]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/rdma/ib_verbs.h
Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[mirror_ubuntu-artful-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <uapi/linux/if_ether.h>
53
54 #include <linux/atomic.h>
55 #include <linux/mmu_notifier.h>
56 #include <asm/uaccess.h>
57
58 extern struct workqueue_struct *ib_wq;
59
60 union ib_gid {
61 u8 raw[16];
62 struct {
63 __be64 subnet_prefix;
64 __be64 interface_id;
65 } global;
66 };
67
68 extern union ib_gid zgid;
69
70 struct ib_gid_attr {
71 struct net_device *ndev;
72 };
73
74 enum rdma_node_type {
75 /* IB values map to NodeInfo:NodeType. */
76 RDMA_NODE_IB_CA = 1,
77 RDMA_NODE_IB_SWITCH,
78 RDMA_NODE_IB_ROUTER,
79 RDMA_NODE_RNIC,
80 RDMA_NODE_USNIC,
81 RDMA_NODE_USNIC_UDP,
82 };
83
84 enum rdma_transport_type {
85 RDMA_TRANSPORT_IB,
86 RDMA_TRANSPORT_IWARP,
87 RDMA_TRANSPORT_USNIC,
88 RDMA_TRANSPORT_USNIC_UDP
89 };
90
91 enum rdma_protocol_type {
92 RDMA_PROTOCOL_IB,
93 RDMA_PROTOCOL_IBOE,
94 RDMA_PROTOCOL_IWARP,
95 RDMA_PROTOCOL_USNIC_UDP
96 };
97
98 __attribute_const__ enum rdma_transport_type
99 rdma_node_get_transport(enum rdma_node_type node_type);
100
101 enum rdma_link_layer {
102 IB_LINK_LAYER_UNSPECIFIED,
103 IB_LINK_LAYER_INFINIBAND,
104 IB_LINK_LAYER_ETHERNET,
105 };
106
107 enum ib_device_cap_flags {
108 IB_DEVICE_RESIZE_MAX_WR = 1,
109 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
110 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
111 IB_DEVICE_RAW_MULTI = (1<<3),
112 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
113 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
114 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
115 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
116 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
117 IB_DEVICE_INIT_TYPE = (1<<9),
118 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
119 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
120 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
121 IB_DEVICE_SRQ_RESIZE = (1<<13),
122 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
123 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
124 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
125 IB_DEVICE_MEM_WINDOW = (1<<17),
126 /*
127 * Devices should set IB_DEVICE_UD_IP_SUM if they support
128 * insertion of UDP and TCP checksum on outgoing UD IPoIB
129 * messages and can verify the validity of checksum for
130 * incoming messages. Setting this flag implies that the
131 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
132 */
133 IB_DEVICE_UD_IP_CSUM = (1<<18),
134 IB_DEVICE_UD_TSO = (1<<19),
135 IB_DEVICE_XRC = (1<<20),
136 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
137 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
138 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
139 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
140 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
141 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
142 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
143 };
144
145 enum ib_signature_prot_cap {
146 IB_PROT_T10DIF_TYPE_1 = 1,
147 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
148 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
149 };
150
151 enum ib_signature_guard_cap {
152 IB_GUARD_T10DIF_CRC = 1,
153 IB_GUARD_T10DIF_CSUM = 1 << 1,
154 };
155
156 enum ib_atomic_cap {
157 IB_ATOMIC_NONE,
158 IB_ATOMIC_HCA,
159 IB_ATOMIC_GLOB
160 };
161
162 enum ib_odp_general_cap_bits {
163 IB_ODP_SUPPORT = 1 << 0,
164 };
165
166 enum ib_odp_transport_cap_bits {
167 IB_ODP_SUPPORT_SEND = 1 << 0,
168 IB_ODP_SUPPORT_RECV = 1 << 1,
169 IB_ODP_SUPPORT_WRITE = 1 << 2,
170 IB_ODP_SUPPORT_READ = 1 << 3,
171 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
172 };
173
174 struct ib_odp_caps {
175 uint64_t general_caps;
176 struct {
177 uint32_t rc_odp_caps;
178 uint32_t uc_odp_caps;
179 uint32_t ud_odp_caps;
180 } per_transport_caps;
181 };
182
183 enum ib_cq_creation_flags {
184 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
185 };
186
187 struct ib_cq_init_attr {
188 unsigned int cqe;
189 int comp_vector;
190 u32 flags;
191 };
192
193 struct ib_device_attr {
194 u64 fw_ver;
195 __be64 sys_image_guid;
196 u64 max_mr_size;
197 u64 page_size_cap;
198 u32 vendor_id;
199 u32 vendor_part_id;
200 u32 hw_ver;
201 int max_qp;
202 int max_qp_wr;
203 int device_cap_flags;
204 int max_sge;
205 int max_sge_rd;
206 int max_cq;
207 int max_cqe;
208 int max_mr;
209 int max_pd;
210 int max_qp_rd_atom;
211 int max_ee_rd_atom;
212 int max_res_rd_atom;
213 int max_qp_init_rd_atom;
214 int max_ee_init_rd_atom;
215 enum ib_atomic_cap atomic_cap;
216 enum ib_atomic_cap masked_atomic_cap;
217 int max_ee;
218 int max_rdd;
219 int max_mw;
220 int max_raw_ipv6_qp;
221 int max_raw_ethy_qp;
222 int max_mcast_grp;
223 int max_mcast_qp_attach;
224 int max_total_mcast_qp_attach;
225 int max_ah;
226 int max_fmr;
227 int max_map_per_fmr;
228 int max_srq;
229 int max_srq_wr;
230 int max_srq_sge;
231 unsigned int max_fast_reg_page_list_len;
232 u16 max_pkeys;
233 u8 local_ca_ack_delay;
234 int sig_prot_cap;
235 int sig_guard_cap;
236 struct ib_odp_caps odp_caps;
237 uint64_t timestamp_mask;
238 uint64_t hca_core_clock; /* in KHZ */
239 };
240
241 enum ib_mtu {
242 IB_MTU_256 = 1,
243 IB_MTU_512 = 2,
244 IB_MTU_1024 = 3,
245 IB_MTU_2048 = 4,
246 IB_MTU_4096 = 5
247 };
248
249 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
250 {
251 switch (mtu) {
252 case IB_MTU_256: return 256;
253 case IB_MTU_512: return 512;
254 case IB_MTU_1024: return 1024;
255 case IB_MTU_2048: return 2048;
256 case IB_MTU_4096: return 4096;
257 default: return -1;
258 }
259 }
260
261 enum ib_port_state {
262 IB_PORT_NOP = 0,
263 IB_PORT_DOWN = 1,
264 IB_PORT_INIT = 2,
265 IB_PORT_ARMED = 3,
266 IB_PORT_ACTIVE = 4,
267 IB_PORT_ACTIVE_DEFER = 5
268 };
269
270 enum ib_port_cap_flags {
271 IB_PORT_SM = 1 << 1,
272 IB_PORT_NOTICE_SUP = 1 << 2,
273 IB_PORT_TRAP_SUP = 1 << 3,
274 IB_PORT_OPT_IPD_SUP = 1 << 4,
275 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
276 IB_PORT_SL_MAP_SUP = 1 << 6,
277 IB_PORT_MKEY_NVRAM = 1 << 7,
278 IB_PORT_PKEY_NVRAM = 1 << 8,
279 IB_PORT_LED_INFO_SUP = 1 << 9,
280 IB_PORT_SM_DISABLED = 1 << 10,
281 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
282 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
283 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
284 IB_PORT_CM_SUP = 1 << 16,
285 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
286 IB_PORT_REINIT_SUP = 1 << 18,
287 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
288 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
289 IB_PORT_DR_NOTICE_SUP = 1 << 21,
290 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
291 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
292 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
293 IB_PORT_CLIENT_REG_SUP = 1 << 25,
294 IB_PORT_IP_BASED_GIDS = 1 << 26,
295 };
296
297 enum ib_port_width {
298 IB_WIDTH_1X = 1,
299 IB_WIDTH_4X = 2,
300 IB_WIDTH_8X = 4,
301 IB_WIDTH_12X = 8
302 };
303
304 static inline int ib_width_enum_to_int(enum ib_port_width width)
305 {
306 switch (width) {
307 case IB_WIDTH_1X: return 1;
308 case IB_WIDTH_4X: return 4;
309 case IB_WIDTH_8X: return 8;
310 case IB_WIDTH_12X: return 12;
311 default: return -1;
312 }
313 }
314
315 enum ib_port_speed {
316 IB_SPEED_SDR = 1,
317 IB_SPEED_DDR = 2,
318 IB_SPEED_QDR = 4,
319 IB_SPEED_FDR10 = 8,
320 IB_SPEED_FDR = 16,
321 IB_SPEED_EDR = 32
322 };
323
324 struct ib_protocol_stats {
325 /* TBD... */
326 };
327
328 struct iw_protocol_stats {
329 u64 ipInReceives;
330 u64 ipInHdrErrors;
331 u64 ipInTooBigErrors;
332 u64 ipInNoRoutes;
333 u64 ipInAddrErrors;
334 u64 ipInUnknownProtos;
335 u64 ipInTruncatedPkts;
336 u64 ipInDiscards;
337 u64 ipInDelivers;
338 u64 ipOutForwDatagrams;
339 u64 ipOutRequests;
340 u64 ipOutDiscards;
341 u64 ipOutNoRoutes;
342 u64 ipReasmTimeout;
343 u64 ipReasmReqds;
344 u64 ipReasmOKs;
345 u64 ipReasmFails;
346 u64 ipFragOKs;
347 u64 ipFragFails;
348 u64 ipFragCreates;
349 u64 ipInMcastPkts;
350 u64 ipOutMcastPkts;
351 u64 ipInBcastPkts;
352 u64 ipOutBcastPkts;
353
354 u64 tcpRtoAlgorithm;
355 u64 tcpRtoMin;
356 u64 tcpRtoMax;
357 u64 tcpMaxConn;
358 u64 tcpActiveOpens;
359 u64 tcpPassiveOpens;
360 u64 tcpAttemptFails;
361 u64 tcpEstabResets;
362 u64 tcpCurrEstab;
363 u64 tcpInSegs;
364 u64 tcpOutSegs;
365 u64 tcpRetransSegs;
366 u64 tcpInErrs;
367 u64 tcpOutRsts;
368 };
369
370 union rdma_protocol_stats {
371 struct ib_protocol_stats ib;
372 struct iw_protocol_stats iw;
373 };
374
375 /* Define bits for the various functionality this port needs to be supported by
376 * the core.
