]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/rdma/ib_verbs.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <uapi/linux/if_ether.h>
52
53 #include <linux/atomic.h>
54 #include <linux/mmu_notifier.h>
55 #include <asm/uaccess.h>
56
57 extern struct workqueue_struct *ib_wq;
58
59 union ib_gid {
60 u8 raw[16];
61 struct {
62 __be64 subnet_prefix;
63 __be64 interface_id;
64 } global;
65 };
66
67 enum rdma_node_type {
68 /* IB values map to NodeInfo:NodeType. */
69 RDMA_NODE_IB_CA = 1,
70 RDMA_NODE_IB_SWITCH,
71 RDMA_NODE_IB_ROUTER,
72 RDMA_NODE_RNIC,
73 RDMA_NODE_USNIC,
74 RDMA_NODE_USNIC_UDP,
75 };
76
77 enum rdma_transport_type {
78 RDMA_TRANSPORT_IB,
79 RDMA_TRANSPORT_IWARP,
80 RDMA_TRANSPORT_USNIC,
81 RDMA_TRANSPORT_USNIC_UDP
82 };
83
84 __attribute_const__ enum rdma_transport_type
85 rdma_node_get_transport(enum rdma_node_type node_type);
86
87 enum rdma_link_layer {
88 IB_LINK_LAYER_UNSPECIFIED,
89 IB_LINK_LAYER_INFINIBAND,
90 IB_LINK_LAYER_ETHERNET,
91 };
92
93 enum ib_device_cap_flags {
94 IB_DEVICE_RESIZE_MAX_WR = 1,
95 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
96 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
97 IB_DEVICE_RAW_MULTI = (1<<3),
98 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
99 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
100 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
101 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
102 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
103 IB_DEVICE_INIT_TYPE = (1<<9),
104 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
105 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
106 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
107 IB_DEVICE_SRQ_RESIZE = (1<<13),
108 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
109 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
110 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
111 IB_DEVICE_MEM_WINDOW = (1<<17),
112 /*
113 * Devices should set IB_DEVICE_UD_IP_SUM if they support
114 * insertion of UDP and TCP checksum on outgoing UD IPoIB
115 * messages and can verify the validity of checksum for
116 * incoming messages. Setting this flag implies that the
117 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
118 */
119 IB_DEVICE_UD_IP_CSUM = (1<<18),
120 IB_DEVICE_UD_TSO = (1<<19),
121 IB_DEVICE_XRC = (1<<20),
122 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
123 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
124 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
125 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
126 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
127 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
128 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
129 };
130
131 enum ib_signature_prot_cap {
132 IB_PROT_T10DIF_TYPE_1 = 1,
133 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
134 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
135 };
136
137 enum ib_signature_guard_cap {
138 IB_GUARD_T10DIF_CRC = 1,
139 IB_GUARD_T10DIF_CSUM = 1 << 1,
140 };
141
142 enum ib_atomic_cap {
143 IB_ATOMIC_NONE,
144 IB_ATOMIC_HCA,
145 IB_ATOMIC_GLOB
146 };
147
148 enum ib_odp_general_cap_bits {
149 IB_ODP_SUPPORT = 1 << 0,
150 };
151
152 enum ib_odp_transport_cap_bits {
153 IB_ODP_SUPPORT_SEND = 1 << 0,
154 IB_ODP_SUPPORT_RECV = 1 << 1,
155 IB_ODP_SUPPORT_WRITE = 1 << 2,
156 IB_ODP_SUPPORT_READ = 1 << 3,
157 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
158 };
159
160 struct ib_odp_caps {
161 uint64_t general_caps;
162 struct {
163 uint32_t rc_odp_caps;
164 uint32_t uc_odp_caps;
165 uint32_t ud_odp_caps;
166 } per_transport_caps;
167 };
168
169 struct ib_device_attr {
170 u64 fw_ver;
171 __be64 sys_image_guid;
172 u64 max_mr_size;
173 u64 page_size_cap;
174 u32 vendor_id;
175 u32 vendor_part_id;
176 u32 hw_ver;
177 int max_qp;
178 int max_qp_wr;
179 int device_cap_flags;
180 int max_sge;
181 int max_sge_rd;
182 int max_cq;
183 int max_cqe;
184 int max_mr;
185 int max_pd;
186 int max_qp_rd_atom;
187 int max_ee_rd_atom;
188 int max_res_rd_atom;
189 int max_qp_init_rd_atom;
190 int max_ee_init_rd_atom;
191 enum ib_atomic_cap atomic_cap;
192 enum ib_atomic_cap masked_atomic_cap;
193 int max_ee;
194 int max_rdd;
195 int max_mw;
196 int max_raw_ipv6_qp;
197 int max_raw_ethy_qp;
198 int max_mcast_grp;
199 int max_mcast_qp_attach;
200 int max_total_mcast_qp_attach;
201 int max_ah;
202 int max_fmr;
203 int max_map_per_fmr;
204 int max_srq;
205 int max_srq_wr;
206 int max_srq_sge;
207 unsigned int max_fast_reg_page_list_len;
208 u16 max_pkeys;
209 u8 local_ca_ack_delay;
210 int sig_prot_cap;
211 int sig_guard_cap;
212 struct ib_odp_caps odp_caps;
213 };
214
215 enum ib_mtu {
216 IB_MTU_256 = 1,
217 IB_MTU_512 = 2,
218 IB_MTU_1024 = 3,
219 IB_MTU_2048 = 4,
220 IB_MTU_4096 = 5
221 };
222
223 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
224 {
225 switch (mtu) {
226 case IB_MTU_256: return 256;
227 case IB_MTU_512: return 512;
228 case IB_MTU_1024: return 1024;
229 case IB_MTU_2048: return 2048;
230 case IB_MTU_4096: return 4096;
231 default: return -1;
232 }
233 }
234
235 enum ib_port_state {
236 IB_PORT_NOP = 0,
237 IB_PORT_DOWN = 1,
238 IB_PORT_INIT = 2,
239 IB_PORT_ARMED = 3,
240 IB_PORT_ACTIVE = 4,
241 IB_PORT_ACTIVE_DEFER = 5
242 };
243
244 enum ib_port_cap_flags {
245 IB_PORT_SM = 1 << 1,
246 IB_PORT_NOTICE_SUP = 1 << 2,
247 IB_PORT_TRAP_SUP = 1 << 3,
248 IB_PORT_OPT_IPD_SUP = 1 << 4,
249 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
250 IB_PORT_SL_MAP_SUP = 1 << 6,
251 IB_PORT_MKEY_NVRAM = 1 << 7,
252 IB_PORT_PKEY_NVRAM = 1 << 8,
253 IB_PORT_LED_INFO_SUP = 1 << 9,
254 IB_PORT_SM_DISABLED = 1 << 10,
255 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
256 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
257 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
258 IB_PORT_CM_SUP = 1 << 16,
259 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
260 IB_PORT_REINIT_SUP = 1 << 18,
261 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
262 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
263 IB_PORT_DR_NOTICE_SUP = 1 << 21,
264 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
265 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
266 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
267 IB_PORT_CLIENT_REG_SUP = 1 << 25,
268 IB_PORT_IP_BASED_GIDS = 1 << 26
269 };
270
271 enum ib_port_width {
272 IB_WIDTH_1X = 1,
273 IB_WIDTH_4X = 2,
274 IB_WIDTH_8X = 4,
275 IB_WIDTH_12X = 8
276 };
277
278 static inline int ib_width_enum_to_int(enum ib_port_width width)
279 {
280 switch (width) {
281 case IB_WIDTH_1X: return 1;
282 case IB_WIDTH_4X: return 4;
283 case IB_WIDTH_8X: return 8;
284 case IB_WIDTH_12X: return 12;
285 default: return -1;
286 }
287 }
288
289 enum ib_port_speed {
290 IB_SPEED_SDR = 1,
291 IB_SPEED_DDR = 2,
292 IB_SPEED_QDR = 4,
293 IB_SPEED_FDR10 = 8,
294 IB_SPEED_FDR = 16,
295 IB_SPEED_EDR = 32
296 };
297
298 struct ib_protocol_stats {
299 /* TBD... */
300 };
301
302 struct iw_protocol_stats {
303 u64 ipInReceives;
304 u64 ipInHdrErrors;
305 u64 ipInTooBigErrors;
306 u64 ipInNoRoutes;
307 u64 ipInAddrErrors;
308 u64 ipInUnknownProtos;
309 u64 ipInTruncatedPkts;
310 u64 ipInDiscards;
311 u64 ipInDelivers;
312 u64 ipOutForwDatagrams;
313 u64 ipOutRequests;
314 u64 ipOutDiscards;
315 u64 ipOutNoRoutes;
316 u64 ipReasmTimeout;
317 u64 ipReasmReqds;
318 u64 ipReasmOKs;
319 u64 ipReasmFails;
320 u64 ipFragOKs;
321 u64 ipFragFails;
322 u64 ipFragCreates;
323 u64 ipInMcastPkts;
324 u64 ipOutMcastPkts;
325 u64 ipInBcastPkts;
326 u64 ipOutBcastPkts;
327
328 u64 tcpRtoAlgorithm;
329 u64 tcpRtoMin;
330 u64 tcpRtoMax;
331 u64 tcpMaxConn;
332 u64 tcpActiveOpens;
333 u64 tcpPassiveOpens;
334 u64 tcpAttemptFails;
335 u64 tcpEstabResets;
336 u64 tcpCurrEstab;
337 u64 tcpInSegs;
338 u64 tcpOutSegs;
339 u64 tcpRetransSegs;
340 u64 tcpInErrs;
341 u64 tcpOutRsts;
342 };
343
344 union rdma_protocol_stats {
345 struct ib_protocol_stats ib;
346 struct iw_protocol_stats iw;
347 };
348
349 struct ib_port_attr {
350 enum ib_port_state state;
351 enum ib_mtu max_mtu;
352 enum ib_mtu active_mtu;
353 int gid_tbl_len;
354 u32 port_cap_flags;
355 u32 max_msg_sz;
356 u32 bad_pkey_cntr;
357 u32 qkey_viol_cntr;
358 u16 pkey_tbl_len;
359 u16 lid;
360 u16 sm_lid;
361 u8 lmc;
362 u8 max_vl_num;
363 u8 sm_sl;
364 u8 subnet_timeout;
365 u8 init_type_reply;
366 u8 active_width;
367 u8 active_speed;
368 u8 phys_state;
369 };
370
371 enum ib_device_modify_flags {
372 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
373 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
374 };
375
376 struct ib_device_modify {
377 u64 sys_image_guid;
378 char node_desc[64];
379 };
380
381 enum ib_port_modify_flags {
382 IB_PORT_SHUTDOWN = 1,
383 IB_PORT_INIT_TYPE = (1<<2),
384 IB_PORT_RESET_QKEY_CNTR = (1<<3)
385 };
386
387 struct ib_port_modify {
388 u32 set_port_cap_mask;
389 u32 clr_port_cap_mask;
390 u8 init_type;
391 };
392
