]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/rdma/ib_verbs.h
dma-mapping: use unsigned long for dma_attrs
[mirror_ubuntu-artful-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <asm/uaccess.h>
63
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
66
67 union ib_gid {
68 u8 raw[16];
69 struct {
70 __be64 subnet_prefix;
71 __be64 interface_id;
72 } global;
73 };
74
75 extern union ib_gid zgid;
76
77 enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
82 IB_GID_TYPE_SIZE
83 };
84
85 #define ROCE_V2_UDP_DPORT 4791
86 struct ib_gid_attr {
87 enum ib_gid_type gid_type;
88 struct net_device *ndev;
89 };
90
91 enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
98 RDMA_NODE_USNIC_UDP,
99 };
100
101 enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104 };
105
106 enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
108 RDMA_TRANSPORT_IWARP,
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
111 };
112
113 enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118 };
119
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
122
123 enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128 };
129
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131 {
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138 }
139
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142 {
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150 }
151
152 enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156 };
157
158 enum ib_device_cap_flags {
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
211 /*
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
216 */
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
224 };
225
226 enum ib_signature_prot_cap {
227 IB_PROT_T10DIF_TYPE_1 = 1,
228 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
230 };
231
232 enum ib_signature_guard_cap {
233 IB_GUARD_T10DIF_CRC = 1,
234 IB_GUARD_T10DIF_CSUM = 1 << 1,
235 };
236
237 enum ib_atomic_cap {
238 IB_ATOMIC_NONE,
239 IB_ATOMIC_HCA,
240 IB_ATOMIC_GLOB
241 };
242
243 enum ib_odp_general_cap_bits {
244 IB_ODP_SUPPORT = 1 << 0,
245 };
246
247 enum ib_odp_transport_cap_bits {
248 IB_ODP_SUPPORT_SEND = 1 << 0,
249 IB_ODP_SUPPORT_RECV = 1 << 1,
250 IB_ODP_SUPPORT_WRITE = 1 << 2,
251 IB_ODP_SUPPORT_READ = 1 << 3,
252 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
253 };
254
255 struct ib_odp_caps {
256 uint64_t general_caps;
257 struct {
258 uint32_t rc_odp_caps;
259 uint32_t uc_odp_caps;
260 uint32_t ud_odp_caps;
261 } per_transport_caps;
262 };
263
264 enum ib_cq_creation_flags {
265 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
266 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
267 };
268
269 struct ib_cq_init_attr {
270 unsigned int cqe;
271 int comp_vector;
272 u32 flags;
273 };
274
275 struct ib_device_attr {
276 u64 fw_ver;
277 __be64 sys_image_guid;
278 u64 max_mr_size;
279 u64 page_size_cap;
280 u32 vendor_id;
281 u32 vendor_part_id;
282 u32 hw_ver;
283 int max_qp;
284 int max_qp_wr;
285 u64 device_cap_flags;
286 int max_sge;
287 int max_sge_rd;
288 int max_cq;
289 int max_cqe;
290 int max_mr;
291 int max_pd;
292 int max_qp_rd_atom;
293 int max_ee_rd_atom;
294 int max_res_rd_atom;
295 int max_qp_init_rd_atom;
296 int max_ee_init_rd_atom;
297 enum ib_atomic_cap atomic_cap;
298 enum ib_atomic_cap masked_atomic_cap;
299 int max_ee;
300 int max_rdd;
301 int max_mw;
302 int max_raw_ipv6_qp;
303 int max_raw_ethy_qp;