377 */
378 /* Management 0x00000FFF */
379 #define RDMA_CORE_CAP_IB_MAD 0x00000001
380 #define RDMA_CORE_CAP_IB_SMI 0x00000002
381 #define RDMA_CORE_CAP_IB_CM 0x00000004
382 #define RDMA_CORE_CAP_IW_CM 0x00000008
383 #define RDMA_CORE_CAP_IB_SA 0x00000010
384 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
385
386 /* Address format 0x000FF000 */
387 #define RDMA_CORE_CAP_AF_IB 0x00001000
388 #define RDMA_CORE_CAP_ETH_AH 0x00002000
389
390 /* Protocol 0xFFF00000 */
391 #define RDMA_CORE_CAP_PROT_IB 0x00100000
392 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
393 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
394
395 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
396 | RDMA_CORE_CAP_IB_MAD \
397 | RDMA_CORE_CAP_IB_SMI \
398 | RDMA_CORE_CAP_IB_CM \
399 | RDMA_CORE_CAP_IB_SA \
400 | RDMA_CORE_CAP_AF_IB)
401 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
402 | RDMA_CORE_CAP_IB_MAD \
403 | RDMA_CORE_CAP_IB_CM \
404 | RDMA_CORE_CAP_AF_IB \
405 | RDMA_CORE_CAP_ETH_AH)
406 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
407 | RDMA_CORE_CAP_IW_CM)
408 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
409 | RDMA_CORE_CAP_OPA_MAD)
410
411 struct ib_port_attr {
412 enum ib_port_state state;
413 enum ib_mtu max_mtu;
414 enum ib_mtu active_mtu;
415 int gid_tbl_len;
416 u32 port_cap_flags;
417 u32 max_msg_sz;
418 u32 bad_pkey_cntr;
419 u32 qkey_viol_cntr;
420 u16 pkey_tbl_len;
421 u16 lid;
422 u16 sm_lid;
423 u8 lmc;
424 u8 max_vl_num;
425 u8 sm_sl;
426 u8 subnet_timeout;
427 u8 init_type_reply;
428 u8 active_width;
429 u8 active_speed;
430 u8 phys_state;
431 };
432
433 enum ib_device_modify_flags {
434 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
435 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
436 };
437
438 struct ib_device_modify {
439 u64 sys_image_guid;
440 char node_desc[64];
441 };
442
443 enum ib_port_modify_flags {
444 IB_PORT_SHUTDOWN = 1,
445 IB_PORT_INIT_TYPE = (1<<2),
446 IB_PORT_RESET_QKEY_CNTR = (1<<3)
447 };
448
449 struct ib_port_modify {
450 u32 set_port_cap_mask;
451 u32 clr_port_cap_mask;
452 u8 init_type;
453 };
454
455 enum ib_event_type {
456 IB_EVENT_CQ_ERR,
457 IB_EVENT_QP_FATAL,
458 IB_EVENT_QP_REQ_ERR,
459 IB_EVENT_QP_ACCESS_ERR,
460 IB_EVENT_COMM_EST,
461 IB_EVENT_SQ_DRAINED,
462 IB_EVENT_PATH_MIG,
463 IB_EVENT_PATH_MIG_ERR,
464 IB_EVENT_DEVICE_FATAL,
465 IB_EVENT_PORT_ACTIVE,
466 IB_EVENT_PORT_ERR,
467 IB_EVENT_LID_CHANGE,
468 IB_EVENT_PKEY_CHANGE,
469 IB_EVENT_SM_CHANGE,
470 IB_EVENT_SRQ_ERR,
471 IB_EVENT_SRQ_LIMIT_REACHED,
472 IB_EVENT_QP_LAST_WQE_REACHED,
473 IB_EVENT_CLIENT_REREGISTER,
474 IB_EVENT_GID_CHANGE,
475 };
476
477 __attribute_const__ const char *ib_event_msg(enum ib_event_type event);
478
479 struct ib_event {
480 struct ib_device *device;
481 union {
482 struct ib_cq *cq;
483 struct ib_qp *qp;
484 struct ib_srq *srq;
485 u8 port_num;
486 } element;
487 enum ib_event_type event;
488 };
489
490 struct ib_event_handler {
491 struct ib_device *device;
492 void (*handler)(struct ib_event_handler *, struct ib_event *);
493 struct list_head list;
494 };
495
496 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
497 do { \
498 (_ptr)->device = _device; \
499 (_ptr)->handler = _handler; \
500 INIT_LIST_HEAD(&(_ptr)->list); \
501 } while (0)
502
503 struct ib_global_route {
504 union ib_gid dgid;
505 u32 flow_label;
506 u8 sgid_index;
507 u8 hop_limit;
508 u8 traffic_class;
509 };
510
511 struct ib_grh {
512 __be32 version_tclass_flow;
513 __be16 paylen;
514 u8 next_hdr;
515 u8 hop_limit;
516 union ib_gid sgid;
517 union ib_gid dgid;
518 };
519
520 enum {
521 IB_MULTICAST_QPN = 0xffffff
522 };
523
524 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
525
526 enum ib_ah_flags {
527 IB_AH_GRH = 1
528 };
529
530 enum ib_rate {
531 IB_RATE_PORT_CURRENT = 0,
532 IB_RATE_2_5_GBPS = 2,
533 IB_RATE_5_GBPS = 5,
534 IB_RATE_10_GBPS = 3,
535 IB_RATE_20_GBPS = 6,
536 IB_RATE_30_GBPS = 4,
537 IB_RATE_40_GBPS = 7,
538 IB_RATE_60_GBPS = 8,
539 IB_RATE_80_GBPS = 9,
540 IB_RATE_120_GBPS = 10,
541 IB_RATE_14_GBPS = 11,
542 IB_RATE_56_GBPS = 12,
543 IB_RATE_112_GBPS = 13,
544 IB_RATE_168_GBPS = 14,
545 IB_RATE_25_GBPS = 15,
546 IB_RATE_100_GBPS = 16,
547 IB_RATE_200_GBPS = 17,
548 IB_RATE_300_GBPS = 18
549 };
550
551 /**
552 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
553 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
554 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
555 * @rate: rate to convert.
556 */
557 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
558
559 /**
560 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
561 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
562 * @rate: rate to convert.
563 */
564 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
565
566
567 /**
568 * enum ib_mr_type - memory region type
569 * @IB_MR_TYPE_MEM_REG: memory region that is used for
570 * normal registration
571 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
572 * signature operations (data-integrity
573 * capable regions)
574 */
575 enum ib_mr_type {
576 IB_MR_TYPE_MEM_REG,
577 IB_MR_TYPE_SIGNATURE,
578 };
579
580 /**
581 * Signature types
582 * IB_SIG_TYPE_NONE: Unprotected.
583 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
584 */
585 enum ib_signature_type {
586 IB_SIG_TYPE_NONE,
587 IB_SIG_TYPE_T10_DIF,
588 };
589
590 /**
591 * Signature T10-DIF block-guard types
592 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
593 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
594 */
595 enum ib_t10_dif_bg_type {
596 IB_T10DIF_CRC,
597 IB_T10DIF_CSUM
598 };
599
600 /**
601 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
602 * domain.
603 * @bg_type: T10-DIF block guard type (CRC|CSUM)
604 * @pi_interval: protection information interval.
605 * @bg: seed of guard computation.
606 * @app_tag: application tag of guard block
607 * @ref_tag: initial guard block reference tag.
608 * @ref_remap: Indicate wethear the reftag increments each block
609 * @app_escape: Indicate to skip block check if apptag=0xffff
610 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
611 * @apptag_check_mask: check bitmask of application tag.
612 */
613 struct ib_t10_dif_domain {
614 enum ib_t10_dif_bg_type bg_type;
615 u16 pi_interval;
616 u16 bg;
617 u16 app_tag;
618 u32 ref_tag;
619 bool ref_remap;
620 bool app_escape;
621 bool ref_escape;
622 u16 apptag_check_mask;
623 };
624
625 /**
626 * struct ib_sig_domain - Parameters for signature domain
627 * @sig_type: specific signauture type
628 * @sig: union of all signature domain attributes that may
629 * be used to set domain layout.
630 */
631 struct ib_sig_domain {
632 enum ib_signature_type sig_type;
633 union {
634 struct ib_t10_dif_domain dif;
635 } sig;
636 };
637
638 /**
639 * struct ib_sig_attrs - Parameters for signature handover operation
640 * @check_mask: bitmask for signature byte check (8 bytes)
641 * @mem: memory domain layout desciptor.
642 * @wire: wire domain layout desciptor.
643 */
644 struct ib_sig_attrs {
645 u8 check_mask;
646 struct ib_sig_domain mem;
647 struct ib_sig_domain wire;
648 };
649
650 enum ib_sig_err_type {
651 IB_SIG_BAD_GUARD,
652 IB_SIG_BAD_REFTAG,
653 IB_SIG_BAD_APPTAG,
654 };
655
656 /**
657 * struct ib_sig_err - signature error descriptor
658 */
659 struct ib_sig_err {
660 enum ib_sig_err_type err_type;
661 u32 expected;
662 u32 actual;
663 u64 sig_err_offset;
664 u32 key;
665 };
666
667 enum ib_mr_status_check {
668 IB_MR_CHECK_SIG_STATUS = 1,
669 };
670
671 /**
672 * struct ib_mr_status - Memory region status container
673 *
674 * @fail_status: Bitmask of MR checks status. For each
675 * failed check a corresponding status bit is set.
676 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
677 * failure.
678 */
679 struct ib_mr_status {
680 u32 fail_status;
681 struct ib_sig_err sig_err;
682 };
683
684 /**
685 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
686 * enum.
687 * @mult: multiple to convert.
688 */
689 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
690
691 struct ib_ah_attr {
692 struct ib_global_route grh;
693 u16 dlid;
694 u8 sl;
695 u8 src_path_bits;
696 u8 static_rate;
697 u8 ah_flags;
698 u8 port_num;
699 u8 dmac[ETH_ALEN];
700 u16 vlan_id;
701 };
702
703 enum ib_wc_status {
704 IB_WC_SUCCESS,
705 IB_WC_LOC_LEN_ERR,
706 IB_WC_LOC_QP_OP_ERR,
707 IB_WC_LOC_EEC_OP_ERR,
708 IB_WC_LOC_PROT_ERR,
709 IB_WC_WR_FLUSH_ERR,
710 IB_WC_MW_BIND_ERR,
711 IB_WC_BAD_RESP_ERR,
712 IB_WC_LOC_ACCESS_ERR,
713 IB_WC_REM_INV_REQ_ERR,
714 IB_WC_REM_ACCESS_ERR,
715 IB_WC_REM_OP_ERR,
716 IB_WC_RETRY_EXC_ERR,
717 IB_WC_RNR_RETRY_EXC_ERR,
718 IB_WC_LOC_RDD_VIOL_ERR,
719 IB_WC_REM_INV_RD_REQ_ERR,
720 IB_WC_REM_ABORT_ERR,
721 IB_WC_INV_EECN_ERR,
722 IB_WC_INV_EEC_STATE_ERR,
723 IB_WC_FATAL_ERR,
724 IB_WC_RESP_TIMEOUT_ERR,
725 IB_WC_GENERAL_ERR
726 };
727
728 __attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status);
729
730 enum ib_wc_opcode {
731 IB_WC_SEND,
732 IB_WC_RDMA_WRITE,
733 IB_WC_RDMA_READ,
734 IB_WC_COMP_SWAP,
735 IB_WC_FETCH_ADD,
736 IB_WC_BIND_MW,
737 IB_WC_LSO,
738 IB_WC_LOCAL_INV,
739 IB_WC_FAST_REG_MR,
740 IB_WC_MASKED_COMP_SWAP,
741 IB_WC_MASKED_FETCH_ADD,
742 /*
743 * Set value of IB_WC_RECV so consumers can test if a completion is a
744 * receive by testing (opcode & IB_WC_RECV).
745 */
746 IB_WC_RECV = 1 << 7,
747 IB_WC_RECV_RDMA_WITH_IMM
748 };
749
750 enum ib_wc_flags {
751 IB_WC_GRH = 1,
752 IB_WC_WITH_IMM = (1<<1),
753 IB_WC_WITH_INVALIDATE = (1<<2),
754 IB_WC_IP_CSUM_OK = (1<<3),
755 IB_WC_WITH_SMAC = (1<<4),
756 IB_WC_WITH_VLAN = (1<<5),
757 };
758
759 struct ib_wc {
760 u64 wr_id;
761 enum ib_wc_status status;
762 enum ib_wc_opcode opcode;
763 u32 vendor_err;
764 u32 byte_len;
765 struct ib_qp *qp;
766 union {
767 __be32 imm_data;
768 u32 invalidate_rkey;
769 } ex;
770 u32 src_qp;
771 int wc_flags;
772 u16 pkey_index;
773 u16 slid;
774 u8 sl;
775 u8 dlid_path_bits;
776 u8 port_num; /* valid only for DR SMPs on switches */
777 u8 smac[ETH_ALEN];
778 u16 vlan_id;
779 };
780
781 enum ib_cq_notify_flags {
782 IB_CQ_SOLICITED = 1 << 0,
783 IB_CQ_NEXT_COMP = 1 << 1,
784 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
785 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
786 };
787
788 enum ib_srq_type {
789 IB_SRQT_BASIC,
790 IB_SRQT_XRC
791 };
792
793 enum ib_srq_attr_mask {
794 IB_SRQ_MAX_WR = 1 << 0,
795 IB_SRQ_LIMIT = 1 << 1,
796 };
797
798 struct ib_srq_attr {
799 u32 max_wr;
800 u32 max_sge;
801 u32 srq_limit;
802 };
803
804 struct ib_srq_init_attr {
805 void (*event_handler)(struct ib_event *, void *);
806 void *srq_context;
807 struct ib_srq_attr attr;
808 enum ib_srq_type srq_type;
809
810 union {
811 struct {
812 struct ib_xrcd *xrcd;
813 struct ib_cq *cq;
814 } xrc;
815 } ext;
816 };
817
818 struct ib_qp_cap {
819 u32 max_send_wr;
820 u32 max_recv_wr;
821 u32 max_send_sge;
822 u32 max_recv_sge;
823 u32 max_inline_data;
824 };
825
826 enum ib_sig_type {
827 IB_SIGNAL_ALL_WR,
828 IB_SIGNAL_REQ_WR
829 };
830
831 enum ib_qp_type {
832 /*
833 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
834 * here (and in that order) since the MAD layer uses them as
835 * indices into a 2-entry table.