393 enum ib_event_type {
394 IB_EVENT_CQ_ERR,
395 IB_EVENT_QP_FATAL,
396 IB_EVENT_QP_REQ_ERR,
397 IB_EVENT_QP_ACCESS_ERR,
398 IB_EVENT_COMM_EST,
399 IB_EVENT_SQ_DRAINED,
400 IB_EVENT_PATH_MIG,
401 IB_EVENT_PATH_MIG_ERR,
402 IB_EVENT_DEVICE_FATAL,
403 IB_EVENT_PORT_ACTIVE,
404 IB_EVENT_PORT_ERR,
405 IB_EVENT_LID_CHANGE,
406 IB_EVENT_PKEY_CHANGE,
407 IB_EVENT_SM_CHANGE,
408 IB_EVENT_SRQ_ERR,
409 IB_EVENT_SRQ_LIMIT_REACHED,
410 IB_EVENT_QP_LAST_WQE_REACHED,
411 IB_EVENT_CLIENT_REREGISTER,
412 IB_EVENT_GID_CHANGE,
413 };
414
415 struct ib_event {
416 struct ib_device *device;
417 union {
418 struct ib_cq *cq;
419 struct ib_qp *qp;
420 struct ib_srq *srq;
421 u8 port_num;
422 } element;
423 enum ib_event_type event;
424 };
425
426 struct ib_event_handler {
427 struct ib_device *device;
428 void (*handler)(struct ib_event_handler *, struct ib_event *);
429 struct list_head list;
430 };
431
432 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
433 do { \
434 (_ptr)->device = _device; \
435 (_ptr)->handler = _handler; \
436 INIT_LIST_HEAD(&(_ptr)->list); \
437 } while (0)
438
439 struct ib_global_route {
440 union ib_gid dgid;
441 u32 flow_label;
442 u8 sgid_index;
443 u8 hop_limit;
444 u8 traffic_class;
445 };
446
447 struct ib_grh {
448 __be32 version_tclass_flow;
449 __be16 paylen;
450 u8 next_hdr;
451 u8 hop_limit;
452 union ib_gid sgid;
453 union ib_gid dgid;
454 };
455
456 enum {
457 IB_MULTICAST_QPN = 0xffffff
458 };
459
460 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
461
462 enum ib_ah_flags {
463 IB_AH_GRH = 1
464 };
465
466 enum ib_rate {
467 IB_RATE_PORT_CURRENT = 0,
468 IB_RATE_2_5_GBPS = 2,
469 IB_RATE_5_GBPS = 5,
470 IB_RATE_10_GBPS = 3,
471 IB_RATE_20_GBPS = 6,
472 IB_RATE_30_GBPS = 4,
473 IB_RATE_40_GBPS = 7,
474 IB_RATE_60_GBPS = 8,
475 IB_RATE_80_GBPS = 9,
476 IB_RATE_120_GBPS = 10,
477 IB_RATE_14_GBPS = 11,
478 IB_RATE_56_GBPS = 12,
479 IB_RATE_112_GBPS = 13,
480 IB_RATE_168_GBPS = 14,
481 IB_RATE_25_GBPS = 15,
482 IB_RATE_100_GBPS = 16,
483 IB_RATE_200_GBPS = 17,
484 IB_RATE_300_GBPS = 18
485 };
486
487 /**
488 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
489 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
490 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
491 * @rate: rate to convert.
492 */
493 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
494
495 /**
496 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
497 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
498 * @rate: rate to convert.
499 */
500 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
501
502 enum ib_mr_create_flags {
503 IB_MR_SIGNATURE_EN = 1,
504 };
505
506 /**
507 * ib_mr_init_attr - Memory region init attributes passed to routine
508 * ib_create_mr.
509 * @max_reg_descriptors: max number of registration descriptors that
510 * may be used with registration work requests.
511 * @flags: MR creation flags bit mask.
512 */
513 struct ib_mr_init_attr {
514 int max_reg_descriptors;
515 u32 flags;
516 };
517
518 /**
519 * Signature types
520 * IB_SIG_TYPE_NONE: Unprotected.
521 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
522 */
523 enum ib_signature_type {
524 IB_SIG_TYPE_NONE,
525 IB_SIG_TYPE_T10_DIF,
526 };
527
528 /**
529 * Signature T10-DIF block-guard types
530 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
531 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
532 */
533 enum ib_t10_dif_bg_type {
534 IB_T10DIF_CRC,
535 IB_T10DIF_CSUM
536 };
537
538 /**
539 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
540 * domain.
541 * @bg_type: T10-DIF block guard type (CRC|CSUM)
542 * @pi_interval: protection information interval.
543 * @bg: seed of guard computation.
544 * @app_tag: application tag of guard block
545 * @ref_tag: initial guard block reference tag.
546 * @ref_remap: Indicate wethear the reftag increments each block
547 * @app_escape: Indicate to skip block check if apptag=0xffff
548 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
549 * @apptag_check_mask: check bitmask of application tag.
550 */
551 struct ib_t10_dif_domain {
552 enum ib_t10_dif_bg_type bg_type;
553 u16 pi_interval;
554 u16 bg;
555 u16 app_tag;
556 u32 ref_tag;
557 bool ref_remap;
558 bool app_escape;
559 bool ref_escape;
560 u16 apptag_check_mask;
561 };
562
563 /**
564 * struct ib_sig_domain - Parameters for signature domain
565 * @sig_type: specific signauture type
566 * @sig: union of all signature domain attributes that may
567 * be used to set domain layout.
568 */
569 struct ib_sig_domain {
570 enum ib_signature_type sig_type;
571 union {
572 struct ib_t10_dif_domain dif;
573 } sig;
574 };
575
576 /**
577 * struct ib_sig_attrs - Parameters for signature handover operation
578 * @check_mask: bitmask for signature byte check (8 bytes)
579 * @mem: memory domain layout desciptor.
580 * @wire: wire domain layout desciptor.
581 */
582 struct ib_sig_attrs {
583 u8 check_mask;
584 struct ib_sig_domain mem;
585 struct ib_sig_domain wire;
586 };
587
588 enum ib_sig_err_type {
589 IB_SIG_BAD_GUARD,
590 IB_SIG_BAD_REFTAG,
591 IB_SIG_BAD_APPTAG,
592 };
593
594 /**
595 * struct ib_sig_err - signature error descriptor
596 */
597 struct ib_sig_err {
598 enum ib_sig_err_type err_type;
599 u32 expected;
600 u32 actual;
601 u64 sig_err_offset;
602 u32 key;
603 };
604
605 enum ib_mr_status_check {
606 IB_MR_CHECK_SIG_STATUS = 1,
607 };
608
609 /**
610 * struct ib_mr_status - Memory region status container
611 *
612 * @fail_status: Bitmask of MR checks status. For each
613 * failed check a corresponding status bit is set.
614 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
615 * failure.
616 */
617 struct ib_mr_status {
618 u32 fail_status;
619 struct ib_sig_err sig_err;
620 };
621
622 /**
623 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
624 * enum.
625 * @mult: multiple to convert.
626 */
627 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
628
629 struct ib_ah_attr {
630 struct ib_global_route grh;
631 u16 dlid;
632 u8 sl;
633 u8 src_path_bits;
634 u8 static_rate;
635 u8 ah_flags;
636 u8 port_num;
637 u8 dmac[ETH_ALEN];
638 u16 vlan_id;
639 };
640
641 enum ib_wc_status {
642 IB_WC_SUCCESS,
643 IB_WC_LOC_LEN_ERR,
644 IB_WC_LOC_QP_OP_ERR,
645 IB_WC_LOC_EEC_OP_ERR,
646 IB_WC_LOC_PROT_ERR,
647 IB_WC_WR_FLUSH_ERR,
648 IB_WC_MW_BIND_ERR,
649 IB_WC_BAD_RESP_ERR,
650 IB_WC_LOC_ACCESS_ERR,
651 IB_WC_REM_INV_REQ_ERR,
652 IB_WC_REM_ACCESS_ERR,
653 IB_WC_REM_OP_ERR,
654 IB_WC_RETRY_EXC_ERR,
655 IB_WC_RNR_RETRY_EXC_ERR,
656 IB_WC_LOC_RDD_VIOL_ERR,
657 IB_WC_REM_INV_RD_REQ_ERR,
658 IB_WC_REM_ABORT_ERR,
659 IB_WC_INV_EECN_ERR,
660 IB_WC_INV_EEC_STATE_ERR,
661 IB_WC_FATAL_ERR,
662 IB_WC_RESP_TIMEOUT_ERR,
663 IB_WC_GENERAL_ERR
664 };
665
666 enum ib_wc_opcode {
667 IB_WC_SEND,
668 IB_WC_RDMA_WRITE,
669 IB_WC_RDMA_READ,
670 IB_WC_COMP_SWAP,
671 IB_WC_FETCH_ADD,
672 IB_WC_BIND_MW,
673 IB_WC_LSO,
674 IB_WC_LOCAL_INV,
675 IB_WC_FAST_REG_MR,
676 IB_WC_MASKED_COMP_SWAP,
677 IB_WC_MASKED_FETCH_ADD,
678 /*
679 * Set value of IB_WC_RECV so consumers can test if a completion is a
680 * receive by testing (opcode & IB_WC_RECV).
681 */
682 IB_WC_RECV = 1 << 7,
683 IB_WC_RECV_RDMA_WITH_IMM
684 };
685
686 enum ib_wc_flags {
687 IB_WC_GRH = 1,
688 IB_WC_WITH_IMM = (1<<1),
689 IB_WC_WITH_INVALIDATE = (1<<2),
690 IB_WC_IP_CSUM_OK = (1<<3),
691 IB_WC_WITH_SMAC = (1<<4),
692 IB_WC_WITH_VLAN = (1<<5),
693 };
694
695 struct ib_wc {
696 u64 wr_id;
697 enum ib_wc_status status;
698 enum ib_wc_opcode opcode;
699 u32 vendor_err;
700 u32 byte_len;
701 struct ib_qp *qp;
702 union {
703 __be32 imm_data;
704 u32 invalidate_rkey;
705 } ex;
706 u32 src_qp;
707 int wc_flags;
708 u16 pkey_index;
709 u16 slid;
710 u8 sl;
711 u8 dlid_path_bits;
712 u8 port_num; /* valid only for DR SMPs on switches */
713 u8 smac[ETH_ALEN];
714 u16 vlan_id;
715 };
716
717 enum ib_cq_notify_flags {
718 IB_CQ_SOLICITED = 1 << 0,
719 IB_CQ_NEXT_COMP = 1 << 1,
720 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
721 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
722 };
723
724 enum ib_srq_type {
725 IB_SRQT_BASIC,
726 IB_SRQT_XRC
727 };
728
729 enum ib_srq_attr_mask {
730 IB_SRQ_MAX_WR = 1 << 0,
731 IB_SRQ_LIMIT = 1 << 1,
732 };
733
734 struct ib_srq_attr {
735 u32 max_wr;
736 u32 max_sge;
737 u32 srq_limit;
738 };
739
740 struct ib_srq_init_attr {
741 void (*event_handler)(struct ib_event *, void *);
742 void *srq_context;
743 struct ib_srq_attr attr;
744 enum ib_srq_type srq_type;
745
746 union {
747 struct {
748 struct ib_xrcd *xrcd;
749 struct ib_cq *cq;
750 } xrc;
751 } ext;
752 };
753
754 struct ib_qp_cap {
755 u32 max_send_wr;
756 u32 max_recv_wr;
757 u32 max_send_sge;
758 u32 max_recv_sge;
759 u32 max_inline_data;
760 };
761
762 enum ib_sig_type {
763 IB_SIGNAL_ALL_WR,
764 IB_SIGNAL_REQ_WR
765 };
766
767 enum ib_qp_type {
768 /*
769 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
770 * here (and in that order) since the MAD layer uses them as
771 * indices into a 2-entry table.