304 int max_mcast_grp;
305 int max_mcast_qp_attach;
306 int max_total_mcast_qp_attach;
307 int max_ah;
308 int max_fmr;
309 int max_map_per_fmr;
310 int max_srq;
311 int max_srq_wr;
312 int max_srq_sge;
313 unsigned int max_fast_reg_page_list_len;
314 u16 max_pkeys;
315 u8 local_ca_ack_delay;
316 int sig_prot_cap;
317 int sig_guard_cap;
318 struct ib_odp_caps odp_caps;
319 uint64_t timestamp_mask;
320 uint64_t hca_core_clock; /* in KHZ */
321 };
322
323 enum ib_mtu {
324 IB_MTU_256 = 1,
325 IB_MTU_512 = 2,
326 IB_MTU_1024 = 3,
327 IB_MTU_2048 = 4,
328 IB_MTU_4096 = 5
329 };
330
331 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
332 {
333 switch (mtu) {
334 case IB_MTU_256: return 256;
335 case IB_MTU_512: return 512;
336 case IB_MTU_1024: return 1024;
337 case IB_MTU_2048: return 2048;
338 case IB_MTU_4096: return 4096;
339 default: return -1;
340 }
341 }
342
343 enum ib_port_state {
344 IB_PORT_NOP = 0,
345 IB_PORT_DOWN = 1,
346 IB_PORT_INIT = 2,
347 IB_PORT_ARMED = 3,
348 IB_PORT_ACTIVE = 4,
349 IB_PORT_ACTIVE_DEFER = 5
350 };
351
352 enum ib_port_cap_flags {
353 IB_PORT_SM = 1 << 1,
354 IB_PORT_NOTICE_SUP = 1 << 2,
355 IB_PORT_TRAP_SUP = 1 << 3,
356 IB_PORT_OPT_IPD_SUP = 1 << 4,
357 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
358 IB_PORT_SL_MAP_SUP = 1 << 6,
359 IB_PORT_MKEY_NVRAM = 1 << 7,
360 IB_PORT_PKEY_NVRAM = 1 << 8,
361 IB_PORT_LED_INFO_SUP = 1 << 9,
362 IB_PORT_SM_DISABLED = 1 << 10,
363 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
364 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
365 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
366 IB_PORT_CM_SUP = 1 << 16,
367 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
368 IB_PORT_REINIT_SUP = 1 << 18,
369 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
370 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
371 IB_PORT_DR_NOTICE_SUP = 1 << 21,
372 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
373 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
374 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
375 IB_PORT_CLIENT_REG_SUP = 1 << 25,
376 IB_PORT_IP_BASED_GIDS = 1 << 26,
377 };
378
379 enum ib_port_width {
380 IB_WIDTH_1X = 1,
381 IB_WIDTH_4X = 2,
382 IB_WIDTH_8X = 4,
383 IB_WIDTH_12X = 8
384 };
385
386 static inline int ib_width_enum_to_int(enum ib_port_width width)
387 {
388 switch (width) {
389 case IB_WIDTH_1X: return 1;
390 case IB_WIDTH_4X: return 4;
391 case IB_WIDTH_8X: return 8;
392 case IB_WIDTH_12X: return 12;
393 default: return -1;
394 }
395 }
396
397 enum ib_port_speed {
398 IB_SPEED_SDR = 1,
399 IB_SPEED_DDR = 2,
400 IB_SPEED_QDR = 4,
401 IB_SPEED_FDR10 = 8,
402 IB_SPEED_FDR = 16,
403 IB_SPEED_EDR = 32
404 };
405
406 /**
407 * struct rdma_hw_stats
408 * @timestamp - Used by the core code to track when the last update was
409 * @lifespan - Used by the core code to determine how old the counters
410 * should be before being updated again. Stored in jiffies, defaults
411 * to 10 milliseconds, drivers can override the default be specifying
412 * their own value during their allocation routine.
413 * @name - Array of pointers to static names used for the counters in
414 * directory.
415 * @num_counters - How many hardware counters there are. If name is
416 * shorter than this number, a kernel oops will result. Driver authors
417 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
418 * in their code to prevent this.