836 */
837 IB_QPT_SMI,
838 IB_QPT_GSI,
839
840 IB_QPT_RC,
841 IB_QPT_UC,
842 IB_QPT_UD,
843 IB_QPT_RAW_IPV6,
844 IB_QPT_RAW_ETHERTYPE,
845 IB_QPT_RAW_PACKET = 8,
846 IB_QPT_XRC_INI = 9,
847 IB_QPT_XRC_TGT,
848 IB_QPT_MAX,
849 /* Reserve a range for qp types internal to the low level driver.
850 * These qp types will not be visible at the IB core layer, so the
851 * IB_QPT_MAX usages should not be affected in the core layer
852 */
853 IB_QPT_RESERVED1 = 0x1000,
854 IB_QPT_RESERVED2,
855 IB_QPT_RESERVED3,
856 IB_QPT_RESERVED4,
857 IB_QPT_RESERVED5,
858 IB_QPT_RESERVED6,
859 IB_QPT_RESERVED7,
860 IB_QPT_RESERVED8,
861 IB_QPT_RESERVED9,
862 IB_QPT_RESERVED10,
863 };
864
865 enum ib_qp_create_flags {
866 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
867 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
868 IB_QP_CREATE_NETIF_QP = 1 << 5,
869 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
870 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
871 /* reserve bits 26-31 for low level drivers' internal use */
872 IB_QP_CREATE_RESERVED_START = 1 << 26,
873 IB_QP_CREATE_RESERVED_END = 1 << 31,
874 };
875
876
877 /*
878 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
879 * callback to destroy the passed in QP.
880 */
881
882 struct ib_qp_init_attr {
883 void (*event_handler)(struct ib_event *, void *);
884 void *qp_context;
885 struct ib_cq *send_cq;
886 struct ib_cq *recv_cq;
887 struct ib_srq *srq;
888 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
889 struct ib_qp_cap cap;
890 enum ib_sig_type sq_sig_type;
891 enum ib_qp_type qp_type;
892 enum ib_qp_create_flags create_flags;
893 u8 port_num; /* special QP types only */
894 };
895
896 struct ib_qp_open_attr {
897 void (*event_handler)(struct ib_event *, void *);
898 void *qp_context;
899 u32 qp_num;
900 enum ib_qp_type qp_type;
901 };
902
903 enum ib_rnr_timeout {
904 IB_RNR_TIMER_655_36 = 0,
905 IB_RNR_TIMER_000_01 = 1,
906 IB_RNR_TIMER_000_02 = 2,
907 IB_RNR_TIMER_000_03 = 3,
908 IB_RNR_TIMER_000_04 = 4,
909 IB_RNR_TIMER_000_06 = 5,
910 IB_RNR_TIMER_000_08 = 6,
911 IB_RNR_TIMER_000_12 = 7,
912 IB_RNR_TIMER_000_16 = 8,
913 IB_RNR_TIMER_000_24 = 9,
914 IB_RNR_TIMER_000_32 = 10,
915 IB_RNR_TIMER_000_48 = 11,
916 IB_RNR_TIMER_000_64 = 12,
917 IB_RNR_TIMER_000_96 = 13,
918 IB_RNR_TIMER_001_28 = 14,
919 IB_RNR_TIMER_001_92 = 15,
920 IB_RNR_TIMER_002_56 = 16,
921 IB_RNR_TIMER_003_84 = 17,
922 IB_RNR_TIMER_005_12 = 18,
923 IB_RNR_TIMER_007_68 = 19,
924 IB_RNR_TIMER_010_24 = 20,
925 IB_RNR_TIMER_015_36 = 21,
926 IB_RNR_TIMER_020_48 = 22,
927 IB_RNR_TIMER_030_72 = 23,
928 IB_RNR_TIMER_040_96 = 24,
929 IB_RNR_TIMER_061_44 = 25,
930 IB_RNR_TIMER_081_92 = 26,
931 IB_RNR_TIMER_122_88 = 27,
932 IB_RNR_TIMER_163_84 = 28,
933 IB_RNR_TIMER_245_76 = 29,
934 IB_RNR_TIMER_327_68 = 30,
935 IB_RNR_TIMER_491_52 = 31
936 };
937
938 enum ib_qp_attr_mask {
939 IB_QP_STATE = 1,
940 IB_QP_CUR_STATE = (1<<1),
941 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
942 IB_QP_ACCESS_FLAGS = (1<<3),
943 IB_QP_PKEY_INDEX = (1<<4),
944 IB_QP_PORT = (1<<5),
945 IB_QP_QKEY = (1<<6),
946 IB_QP_AV = (1<<7),
947 IB_QP_PATH_MTU = (1<<8),
948 IB_QP_TIMEOUT = (1<<9),
949 IB_QP_RETRY_CNT = (1<<10),
950 IB_QP_RNR_RETRY = (1<<11),
951 IB_QP_RQ_PSN = (1<<12),
952 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
953 IB_QP_ALT_PATH = (1<<14),
954 IB_QP_MIN_RNR_TIMER = (1<<15),
955 IB_QP_SQ_PSN = (1<<16),
956 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
957 IB_QP_PATH_MIG_STATE = (1<<18),
958 IB_QP_CAP = (1<<19),
959 IB_QP_DEST_QPN = (1<<20),
960 IB_QP_SMAC = (1<<21),
961 IB_QP_ALT_SMAC = (1<<22),
962 IB_QP_VID = (1<<23),
963 IB_QP_ALT_VID = (1<<24),
964 };
965
966 enum ib_qp_state {
967 IB_QPS_RESET,
968 IB_QPS_INIT,
969 IB_QPS_RTR,
970 IB_QPS_RTS,
971 IB_QPS_SQD,
972 IB_QPS_SQE,
973 IB_QPS_ERR
974 };
975
976 enum ib_mig_state {
977 IB_MIG_MIGRATED,
978 IB_MIG_REARM,
979 IB_MIG_ARMED
980 };
981
982 enum ib_mw_type {
983 IB_MW_TYPE_1 = 1,
984 IB_MW_TYPE_2 = 2
985 };
986
987 struct ib_qp_attr {
988 enum ib_qp_state qp_state;
989 enum ib_qp_state cur_qp_state;
990 enum ib_mtu path_mtu;
991 enum ib_mig_state path_mig_state;
992 u32 qkey;
993 u32 rq_psn;
994 u32 sq_psn;
995 u32 dest_qp_num;
996 int qp_access_flags;
997 struct ib_qp_cap cap;
998 struct ib_ah_attr ah_attr;
999 struct ib_ah_attr alt_ah_attr;
1000 u16 pkey_index;
1001 u16 alt_pkey_index;
1002 u8 en_sqd_async_notify;
1003 u8 sq_draining;
1004 u8 max_rd_atomic;
1005 u8 max_dest_rd_atomic;
1006 u8 min_rnr_timer;
1007 u8 port_num;
1008 u8 timeout;
1009 u8 retry_cnt;
1010 u8 rnr_retry;
1011 u8 alt_port_num;
1012 u8 alt_timeout;
1013 u8 smac[ETH_ALEN];
1014 u8 alt_smac[ETH_ALEN];
1015 u16 vlan_id;
1016 u16 alt_vlan_id;
1017 };
1018
1019 enum ib_wr_opcode {
1020 IB_WR_RDMA_WRITE,
1021 IB_WR_RDMA_WRITE_WITH_IMM,
1022 IB_WR_SEND,
1023 IB_WR_SEND_WITH_IMM,
1024 IB_WR_RDMA_READ,
1025 IB_WR_ATOMIC_CMP_AND_SWP,
1026 IB_WR_ATOMIC_FETCH_AND_ADD,
1027 IB_WR_LSO,
1028 IB_WR_SEND_WITH_INV,
1029 IB_WR_RDMA_READ_WITH_INV,
1030 IB_WR_LOCAL_INV,
1031 IB_WR_FAST_REG_MR,
1032 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1033 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1034 IB_WR_BIND_MW,
1035 IB_WR_REG_SIG_MR,
1036 /* reserve values for low level drivers' internal use.
1037 * These values will not be used at all in the ib core layer.
1038 */
1039 IB_WR_RESERVED1 = 0xf0,
1040 IB_WR_RESERVED2,
1041 IB_WR_RESERVED3,
1042 IB_WR_RESERVED4,
1043 IB_WR_RESERVED5,
1044 IB_WR_RESERVED6,
1045 IB_WR_RESERVED7,
1046 IB_WR_RESERVED8,
1047 IB_WR_RESERVED9,
1048 IB_WR_RESERVED10,
1049 };
1050
1051 enum ib_send_flags {
1052 IB_SEND_FENCE = 1,
1053 IB_SEND_SIGNALED = (1<<1),
1054 IB_SEND_SOLICITED = (1<<2),
1055 IB_SEND_INLINE = (1<<3),
1056 IB_SEND_IP_CSUM = (1<<4),
1057
1058 /* reserve bits 26-31 for low level drivers' internal use */
1059 IB_SEND_RESERVED_START = (1 << 26),
1060 IB_SEND_RESERVED_END = (1 << 31),
1061 };
1062
1063 struct ib_sge {
1064 u64 addr;
1065 u32 length;
1066 u32 lkey;
1067 };
1068
1069 struct ib_fast_reg_page_list {
1070 struct ib_device *device;
1071 u64 *page_list;
1072 unsigned int max_page_list_len;
1073 };
1074
1075 /**
1076 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1077 * @mr: A memory region to bind the memory window to.
1078 * @addr: The address where the memory window should begin.
1079 * @length: The length of the memory window, in bytes.
1080 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1081 *
1082 * This struct contains the shared parameters for type 1 and type 2
1083 * memory window bind operations.
1084 */
1085 struct ib_mw_bind_info {
1086 struct ib_mr *mr;
1087 u64 addr;
1088 u64 length;
1089 int mw_access_flags;
1090 };
1091
1092 struct ib_send_wr {
1093 struct ib_send_wr *next;
1094 u64 wr_id;
1095 struct ib_sge *sg_list;
1096 int num_sge;
1097 enum ib_wr_opcode opcode;
1098 int send_flags;
1099 union {
1100 __be32 imm_data;
1101 u32 invalidate_rkey;
1102 } ex;
1103 union {
1104 struct {
1105 u64 remote_addr;
1106 u32 rkey;
1107 } rdma;
1108 struct {
1109 u64 remote_addr;
1110 u64 compare_add;
1111 u64 swap;
1112 u64 compare_add_mask;
1113 u64 swap_mask;
1114 u32 rkey;
1115 } atomic;
1116 struct {
1117 struct ib_ah *ah;
1118 void *header;
1119 int hlen;
1120 int mss;
1121 u32 remote_qpn;
1122 u32 remote_qkey;
1123 u16 pkey_index; /* valid for GSI only */
1124 u8 port_num; /* valid for DR SMPs on switch only */
1125 } ud;
1126 struct {
1127 u64 iova_start;
1128 struct ib_fast_reg_page_list *page_list;
1129 unsigned int page_shift;
1130 unsigned int page_list_len;
1131 u32 length;
1132 int access_flags;
1133 u32 rkey;
1134 } fast_reg;
1135 struct {
1136 struct ib_mw *mw;
1137 /* The new rkey for the memory window. */
1138 u32 rkey;
1139 struct ib_mw_bind_info bind_info;
1140 } bind_mw;
1141 struct {
1142 struct ib_sig_attrs *sig_attrs;
1143 struct ib_mr *sig_mr;
1144 int access_flags;
1145 struct ib_sge *prot;
1146 } sig_handover;
1147 } wr;
1148 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1149 };
1150
1151 struct ib_recv_wr {
1152 struct ib_recv_wr *next;
1153 u64 wr_id;
1154 struct ib_sge *sg_list;
1155 int num_sge;
1156 };
1157
1158 enum ib_access_flags {
1159 IB_ACCESS_LOCAL_WRITE = 1,
1160 IB_ACCESS_REMOTE_WRITE = (1<<1),
1161 IB_ACCESS_REMOTE_READ = (1<<2),
1162 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1163 IB_ACCESS_MW_BIND = (1<<4),
1164 IB_ZERO_BASED = (1<<5),
1165 IB_ACCESS_ON_DEMAND = (1<<6),
1166 };
1167
1168 struct ib_phys_buf {
1169 u64 addr;
1170 u64 size;
1171 };
1172
1173 struct ib_mr_attr {
1174 struct ib_pd *pd;
1175 u64 device_virt_addr;
1176 u64 size;
1177 int mr_access_flags;
1178 u32 lkey;
1179 u32 rkey;
1180 };
1181
1182 enum ib_mr_rereg_flags {
1183 IB_MR_REREG_TRANS = 1,
1184 IB_MR_REREG_PD = (1<<1),
1185 IB_MR_REREG_ACCESS = (1<<2),
1186 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1187 };
1188
1189 /**
1190 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1191 * @wr_id: Work request id.