772 */
773 IB_QPT_SMI,
774 IB_QPT_GSI,
775
776 IB_QPT_RC,
777 IB_QPT_UC,
778 IB_QPT_UD,
779 IB_QPT_RAW_IPV6,
780 IB_QPT_RAW_ETHERTYPE,
781 IB_QPT_RAW_PACKET = 8,
782 IB_QPT_XRC_INI = 9,
783 IB_QPT_XRC_TGT,
784 IB_QPT_MAX,
785 /* Reserve a range for qp types internal to the low level driver.
786 * These qp types will not be visible at the IB core layer, so the
787 * IB_QPT_MAX usages should not be affected in the core layer
788 */
789 IB_QPT_RESERVED1 = 0x1000,
790 IB_QPT_RESERVED2,
791 IB_QPT_RESERVED3,
792 IB_QPT_RESERVED4,
793 IB_QPT_RESERVED5,
794 IB_QPT_RESERVED6,
795 IB_QPT_RESERVED7,
796 IB_QPT_RESERVED8,
797 IB_QPT_RESERVED9,
798 IB_QPT_RESERVED10,
799 };
800
801 enum ib_qp_create_flags {
802 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
803 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
804 IB_QP_CREATE_NETIF_QP = 1 << 5,
805 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
806 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
807 /* reserve bits 26-31 for low level drivers' internal use */
808 IB_QP_CREATE_RESERVED_START = 1 << 26,
809 IB_QP_CREATE_RESERVED_END = 1 << 31,
810 };
811
812
813 /*
814 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
815 * callback to destroy the passed in QP.
816 */
817
818 struct ib_qp_init_attr {
819 void (*event_handler)(struct ib_event *, void *);
820 void *qp_context;
821 struct ib_cq *send_cq;
822 struct ib_cq *recv_cq;
823 struct ib_srq *srq;
824 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
825 struct ib_qp_cap cap;
826 enum ib_sig_type sq_sig_type;
827 enum ib_qp_type qp_type;
828 enum ib_qp_create_flags create_flags;
829 u8 port_num; /* special QP types only */
830 };
831
832 struct ib_qp_open_attr {
833 void (*event_handler)(struct ib_event *, void *);
834 void *qp_context;
835 u32 qp_num;
836 enum ib_qp_type qp_type;
837 };
838
839 enum ib_rnr_timeout {
840 IB_RNR_TIMER_655_36 = 0,
841 IB_RNR_TIMER_000_01 = 1,
842 IB_RNR_TIMER_000_02 = 2,
843 IB_RNR_TIMER_000_03 = 3,
844 IB_RNR_TIMER_000_04 = 4,
845 IB_RNR_TIMER_000_06 = 5,
846 IB_RNR_TIMER_000_08 = 6,
847 IB_RNR_TIMER_000_12 = 7,
848 IB_RNR_TIMER_000_16 = 8,
849 IB_RNR_TIMER_000_24 = 9,
850 IB_RNR_TIMER_000_32 = 10,
851 IB_RNR_TIMER_000_48 = 11,
852 IB_RNR_TIMER_000_64 = 12,
853 IB_RNR_TIMER_000_96 = 13,
854 IB_RNR_TIMER_001_28 = 14,
855 IB_RNR_TIMER_001_92 = 15,
856 IB_RNR_TIMER_002_56 = 16,
857 IB_RNR_TIMER_003_84 = 17,
858 IB_RNR_TIMER_005_12 = 18,
859 IB_RNR_TIMER_007_68 = 19,
860 IB_RNR_TIMER_010_24 = 20,
861 IB_RNR_TIMER_015_36 = 21,
862 IB_RNR_TIMER_020_48 = 22,
863 IB_RNR_TIMER_030_72 = 23,
864 IB_RNR_TIMER_040_96 = 24,
865 IB_RNR_TIMER_061_44 = 25,
866 IB_RNR_TIMER_081_92 = 26,
867 IB_RNR_TIMER_122_88 = 27,
868 IB_RNR_TIMER_163_84 = 28,
869 IB_RNR_TIMER_245_76 = 29,
870 IB_RNR_TIMER_327_68 = 30,
871 IB_RNR_TIMER_491_52 = 31
872 };
873
874 enum ib_qp_attr_mask {
875 IB_QP_STATE = 1,
876 IB_QP_CUR_STATE = (1<<1),
877 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
878 IB_QP_ACCESS_FLAGS = (1<<3),
879 IB_QP_PKEY_INDEX = (1<<4),
880 IB_QP_PORT = (1<<5),
881 IB_QP_QKEY = (1<<6),
882 IB_QP_AV = (1<<7),
883 IB_QP_PATH_MTU = (1<<8),
884 IB_QP_TIMEOUT = (1<<9),
885 IB_QP_RETRY_CNT = (1<<10),
886 IB_QP_RNR_RETRY = (1<<11),
887 IB_QP_RQ_PSN = (1<<12),
888 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
889 IB_QP_ALT_PATH = (1<<14),
890 IB_QP_MIN_RNR_TIMER = (1<<15),
891 IB_QP_SQ_PSN = (1<<16),
892 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
893 IB_QP_PATH_MIG_STATE = (1<<18),
894 IB_QP_CAP = (1<<19),
895 IB_QP_DEST_QPN = (1<<20),
896 IB_QP_SMAC = (1<<21),
897 IB_QP_ALT_SMAC = (1<<22),
898 IB_QP_VID = (1<<23),
899 IB_QP_ALT_VID = (1<<24),
900 };
901
902 enum ib_qp_state {
903 IB_QPS_RESET,
904 IB_QPS_INIT,
905 IB_QPS_RTR,
906 IB_QPS_RTS,
907 IB_QPS_SQD,
908 IB_QPS_SQE,
909 IB_QPS_ERR
910 };
911
912 enum ib_mig_state {
913 IB_MIG_MIGRATED,
914 IB_MIG_REARM,
915 IB_MIG_ARMED
916 };
917
918 enum ib_mw_type {
919 IB_MW_TYPE_1 = 1,
920 IB_MW_TYPE_2 = 2
921 };
922
923 struct ib_qp_attr {
924 enum ib_qp_state qp_state;
925 enum ib_qp_state cur_qp_state;
926 enum ib_mtu path_mtu;
927 enum ib_mig_state path_mig_state;
928 u32 qkey;
929 u32 rq_psn;
930 u32 sq_psn;
931 u32 dest_qp_num;
932 int qp_access_flags;
933 struct ib_qp_cap cap;
934 struct ib_ah_attr ah_attr;
935 struct ib_ah_attr alt_ah_attr;
936 u16 pkey_index;
937 u16 alt_pkey_index;
938 u8 en_sqd_async_notify;
939 u8 sq_draining;
940 u8 max_rd_atomic;
941 u8 max_dest_rd_atomic;
942 u8 min_rnr_timer;
943 u8 port_num;
944 u8 timeout;
945 u8 retry_cnt;
946 u8 rnr_retry;
947 u8 alt_port_num;
948 u8 alt_timeout;
949 u8 smac[ETH_ALEN];
950 u8 alt_smac[ETH_ALEN];
951 u16 vlan_id;
952 u16 alt_vlan_id;
953 };
954
955 enum ib_wr_opcode {
956 IB_WR_RDMA_WRITE,
957 IB_WR_RDMA_WRITE_WITH_IMM,
958 IB_WR_SEND,
959 IB_WR_SEND_WITH_IMM,
960 IB_WR_RDMA_READ,
961 IB_WR_ATOMIC_CMP_AND_SWP,
962 IB_WR_ATOMIC_FETCH_AND_ADD,
963 IB_WR_LSO,
964 IB_WR_SEND_WITH_INV,
965 IB_WR_RDMA_READ_WITH_INV,
966 IB_WR_LOCAL_INV,
967 IB_WR_FAST_REG_MR,
968 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
969 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
970 IB_WR_BIND_MW,
971 IB_WR_REG_SIG_MR,
972 /* reserve values for low level drivers' internal use.
973 * These values will not be used at all in the ib core layer.
974 */
975 IB_WR_RESERVED1 = 0xf0,
976 IB_WR_RESERVED2,
977 IB_WR_RESERVED3,
978 IB_WR_RESERVED4,
979 IB_WR_RESERVED5,
980 IB_WR_RESERVED6,
981 IB_WR_RESERVED7,
982 IB_WR_RESERVED8,
983 IB_WR_RESERVED9,
984 IB_WR_RESERVED10,
985 };
986
987 enum ib_send_flags {
988 IB_SEND_FENCE = 1,
989 IB_SEND_SIGNALED = (1<<1),
990 IB_SEND_SOLICITED = (1<<2),
991 IB_SEND_INLINE = (1<<3),
992 IB_SEND_IP_CSUM = (1<<4),
993
994 /* reserve bits 26-31 for low level drivers' internal use */
995 IB_SEND_RESERVED_START = (1 << 26),
996 IB_SEND_RESERVED_END = (1 << 31),
997 };
998
999 struct ib_sge {
1000 u64 addr;
1001 u32 length;
1002 u32 lkey;
1003 };
1004
1005 struct ib_fast_reg_page_list {
1006 struct ib_device *device;
1007 u64 *page_list;
1008 unsigned int max_page_list_len;
1009 };
1010
1011 /**
1012 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1013 * @mr: A memory region to bind the memory window to.
1014 * @addr: The address where the memory window should begin.
1015 * @length: The length of the memory window, in bytes.
1016 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1017 *
1018 * This struct contains the shared parameters for type 1 and type 2
1019 * memory window bind operations.