419 * @value - Array of u64 counters that are accessed by the sysfs code and
420 * filled in by the drivers get_stats routine
421 */
422 struct rdma_hw_stats {
423 unsigned long timestamp;
424 unsigned long lifespan;
425 const char * const *names;
426 int num_counters;
427 u64 value[];
428 };
429
430 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
431 /**
432 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
433 * for drivers.
434 * @names - Array of static const char *
435 * @num_counters - How many elements in array
436 * @lifespan - How many milliseconds between updates
437 */
438 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
439 const char * const *names, int num_counters,
440 unsigned long lifespan)
441 {
442 struct rdma_hw_stats *stats;
443
444 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
445 GFP_KERNEL);
446 if (!stats)
447 return NULL;
448 stats->names = names;
449 stats->num_counters = num_counters;
450 stats->lifespan = msecs_to_jiffies(lifespan);
451
452 return stats;
453 }
454
455
456 /* Define bits for the various functionality this port needs to be supported by
457 * the core.
458 */
459 /* Management 0x00000FFF */
460 #define RDMA_CORE_CAP_IB_MAD 0x00000001
461 #define RDMA_CORE_CAP_IB_SMI 0x00000002
462 #define RDMA_CORE_CAP_IB_CM 0x00000004
463 #define RDMA_CORE_CAP_IW_CM 0x00000008
464 #define RDMA_CORE_CAP_IB_SA 0x00000010
465 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
466
467 /* Address format 0x000FF000 */
468 #define RDMA_CORE_CAP_AF_IB 0x00001000
469 #define RDMA_CORE_CAP_ETH_AH 0x00002000
470
471 /* Protocol 0xFFF00000 */
472 #define RDMA_CORE_CAP_PROT_IB 0x00100000
473 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
474 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
475 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
476
477 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
478 | RDMA_CORE_CAP_IB_MAD \
479 | RDMA_CORE_CAP_IB_SMI \
480 | RDMA_CORE_CAP_IB_CM \
481 | RDMA_CORE_CAP_IB_SA \
482 | RDMA_CORE_CAP_AF_IB)
483 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
484 | RDMA_CORE_CAP_IB_MAD \
485 | RDMA_CORE_CAP_IB_CM \
486 | RDMA_CORE_CAP_AF_IB \
487 | RDMA_CORE_CAP_ETH_AH)
488 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
489 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
490 | RDMA_CORE_CAP_IB_MAD \
491 | RDMA_CORE_CAP_IB_CM \
492 | RDMA_CORE_CAP_AF_IB \
493 | RDMA_CORE_CAP_ETH_AH)
494 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
495 | RDMA_CORE_CAP_IW_CM)
496 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
497 | RDMA_CORE_CAP_OPA_MAD)
498
499 struct ib_port_attr {
500 u64 subnet_prefix;
501 enum ib_port_state state;
502 enum ib_mtu max_mtu;
503 enum ib_mtu active_mtu;
504 int gid_tbl_len;
505 u32 port_cap_flags;
506 u32 max_msg_sz;
507 u32 bad_pkey_cntr;
508 u32 qkey_viol_cntr;
509 u16 pkey_tbl_len;
510 u16 lid;
511 u16 sm_lid;
512 u8 lmc;
513 u8 max_vl_num;
514 u8 sm_sl;
515 u8 subnet_timeout;
516 u8 init_type_reply;
517 u8 active_width;
518 u8 active_speed;
519 u8 phys_state;
520 bool grh_required;
521 };
522
523 enum ib_device_modify_flags {
524 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
525 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
