 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3778 union ib_gid *dgid, u32 flow_label,
3779 u8 sgid_index, u8 hop_limit,
3780 u8 traffic_class)
3781 {
3782 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3783
3784 attr->ah_flags = IB_AH_GRH;
3785 if (dgid)
3786 grh->dgid = *dgid;
3787 grh->flow_label = flow_label;
3788 grh->sgid_index = sgid_index;
3789 grh->hop_limit = hop_limit;
3790 grh->traffic_class = traffic_class;
3791 }
3792
3793 /**
3794 * rdma_ah_find_type - Return address handle type.
3795 *
3796 * @dev: Device to be checked
3797 * @port_num: Port number
3798 */
3799 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3800 u8 port_num)
3801 {
3802 if (rdma_protocol_roce(dev, port_num))
3803 return RDMA_AH_ATTR_TYPE_ROCE;
3804 if (rdma_protocol_ib(dev, port_num)) {
3805 if (rdma_cap_opa_ah(dev, port_num))
3806 return RDMA_AH_ATTR_TYPE_OPA;
3807 return RDMA_AH_ATTR_TYPE_IB;
3808 }
3809
3810 return RDMA_AH_ATTR_TYPE_UNDEFINED;
3811 }
3812
3813 /**
3814 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3815 * In the current implementation the only way to get
3816 * get the 32bit lid is from other sources for OPA.
3817 * For IB, lids will always be 16bits so cast the
3818 * value accordingly.
3819 *
3820 * @lid: A 32bit LID
3821 */
3822 static inline u16 ib_lid_cpu16(u32 lid)
3823 {
3824 WARN_ON_ONCE(lid & 0xFFFF0000);
3825 return (u16)lid;
3826 }
3827
3828 /**
3829 * ib_lid_be16 - Return lid in 16bit BE encoding.
3830 *
3831 * @lid: A 32bit LID
3832 */
3833 static inline __be16 ib_lid_be16(u32 lid)
3834 {
3835 WARN_ON_ONCE(lid & 0xFFFF0000);
3836 return cpu_to_be16((u16)lid);
3837 }
3838
3839 /**
3840 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3841 * vector
3842 * @device: the rdma device
3843 * @comp_vector: index of completion vector
3844 *
3845 * Returns NULL on failure, otherwise a corresponding cpu map of the
3846 * completion vector (returns all-cpus map if the device driver doesn't
3847 * implement get_vector_affinity).
3848 */
3849 static inline const struct cpumask *
3850 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3851 {
3852 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3853 !device->get_vector_affinity)
3854 return NULL;
3855
3856 return device->get_vector_affinity(device, comp_vector);
3857
3858 }
3859
3860 #endif /* IB_VERBS_H */