1020 */
1021 struct ib_mw_bind_info {
1022 struct ib_mr *mr;
1023 u64 addr;
1024 u64 length;
1025 int mw_access_flags;
1026 };
1027
1028 struct ib_send_wr {
1029 struct ib_send_wr *next;
1030 u64 wr_id;
1031 struct ib_sge *sg_list;
1032 int num_sge;
1033 enum ib_wr_opcode opcode;
1034 int send_flags;
1035 union {
1036 __be32 imm_data;
1037 u32 invalidate_rkey;
1038 } ex;
1039 union {
1040 struct {
1041 u64 remote_addr;
1042 u32 rkey;
1043 } rdma;
1044 struct {
1045 u64 remote_addr;
1046 u64 compare_add;
1047 u64 swap;
1048 u64 compare_add_mask;
1049 u64 swap_mask;
1050 u32 rkey;
1051 } atomic;
1052 struct {
1053 struct ib_ah *ah;
1054 void *header;
1055 int hlen;
1056 int mss;
1057 u32 remote_qpn;
1058 u32 remote_qkey;
1059 u16 pkey_index; /* valid for GSI only */
1060 u8 port_num; /* valid for DR SMPs on switch only */
1061 } ud;
1062 struct {
1063 u64 iova_start;
1064 struct ib_fast_reg_page_list *page_list;
1065 unsigned int page_shift;
1066 unsigned int page_list_len;
1067 u32 length;
1068 int access_flags;
1069 u32 rkey;
1070 } fast_reg;
1071 struct {
1072 struct ib_mw *mw;
1073 /* The new rkey for the memory window. */
1074 u32 rkey;
1075 struct ib_mw_bind_info bind_info;
1076 } bind_mw;
1077 struct {
1078 struct ib_sig_attrs *sig_attrs;
1079 struct ib_mr *sig_mr;
1080 int access_flags;
1081 struct ib_sge *prot;
1082 } sig_handover;
1083 } wr;
1084 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1085 };
1086
1087 struct ib_recv_wr {
1088 struct ib_recv_wr *next;
1089 u64 wr_id;
1090 struct ib_sge *sg_list;
1091 int num_sge;
1092 };
1093
1094 enum ib_access_flags {
1095 IB_ACCESS_LOCAL_WRITE = 1,
1096 IB_ACCESS_REMOTE_WRITE = (1<<1),
1097 IB_ACCESS_REMOTE_READ = (1<<2),
1098 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1099 IB_ACCESS_MW_BIND = (1<<4),
1100 IB_ZERO_BASED = (1<<5),
1101 IB_ACCESS_ON_DEMAND = (1<<6),
1102 };
1103
1104 struct ib_phys_buf {
1105 u64 addr;
1106 u64 size;
1107 };
1108
1109 struct ib_mr_attr {
1110 struct ib_pd *pd;
1111 u64 device_virt_addr;
1112 u64 size;
1113 int mr_access_flags;
1114 u32 lkey;
1115 u32 rkey;
1116 };
1117
1118 enum ib_mr_rereg_flags {
1119 IB_MR_REREG_TRANS = 1,
1120 IB_MR_REREG_PD = (1<<1),
1121 IB_MR_REREG_ACCESS = (1<<2),
1122 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1123 };
1124
1125 /**
1126 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1127 * @wr_id: Work request id.
1128 * @send_flags: Flags from ib_send_flags enum.
1129 * @bind_info: More parameters of the bind operation.
1130 */
1131 struct ib_mw_bind {
1132 u64 wr_id;
1133 int send_flags;
1134 struct ib_mw_bind_info bind_info;
1135 };
1136
1137 struct ib_fmr_attr {
1138 int max_pages;
1139 int max_maps;
1140 u8 page_shift;
1141 };
1142
1143 struct ib_umem;
1144
1145 struct ib_ucontext {
1146 struct ib_device *device;
1147 struct list_head pd_list;
1148 struct list_head mr_list;
1149 struct list_head mw_list;
1150 struct list_head cq_list;
1151 struct list_head qp_list;
1152 struct list_head srq_list;
1153 struct list_head ah_list;
1154 struct list_head xrcd_list;
1155 struct list_head rule_list;
1156 int closing;
1157
1158 struct pid *tgid;
1159 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1160 struct rb_root umem_tree;
1161 /*
1162 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1163 * mmu notifiers registration.
1164 */
1165 struct rw_semaphore umem_rwsem;
1166 void (*invalidate_range)(struct ib_umem *umem,
1167 unsigned long start, unsigned long end);
1168
1169 struct mmu_notifier mn;
1170 atomic_t notifier_count;
1171 /* A list of umems that don't have private mmu notifier counters yet. */
1172 struct list_head no_private_counters;
1173 int odp_mrs_count;
1174 #endif
1175 };
1176
1177 struct ib_uobject {
1178 u64 user_handle; /* handle given to us by userspace */
1179 struct ib_ucontext *context; /* associated user context */
1180 void *object; /* containing object */
1181 struct list_head list; /* link to context's list */
1182 int id; /* index into kernel idr */
1183 struct kref ref;
1184 struct rw_semaphore mutex; /* protects .live */
1185 int live;
1186 };
1187
1188 struct ib_udata {
1189 const void __user *inbuf;
1190 void __user *outbuf;
1191 size_t inlen;
1192 size_t outlen;
1193 };
1194
1195 struct ib_pd {
1196 struct ib_device *device;
1197 struct ib_uobject *uobject;
1198 atomic_t usecnt; /* count all resources */
1199 };
1200
1201 struct ib_xrcd {
1202 struct ib_device *device;
1203 atomic_t usecnt; /* count all exposed resources */
1204 struct inode *inode;
1205
1206 struct mutex tgt_qp_mutex;
1207 struct list_head tgt_qp_list;
1208 };
1209
1210 struct ib_ah {
1211 struct ib_device *device;
1212 struct ib_pd *pd;
1213 struct ib_uobject *uobject;
1214 };
1215
1216 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1217
1218 struct ib_cq {
1219 struct ib_device *device;
1220 struct ib_uobject *uobject;
1221 ib_comp_handler comp_handler;
1222 void (*event_handler)(struct ib_event *, void *);
1223 void *cq_context;
1224 int cqe;
1225 atomic_t usecnt; /* count number of work queues */
1226 };
1227
1228 struct ib_srq {
1229 struct ib_device *device;
1230 struct ib_pd *pd;
1231 struct ib_uobject *uobject;
1232 void (*event_handler)(struct ib_event *, void *);
1233 void *srq_context;
1234 enum ib_srq_type srq_type;
1235 atomic_t usecnt;
1236
1237 union {
1238 struct {
1239 struct ib_xrcd *xrcd;
1240 struct ib_cq *cq;
1241 u32 srq_num;
1242 } xrc;
1243 } ext;
1244 };
1245
1246 struct ib_qp {
1247 struct ib_device *device;
1248 struct ib_pd *pd;
1249 struct ib_cq *send_cq;
1250 struct ib_cq *recv_cq;
1251 struct ib_srq *srq;
1252 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1253 struct list_head xrcd_list;
1254 /* count times opened, mcast attaches, flow attaches */
1255 atomic_t usecnt;
1256 struct list_head open_list;
1257 struct ib_qp *real_qp;
1258 struct ib_uobject *uobject;
1259 void (*event_handler)(struct ib_event *, void *);
1260 void *qp_context;
1261 u32 qp_num;
1262 enum ib_qp_type qp_type;
1263 };
1264
1265 struct ib_mr {
1266 struct ib_device *device;
1267 struct ib_pd *pd;
1268 struct ib_uobject *uobject;
1269 u32 lkey;
1270 u32 rkey;
1271 atomic_t usecnt; /* count number of MWs */
1272 };
1273
1274 struct ib_mw {
1275 struct ib_device *device;
1276 struct ib_pd *pd;
1277 struct ib_uobject *uobject;
1278 u32 rkey;
1279 enum ib_mw_type type;
1280 };
1281
1282 struct ib_fmr {
1283 struct ib_device *device;
1284 struct ib_pd *pd;
1285 struct list_head list;
1286 u32 lkey;
1287 u32 rkey;
1288 };
1289
1290 /* Supported steering options */
1291 enum ib_flow_attr_type {
1292 /* steering according to rule specifications */
1293 IB_FLOW_ATTR_NORMAL = 0x0,
1294 /* default unicast and multicast rule -
1295 * receive all Eth traffic which isn't steered to any QP
1296 */
1297 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1298 /* default multicast rule -
1299 * receive all Eth multicast traffic which isn't steered to any QP
1300 */
1301 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1302 /* sniffer rule - receive all port traffic */
1303 IB_FLOW_ATTR_SNIFFER = 0x3
1304 };
1305
1306 /* Supported steering header types */
1307 enum ib_flow_spec_type {
1308 /* L2 headers*/
1309 IB_FLOW_SPEC_ETH = 0x20,
1310 IB_FLOW_SPEC_IB = 0x22,
1311 /* L3 header*/
1312 IB_FLOW_SPEC_IPV4 = 0x30,
1313 /* L4 headers*/
1314 IB_FLOW_SPEC_TCP = 0x40,
1315 IB_FLOW_SPEC_UDP = 0x41
1316 };
1317 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1318 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1319
1320 /* Flow steering rule priority is set according to it's domain.
1321 * Lower domain value means higher priority.