526 };
527
528 struct ib_device_modify {
529 u64 sys_image_guid;
530 char node_desc[64];
531 };
532
533 enum ib_port_modify_flags {
534 IB_PORT_SHUTDOWN = 1,
535 IB_PORT_INIT_TYPE = (1<<2),
536 IB_PORT_RESET_QKEY_CNTR = (1<<3)
537 };
538
539 struct ib_port_modify {
540 u32 set_port_cap_mask;
541 u32 clr_port_cap_mask;
542 u8 init_type;
543 };
544
545 enum ib_event_type {
546 IB_EVENT_CQ_ERR,
547 IB_EVENT_QP_FATAL,
548 IB_EVENT_QP_REQ_ERR,
549 IB_EVENT_QP_ACCESS_ERR,
550 IB_EVENT_COMM_EST,
551 IB_EVENT_SQ_DRAINED,
552 IB_EVENT_PATH_MIG,
553 IB_EVENT_PATH_MIG_ERR,
554 IB_EVENT_DEVICE_FATAL,
555 IB_EVENT_PORT_ACTIVE,
556 IB_EVENT_PORT_ERR,
557 IB_EVENT_LID_CHANGE,
558 IB_EVENT_PKEY_CHANGE,
559 IB_EVENT_SM_CHANGE,
560 IB_EVENT_SRQ_ERR,
561 IB_EVENT_SRQ_LIMIT_REACHED,
562 IB_EVENT_QP_LAST_WQE_REACHED,
563 IB_EVENT_CLIENT_REREGISTER,
564 IB_EVENT_GID_CHANGE,
565 };
566
567 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
568
569 struct ib_event {
570 struct ib_device *device;
571 union {
572 struct ib_cq *cq;
573 struct ib_qp *qp;
574 struct ib_srq *srq;
575 u8 port_num;
576 } element;
577 enum ib_event_type event;
578 };
579
580 struct ib_event_handler {
581 struct ib_device *device;
582 void (*handler)(struct ib_event_handler *, struct ib_event *);
583 struct list_head list;
584 };
585
586 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
587 do { \
588 (_ptr)->device = _device; \
589 (_ptr)->handler = _handler; \
590 INIT_LIST_HEAD(&(_ptr)->list); \
591 } while (0)
592
593 struct ib_global_route {
594 union ib_gid dgid;
595 u32 flow_label;
596 u8 sgid_index;
597 u8 hop_limit;
598 u8 traffic_class;
599 };
600
601 struct ib_grh {
602 __be32 version_tclass_flow;
603 __be16 paylen;
604 u8 next_hdr;
605 u8 hop_limit;
606 union ib_gid sgid;
607 union ib_gid dgid;
608 };
609
610 union rdma_network_hdr {
611 struct ib_grh ibgrh;
612 struct {
613 /* The IB spec states that if it's IPv4, the header
614 * is located in the last 20 bytes of the header.
615 */
616 u8 reserved[20];
617 struct iphdr roce4grh;
618 };
619 };
620
621 enum {
622 IB_MULTICAST_QPN = 0xffffff
623 };
624
625 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
626 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
627
628 enum ib_ah_flags {
629 IB_AH_GRH = 1
630 };
631
632 enum ib_rate {
633 IB_RATE_PORT_CURRENT = 0,
634 IB_RATE_2_5_GBPS = 2,
635 IB_RATE_5_GBPS = 5,
636 IB_RATE_10_GBPS = 3,
637 IB_RATE_20_GBPS = 6,
638 IB_RATE_30_GBPS = 4,
639 IB_RATE_40_GBPS = 7,
640 IB_RATE_60_GBPS = 8,
641 IB_RATE_80_GBPS = 9,
642 IB_RATE_120_GBPS = 10,
643 IB_RATE_14_GBPS = 11,
644 IB_RATE_56_GBPS = 12,
645 IB_RATE_112_GBPS = 13,
646 IB_RATE_168_GBPS = 14,
647 IB_RATE_25_GBPS = 15,
648 IB_RATE_100_GBPS = 16,
649 IB_RATE_200_GBPS = 17,
650 IB_RATE_300_GBPS = 18
651 };
652
653 /**
654 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
655 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
656 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
657 * @rate: rate to convert.
658 */
659 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
660
661 /**
662 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
663 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
664 * @rate: rate to convert.