1192 * @send_flags: Flags from ib_send_flags enum.
1193 * @bind_info: More parameters of the bind operation.
1194 */
1195 struct ib_mw_bind {
1196 u64 wr_id;
1197 int send_flags;
1198 struct ib_mw_bind_info bind_info;
1199 };
1200
1201 struct ib_fmr_attr {
1202 int max_pages;
1203 int max_maps;
1204 u8 page_shift;
1205 };
1206
1207 struct ib_umem;
1208
1209 struct ib_ucontext {
1210 struct ib_device *device;
1211 struct list_head pd_list;
1212 struct list_head mr_list;
1213 struct list_head mw_list;
1214 struct list_head cq_list;
1215 struct list_head qp_list;
1216 struct list_head srq_list;
1217 struct list_head ah_list;
1218 struct list_head xrcd_list;
1219 struct list_head rule_list;
1220 int closing;
1221
1222 struct pid *tgid;
1223 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1224 struct rb_root umem_tree;
1225 /*
1226 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1227 * mmu notifiers registration.
1228 */
1229 struct rw_semaphore umem_rwsem;
1230 void (*invalidate_range)(struct ib_umem *umem,
1231 unsigned long start, unsigned long end);
1232
1233 struct mmu_notifier mn;
1234 atomic_t notifier_count;
1235 /* A list of umems that don't have private mmu notifier counters yet. */
1236 struct list_head no_private_counters;
1237 int odp_mrs_count;
1238 #endif
1239 };
1240
1241 struct ib_uobject {
1242 u64 user_handle; /* handle given to us by userspace */
1243 struct ib_ucontext *context; /* associated user context */
1244 void *object; /* containing object */
1245 struct list_head list; /* link to context's list */
1246 int id; /* index into kernel idr */
1247 struct kref ref;
1248 struct rw_semaphore mutex; /* protects .live */
1249 int live;
1250 };
1251
1252 struct ib_udata {
1253 const void __user *inbuf;
1254 void __user *outbuf;
1255 size_t inlen;
1256 size_t outlen;
1257 };
1258
1259 struct ib_pd {
1260 u32 local_dma_lkey;
1261 struct ib_device *device;
1262 struct ib_uobject *uobject;
1263 atomic_t usecnt; /* count all resources */
1264 struct ib_mr *local_mr;
1265 };
1266
1267 struct ib_xrcd {
1268 struct ib_device *device;
1269 atomic_t usecnt; /* count all exposed resources */
1270 struct inode *inode;
1271
1272 struct mutex tgt_qp_mutex;
1273 struct list_head tgt_qp_list;
1274 };
1275
1276 struct ib_ah {
1277 struct ib_device *device;
1278 struct ib_pd *pd;
1279 struct ib_uobject *uobject;
1280 };
1281
1282 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1283
1284 struct ib_cq {
1285 struct ib_device *device;
1286 struct ib_uobject *uobject;
1287 ib_comp_handler comp_handler;
1288 void (*event_handler)(struct ib_event *, void *);
1289 void *cq_context;
1290 int cqe;
1291 atomic_t usecnt; /* count number of work queues */
1292 };
1293
1294 struct ib_srq {
1295 struct ib_device *device;
1296 struct ib_pd *pd;
1297 struct ib_uobject *uobject;
1298 void (*event_handler)(struct ib_event *, void *);
1299 void *srq_context;
1300 enum ib_srq_type srq_type;
1301 atomic_t usecnt;
1302
1303 union {
1304 struct {
1305 struct ib_xrcd *xrcd;
1306 struct ib_cq *cq;
1307 u32 srq_num;
1308 } xrc;
1309 } ext;
1310 };
1311
1312 struct ib_qp {
1313 struct ib_device *device;
1314 struct ib_pd *pd;
1315 struct ib_cq *send_cq;
1316 struct ib_cq *recv_cq;
1317 struct ib_srq *srq;
1318 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1319 struct list_head xrcd_list;
1320 /* count times opened, mcast attaches, flow attaches */
1321 atomic_t usecnt;
1322 struct list_head open_list;
1323 struct ib_qp *real_qp;
1324 struct ib_uobject *uobject;
1325 void (*event_handler)(struct ib_event *, void *);
1326 void *qp_context;
1327 u32 qp_num;
1328 enum ib_qp_type qp_type;
1329 };
1330
1331 struct ib_mr {
1332 struct ib_device *device;
1333 struct ib_pd *pd;
1334 struct ib_uobject *uobject;
1335 u32 lkey;
1336 u32 rkey;
1337 atomic_t usecnt; /* count number of MWs */
1338 };
1339
1340 struct ib_mw {
1341 struct ib_device *device;
1342 struct ib_pd *pd;
1343 struct ib_uobject *uobject;
1344 u32 rkey;
1345 enum ib_mw_type type;
1346 };
1347
1348 struct ib_fmr {
1349 struct ib_device *device;
1350 struct ib_pd *pd;
1351 struct list_head list;
1352 u32 lkey;
1353 u32 rkey;
1354 };
1355
1356 /* Supported steering options */
1357 enum ib_flow_attr_type {
1358 /* steering according to rule specifications */
1359 IB_FLOW_ATTR_NORMAL = 0x0,
1360 /* default unicast and multicast rule -
1361 * receive all Eth traffic which isn't steered to any QP
1362 */
1363 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1364 /* default multicast rule -
1365 * receive all Eth multicast traffic which isn't steered to any QP
1366 */
1367 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1368 /* sniffer rule - receive all port traffic */
1369 IB_FLOW_ATTR_SNIFFER = 0x3
1370 };
1371
1372 /* Supported steering header types */
1373 enum ib_flow_spec_type {
1374 /* L2 headers*/
1375 IB_FLOW_SPEC_ETH = 0x20,
1376 IB_FLOW_SPEC_IB = 0x22,
1377 /* L3 header*/
1378 IB_FLOW_SPEC_IPV4 = 0x30,
1379 /* L4 headers*/
1380 IB_FLOW_SPEC_TCP = 0x40,
1381 IB_FLOW_SPEC_UDP = 0x41
1382 };
1383 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1384 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1385
1386 /* Flow steering rule priority is set according to it's domain.
1387 * Lower domain value means higher priority.
1388 */
1389 enum ib_flow_domain {
1390 IB_FLOW_DOMAIN_USER,
1391 IB_FLOW_DOMAIN_ETHTOOL,
1392 IB_FLOW_DOMAIN_RFS,
1393 IB_FLOW_DOMAIN_NIC,
1394 IB_FLOW_DOMAIN_NUM /* Must be last */
1395 };
1396
1397 struct ib_flow_eth_filter {
1398 u8 dst_mac[6];
1399 u8 src_mac[6];
1400 __be16 ether_type;
1401 __be16 vlan_tag;
1402 };
1403
1404 struct ib_flow_spec_eth {
1405 enum ib_flow_spec_type type;
1406 u16 size;
1407 struct ib_flow_eth_filter val;
1408 struct ib_flow_eth_filter mask;
1409 };
1410
1411 struct ib_flow_ib_filter {
1412 __be16 dlid;
1413 __u8 sl;
1414 };
1415
1416 struct ib_flow_spec_ib {
1417 enum ib_flow_spec_type type;
1418 u16 size;
1419 struct ib_flow_ib_filter val;
1420 struct ib_flow_ib_filter mask;
1421 };
1422
1423 struct ib_flow_ipv4_filter {
1424 __be32 src_ip;
1425 __be32 dst_ip;
1426 };
1427
1428 struct ib_flow_spec_ipv4 {
1429 enum ib_flow_spec_type type;
1430 u16 size;
1431 struct ib_flow_ipv4_filter val;
1432 struct ib_flow_ipv4_filter mask;
1433 };
1434
1435 struct ib_flow_tcp_udp_filter {
1436 __be16 dst_port;
1437 __be16 src_port;
1438 };
1439
1440 struct ib_flow_spec_tcp_udp {
1441 enum ib_flow_spec_type type;
1442 u16 size;
1443 struct ib_flow_tcp_udp_filter val;
1444 struct ib_flow_tcp_udp_filter mask;
1445 };
1446
1447 union ib_flow_spec {
1448 struct {
1449 enum ib_flow_spec_type type;
1450 u16 size;
1451 };
1452 struct ib_flow_spec_eth eth;
1453 struct ib_flow_spec_ib ib;
1454 struct ib_flow_spec_ipv4 ipv4;
1455 struct ib_flow_spec_tcp_udp tcp_udp;
1456 };
1457
1458 struct ib_flow_attr {
1459 enum ib_flow_attr_type type;
1460 u16 size;
1461 u16 priority;
1462 u32 flags;
1463 u8 num_of_specs;
1464 u8 port;
1465 /* Following are the optional layers according to user request
1466 * struct ib_flow_spec_xxx
1467 * struct ib_flow_spec_yyy
1468 */
1469 };
1470
1471 struct ib_flow {
1472 struct ib_qp *qp;
1473 struct ib_uobject *uobject;
1474 };
1475
1476 struct ib_mad_hdr;
1477 struct ib_grh;
1478
1479 enum ib_process_mad_flags {
1480 IB_MAD_IGNORE_MKEY = 1,
1481 IB_MAD_IGNORE_BKEY = 2,
1482 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1483 };
1484
1485 enum ib_mad_result {
1486 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1487 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1488 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1489 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1490 };
1491
1492 #define IB_DEVICE_NAME_MAX 64
1493
1494 struct ib_cache {
1495 rwlock_t lock;
1496 struct ib_event_handler event_handler;
1497 struct ib_pkey_cache **pkey_cache;
1498 struct ib_gid_table **gid_cache;
1499 u8 *lmc_cache;
1500 };
1501
1502 struct ib_dma_mapping_ops {
1503 int (*mapping_error)(struct ib_device *dev,
1504 u64 dma_addr);
1505 u64 (*map_single)(struct ib_device *dev,
1506 void *ptr, size_t size,
1507 enum dma_data_direction direction);
1508 void (*unmap_single)(struct ib_device *dev,
1509 u64 addr, size_t size,
1510 enum dma_data_direction direction);
1511 u64 (*map_page)(struct ib_device *dev,
1512 struct page *page, unsigned long offset,
1513 size_t size,
1514 enum dma_data_direction direction);
1515 void (*unmap_page)(struct ib_device *dev,
1516 u64 addr, size_t size,
1517 enum dma_data_direction direction);
1518 int (*map_sg)(struct ib_device *dev,
1519 struct scatterlist *sg, int nents,
1520 enum dma_data_direction direction);
1521 void (*unmap_sg)(struct ib_device *dev,
1522 struct scatterlist *sg, int nents,
1523 enum dma_data_direction direction);
1524 void (*sync_single_for_cpu)(struct ib_device *dev,
1525 u64 dma_handle,
1526 size_t size,
1527 enum dma_data_direction dir);
1528 void (*sync_single_for_device)(struct ib_device *dev,
1529 u64 dma_handle,
1530 size_t size,
1531 enum dma_data_direction dir);
1532 void *(*alloc_coherent)(struct ib_device *dev,
1533 size_t size,
1534 u64 *dma_handle,
1535 gfp_t flag);
1536 void (*free_coherent)(struct ib_device *dev,
1537 size_t size, void *cpu_addr,
1538 u64 dma_handle);
1539 };
1540
1541 struct iw_cm_verbs;
1542
1543 struct ib_port_immutable {
1544 int pkey_tbl_len;
1545 int gid_tbl_len;
1546 u32 core_cap_flags;
1547 u32 max_mad_size;
1548 };
1549
1550 struct ib_device {
1551 struct device *dma_device;
1552
1553 char name[IB_DEVICE_NAME_MAX];
1554
1555 struct list_head event_handler_list;
1556 spinlock_t event_handler_lock;
1557
1558 spinlock_t client_data_lock;
1559 struct list_head core_list;
1560 /* Access to the client_data_list is protected by the client_data_lock
1561 * spinlock and the lists_rwsem read-write semaphore */
1562 struct list_head client_data_list;
1563
1564 struct ib_cache cache;
1565 /**
1566 * port_immutable is indexed by port number
1567 */
1568 struct ib_port_immutable *port_immutable;
1569
1570 int num_comp_vectors;
1571
1572 struct iw_cm_verbs *iwcm;
1573
1574 int (*get_protocol_stats)(struct ib_device *device,
1575 union rdma_protocol_stats *stats);
1576 int (*query_device)(struct ib_device *device,
1577 struct ib_device_attr *device_attr,
1578 struct ib_udata *udata);
1579 int (*query_port)(struct ib_device *device,
1580 u8 port_num,
1581 struct ib_port_attr *port_attr);
1582 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1583 u8 port_num);
1584 /* When calling get_netdev, the HW vendor's driver should return the
1585 * net device of device @device at port @port_num or NULL if such
1586 * a net device doesn't exist. The vendor driver should call dev_hold
1587 * on this net device. The HW vendor's device driver must guarantee
1588 * that this function returns NULL before the net device reaches
1589 * NETDEV_UNREGISTER_FINAL state.