1322 */
1323 enum ib_flow_domain {
1324 IB_FLOW_DOMAIN_USER,
1325 IB_FLOW_DOMAIN_ETHTOOL,
1326 IB_FLOW_DOMAIN_RFS,
1327 IB_FLOW_DOMAIN_NIC,
1328 IB_FLOW_DOMAIN_NUM /* Must be last */
1329 };
1330
1331 struct ib_flow_eth_filter {
1332 u8 dst_mac[6];
1333 u8 src_mac[6];
1334 __be16 ether_type;
1335 __be16 vlan_tag;
1336 };
1337
1338 struct ib_flow_spec_eth {
1339 enum ib_flow_spec_type type;
1340 u16 size;
1341 struct ib_flow_eth_filter val;
1342 struct ib_flow_eth_filter mask;
1343 };
1344
1345 struct ib_flow_ib_filter {
1346 __be16 dlid;
1347 __u8 sl;
1348 };
1349
1350 struct ib_flow_spec_ib {
1351 enum ib_flow_spec_type type;
1352 u16 size;
1353 struct ib_flow_ib_filter val;
1354 struct ib_flow_ib_filter mask;
1355 };
1356
1357 struct ib_flow_ipv4_filter {
1358 __be32 src_ip;
1359 __be32 dst_ip;
1360 };
1361
1362 struct ib_flow_spec_ipv4 {
1363 enum ib_flow_spec_type type;
1364 u16 size;
1365 struct ib_flow_ipv4_filter val;
1366 struct ib_flow_ipv4_filter mask;
1367 };
1368
1369 struct ib_flow_tcp_udp_filter {
1370 __be16 dst_port;
1371 __be16 src_port;
1372 };
1373
1374 struct ib_flow_spec_tcp_udp {
1375 enum ib_flow_spec_type type;
1376 u16 size;
1377 struct ib_flow_tcp_udp_filter val;
1378 struct ib_flow_tcp_udp_filter mask;
1379 };
1380
1381 union ib_flow_spec {
1382 struct {
1383 enum ib_flow_spec_type type;
1384 u16 size;
1385 };
1386 struct ib_flow_spec_eth eth;
1387 struct ib_flow_spec_ib ib;
1388 struct ib_flow_spec_ipv4 ipv4;
1389 struct ib_flow_spec_tcp_udp tcp_udp;
1390 };
1391
1392 struct ib_flow_attr {
1393 enum ib_flow_attr_type type;
1394 u16 size;
1395 u16 priority;
1396 u32 flags;
1397 u8 num_of_specs;
1398 u8 port;
1399 /* Following are the optional layers according to user request
1400 * struct ib_flow_spec_xxx
1401 * struct ib_flow_spec_yyy
1402 */
1403 };
1404
1405 struct ib_flow {
1406 struct ib_qp *qp;
1407 struct ib_uobject *uobject;
1408 };
1409
1410 struct ib_mad;
1411 struct ib_grh;
1412
1413 enum ib_process_mad_flags {
1414 IB_MAD_IGNORE_MKEY = 1,
1415 IB_MAD_IGNORE_BKEY = 2,
1416 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1417 };
1418
1419 enum ib_mad_result {
1420 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1421 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1422 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1423 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1424 };
1425
1426 #define IB_DEVICE_NAME_MAX 64
1427
1428 struct ib_cache {
1429 rwlock_t lock;
1430 struct ib_event_handler event_handler;
1431 struct ib_pkey_cache **pkey_cache;
1432 struct ib_gid_cache **gid_cache;
1433 u8 *lmc_cache;
1434 };
1435
1436 struct ib_dma_mapping_ops {
1437 int (*mapping_error)(struct ib_device *dev,
1438 u64 dma_addr);
1439 u64 (*map_single)(struct ib_device *dev,
1440 void *ptr, size_t size,
1441 enum dma_data_direction direction);
1442 void (*unmap_single)(struct ib_device *dev,
1443 u64 addr, size_t size,
1444 enum dma_data_direction direction);
1445 u64 (*map_page)(struct ib_device *dev,
1446 struct page *page, unsigned long offset,
1447 size_t size,
1448 enum dma_data_direction direction);
1449 void (*unmap_page)(struct ib_device *dev,
1450 u64 addr, size_t size,
1451 enum dma_data_direction direction);
1452 int (*map_sg)(struct ib_device *dev,
1453 struct scatterlist *sg, int nents,
1454 enum dma_data_direction direction);
1455 void (*unmap_sg)(struct ib_device *dev,
1456 struct scatterlist *sg, int nents,
1457 enum dma_data_direction direction);
1458 void (*sync_single_for_cpu)(struct ib_device *dev,
1459 u64 dma_handle,
1460 size_t size,
1461 enum dma_data_direction dir);
1462 void (*sync_single_for_device)(struct ib_device *dev,
1463 u64 dma_handle,
1464 size_t size,
1465 enum dma_data_direction dir);
1466 void *(*alloc_coherent)(struct ib_device *dev,
1467 size_t size,
1468 u64 *dma_handle,
1469 gfp_t flag);
1470 void (*free_coherent)(struct ib_device *dev,
1471 size_t size, void *cpu_addr,
1472 u64 dma_handle);
1473 };
1474
1475 struct iw_cm_verbs;
1476
1477 struct ib_device {
1478 struct device *dma_device;
1479
1480 char name[IB_DEVICE_NAME_MAX];
1481
1482 struct list_head event_handler_list;
1483 spinlock_t event_handler_lock;
1484
1485 spinlock_t client_data_lock;
1486 struct list_head core_list;
1487 struct list_head client_data_list;
1488
1489 struct ib_cache cache;
1490 int *pkey_tbl_len;
1491 int *gid_tbl_len;
1492
1493 int num_comp_vectors;
1494
1495 struct iw_cm_verbs *iwcm;
1496
1497 int (*get_protocol_stats)(struct ib_device *device,
1498 union rdma_protocol_stats *stats);
1499 int (*query_device)(struct ib_device *device,
1500 struct ib_device_attr *device_attr);
1501 int (*query_port)(struct ib_device *device,
1502 u8 port_num,
1503 struct ib_port_attr *port_attr);
1504 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1505 u8 port_num);
1506 int (*query_gid)(struct ib_device *device,
1507 u8 port_num, int index,
1508 union ib_gid *gid);
1509 int (*query_pkey)(struct ib_device *device,
1510 u8 port_num, u16 index, u16 *pkey);
1511 int (*modify_device)(struct ib_device *device,
1512 int device_modify_mask,
1513 struct ib_device_modify *device_modify);
1514 int (*modify_port)(struct ib_device *device,
1515 u8 port_num, int port_modify_mask,
1516 struct ib_port_modify *port_modify);
1517 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1518 struct ib_udata *udata);
1519 int (*dealloc_ucontext)(struct ib_ucontext *context);
1520 int (*mmap)(struct ib_ucontext *context,
1521 struct vm_area_struct *vma);
1522 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1523 struct ib_ucontext *context,
1524 struct ib_udata *udata);
1525 int (*dealloc_pd)(struct ib_pd *pd);
1526 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1527 struct ib_ah_attr *ah_attr);
1528 int (*modify_ah)(struct ib_ah *ah,
1529 struct ib_ah_attr *ah_attr);
1530 int (*query_ah)(struct ib_ah *ah,
1531 struct ib_ah_attr *ah_attr);
1532 int (*destroy_ah)(struct ib_ah *ah);
1533 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1534 struct ib_srq_init_attr *srq_init_attr,
1535 struct ib_udata *udata);
1536 int (*modify_srq)(struct ib_srq *srq,
1537 struct ib_srq_attr *srq_attr,
1538 enum ib_srq_attr_mask srq_attr_mask,
1539 struct ib_udata *udata);
1540 int (*query_srq)(struct ib_srq *srq,
1541 struct ib_srq_attr *srq_attr);
1542 int (*destroy_srq)(struct ib_srq *srq);
1543 int (*post_srq_recv)(struct ib_srq *srq,
1544 struct ib_recv_wr *recv_wr,
1545 struct ib_recv_wr **bad_recv_wr);
1546 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1547 struct ib_qp_init_attr *qp_init_attr,
1548 struct ib_udata *udata);
1549 int (*modify_qp)(struct ib_qp *qp,
1550 struct ib_qp_attr *qp_attr,
1551 int qp_attr_mask,
1552 struct ib_udata *udata);
1553 int (*query_qp)(struct ib_qp *qp,
1554 struct ib_qp_attr *qp_attr,
1555 int qp_attr_mask,
1556 struct ib_qp_init_attr *qp_init_attr);
1557 int (*destroy_qp)(struct ib_qp *qp);
1558 int (*post_send)(struct ib_qp *qp,
1559 struct ib_send_wr *send_wr,
1560 struct ib_send_wr **bad_send_wr);
1561 int (*post_recv)(struct ib_qp *qp,
1562 struct ib_recv_wr *recv_wr,
1563 struct ib_recv_wr **bad_recv_wr);
1564 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1565 int comp_vector,
1566 struct ib_ucontext *context,
1567 struct ib_udata *udata);
1568 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1569 u16 cq_period);
1570 int (*destroy_cq)(struct ib_cq *cq);
1571 int (*resize_cq)(struct ib_cq *cq, int cqe,
1572 struct ib_udata *udata);
1573 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1574 struct ib_wc *wc);
1575 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1576 int (*req_notify_cq)(struct ib_cq *cq,
1577 enum ib_cq_notify_flags flags);
1578 int (*req_ncomp_notif)(struct ib_cq *cq,
1579 int wc_cnt);
1580 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1581 int mr_access_flags);
1582 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1583 struct ib_phys_buf *phys_buf_array,
1584 int num_phys_buf,
1585 int mr_access_flags,
1586 u64 *iova_start);
1587 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1588 u64 start, u64 length,
1589 u64 virt_addr,
1590 int mr_access_flags,
1591 struct ib_udata *udata);
1592 int (*rereg_user_mr)(struct ib_mr *mr,
1593 int flags,
1594 u64 start, u64 length,
1595 u64 virt_addr,
1596 int mr_access_flags,
1597 struct ib_pd *pd,
1598 struct ib_udata *udata);
1599 int (*query_mr)(struct ib_mr *mr,
1600 struct ib_mr_attr *mr_attr);
1601 int (*dereg_mr)(struct ib_mr *mr);
1602 int (*destroy_mr)(struct ib_mr *mr);
1603 struct ib_mr * (*create_mr)(struct ib_pd *pd,
1604 struct ib_mr_init_attr *mr_init_attr);
1605 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1606 int max_page_list_len);
1607 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1608 int page_list_len);
1609 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1610 int (*rereg_phys_mr)(struct ib_mr *mr,
1611 int mr_rereg_mask,
1612 struct ib_pd *pd,
1613 struct ib_phys_buf *phys_buf_array,
1614 int num_phys_buf,
1615 int mr_access_flags,
1616 u64 *iova_start);
1617 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1618 enum ib_mw_type type);
1619 int (*bind_mw)(struct ib_qp *qp,
1620 struct ib_mw *mw,
1621 struct ib_mw_bind *mw_bind);
1622 int (*dealloc_mw)(struct ib_mw *mw);
1623 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1624 int mr_access_flags,
1625 struct ib_fmr_attr *fmr_attr);
1626 int (*map_phys_fmr)(struct ib_fmr *fmr,
1627 u64 *page_list, int list_len,
1628 u64 iova);
1629 int (*unmap_fmr)(struct list_head *fmr_list);
1630 int (*dealloc_fmr)(struct ib_fmr *fmr);
1631 int (*attach_mcast)(struct ib_qp *qp,
1632 union ib_gid *gid,
1633 u16 lid);
1634 int (*detach_mcast)(struct ib_qp *qp,
1635 union ib_gid *gid,
1636 u16 lid);
1637 int (*process_mad)(struct ib_device *device,
1638 int process_mad_flags,
1639 u8 port_num,
1640 struct ib_wc *in_wc,
1641 struct ib_grh *in_grh,
1642 struct ib_mad *in_mad,
1643 struct ib_mad *out_mad);
1644 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1645 struct ib_ucontext *ucontext,
1646 struct ib_udata *udata);
1647 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1648 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1649 struct ib_flow_attr
1650 *flow_attr,
1651 int domain);
1652 int (*destroy_flow)(struct ib_flow *flow_id);
1653 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1654 struct ib_mr_status *mr_status);
1655
1656 struct ib_dma_mapping_ops *dma_ops;
1657
1658 struct module *owner;
1659 struct device dev;
1660 struct kobject *ports_parent;
1661 struct list_head port_list;
1662
1663 enum {
1664 IB_DEV_UNINITIALIZED,
1665 IB_DEV_REGISTERED,
1666 IB_DEV_UNREGISTERED
1667 } reg_state;
1668
1669 int uverbs_abi_ver;
1670 u64 uverbs_cmd_mask;
1671 u64 uverbs_ex_cmd_mask;
1672
1673 char node_desc[64];
1674 __be64 node_guid;
1675 u32 local_dma_lkey;
1676 u8 node_type;
1677 u8 phys_port_cnt;
1678 };
1679
1680 struct ib_client {
1681 char *name;
1682 void (*add) (struct ib_device *);
1683 void (*remove)(struct ib_device *);
1684
1685 struct list_head list;
1686 };
1687
1688 struct ib_device *ib_alloc_device(size_t size);
1689 void ib_dealloc_device(struct ib_device *device);
1690
1691 int ib_register_device(struct ib_device *device,
1692 int (*port_callback)(struct ib_device *,
1693 u8, struct kobject *));
1694 void ib_unregister_device(struct ib_device *device);
1695
1696 int ib_register_client (struct ib_client *client);
1697 void ib_unregister_client(struct ib_client *client);
1698
1699 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1700 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1701 void *data);
1702
1703 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1704 {
1705 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1706 }
1707
1708 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1709 {
1710 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1711 }
1712
1713 /**
1714 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1715 * contains all required attributes and no attributes not allowed for
1716 * the given QP state transition.