665 */
666 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
667
668
669 /**
670 * enum ib_mr_type - memory region type
671 * @IB_MR_TYPE_MEM_REG: memory region that is used for
672 * normal registration
673 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
674 * signature operations (data-integrity
675 * capable regions)
676 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
677 * register any arbitrary sg lists (without
678 * the normal mr constraints - see
679 * ib_map_mr_sg)
680 */
681 enum ib_mr_type {
682 IB_MR_TYPE_MEM_REG,
683 IB_MR_TYPE_SIGNATURE,
684 IB_MR_TYPE_SG_GAPS,
685 };
686
687 /**
688 * Signature types
689 * IB_SIG_TYPE_NONE: Unprotected.
690 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
691 */
692 enum ib_signature_type {
693 IB_SIG_TYPE_NONE,
694 IB_SIG_TYPE_T10_DIF,
695 };
696
697 /**
698 * Signature T10-DIF block-guard types
699 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
700 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
701 */
702 enum ib_t10_dif_bg_type {
703 IB_T10DIF_CRC,
704 IB_T10DIF_CSUM
705 };
706
707 /**
708 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
709 * domain.
710 * @bg_type: T10-DIF block guard type (CRC|CSUM)
711 * @pi_interval: protection information interval.
712 * @bg: seed of guard computation.
713 * @app_tag: application tag of guard block
714 * @ref_tag: initial guard block reference tag.
715 * @ref_remap: Indicate wethear the reftag increments each block
716 * @app_escape: Indicate to skip block check if apptag=0xffff
717 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
718 * @apptag_check_mask: check bitmask of application tag.
719 */
720 struct ib_t10_dif_domain {
721 enum ib_t10_dif_bg_type bg_type;
722 u16 pi_interval;
723 u16 bg;
724 u16 app_tag;
725 u32 ref_tag;
726 bool ref_remap;
727 bool app_escape;
728 bool ref_escape;
729 u16 apptag_check_mask;
730 };
731
732 /**
733 * struct ib_sig_domain - Parameters for signature domain
734 * @sig_type: specific signauture type
735 * @sig: union of all signature domain attributes that may
736 * be used to set domain layout.
737 */
738 struct ib_sig_domain {
739 enum ib_signature_type sig_type;
740 union {
741 struct ib_t10_dif_domain dif;
742 } sig;
743 };
744
745 /**
746 * struct ib_sig_attrs - Parameters for signature handover operation
747 * @check_mask: bitmask for signature byte check (8 bytes)
748 * @mem: memory domain layout desciptor.
749 * @wire: wire domain layout desciptor.
750 */
751 struct ib_sig_attrs {
752 u8 check_mask;
753 struct ib_sig_domain mem;
754 struct ib_sig_domain wire;
755 };
756
757 enum ib_sig_err_type {
758 IB_SIG_BAD_GUARD,
759 IB_SIG_BAD_REFTAG,
760 IB_SIG_BAD_APPTAG,
761 };
762
763 /**
764 * struct ib_sig_err - signature error descriptor
765 */
766 struct ib_sig_err {
767 enum ib_sig_err_type err_type;
768 u32 expected;
769 u32 actual;
770 u64 sig_err_offset;
771 u32 key;
772 };
773
774 enum ib_mr_status_check {
775 IB_MR_CHECK_SIG_STATUS = 1,
776 };
777
778 /**
779 * struct ib_mr_status - Memory region status container
780 *
781 * @fail_status: Bitmask of MR checks status. For each
782 * failed check a corresponding status bit is set.
783 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
784 * failure.
785 */
786 struct ib_mr_status {
787 u32 fail_status;
788 struct ib_sig_err sig_err;
789 };
790
791 /**
792 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
793 * enum.
794 * @mult: multiple to convert.