1590 */
1591 struct net_device *(*get_netdev)(struct ib_device *device,
1592 u8 port_num);
1593 int (*query_gid)(struct ib_device *device,
1594 u8 port_num, int index,
1595 union ib_gid *gid);
1596 /* When calling add_gid, the HW vendor's driver should
1597 * add the gid of device @device at gid index @index of
1598 * port @port_num to be @gid. Meta-info of that gid (for example,
1599 * the network device related to this gid is available
1600 * at @attr. @context allows the HW vendor driver to store extra
1601 * information together with a GID entry. The HW vendor may allocate
1602 * memory to contain this information and store it in @context when a
1603 * new GID entry is written to. Params are consistent until the next
1604 * call of add_gid or delete_gid. The function should return 0 on
1605 * success or error otherwise. The function could be called
1606 * concurrently for different ports. This function is only called
1607 * when roce_gid_table is used.
1608 */
1609 int (*add_gid)(struct ib_device *device,
1610 u8 port_num,
1611 unsigned int index,
1612 const union ib_gid *gid,
1613 const struct ib_gid_attr *attr,
1614 void **context);
1615 /* When calling del_gid, the HW vendor's driver should delete the
1616 * gid of device @device at gid index @index of port @port_num.
1617 * Upon the deletion of a GID entry, the HW vendor must free any
1618 * allocated memory. The caller will clear @context afterwards.
1619 * This function is only called when roce_gid_table is used.
1620 */
1621 int (*del_gid)(struct ib_device *device,
1622 u8 port_num,
1623 unsigned int index,
1624 void **context);
1625 int (*query_pkey)(struct ib_device *device,
1626 u8 port_num, u16 index, u16 *pkey);
1627 int (*modify_device)(struct ib_device *device,
1628 int device_modify_mask,
1629 struct ib_device_modify *device_modify);
1630 int (*modify_port)(struct ib_device *device,
1631 u8 port_num, int port_modify_mask,
1632 struct ib_port_modify *port_modify);
1633 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1634 struct ib_udata *udata);
1635 int (*dealloc_ucontext)(struct ib_ucontext *context);
1636 int (*mmap)(struct ib_ucontext *context,
1637 struct vm_area_struct *vma);
1638 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1639 struct ib_ucontext *context,
1640 struct ib_udata *udata);
1641 int (*dealloc_pd)(struct ib_pd *pd);
1642 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1643 struct ib_ah_attr *ah_attr);
1644 int (*modify_ah)(struct ib_ah *ah,
1645 struct ib_ah_attr *ah_attr);
1646 int (*query_ah)(struct ib_ah *ah,
1647 struct ib_ah_attr *ah_attr);
1648 int (*destroy_ah)(struct ib_ah *ah);
1649 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1650 struct ib_srq_init_attr *srq_init_attr,
1651 struct ib_udata *udata);
1652 int (*modify_srq)(struct ib_srq *srq,
1653 struct ib_srq_attr *srq_attr,
1654 enum ib_srq_attr_mask srq_attr_mask,
1655 struct ib_udata *udata);
1656 int (*query_srq)(struct ib_srq *srq,
1657 struct ib_srq_attr *srq_attr);
1658 int (*destroy_srq)(struct ib_srq *srq);
1659 int (*post_srq_recv)(struct ib_srq *srq,
1660 struct ib_recv_wr *recv_wr,
1661 struct ib_recv_wr **bad_recv_wr);
1662 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1663 struct ib_qp_init_attr *qp_init_attr,
1664 struct ib_udata *udata);
1665 int (*modify_qp)(struct ib_qp *qp,
1666 struct ib_qp_attr *qp_attr,
1667 int qp_attr_mask,
1668 struct ib_udata *udata);
1669 int (*query_qp)(struct ib_qp *qp,
1670 struct ib_qp_attr *qp_attr,
1671 int qp_attr_mask,
1672 struct ib_qp_init_attr *qp_init_attr);
1673 int (*destroy_qp)(struct ib_qp *qp);
1674 int (*post_send)(struct ib_qp *qp,
1675 struct ib_send_wr *send_wr,
1676 struct ib_send_wr **bad_send_wr);
1677 int (*post_recv)(struct ib_qp *qp,
1678 struct ib_recv_wr *recv_wr,
1679 struct ib_recv_wr **bad_recv_wr);
1680 struct ib_cq * (*create_cq)(struct ib_device *device,
1681 const struct ib_cq_init_attr *attr,
1682 struct ib_ucontext *context,
1683 struct ib_udata *udata);
1684 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1685 u16 cq_period);
1686 int (*destroy_cq)(struct ib_cq *cq);
1687 int (*resize_cq)(struct ib_cq *cq, int cqe,
1688 struct ib_udata *udata);
1689 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1690 struct ib_wc *wc);
1691 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1692 int (*req_notify_cq)(struct ib_cq *cq,
1693 enum ib_cq_notify_flags flags);
1694 int (*req_ncomp_notif)(struct ib_cq *cq,
1695 int wc_cnt);
1696 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1697 int mr_access_flags);
1698 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1699 struct ib_phys_buf *phys_buf_array,
1700 int num_phys_buf,
1701 int mr_access_flags,
1702 u64 *iova_start);
1703 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1704 u64 start, u64 length,
1705 u64 virt_addr,
1706 int mr_access_flags,
1707 struct ib_udata *udata);
1708 int (*rereg_user_mr)(struct ib_mr *mr,
1709 int flags,
1710 u64 start, u64 length,
1711 u64 virt_addr,
1712 int mr_access_flags,
1713 struct ib_pd *pd,
1714 struct ib_udata *udata);
1715 int (*query_mr)(struct ib_mr *mr,
1716 struct ib_mr_attr *mr_attr);
1717 int (*dereg_mr)(struct ib_mr *mr);
1718 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1719 enum ib_mr_type mr_type,
1720 u32 max_num_sg);
1721 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1722 int page_list_len);
1723 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1724 int (*rereg_phys_mr)(struct ib_mr *mr,
1725 int mr_rereg_mask,
1726 struct ib_pd *pd,
1727 struct ib_phys_buf *phys_buf_array,
1728 int num_phys_buf,
1729 int mr_access_flags,
1730 u64 *iova_start);
1731 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1732 enum ib_mw_type type);
1733 int (*bind_mw)(struct ib_qp *qp,
1734 struct ib_mw *mw,
1735 struct ib_mw_bind *mw_bind);
1736 int (*dealloc_mw)(struct ib_mw *mw);
1737 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1738 int mr_access_flags,
1739 struct ib_fmr_attr *fmr_attr);
1740 int (*map_phys_fmr)(struct ib_fmr *fmr,
1741 u64 *page_list, int list_len,
1742 u64 iova);
1743 int (*unmap_fmr)(struct list_head *fmr_list);
1744 int (*dealloc_fmr)(struct ib_fmr *fmr);
1745 int (*attach_mcast)(struct ib_qp *qp,
1746 union ib_gid *gid,
1747 u16 lid);
1748 int (*detach_mcast)(struct ib_qp *qp,
1749 union ib_gid *gid,
1750 u16 lid);
1751 int (*process_mad)(struct ib_device *device,
1752 int process_mad_flags,
1753 u8 port_num,
1754 const struct ib_wc *in_wc,
1755 const struct ib_grh *in_grh,
1756 const struct ib_mad_hdr *in_mad,
1757 size_t in_mad_size,
1758 struct ib_mad_hdr *out_mad,
1759 size_t *out_mad_size,
1760 u16 *out_mad_pkey_index);
1761 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1762 struct ib_ucontext *ucontext,
1763 struct ib_udata *udata);
1764 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1765 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1766 struct ib_flow_attr
1767 *flow_attr,
1768 int domain);
1769 int (*destroy_flow)(struct ib_flow *flow_id);
1770 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1771 struct ib_mr_status *mr_status);
1772 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1773
1774 struct ib_dma_mapping_ops *dma_ops;
1775
1776 struct module *owner;
1777 struct device dev;
1778 struct kobject *ports_parent;
1779 struct list_head port_list;
1780
1781 enum {
1782 IB_DEV_UNINITIALIZED,
1783 IB_DEV_REGISTERED,
1784 IB_DEV_UNREGISTERED
1785 } reg_state;
1786
1787 int uverbs_abi_ver;
1788 u64 uverbs_cmd_mask;
1789 u64 uverbs_ex_cmd_mask;
1790
1791 char node_desc[64];
1792 __be64 node_guid;
1793 u32 local_dma_lkey;
1794 u16 is_switch:1;
1795 u8 node_type;
1796 u8 phys_port_cnt;
1797
1798 /**
1799 * The following mandatory functions are used only at device
1800 * registration. Keep functions such as these at the end of this
1801 * structure to avoid cache line misses when accessing struct ib_device
1802 * in fast paths.
1803 */
1804 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1805 };
1806
1807 struct ib_client {
1808 char *name;
1809 void (*add) (struct ib_device *);
1810 void (*remove)(struct ib_device *, void *client_data);
1811
1812 /* Returns the net_dev belonging to this ib_client and matching the
1813 * given parameters.
1814 * @dev: An RDMA device that the net_dev use for communication.
1815 * @port: A physical port number on the RDMA device.
1816 * @pkey: P_Key that the net_dev uses if applicable.
1817 * @gid: A GID that the net_dev uses to communicate.
1818 * @addr: An IP address the net_dev is configured with.
1819 * @client_data: The device's client data set by ib_set_client_data().
1820 *
1821 * An ib_client that implements a net_dev on top of RDMA devices
1822 * (such as IP over IB) should implement this callback, allowing the
1823 * rdma_cm module to find the right net_dev for a given request.
1824 *
1825 * The caller is responsible for calling dev_put on the returned
1826 * netdev. */
1827 struct net_device *(*get_net_dev_by_params)(
1828 struct ib_device *dev,
1829 u8 port,
1830 u16 pkey,
1831 const union ib_gid *gid,
1832 const struct sockaddr *addr,
1833 void *client_data);
1834 struct list_head list;
1835 };
1836
1837 struct ib_device *ib_alloc_device(size_t size);
1838 void ib_dealloc_device(struct ib_device *device);
1839
1840 int ib_register_device(struct ib_device *device,
1841 int (*port_callback)(struct ib_device *,
1842 u8, struct kobject *));
1843 void ib_unregister_device(struct ib_device *device);
1844
1845 int ib_register_client (struct ib_client *client);
1846 void ib_unregister_client(struct ib_client *client);
1847
1848 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1849 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1850 void *data);
1851
1852 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1853 {
1854 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1855 }
1856
1857 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1858 {
1859 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1860 }
1861
1862 /**
1863 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1864 * contains all required attributes and no attributes not allowed for
1865 * the given QP state transition.