1717 * @cur_state: Current QP state
1718 * @next_state: Next QP state
1719 * @type: QP type
1720 * @mask: Mask of supplied QP attributes
1721 * @ll : link layer of port
1722 *
1723 * This function is a helper function that a low-level driver's
1724 * modify_qp method can use to validate the consumer's input. It
1725 * checks that cur_state and next_state are valid QP states, that a
1726 * transition from cur_state to next_state is allowed by the IB spec,
1727 * and that the attribute mask supplied is allowed for the transition.
1728 */
1729 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1730 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1731 enum rdma_link_layer ll);
1732
1733 int ib_register_event_handler (struct ib_event_handler *event_handler);
1734 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1735 void ib_dispatch_event(struct ib_event *event);
1736
1737 int ib_query_device(struct ib_device *device,
1738 struct ib_device_attr *device_attr);
1739
1740 int ib_query_port(struct ib_device *device,
1741 u8 port_num, struct ib_port_attr *port_attr);
1742
1743 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1744 u8 port_num);
1745
1746 int ib_query_gid(struct ib_device *device,
1747 u8 port_num, int index, union ib_gid *gid);
1748
1749 int ib_query_pkey(struct ib_device *device,
1750 u8 port_num, u16 index, u16 *pkey);
1751
1752 int ib_modify_device(struct ib_device *device,
1753 int device_modify_mask,
1754 struct ib_device_modify *device_modify);
1755
1756 int ib_modify_port(struct ib_device *device,
1757 u8 port_num, int port_modify_mask,
1758 struct ib_port_modify *port_modify);
1759
1760 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1761 u8 *port_num, u16 *index);
1762
1763 int ib_find_pkey(struct ib_device *device,
1764 u8 port_num, u16 pkey, u16 *index);
1765
1766 /**
1767 * ib_alloc_pd - Allocates an unused protection domain.
1768 * @device: The device on which to allocate the protection domain.
1769 *
1770 * A protection domain object provides an association between QPs, shared
1771 * receive queues, address handles, memory regions, and memory windows.
1772 */
1773 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1774
1775 /**
1776 * ib_dealloc_pd - Deallocates a protection domain.
1777 * @pd: The protection domain to deallocate.
1778 */
1779 int ib_dealloc_pd(struct ib_pd *pd);
1780
1781 /**
1782 * ib_create_ah - Creates an address handle for the given address vector.
1783 * @pd: The protection domain associated with the address handle.
1784 * @ah_attr: The attributes of the address vector.
1785 *
1786 * The address handle is used to reference a local or global destination
1787 * in all UD QP post sends.
1788 */
1789 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1790
1791 /**
1792 * ib_init_ah_from_wc - Initializes address handle attributes from a
1793 * work completion.
1794 * @device: Device on which the received message arrived.
1795 * @port_num: Port on which the received message arrived.
1796 * @wc: Work completion associated with the received message.
1797 * @grh: References the received global route header. This parameter is
1798 * ignored unless the work completion indicates that the GRH is valid.
1799 * @ah_attr: Returned attributes that can be used when creating an address
1800 * handle for replying to the message.
1801 */
1802 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1803 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1804
1805 /**
1806 * ib_create_ah_from_wc - Creates an address handle associated with the
1807 * sender of the specified work completion.
1808 * @pd: The protection domain associated with the address handle.
1809 * @wc: Work completion information associated with a received message.
1810 * @grh: References the received global route header. This parameter is
1811 * ignored unless the work completion indicates that the GRH is valid.
1812 * @port_num: The outbound port number to associate with the address.
1813 *
1814 * The address handle is used to reference a local or global destination
1815 * in all UD QP post sends.
1816 */
1817 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1818 struct ib_grh *grh, u8 port_num);
1819
1820 /**
1821 * ib_modify_ah - Modifies the address vector associated with an address
1822 * handle.
1823 * @ah: The address handle to modify.
1824 * @ah_attr: The new address vector attributes to associate with the
1825 * address handle.
1826 */
1827 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1828
1829 /**
1830 * ib_query_ah - Queries the address vector associated with an address
1831 * handle.
1832 * @ah: The address handle to query.
1833 * @ah_attr: The address vector attributes associated with the address
1834 * handle.
1835 */
1836 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1837
1838 /**
1839 * ib_destroy_ah - Destroys an address handle.
1840 * @ah: The address handle to destroy.
1841 */
1842 int ib_destroy_ah(struct ib_ah *ah);
1843
1844 /**
1845 * ib_create_srq - Creates a SRQ associated with the specified protection
1846 * domain.
1847 * @pd: The protection domain associated with the SRQ.
1848 * @srq_init_attr: A list of initial attributes required to create the
1849 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1850 * the actual capabilities of the created SRQ.
1851 *
1852 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1853 * requested size of the SRQ, and set to the actual values allocated
1854 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1855 * will always be at least as large as the requested values.
1856 */
1857 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1858 struct ib_srq_init_attr *srq_init_attr);
1859
1860 /**
1861 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1862 * @srq: The SRQ to modify.
1863 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1864 * the current values of selected SRQ attributes are returned.
1865 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1866 * are being modified.
1867 *
1868 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1869 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1870 * the number of receives queued drops below the limit.
1871 */
1872 int ib_modify_srq(struct ib_srq *srq,
1873 struct ib_srq_attr *srq_attr,
1874 enum ib_srq_attr_mask srq_attr_mask);
1875
1876 /**
1877 * ib_query_srq - Returns the attribute list and current values for the
1878 * specified SRQ.
1879 * @srq: The SRQ to query.
1880 * @srq_attr: The attributes of the specified SRQ.
1881 */
1882 int ib_query_srq(struct ib_srq *srq,
1883 struct ib_srq_attr *srq_attr);
1884
1885 /**
1886 * ib_destroy_srq - Destroys the specified SRQ.
1887 * @srq: The SRQ to destroy.
1888 */
1889 int ib_destroy_srq(struct ib_srq *srq);
1890
1891 /**
1892 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1893 * @srq: The SRQ to post the work request on.
1894 * @recv_wr: A list of work requests to post on the receive queue.
1895 * @bad_recv_wr: On an immediate failure, this parameter will reference
1896 * the work request that failed to be posted on the QP.
1897 */
1898 static inline int ib_post_srq_recv(struct ib_srq *srq,
1899 struct ib_recv_wr *recv_wr,
1900 struct ib_recv_wr **bad_recv_wr)
1901 {
1902 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1903 }
1904
1905 /**
1906 * ib_create_qp - Creates a QP associated with the specified protection
1907 * domain.
1908 * @pd: The protection domain associated with the QP.
1909 * @qp_init_attr: A list of initial attributes required to create the
1910 * QP. If QP creation succeeds, then the attributes are updated to
1911 * the actual capabilities of the created QP.
1912 */
1913 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1914 struct ib_qp_init_attr *qp_init_attr);
1915
1916 /**
1917 * ib_modify_qp - Modifies the attributes for the specified QP and then
1918 * transitions the QP to the given state.
1919 * @qp: The QP to modify.
1920 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1921 * the current values of selected QP attributes are returned.
1922 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1923 * are being modified.
1924 */
1925 int ib_modify_qp(struct ib_qp *qp,
1926 struct ib_qp_attr *qp_attr,
1927 int qp_attr_mask);
1928
1929 /**
1930 * ib_query_qp - Returns the attribute list and current values for the
1931 * specified QP.
1932 * @qp: The QP to query.
1933 * @qp_attr: The attributes of the specified QP.
1934 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1935 * @qp_init_attr: Additional attributes of the selected QP.
1936 *
1937 * The qp_attr_mask may be used to limit the query to gathering only the
1938 * selected attributes.
1939 */
1940 int ib_query_qp(struct ib_qp *qp,
1941 struct ib_qp_attr *qp_attr,
1942 int qp_attr_mask,
1943 struct ib_qp_init_attr *qp_init_attr);
1944
1945 /**
1946 * ib_destroy_qp - Destroys the specified QP.
1947 * @qp: The QP to destroy.
1948 */
1949 int ib_destroy_qp(struct ib_qp *qp);
1950
1951 /**
1952 * ib_open_qp - Obtain a reference to an existing sharable QP.
1953 * @xrcd - XRC domain
1954 * @qp_open_attr: Attributes identifying the QP to open.
1955 *
1956 * Returns a reference to a sharable QP.
1957 */
1958 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1959 struct ib_qp_open_attr *qp_open_attr);
1960
1961 /**
1962 * ib_close_qp - Release an external reference to a QP.
1963 * @qp: The QP handle to release
1964 *
1965 * The opened QP handle is released by the caller. The underlying
1966 * shared QP is not destroyed until all internal references are released.
1967 */
1968 int ib_close_qp(struct ib_qp *qp);
1969
1970 /**
1971 * ib_post_send - Posts a list of work requests to the send queue of
1972 * the specified QP.
1973 * @qp: The QP to post the work request on.
1974 * @send_wr: A list of work requests to post on the send queue.
1975 * @bad_send_wr: On an immediate failure, this parameter will reference
1976 * the work request that failed to be posted on the QP.
1977 *
1978 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1979 * error is returned, the QP state shall not be affected,
1980 * ib_post_send() will return an immediate error after queueing any
1981 * earlier work requests in the list.
1982 */
1983 static inline int ib_post_send(struct ib_qp *qp,
1984 struct ib_send_wr *send_wr,
1985 struct ib_send_wr **bad_send_wr)
1986 {
1987 return qp->device->post_send(qp, send_wr, bad_send_wr);
1988 }
1989
1990 /**
1991 * ib_post_recv - Posts a list of work requests to the receive queue of
1992 * the specified QP.
1993 * @qp: The QP to post the work request on.
1994 * @recv_wr: A list of work requests to post on the receive queue.
1995 * @bad_recv_wr: On an immediate failure, this parameter will reference
1996 * the work request that failed to be posted on the QP.