1866 * @cur_state: Current QP state
1867 * @next_state: Next QP state
1868 * @type: QP type
1869 * @mask: Mask of supplied QP attributes
1870 * @ll : link layer of port
1871 *
1872 * This function is a helper function that a low-level driver's
1873 * modify_qp method can use to validate the consumer's input. It
1874 * checks that cur_state and next_state are valid QP states, that a
1875 * transition from cur_state to next_state is allowed by the IB spec,
1876 * and that the attribute mask supplied is allowed for the transition.
1877 */
1878 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1879 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1880 enum rdma_link_layer ll);
1881
1882 int ib_register_event_handler (struct ib_event_handler *event_handler);
1883 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1884 void ib_dispatch_event(struct ib_event *event);
1885
1886 int ib_query_device(struct ib_device *device,
1887 struct ib_device_attr *device_attr);
1888
1889 int ib_query_port(struct ib_device *device,
1890 u8 port_num, struct ib_port_attr *port_attr);
1891
1892 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1893 u8 port_num);
1894
1895 /**
1896 * rdma_cap_ib_switch - Check if the device is IB switch
1897 * @device: Device to check
1898 *
1899 * Device driver is responsible for setting is_switch bit on
1900 * in ib_device structure at init time.
1901 *
1902 * Return: true if the device is IB switch.
1903 */
1904 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1905 {
1906 return device->is_switch;
1907 }
1908
1909 /**
1910 * rdma_start_port - Return the first valid port number for the device
1911 * specified
1912 *
1913 * @device: Device to be checked
1914 *
1915 * Return start port number
1916 */
1917 static inline u8 rdma_start_port(const struct ib_device *device)
1918 {
1919 return rdma_cap_ib_switch(device) ? 0 : 1;
1920 }
1921
1922 /**
1923 * rdma_end_port - Return the last valid port number for the device
1924 * specified
1925 *
1926 * @device: Device to be checked
1927 *
1928 * Return last port number
1929 */
1930 static inline u8 rdma_end_port(const struct ib_device *device)
1931 {
1932 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
1933 }
1934
1935 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
1936 {
1937 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
1938 }
1939
1940 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
1941 {
1942 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
1943 }
1944
1945 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
1946 {
1947 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
1948 }
1949
1950 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
1951 {
1952 return device->port_immutable[port_num].core_cap_flags &
1953 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
1954 }
1955
1956 /**
1957 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
1958 * Management Datagrams.
1959 * @device: Device to check
1960 * @port_num: Port number to check
1961 *
1962 * Management Datagrams (MAD) are a required part of the InfiniBand
1963 * specification and are supported on all InfiniBand devices. A slightly
1964 * extended version are also supported on OPA interfaces.
1965 *
1966 * Return: true if the port supports sending/receiving of MAD packets.
1967 */
1968 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
1969 {
1970 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
1971 }
1972
1973 /**
1974 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
1975 * Management Datagrams.
1976 * @device: Device to check
1977 * @port_num: Port number to check
1978 *
1979 * Intel OmniPath devices extend and/or replace the InfiniBand Management
1980 * datagrams with their own versions. These OPA MADs share many but not all of
1981 * the characteristics of InfiniBand MADs.
1982 *
1983 * OPA MADs differ in the following ways:
1984 *
1985 * 1) MADs are variable size up to 2K
1986 * IBTA defined MADs remain fixed at 256 bytes
1987 * 2) OPA SMPs must carry valid PKeys
1988 * 3) OPA SMP packets are a different format
1989 *
1990 * Return: true if the port supports OPA MAD packet formats.
1991 */
1992 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
1993 {
1994 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
1995 == RDMA_CORE_CAP_OPA_MAD;
1996 }
1997
1998 /**
1999 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2000 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2001 * @device: Device to check
2002 * @port_num: Port number to check
2003 *
2004 * Each InfiniBand node is required to provide a Subnet Management Agent
2005 * that the subnet manager can access. Prior to the fabric being fully
2006 * configured by the subnet manager, the SMA is accessed via a well known
2007 * interface called the Subnet Management Interface (SMI). This interface
2008 * uses directed route packets to communicate with the SM to get around the
2009 * chicken and egg problem of the SM needing to know what's on the fabric
2010 * in order to configure the fabric, and needing to configure the fabric in
2011 * order to send packets to the devices on the fabric. These directed
2012 * route packets do not need the fabric fully configured in order to reach
2013 * their destination. The SMI is the only method allowed to send
2014 * directed route packets on an InfiniBand fabric.
2015 *
2016 * Return: true if the port provides an SMI.
2017 */
2018 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2019 {
2020 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2021 }
2022
2023 /**
2024 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2025 * Communication Manager.
2026 * @device: Device to check
2027 * @port_num: Port number to check
2028 *
2029 * The InfiniBand Communication Manager is one of many pre-defined General
2030 * Service Agents (GSA) that are accessed via the General Service
2031 * Interface (GSI). It's role is to facilitate establishment of connections
2032 * between nodes as well as other management related tasks for established
2033 * connections.
2034 *
2035 * Return: true if the port supports an IB CM (this does not guarantee that
2036 * a CM is actually running however).
2037 */
2038 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2039 {
2040 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2041 }
2042
2043 /**
2044 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2045 * Communication Manager.
2046 * @device: Device to check
2047 * @port_num: Port number to check
2048 *
2049 * Similar to above, but specific to iWARP connections which have a different
2050 * managment protocol than InfiniBand.
2051 *
2052 * Return: true if the port supports an iWARP CM (this does not guarantee that
2053 * a CM is actually running however).
2054 */
2055 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2056 {
2057 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2058 }
2059
2060 /**
2061 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2062 * Subnet Administration.
2063 * @device: Device to check
2064 * @port_num: Port number to check
2065 *
2066 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2067 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2068 * fabrics, devices should resolve routes to other hosts by contacting the
2069 * SA to query the proper route.
2070 *
2071 * Return: true if the port should act as a client to the fabric Subnet
2072 * Administration interface. This does not imply that the SA service is
2073 * running locally.
2074 */
2075 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2076 {
2077 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2078 }
2079
2080 /**
2081 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2082 * Multicast.
2083 * @device: Device to check
2084 * @port_num: Port number to check
2085 *
2086 * InfiniBand multicast registration is more complex than normal IPv4 or
2087 * IPv6 multicast registration. Each Host Channel Adapter must register
2088 * with the Subnet Manager when it wishes to join a multicast group. It
2089 * should do so only once regardless of how many queue pairs it subscribes
2090 * to this group. And it should leave the group only after all queue pairs
2091 * attached to the group have been detached.
2092 *
2093 * Return: true if the port must undertake the additional adminstrative
2094 * overhead of registering/unregistering with the SM and tracking of the
2095 * total number of queue pairs attached to the multicast group.
2096 */
2097 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2098 {
2099 return rdma_cap_ib_sa(device, port_num);
2100 }
2101
2102 /**
2103 * rdma_cap_af_ib - Check if the port of device has the capability
2104 * Native Infiniband Address.
2105 * @device: Device to check
2106 * @port_num: Port number to check
2107 *
2108 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2109 * GID. RoCE uses a different mechanism, but still generates a GID via
2110 * a prescribed mechanism and port specific data.
2111 *
2112 * Return: true if the port uses a GID address to identify devices on the
2113 * network.
2114 */
2115 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2116 {
2117 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2118 }
2119
2120 /**
2121 * rdma_cap_eth_ah - Check if the port of device has the capability
2122 * Ethernet Address Handle.
2123 * @device: Device to check
2124 * @port_num: Port number to check
2125 *
2126 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2127 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2128 * port. Normally, packet headers are generated by the sending host
2129 * adapter, but when sending connectionless datagrams, we must manually
2130 * inject the proper headers for the fabric we are communicating over.
2131 *
2132 * Return: true if we are running as a RoCE port and must force the
2133 * addition of a Global Route Header built from our Ethernet Address
2134 * Handle into our header list for connectionless packets.
2135 */
2136 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2137 {
2138 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2139 }
2140
2141 /**
2142 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2143 *
2144 * @device: Device
2145 * @port_num: Port number
2146 *
2147 * This MAD size includes the MAD headers and MAD payload. No other headers
2148 * are included.
2149 *
2150 * Return the max MAD size required by the Port. Will return 0 if the port
2151 * does not support MADs
2152 */
2153 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2154 {
2155 return device->port_immutable[port_num].max_mad_size;
2156 }
2157
2158 /**
2159 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2160 * @device: Device to check
2161 * @port_num: Port number to check
2162 *
2163 * RoCE GID table mechanism manages the various GIDs for a device.
2164 *
2165 * NOTE: if allocating the port's GID table has failed, this call will still
2166 * return true, but any RoCE GID table API will fail.
2167 *
2168 * Return: true if the port uses RoCE GID table mechanism in order to manage
2169 * its GIDs.
2170 */
2171 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2172 u8 port_num)
2173 {
2174 return rdma_protocol_roce(device, port_num) &&
2175 device->add_gid && device->del_gid;
2176 }
2177
2178 int ib_query_gid(struct ib_device *device,
2179 u8 port_num, int index, union ib_gid *gid);
2180
2181 int ib_query_pkey(struct ib_device *device,
2182 u8 port_num, u16 index, u16 *pkey);
2183
2184 int ib_modify_device(struct ib_device *device,
2185 int device_modify_mask,
2186 struct ib_device_modify *device_modify);
2187
2188 int ib_modify_port(struct ib_device *device,
2189 u8 port_num, int port_modify_mask,
2190 struct ib_port_modify *port_modify);
2191
2192 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2193 u8 *port_num, u16 *index);
2194
2195 int ib_find_pkey(struct ib_device *device,
2196 u8 port_num, u16 pkey, u16 *index);
2197
2198 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2199
2200 void ib_dealloc_pd(struct ib_pd *pd);
2201
2202 /**
2203 * ib_create_ah - Creates an address handle for the given address vector.
2204 * @pd: The protection domain associated with the address handle.
2205 * @ah_attr: The attributes of the address vector.
2206 *
2207 * The address handle is used to reference a local or global destination
2208 * in all UD QP post sends.
2209 */
2210 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2211
2212 /**
2213 * ib_init_ah_from_wc - Initializes address handle attributes from a
2214 * work completion.
2215 * @device: Device on which the received message arrived.
2216 * @port_num: Port on which the received message arrived.
2217 * @wc: Work completion associated with the received message.
2218 * @grh: References the received global route header. This parameter is
2219 * ignored unless the work completion indicates that the GRH is valid.
2220 * @ah_attr: Returned attributes that can be used when creating an address
2221 * handle for replying to the message.
2222 */
2223 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2224 const struct ib_wc *wc, const struct ib_grh *grh,
2225 struct ib_ah_attr *ah_attr);
2226
2227 /**
2228 * ib_create_ah_from_wc - Creates an address handle associated with the
2229 * sender of the specified work completion.
2230 * @pd: The protection domain associated with the address handle.
2231 * @wc: Work completion information associated with a received message.
2232 * @grh: References the received global route header. This parameter is
2233 * ignored unless the work completion indicates that the GRH is valid.
2234 * @port_num: The outbound port number to associate with the address.
2235 *
2236 * The address handle is used to reference a local or global destination
2237 * in all UD QP post sends.
2238 */
2239 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2240 const struct ib_grh *grh, u8 port_num);
2241
2242 /**
2243 * ib_modify_ah - Modifies the address vector associated with an address
2244 * handle.
2245 * @ah: The address handle to modify.
2246 * @ah_attr: The new address vector attributes to associate with the
2247 * address handle.
2248 */
2249 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2250
2251 /**
2252 * ib_query_ah - Queries the address vector associated with an address
2253 * handle.
2254 * @ah: The address handle to query.
2255 * @ah_attr: The address vector attributes associated with the address
2256 * handle.
2257 */
2258 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2259
2260 /**
2261 * ib_destroy_ah - Destroys an address handle.
2262 * @ah: The address handle to destroy.
2263 */
2264 int ib_destroy_ah(struct ib_ah *ah);
2265
2266 /**
2267 * ib_create_srq - Creates a SRQ associated with the specified protection
2268 * domain.
2269 * @pd: The protection domain associated with the SRQ.
2270 * @srq_init_attr: A list of initial attributes required to create the
2271 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2272 * the actual capabilities of the created SRQ.
2273 *
2274 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2275 * requested size of the SRQ, and set to the actual values allocated
2276 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2277 * will always be at least as large as the requested values.
2278 */
2279 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2280 struct ib_srq_init_attr *srq_init_attr);
2281
2282 /**
2283 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2284 * @srq: The SRQ to modify.
2285 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2286 * the current values of selected SRQ attributes are returned.
2287 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2288 * are being modified.
2289 *
2290 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2291 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2292 * the number of receives queued drops below the limit.
2293 */
2294 int ib_modify_srq(struct ib_srq *srq,
2295 struct ib_srq_attr *srq_attr,
2296 enum ib_srq_attr_mask srq_attr_mask);
2297
2298 /**
2299 * ib_query_srq - Returns the attribute list and current values for the
2300 * specified SRQ.
2301 * @srq: The SRQ to query.
2302 * @srq_attr: The attributes of the specified SRQ.
2303 */
2304 int ib_query_srq(struct ib_srq *srq,
2305 struct ib_srq_attr *srq_attr);
2306
2307 /**
2308 * ib_destroy_srq - Destroys the specified SRQ.
2309 * @srq: The SRQ to destroy.
2310 */
2311 int ib_destroy_srq(struct ib_srq *srq);
2312
2313 /**
2314 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2315 * @srq: The SRQ to post the work request on.
2316 * @recv_wr: A list of work requests to post on the receive queue.
2317 * @bad_recv_wr: On an immediate failure, this parameter will reference
2318 * the work request that failed to be posted on the QP.
2319 */
2320 static inline int ib_post_srq_recv(struct ib_srq *srq,
2321 struct ib_recv_wr *recv_wr,
2322 struct ib_recv_wr **bad_recv_wr)
2323 {
2324 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2325 }
2326
2327 /**
2328 * ib_create_qp - Creates a QP associated with the specified protection
2329 * domain.
2330 * @pd: The protection domain associated with the QP.
2331 * @qp_init_attr: A list of initial attributes required to create the
2332 * QP. If QP creation succeeds, then the attributes are updated to
2333 * the actual capabilities of the created QP.
2334 */
2335 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2336 struct ib_qp_init_attr *qp_init_attr);
2337
2338 /**
2339 * ib_modify_qp - Modifies the attributes for the specified QP and then
2340 * transitions the QP to the given state.
2341 * @qp: The QP to modify.
2342 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2343 * the current values of selected QP attributes are returned.
2344 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2345 * are being modified.
2346 */
2347 int ib_modify_qp(struct ib_qp *qp,
2348 struct ib_qp_attr *qp_attr,
2349 int qp_attr_mask);
2350
2351 /**
2352 * ib_query_qp - Returns the attribute list and current values for the
2353 * specified QP.
2354 * @qp: The QP to query.
2355 * @qp_attr: The attributes of the specified QP.
2356 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2357 * @qp_init_attr: Additional attributes of the selected QP.
2358 *
2359 * The qp_attr_mask may be used to limit the query to gathering only the
2360 * selected attributes.
2361 */
2362 int ib_query_qp(struct ib_qp *qp,
2363 struct ib_qp_attr *qp_attr,
2364 int qp_attr_mask,
2365 struct ib_qp_init_attr *qp_init_attr);
2366
2367 /**
2368 * ib_destroy_qp - Destroys the specified QP.
2369 * @qp: The QP to destroy.
2370 */
2371 int ib_destroy_qp(struct ib_qp *qp);
2372
2373 /**
2374 * ib_open_qp - Obtain a reference to an existing sharable QP.
2375 * @xrcd - XRC domain
2376 * @qp_open_attr: Attributes identifying the QP to open.
2377 *
2378 * Returns a reference to a sharable QP.
2379 */
2380 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2381 struct ib_qp_open_attr *qp_open_attr);
2382
2383 /**
2384 * ib_close_qp - Release an external reference to a QP.
2385 * @qp: The QP handle to release
2386 *
2387 * The opened QP handle is released by the caller. The underlying
2388 * shared QP is not destroyed until all internal references are released.
2389 */
2390 int ib_close_qp(struct ib_qp *qp);
2391
2392 /**
2393 * ib_post_send - Posts a list of work requests to the send queue of
2394 * the specified QP.
2395 * @qp: The QP to post the work request on.
2396 * @send_wr: A list of work requests to post on the send queue.
2397 * @bad_send_wr: On an immediate failure, this parameter will reference
2398 * the work request that failed to be posted on the QP.
2399 *
2400 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2401 * error is returned, the QP state shall not be affected,
2402 * ib_post_send() will return an immediate error after queueing any
2403 * earlier work requests in the list.
2404 */
2405 static inline int ib_post_send(struct ib_qp *qp,
2406 struct ib_send_wr *send_wr,
2407 struct ib_send_wr **bad_send_wr)
2408 {
2409 return qp->device->post_send(qp, send_wr, bad_send_wr);
2410 }
2411
2412 /**
2413 * ib_post_recv - Posts a list of work requests to the receive queue of
2414 * the specified QP.
2415 * @qp: The QP to post the work request on.
2416 * @recv_wr: A list of work requests to post on the receive queue.
2417 * @bad_recv_wr: On an immediate failure, this parameter will reference
2418 * the work request that failed to be posted on the QP.
2419 */
2420 static inline int ib_post_recv(struct ib_qp *qp,
2421 struct ib_recv_wr *recv_wr,
2422 struct ib_recv_wr **bad_recv_wr)
2423 {
2424 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2425 }
2426
2427 /**
2428 * ib_create_cq - Creates a CQ on the specified device.
2429 * @device: The device on which to create the CQ.
2430 * @comp_handler: A user-specified callback that is invoked when a
2431 * completion event occurs on the CQ.
2432 * @event_handler: A user-specified callback that is invoked when an
2433 * asynchronous event not associated with a completion occurs on the CQ.
2434 * @cq_context: Context associated with the CQ returned to the user via
2435 * the associated completion and event handlers.
2436 * @cq_attr: The attributes the CQ should be created upon.
2437 *
2438 * Users can examine the cq structure to determine the actual CQ size.
2439 */
2440 struct ib_cq *ib_create_cq(struct ib_device *device,
2441 ib_comp_handler comp_handler,
2442 void (*event_handler)(struct ib_event *, void *),
2443 void *cq_context,
2444 const struct ib_cq_init_attr *cq_attr);
2445
2446 /**
2447 * ib_resize_cq - Modifies the capacity of the CQ.
2448 * @cq: The CQ to resize.
2449 * @cqe: The minimum size of the CQ.
2450 *
2451 * Users can examine the cq structure to determine the actual CQ size.
2452 */
2453 int ib_resize_cq(struct ib_cq *cq, int cqe);
2454
2455 /**
2456 * ib_modify_cq - Modifies moderation params of the CQ
2457 * @cq: The CQ to modify.
2458 * @cq_count: number of CQEs that will trigger an event
2459 * @cq_period: max period of time in usec before triggering an event
2460 *
2461 */
2462 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2463
2464 /**
2465 * ib_destroy_cq - Destroys the specified CQ.
2466 * @cq: The CQ to destroy.
2467 */
2468 int ib_destroy_cq(struct ib_cq *cq);
2469
2470 /**
2471 * ib_poll_cq - poll a CQ for completion(s)
2472 * @cq:the CQ being polled
2473 * @num_entries:maximum number of completions to return
2474 * @wc:array of at least @num_entries &struct ib_wc where completions
2475 * will be returned
2476 *
2477 * Poll a CQ for (possibly multiple) completions. If the return value
2478 * is < 0, an error occurred. If the return value is >= 0, it is the
2479 * number of completions returned. If the return value is
2480 * non-negative and < num_entries, then the CQ was emptied.
2481 */
2482 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2483 struct ib_wc *wc)
2484 {
2485 return cq->device->poll_cq(cq, num_entries, wc);
2486 }
2487
2488 /**
2489 * ib_peek_cq - Returns the number of unreaped completions currently
2490 * on the specified CQ.
2491 * @cq: The CQ to peek.
2492 * @wc_cnt: A minimum number of unreaped completions to check for.
2493 *
2494 * If the number of unreaped completions is greater than or equal to wc_cnt,
2495 * this function returns wc_cnt, otherwise, it returns the actual number of
2496 * unreaped completions.
2497 */
2498 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2499
2500 /**
2501 * ib_req_notify_cq - Request completion notification on a CQ.
2502 * @cq: The CQ to generate an event for.
2503 * @flags:
2504 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2505 * to request an event on the next solicited event or next work
2506 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2507 * may also be |ed in to request a hint about missed events, as
2508 * described below.
2509 *
2510 * Return Value:
2511 * < 0 means an error occurred while requesting notification
2512 * == 0 means notification was requested successfully, and if
2513 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2514 * were missed and it is safe to wait for another event. In
2515 * this case is it guaranteed that any work completions added
2516 * to the CQ since the last CQ poll will trigger a completion
2517 * notification event.
2518 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2519 * in. It means that the consumer must poll the CQ again to
2520 * make sure it is empty to avoid missing an event because of a
2521 * race between requesting notification and an entry being
2522 * added to the CQ. This return value means it is possible
2523 * (but not guaranteed) that a work completion has been added
2524 * to the CQ since the last poll without triggering a
2525 * completion notification event.
2526 */
2527 static inline int ib_req_notify_cq(struct ib_cq *cq,
2528 enum ib_cq_notify_flags flags)
2529 {
2530 return cq->device->req_notify_cq(cq, flags);
2531 }
2532
2533 /**
2534 * ib_req_ncomp_notif - Request completion notification when there are
2535 * at least the specified number of unreaped completions on the CQ.
2536 * @cq: The CQ to generate an event for.
2537 * @wc_cnt: The number of unreaped completions that should be on the
2538 * CQ before an event is generated.
2539 */
2540 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2541 {
2542 return cq->device->req_ncomp_notif ?
2543 cq->device->req_ncomp_notif(cq, wc_cnt) :
2544 -ENOSYS;
2545 }
2546
2547 /**
2548 * ib_get_dma_mr - Returns a memory region for system memory that is
2549 * usable for DMA.
2550 * @pd: The protection domain associated with the memory region.
2551 * @mr_access_flags: Specifies the memory access rights.
2552 *
2553 * Note that the ib_dma_*() functions defined below must be used
2554 * to create/destroy addresses used with the Lkey or Rkey returned
2555 * by ib_get_dma_mr().