1997 */
1998 static inline int ib_post_recv(struct ib_qp *qp,
1999 struct ib_recv_wr *recv_wr,
2000 struct ib_recv_wr **bad_recv_wr)
2001 {
2002 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2003 }
2004
2005 /**
2006 * ib_create_cq - Creates a CQ on the specified device.
2007 * @device: The device on which to create the CQ.
2008 * @comp_handler: A user-specified callback that is invoked when a
2009 * completion event occurs on the CQ.
2010 * @event_handler: A user-specified callback that is invoked when an
2011 * asynchronous event not associated with a completion occurs on the CQ.
2012 * @cq_context: Context associated with the CQ returned to the user via
2013 * the associated completion and event handlers.
2014 * @cqe: The minimum size of the CQ.
2015 * @comp_vector - Completion vector used to signal completion events.
2016 * Must be >= 0 and < context->num_comp_vectors.
2017 *
2018 * Users can examine the cq structure to determine the actual CQ size.
2019 */
2020 struct ib_cq *ib_create_cq(struct ib_device *device,
2021 ib_comp_handler comp_handler,
2022 void (*event_handler)(struct ib_event *, void *),
2023 void *cq_context, int cqe, int comp_vector);
2024
2025 /**
2026 * ib_resize_cq - Modifies the capacity of the CQ.
2027 * @cq: The CQ to resize.
2028 * @cqe: The minimum size of the CQ.
2029 *
2030 * Users can examine the cq structure to determine the actual CQ size.
2031 */
2032 int ib_resize_cq(struct ib_cq *cq, int cqe);
2033
2034 /**
2035 * ib_modify_cq - Modifies moderation params of the CQ
2036 * @cq: The CQ to modify.
2037 * @cq_count: number of CQEs that will trigger an event
2038 * @cq_period: max period of time in usec before triggering an event
2039 *
2040 */
2041 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2042
2043 /**
2044 * ib_destroy_cq - Destroys the specified CQ.
2045 * @cq: The CQ to destroy.
2046 */
2047 int ib_destroy_cq(struct ib_cq *cq);
2048
2049 /**
2050 * ib_poll_cq - poll a CQ for completion(s)
2051 * @cq:the CQ being polled
2052 * @num_entries:maximum number of completions to return
2053 * @wc:array of at least @num_entries &struct ib_wc where completions
2054 * will be returned
2055 *
2056 * Poll a CQ for (possibly multiple) completions. If the return value
2057 * is < 0, an error occurred. If the return value is >= 0, it is the
2058 * number of completions returned. If the return value is
2059 * non-negative and < num_entries, then the CQ was emptied.
2060 */
2061 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2062 struct ib_wc *wc)
2063 {
2064 return cq->device->poll_cq(cq, num_entries, wc);
2065 }
2066
2067 /**
2068 * ib_peek_cq - Returns the number of unreaped completions currently
2069 * on the specified CQ.
2070 * @cq: The CQ to peek.
2071 * @wc_cnt: A minimum number of unreaped completions to check for.
2072 *
2073 * If the number of unreaped completions is greater than or equal to wc_cnt,
2074 * this function returns wc_cnt, otherwise, it returns the actual number of
2075 * unreaped completions.
2076 */
2077 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2078
2079 /**
2080 * ib_req_notify_cq - Request completion notification on a CQ.
2081 * @cq: The CQ to generate an event for.
2082 * @flags:
2083 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2084 * to request an event on the next solicited event or next work
2085 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2086 * may also be |ed in to request a hint about missed events, as
2087 * described below.
2088 *
2089 * Return Value:
2090 * < 0 means an error occurred while requesting notification
2091 * == 0 means notification was requested successfully, and if
2092 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2093 * were missed and it is safe to wait for another event. In
2094 * this case is it guaranteed that any work completions added
2095 * to the CQ since the last CQ poll will trigger a completion
2096 * notification event.
2097 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2098 * in. It means that the consumer must poll the CQ again to
2099 * make sure it is empty to avoid missing an event because of a
2100 * race between requesting notification and an entry being
2101 * added to the CQ. This return value means it is possible
2102 * (but not guaranteed) that a work completion has been added
2103 * to the CQ since the last poll without triggering a
2104 * completion notification event.
2105 */
2106 static inline int ib_req_notify_cq(struct ib_cq *cq,
2107 enum ib_cq_notify_flags flags)
2108 {
2109 return cq->device->req_notify_cq(cq, flags);
2110 }
2111
2112 /**
2113 * ib_req_ncomp_notif - Request completion notification when there are
2114 * at least the specified number of unreaped completions on the CQ.
2115 * @cq: The CQ to generate an event for.
2116 * @wc_cnt: The number of unreaped completions that should be on the
2117 * CQ before an event is generated.
2118 */
2119 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2120 {
2121 return cq->device->req_ncomp_notif ?
2122 cq->device->req_ncomp_notif(cq, wc_cnt) :
2123 -ENOSYS;
2124 }
2125
2126 /**
2127 * ib_get_dma_mr - Returns a memory region for system memory that is
2128 * usable for DMA.
2129 * @pd: The protection domain associated with the memory region.
2130 * @mr_access_flags: Specifies the memory access rights.
2131 *
2132 * Note that the ib_dma_*() functions defined below must be used
2133 * to create/destroy addresses used with the Lkey or Rkey returned
2134 * by ib_get_dma_mr().
2135 */
2136 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2137
2138 /**
2139 * ib_dma_mapping_error - check a DMA addr for error
2140 * @dev: The device for which the dma_addr was created
2141 * @dma_addr: The DMA address to check
2142 */
2143 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2144 {
2145 if (dev->dma_ops)
2146 return dev->dma_ops->mapping_error(dev, dma_addr);
2147 return dma_mapping_error(dev->dma_device, dma_addr);
2148 }
2149
2150 /**
2151 * ib_dma_map_single - Map a kernel virtual address to DMA address
2152 * @dev: The device for which the dma_addr is to be created
2153 * @cpu_addr: The kernel virtual address
2154 * @size: The size of the region in bytes
2155 * @direction: The direction of the DMA
2156 */
2157 static inline u64 ib_dma_map_single(struct ib_device *dev,
2158 void *cpu_addr, size_t size,
2159 enum dma_data_direction direction)
2160 {
2161 if (dev->dma_ops)
2162 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2163 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2164 }
2165
2166 /**
2167 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2168 * @dev: The device for which the DMA address was created
2169 * @addr: The DMA address
2170 * @size: The size of the region in bytes
2171 * @direction: The direction of the DMA
2172 */
2173 static inline void ib_dma_unmap_single(struct ib_device *dev,
2174 u64 addr, size_t size,
2175 enum dma_data_direction direction)
2176 {
2177 if (dev->dma_ops)
2178 dev->dma_ops->unmap_single(dev, addr, size, direction);
2179 else
2180 dma_unmap_single(dev->dma_device, addr, size, direction);
2181 }
2182
2183 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2184 void *cpu_addr, size_t size,
2185 enum dma_data_direction direction,
2186 struct dma_attrs *attrs)
2187 {
2188 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2189 direction, attrs);
2190 }
2191
2192 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2193 u64 addr, size_t size,
2194 enum dma_data_direction direction,
2195 struct dma_attrs *attrs)
2196 {
2197 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2198 direction, attrs);
2199 }
2200
2201 /**
2202 * ib_dma_map_page - Map a physical page to DMA address
2203 * @dev: The device for which the dma_addr is to be created
2204 * @page: The page to be mapped
2205 * @offset: The offset within the page
2206 * @size: The size of the region in bytes
2207 * @direction: The direction of the DMA
2208 */
2209 static inline u64 ib_dma_map_page(struct ib_device *dev,
2210 struct page *page,
2211 unsigned long offset,
2212 size_t size,
2213 enum dma_data_direction direction)
2214 {
2215 if (dev->dma_ops)
2216 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2217 return dma_map_page(dev->dma_device, page, offset, size, direction);
2218 }
2219
2220 /**
2221 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2222 * @dev: The device for which the DMA address was created
2223 * @addr: The DMA address
2224 * @size: The size of the region in bytes
2225 * @direction: The direction of the DMA
2226 */
2227 static inline void ib_dma_unmap_page(struct ib_device *dev,
2228 u64 addr, size_t size,
2229 enum dma_data_direction direction)
2230 {
2231 if (dev->dma_ops)
2232 dev->dma_ops->unmap_page(dev, addr, size, direction);
2233 else
2234 dma_unmap_page(dev->dma_device, addr, size, direction);
2235 }
2236
2237 /**
2238 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2239 * @dev: The device for which the DMA addresses are to be created
2240 * @sg: The array of scatter/gather entries
2241 * @nents: The number of scatter/gather entries
2242 * @direction: The direction of the DMA
2243 */
2244 static inline int ib_dma_map_sg(struct ib_device *dev,
2245 struct scatterlist *sg, int nents,
2246 enum dma_data_direction direction)
2247 {
2248 if (dev->dma_ops)
2249 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2250 return dma_map_sg(dev->dma_device, sg, nents, direction);
2251 }
2252
2253 /**
2254 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2255 * @dev: The device for which the DMA addresses were created
2256 * @sg: The array of scatter/gather entries
2257 * @nents: The number of scatter/gather entries
2258 * @direction: The direction of the DMA
2259 */
2260 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2261 struct scatterlist *sg, int nents,
2262 enum dma_data_direction direction)
2263 {
2264 if (dev->dma_ops)
2265 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2266 else
2267 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2268 }
2269
2270 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2271 struct scatterlist *sg, int nents,
2272 enum dma_data_direction direction,
2273 struct dma_attrs *attrs)
2274 {
2275 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2276 }
2277
2278 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2279 struct scatterlist *sg, int nents,
2280 enum dma_data_direction direction,
2281 struct dma_attrs *attrs)
2282 {
2283 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2284 }
2285 /**
2286 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2287 * @dev: The device for which the DMA addresses were created
2288 * @sg: The scatter/gather entry
2289 *
2290 * Note: this function is obsolete. To do: change all occurrences of
2291 * ib_sg_dma_address() into sg_dma_address().
2292 */
2293 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2294 struct scatterlist *sg)
2295 {
2296 return sg_dma_address(sg);
2297 }
2298
2299 /**
2300 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2301 * @dev: The device for which the DMA addresses were created
2302 * @sg: The scatter/gather entry
2303 *
2304 * Note: this function is obsolete. To do: change all occurrences of
2305 * ib_sg_dma_len() into sg_dma_len().
2306 */
2307 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2308 struct scatterlist *sg)
2309 {
2310 return sg_dma_len(sg);
2311 }
2312
2313 /**
2314 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2315 * @dev: The device for which the DMA address was created
2316 * @addr: The DMA address
2317 * @size: The size of the region in bytes
2318 * @dir: The direction of the DMA
2319 */
2320 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2321 u64 addr,
2322 size_t size,
2323 enum dma_data_direction dir)
2324 {
2325 if (dev->dma_ops)
2326 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2327 else
2328 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2329 }
2330
2331 /**
2332 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2333 * @dev: The device for which the DMA address was created
2334 * @addr: The DMA address
2335 * @size: The size of the region in bytes
2336 * @dir: The direction of the DMA
2337 */
2338 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2339 u64 addr,
2340 size_t size,
2341 enum dma_data_direction dir)
2342 {
2343 if (dev->dma_ops)
2344 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2345 else
2346 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2347 }
2348
2349 /**
2350 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2351 * @dev: The device for which the DMA address is requested
2352 * @size: The size of the region to allocate in bytes
2353 * @dma_handle: A pointer for returning the DMA address of the region
2354 * @flag: memory allocator flags
2355 */
2356 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2357 size_t size,
2358 u64 *dma_handle,
2359 gfp_t flag)
2360 {
2361 if (dev->dma_ops)
2362 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2363 else {
2364 dma_addr_t handle;
2365 void *ret;
2366
2367 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2368 *dma_handle = handle;
2369 return ret;
2370 }
2371 }
2372
2373 /**
2374 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2375 * @dev: The device for which the DMA addresses were allocated
2376 * @size: The size of the region
2377 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2378 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2379 */
2380 static inline void ib_dma_free_coherent(struct ib_device *dev,
2381 size_t size, void *cpu_addr,
2382 u64 dma_handle)
2383 {
2384 if (dev->dma_ops)
2385 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2386 else
2387 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2388 }
2389
2390 /**
2391 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2392 * by an HCA.
2393 * @pd: The protection domain associated assigned to the registered region.
2394 * @phys_buf_array: Specifies a list of physical buffers to use in the
2395 * memory region.
2396 * @num_phys_buf: Specifies the size of the phys_buf_array.
2397 * @mr_access_flags: Specifies the memory access rights.
2398 * @iova_start: The offset of the region's starting I/O virtual address.
2399 */
2400 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2401 struct ib_phys_buf *phys_buf_array,
2402 int num_phys_buf,
2403 int mr_access_flags,
2404 u64 *iova_start);
2405
2406 /**
2407 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2408 * Conceptually, this call performs the functions deregister memory region
2409 * followed by register physical memory region. Where possible,
2410 * resources are reused instead of deallocated and reallocated.
2411 * @mr: The memory region to modify.
2412 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2413 * properties of the memory region are being modified.
2414 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2415 * the new protection domain to associated with the memory region,
2416 * otherwise, this parameter is ignored.
2417 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2418 * field specifies a list of physical buffers to use in the new
2419 * translation, otherwise, this parameter is ignored.
2420 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2421 * field specifies the size of the phys_buf_array, otherwise, this
2422 * parameter is ignored.
2423 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2424 * field specifies the new memory access rights, otherwise, this
2425 * parameter is ignored.
2426 * @iova_start: The offset of the region's starting I/O virtual address.
2427 */
2428 int ib_rereg_phys_mr(struct ib_mr *mr,
2429 int mr_rereg_mask,
2430 struct ib_pd *pd,
2431 struct ib_phys_buf *phys_buf_array,
2432 int num_phys_buf,
2433 int mr_access_flags,
2434 u64 *iova_start);
2435
2436 /**
2437 * ib_query_mr - Retrieves information about a specific memory region.
2438 * @mr: The memory region to retrieve information about.
2439 * @mr_attr: The attributes of the specified memory region.
2440 */
2441 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2442
2443 /**
2444 * ib_dereg_mr - Deregisters a memory region and removes it from the
2445 * HCA translation table.
2446 * @mr: The memory region to deregister.
2447 *
2448 * This function can fail, if the memory region has memory windows bound to it.
2449 */
2450 int ib_dereg_mr(struct ib_mr *mr);
2451
2452
2453 /**
2454 * ib_create_mr - Allocates a memory region that may be used for
2455 * signature handover operations.
2456 * @pd: The protection domain associated with the region.
2457 * @mr_init_attr: memory region init attributes.
2458 */
2459 struct ib_mr *ib_create_mr(struct ib_pd *pd,
2460 struct ib_mr_init_attr *mr_init_attr);
2461
2462 /**
2463 * ib_destroy_mr - Destroys a memory region that was created using
2464 * ib_create_mr and removes it from HW translation tables.
2465 * @mr: The memory region to destroy.
2466 *
2467 * This function can fail, if the memory region has memory windows bound to it.
2468 */
2469 int ib_destroy_mr(struct ib_mr *mr);
2470
2471 /**
2472 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2473 * IB_WR_FAST_REG_MR send work request.
2474 * @pd: The protection domain associated with the region.
2475 * @max_page_list_len: requested max physical buffer list length to be
2476 * used with fast register work requests for this MR.
2477 */
2478 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2479
2480 /**
2481 * ib_alloc_fast_reg_page_list - Allocates a page list array
2482 * @device - ib device pointer.
2483 * @page_list_len - size of the page list array to be allocated.
2484 *
2485 * This allocates and returns a struct ib_fast_reg_page_list * and a
2486 * page_list array that is at least page_list_len in size. The actual
2487 * size is returned in max_page_list_len. The caller is responsible
2488 * for initializing the contents of the page_list array before posting
2489 * a send work request with the IB_WC_FAST_REG_MR opcode.
2490 *
2491 * The page_list array entries must be translated using one of the
2492 * ib_dma_*() functions just like the addresses passed to
2493 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2494 * ib_fast_reg_page_list must not be modified by the caller until the
2495 * IB_WC_FAST_REG_MR work request completes.
2496 */
2497 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2498 struct ib_device *device, int page_list_len);
2499
2500 /**
2501 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2502 * page list array.
2503 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2504 */
2505 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2506
2507 /**
2508 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2509 * R_Key and L_Key.
2510 * @mr - struct ib_mr pointer to be updated.
2511 * @newkey - new key to be used.
2512 */
2513 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2514 {
2515 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2516 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2517 }
2518
2519 /**
2520 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2521 * for calculating a new rkey for type 2 memory windows.
2522 * @rkey - the rkey to increment.
2523 */
2524 static inline u32 ib_inc_rkey(u32 rkey)
2525 {
2526 const u32 mask = 0x000000ff;
2527 return ((rkey + 1) & mask) | (rkey & ~mask);
2528 }
2529
2530 /**
2531 * ib_alloc_mw - Allocates a memory window.
2532 * @pd: The protection domain associated with the memory window.
2533 * @type: The type of the memory window (1 or 2).
2534 */
2535 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2536
2537 /**
2538 * ib_bind_mw - Posts a work request to the send queue of the specified
2539 * QP, which binds the memory window to the given address range and
2540 * remote access attributes.
2541 * @qp: QP to post the bind work request on.
2542 * @mw: The memory window to bind.
2543 * @mw_bind: Specifies information about the memory window, including
2544 * its address range, remote access rights, and associated memory region.
2545 *
2546 * If there is no immediate error, the function will update the rkey member
2547 * of the mw parameter to its new value. The bind operation can still fail
2548 * asynchronously.
2549 */
2550 static inline int ib_bind_mw(struct ib_qp *qp,
2551 struct ib_mw *mw,
2552 struct ib_mw_bind *mw_bind)
2553 {
2554 /* XXX reference counting in corresponding MR? */
2555 return mw->device->bind_mw ?
2556 mw->device->bind_mw(qp, mw, mw_bind) :
2557 -ENOSYS;
2558 }
2559
2560 /**
2561 * ib_dealloc_mw - Deallocates a memory window.
2562 * @mw: The memory window to deallocate.
2563 */
2564 int ib_dealloc_mw(struct ib_mw *mw);
2565
2566 /**
2567 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2568 * @pd: The protection domain associated with the unmapped region.
2569 * @mr_access_flags: Specifies the memory access rights.
2570 * @fmr_attr: Attributes of the unmapped region.
2571 *
2572 * A fast memory region must be mapped before it can be used as part of
2573 * a work request.
2574 */
2575 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2576 int mr_access_flags,
2577 struct ib_fmr_attr *fmr_attr);
2578
2579 /**
2580 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2581 * @fmr: The fast memory region to associate with the pages.
2582 * @page_list: An array of physical pages to map to the fast memory region.
2583 * @list_len: The number of pages in page_list.
2584 * @iova: The I/O virtual address to use with the mapped region.
2585 */
2586 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2587 u64 *page_list, int list_len,
2588 u64 iova)
2589 {
2590 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2591 }
2592
2593 /**
2594 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2595 * @fmr_list: A linked list of fast memory regions to unmap.
2596 */
2597 int ib_unmap_fmr(struct list_head *fmr_list);
2598
2599 /**
2600 * ib_dealloc_fmr - Deallocates a fast memory region.
2601 * @fmr: The fast memory region to deallocate.
2602 */
2603 int ib_dealloc_fmr(struct ib_fmr *fmr);
2604
2605 /**
2606 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2607 * @qp: QP to attach to the multicast group. The QP must be type
2608 * IB_QPT_UD.
2609 * @gid: Multicast group GID.
2610 * @lid: Multicast group LID in host byte order.
2611 *
2612 * In order to send and receive multicast packets, subnet
2613 * administration must have created the multicast group and configured
2614 * the fabric appropriately. The port associated with the specified
2615 * QP must also be a member of the multicast group.
2616 */
2617 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2618
2619 /**
2620 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2621 * @qp: QP to detach from the multicast group.
2622 * @gid: Multicast group GID.
2623 * @lid: Multicast group LID in host byte order.
2624 */
2625 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2626
2627 /**
2628 * ib_alloc_xrcd - Allocates an XRC domain.
2629 * @device: The device on which to allocate the XRC domain.
2630 */
2631 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2632
2633 /**
2634 * ib_dealloc_xrcd - Deallocates an XRC domain.
2635 * @xrcd: The XRC domain to deallocate.
2636 */
2637 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2638
2639 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2640 struct ib_flow_attr *flow_attr, int domain);
2641 int ib_destroy_flow(struct ib_flow *flow_id);
2642
2643 static inline int ib_check_mr_access(int flags)
2644 {
2645 /*
2646 * Local write permission is required if remote write or
2647 * remote atomic permission is also requested.
2648 */
2649 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2650 !(flags & IB_ACCESS_LOCAL_WRITE))
2651 return -EINVAL;
2652
2653 return 0;
2654 }
2655
2656 /**
2657 * ib_check_mr_status: lightweight check of MR status.
2658 * This routine may provide status checks on a selected
2659 * ib_mr. first use is for signature status check.
2660 *
2661 * @mr: A memory region.
2662 * @check_mask: Bitmask of which checks to perform from
2663 * ib_mr_status_check enumeration.
2664 * @mr_status: The container of relevant status checks.
2665 * failed checks will be indicated in the status bitmask
2666 * and the relevant info shall be in the error item.
2667 */
2668 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2669 struct ib_mr_status *mr_status);
2670
2671 #endif /* IB_VERBS_H */