2556 */
2557 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2558
2559 /**
2560 * ib_dma_mapping_error - check a DMA addr for error
2561 * @dev: The device for which the dma_addr was created
2562 * @dma_addr: The DMA address to check
2563 */
2564 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2565 {
2566 if (dev->dma_ops)
2567 return dev->dma_ops->mapping_error(dev, dma_addr);
2568 return dma_mapping_error(dev->dma_device, dma_addr);
2569 }
2570
2571 /**
2572 * ib_dma_map_single - Map a kernel virtual address to DMA address
2573 * @dev: The device for which the dma_addr is to be created
2574 * @cpu_addr: The kernel virtual address
2575 * @size: The size of the region in bytes
2576 * @direction: The direction of the DMA
2577 */
2578 static inline u64 ib_dma_map_single(struct ib_device *dev,
2579 void *cpu_addr, size_t size,
2580 enum dma_data_direction direction)
2581 {
2582 if (dev->dma_ops)
2583 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2584 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2585 }
2586
2587 /**
2588 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2589 * @dev: The device for which the DMA address was created
2590 * @addr: The DMA address
2591 * @size: The size of the region in bytes
2592 * @direction: The direction of the DMA
2593 */
2594 static inline void ib_dma_unmap_single(struct ib_device *dev,
2595 u64 addr, size_t size,
2596 enum dma_data_direction direction)
2597 {
2598 if (dev->dma_ops)
2599 dev->dma_ops->unmap_single(dev, addr, size, direction);
2600 else
2601 dma_unmap_single(dev->dma_device, addr, size, direction);
2602 }
2603
2604 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2605 void *cpu_addr, size_t size,
2606 enum dma_data_direction direction,
2607 struct dma_attrs *attrs)
2608 {
2609 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2610 direction, attrs);
2611 }
2612
2613 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2614 u64 addr, size_t size,
2615 enum dma_data_direction direction,
2616 struct dma_attrs *attrs)
2617 {
2618 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2619 direction, attrs);
2620 }
2621
2622 /**
2623 * ib_dma_map_page - Map a physical page to DMA address
2624 * @dev: The device for which the dma_addr is to be created
2625 * @page: The page to be mapped
2626 * @offset: The offset within the page
2627 * @size: The size of the region in bytes
2628 * @direction: The direction of the DMA
2629 */
2630 static inline u64 ib_dma_map_page(struct ib_device *dev,
2631 struct page *page,
2632 unsigned long offset,
2633 size_t size,
2634 enum dma_data_direction direction)
2635 {
2636 if (dev->dma_ops)
2637 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2638 return dma_map_page(dev->dma_device, page, offset, size, direction);
2639 }
2640
2641 /**
2642 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2643 * @dev: The device for which the DMA address was created
2644 * @addr: The DMA address
2645 * @size: The size of the region in bytes
2646 * @direction: The direction of the DMA
2647 */
2648 static inline void ib_dma_unmap_page(struct ib_device *dev,
2649 u64 addr, size_t size,
2650 enum dma_data_direction direction)
2651 {
2652 if (dev->dma_ops)
2653 dev->dma_ops->unmap_page(dev, addr, size, direction);
2654 else
2655 dma_unmap_page(dev->dma_device, addr, size, direction);
2656 }
2657
2658 /**
2659 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2660 * @dev: The device for which the DMA addresses are to be created
2661 * @sg: The array of scatter/gather entries
2662 * @nents: The number of scatter/gather entries
2663 * @direction: The direction of the DMA
2664 */
2665 static inline int ib_dma_map_sg(struct ib_device *dev,
2666 struct scatterlist *sg, int nents,
2667 enum dma_data_direction direction)
2668 {
2669 if (dev->dma_ops)
2670 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2671 return dma_map_sg(dev->dma_device, sg, nents, direction);
2672 }
2673
2674 /**
2675 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2676 * @dev: The device for which the DMA addresses were created
2677 * @sg: The array of scatter/gather entries
2678 * @nents: The number of scatter/gather entries
2679 * @direction: The direction of the DMA
2680 */
2681 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2682 struct scatterlist *sg, int nents,
2683 enum dma_data_direction direction)
2684 {
2685 if (dev->dma_ops)
2686 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2687 else
2688 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2689 }
2690
2691 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2692 struct scatterlist *sg, int nents,
2693 enum dma_data_direction direction,
2694 struct dma_attrs *attrs)
2695 {
2696 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2697 }
2698
2699 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2700 struct scatterlist *sg, int nents,
2701 enum dma_data_direction direction,
2702 struct dma_attrs *attrs)
2703 {
2704 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2705 }
2706 /**
2707 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2708 * @dev: The device for which the DMA addresses were created
2709 * @sg: The scatter/gather entry
2710 *
2711 * Note: this function is obsolete. To do: change all occurrences of
2712 * ib_sg_dma_address() into sg_dma_address().
2713 */
2714 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2715 struct scatterlist *sg)
2716 {
2717 return sg_dma_address(sg);
2718 }
2719
2720 /**
2721 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2722 * @dev: The device for which the DMA addresses were created
2723 * @sg: The scatter/gather entry
2724 *
2725 * Note: this function is obsolete. To do: change all occurrences of
2726 * ib_sg_dma_len() into sg_dma_len().
2727 */
2728 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2729 struct scatterlist *sg)
2730 {
2731 return sg_dma_len(sg);
2732 }
2733
2734 /**
2735 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2736 * @dev: The device for which the DMA address was created
2737 * @addr: The DMA address
2738 * @size: The size of the region in bytes
2739 * @dir: The direction of the DMA
2740 */
2741 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2742 u64 addr,
2743 size_t size,
2744 enum dma_data_direction dir)
2745 {
2746 if (dev->dma_ops)
2747 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2748 else
2749 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2750 }
2751
2752 /**
2753 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2754 * @dev: The device for which the DMA address was created
2755 * @addr: The DMA address
2756 * @size: The size of the region in bytes
2757 * @dir: The direction of the DMA
2758 */
2759 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2760 u64 addr,
2761 size_t size,
2762 enum dma_data_direction dir)
2763 {
2764 if (dev->dma_ops)
2765 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2766 else
2767 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2768 }
2769
2770 /**
2771 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2772 * @dev: The device for which the DMA address is requested
2773 * @size: The size of the region to allocate in bytes
2774 * @dma_handle: A pointer for returning the DMA address of the region
2775 * @flag: memory allocator flags
2776 */
2777 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2778 size_t size,
2779 u64 *dma_handle,
2780 gfp_t flag)
2781 {
2782 if (dev->dma_ops)
2783 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2784 else {
2785 dma_addr_t handle;
2786 void *ret;
2787
2788 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2789 *dma_handle = handle;
2790 return ret;
2791 }
2792 }
2793
2794 /**
2795 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2796 * @dev: The device for which the DMA addresses were allocated
2797 * @size: The size of the region
2798 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2799 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2800 */
2801 static inline void ib_dma_free_coherent(struct ib_device *dev,
2802 size_t size, void *cpu_addr,
2803 u64 dma_handle)
2804 {
2805 if (dev->dma_ops)
2806 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2807 else
2808 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2809 }
2810
2811 /**
2812 * ib_query_mr - Retrieves information about a specific memory region.
2813 * @mr: The memory region to retrieve information about.
2814 * @mr_attr: The attributes of the specified memory region.
2815 */
2816 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2817
2818 /**
2819 * ib_dereg_mr - Deregisters a memory region and removes it from the
2820 * HCA translation table.
2821 * @mr: The memory region to deregister.
2822 *
2823 * This function can fail, if the memory region has memory windows bound to it.
2824 */
2825 int ib_dereg_mr(struct ib_mr *mr);
2826
2827 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2828 enum ib_mr_type mr_type,
2829 u32 max_num_sg);
2830
2831 /**
2832 * ib_alloc_fast_reg_page_list - Allocates a page list array
2833 * @device - ib device pointer.
2834 * @page_list_len - size of the page list array to be allocated.
2835 *
2836 * This allocates and returns a struct ib_fast_reg_page_list * and a
2837 * page_list array that is at least page_list_len in size. The actual
2838 * size is returned in max_page_list_len. The caller is responsible
2839 * for initializing the contents of the page_list array before posting
2840 * a send work request with the IB_WC_FAST_REG_MR opcode.
2841 *
2842 * The page_list array entries must be translated using one of the
2843 * ib_dma_*() functions just like the addresses passed to
2844 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2845 * ib_fast_reg_page_list must not be modified by the caller until the
2846 * IB_WC_FAST_REG_MR work request completes.
2847 */
2848 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2849 struct ib_device *device, int page_list_len);
2850
2851 /**
2852 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2853 * page list array.
2854 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2855 */
2856 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2857
2858 /**
2859 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2860 * R_Key and L_Key.
2861 * @mr - struct ib_mr pointer to be updated.
2862 * @newkey - new key to be used.
2863 */
2864 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2865 {
2866 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2867 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2868 }
2869
2870 /**
2871 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2872 * for calculating a new rkey for type 2 memory windows.
2873 * @rkey - the rkey to increment.
2874 */
2875 static inline u32 ib_inc_rkey(u32 rkey)
2876 {
2877 const u32 mask = 0x000000ff;
2878 return ((rkey + 1) & mask) | (rkey & ~mask);
2879 }
2880
2881 /**
2882 * ib_alloc_mw - Allocates a memory window.
2883 * @pd: The protection domain associated with the memory window.
2884 * @type: The type of the memory window (1 or 2).
2885 */
2886 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2887
2888 /**
2889 * ib_bind_mw - Posts a work request to the send queue of the specified
2890 * QP, which binds the memory window to the given address range and
2891 * remote access attributes.
2892 * @qp: QP to post the bind work request on.
2893 * @mw: The memory window to bind.
2894 * @mw_bind: Specifies information about the memory window, including
2895 * its address range, remote access rights, and associated memory region.
2896 *
2897 * If there is no immediate error, the function will update the rkey member
2898 * of the mw parameter to its new value. The bind operation can still fail
2899 * asynchronously.
2900 */
2901 static inline int ib_bind_mw(struct ib_qp *qp,
2902 struct ib_mw *mw,
2903 struct ib_mw_bind *mw_bind)
2904 {
2905 /* XXX reference counting in corresponding MR? */
2906 return mw->device->bind_mw ?
2907 mw->device->bind_mw(qp, mw, mw_bind) :
2908 -ENOSYS;
2909 }
2910
2911 /**
2912 * ib_dealloc_mw - Deallocates a memory window.
2913 * @mw: The memory window to deallocate.
2914 */
2915 int ib_dealloc_mw(struct ib_mw *mw);
2916
2917 /**
2918 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2919 * @pd: The protection domain associated with the unmapped region.
2920 * @mr_access_flags: Specifies the memory access rights.
2921 * @fmr_attr: Attributes of the unmapped region.
2922 *
2923 * A fast memory region must be mapped before it can be used as part of
2924 * a work request.
2925 */
2926 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2927 int mr_access_flags,
2928 struct ib_fmr_attr *fmr_attr);
2929
2930 /**
2931 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2932 * @fmr: The fast memory region to associate with the pages.
2933 * @page_list: An array of physical pages to map to the fast memory region.
2934 * @list_len: The number of pages in page_list.
2935 * @iova: The I/O virtual address to use with the mapped region.
2936 */
2937 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2938 u64 *page_list, int list_len,
2939 u64 iova)
2940 {
2941 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2942 }
2943
2944 /**
2945 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2946 * @fmr_list: A linked list of fast memory regions to unmap.
2947 */
2948 int ib_unmap_fmr(struct list_head *fmr_list);
2949
2950 /**
2951 * ib_dealloc_fmr - Deallocates a fast memory region.
2952 * @fmr: The fast memory region to deallocate.
2953 */
2954 int ib_dealloc_fmr(struct ib_fmr *fmr);
2955
2956 /**
2957 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2958 * @qp: QP to attach to the multicast group. The QP must be type
2959 * IB_QPT_UD.
2960 * @gid: Multicast group GID.
2961 * @lid: Multicast group LID in host byte order.
2962 *
2963 * In order to send and receive multicast packets, subnet
2964 * administration must have created the multicast group and configured
2965 * the fabric appropriately. The port associated with the specified
2966 * QP must also be a member of the multicast group.
2967 */
2968 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2969
2970 /**
2971 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2972 * @qp: QP to detach from the multicast group.
2973 * @gid: Multicast group GID.
2974 * @lid: Multicast group LID in host byte order.
2975 */
2976 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2977
2978 /**
2979 * ib_alloc_xrcd - Allocates an XRC domain.
2980 * @device: The device on which to allocate the XRC domain.
2981 */
2982 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2983
2984 /**
2985 * ib_dealloc_xrcd - Deallocates an XRC domain.
2986 * @xrcd: The XRC domain to deallocate.
2987 */
2988 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2989
2990 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2991 struct ib_flow_attr *flow_attr, int domain);
2992 int ib_destroy_flow(struct ib_flow *flow_id);
2993
2994 static inline int ib_check_mr_access(int flags)
2995 {
2996 /*
2997 * Local write permission is required if remote write or
2998 * remote atomic permission is also requested.
2999 */
3000 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3001 !(flags & IB_ACCESS_LOCAL_WRITE))
3002 return -EINVAL;
3003
3004 return 0;
3005 }
3006
3007 /**
3008 * ib_check_mr_status: lightweight check of MR status.
3009 * This routine may provide status checks on a selected
3010 * ib_mr. first use is for signature status check.
3011 *
3012 * @mr: A memory region.
3013 * @check_mask: Bitmask of which checks to perform from
3014 * ib_mr_status_check enumeration.
3015 * @mr_status: The container of relevant status checks.
3016 * failed checks will be indicated in the status bitmask
3017 * and the relevant info shall be in the error item.
3018 */
3019 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3020 struct ib_mr_status *mr_status);
3021
3022 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3023 u16 pkey, const union ib_gid *gid,
3024 const struct sockaddr *addr);
3025
3026 #endif /* IB_VERBS_H */