795 */
796 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
797
798 struct ib_ah_attr {
799 struct ib_global_route grh;
800 u16 dlid;
801 u8 sl;
802 u8 src_path_bits;
803 u8 static_rate;
804 u8 ah_flags;
805 u8 port_num;
806 u8 dmac[ETH_ALEN];
807 };
808
809 enum ib_wc_status {
810 IB_WC_SUCCESS,
811 IB_WC_LOC_LEN_ERR,
812 IB_WC_LOC_QP_OP_ERR,
813 IB_WC_LOC_EEC_OP_ERR,
814 IB_WC_LOC_PROT_ERR,
815 IB_WC_WR_FLUSH_ERR,
816 IB_WC_MW_BIND_ERR,
817 IB_WC_BAD_RESP_ERR,
818 IB_WC_LOC_ACCESS_ERR,
819 IB_WC_REM_INV_REQ_ERR,
820 IB_WC_REM_ACCESS_ERR,
821 IB_WC_REM_OP_ERR,
822 IB_WC_RETRY_EXC_ERR,
823 IB_WC_RNR_RETRY_EXC_ERR,
824 IB_WC_LOC_RDD_VIOL_ERR,
825 IB_WC_REM_INV_RD_REQ_ERR,
826 IB_WC_REM_ABORT_ERR,
827 IB_WC_INV_EECN_ERR,
828 IB_WC_INV_EEC_STATE_ERR,
829 IB_WC_FATAL_ERR,
830 IB_WC_RESP_TIMEOUT_ERR,
831 IB_WC_GENERAL_ERR
832 };
833
834 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
835
836 enum ib_wc_opcode {
837 IB_WC_SEND,
838 IB_WC_RDMA_WRITE,
839 IB_WC_RDMA_READ,
840 IB_WC_COMP_SWAP,
841 IB_WC_FETCH_ADD,
842 IB_WC_LSO,
843 IB_WC_LOCAL_INV,
844 IB_WC_REG_MR,
845 IB_WC_MASKED_COMP_SWAP,
846 IB_WC_MASKED_FETCH_ADD,
847 /*
848 * Set value of IB_WC_RECV so consumers can test if a completion is a
849 * receive by testing (opcode & IB_WC_RECV).
850 */
851 IB_WC_RECV = 1 << 7,
852 IB_WC_RECV_RDMA_WITH_IMM
853 };
854
855 enum ib_wc_flags {
856 IB_WC_GRH = 1,
857 IB_WC_WITH_IMM = (1<<1),
858 IB_WC_WITH_INVALIDATE = (1<<2),
859 IB_WC_IP_CSUM_OK = (1<<3),
860 IB_WC_WITH_SMAC = (1<<4),
861 IB_WC_WITH_VLAN = (1<<5),
862 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
863 };
864
865 struct ib_wc {
866 union {
867 u64 wr_id;
868 struct ib_cqe *wr_cqe;
869 };
870 enum ib_wc_status status;
871 enum ib_wc_opcode opcode;
872 u32 vendor_err;
873 u32 byte_len;
874 struct ib_qp *qp;
875 union {
876 __be32 imm_data;
877 u32 invalidate_rkey;
878 } ex;
879 u32 src_qp;
880 int wc_flags;
881 u16 pkey_index;
882 u16 slid;
883 u8 sl;
884 u8 dlid_path_bits;
885 u8 port_num; /* valid only for DR SMPs on switches */
886 u8 smac[ETH_ALEN];
887 u16 vlan_id;
888 u8 network_hdr_type;
889 };
890
891 enum ib_cq_notify_flags {
892 IB_CQ_SOLICITED = 1 << 0,
893 IB_CQ_NEXT_COMP = 1 << 1,
894 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
895 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
896 };
897
898 enum ib_srq_type {
899 IB_SRQT_BASIC,
900 IB_SRQT_XRC
901 };
902
903 enum ib_srq_attr_mask {
904 IB_SRQ_MAX_WR = 1 << 0,
905 IB_SRQ_LIMIT = 1 << 1,
906 };
907
908 struct ib_srq_attr {
909 u32 max_wr;
910 u32 max_sge;
911 u32 srq_limit;
912 };
913
914 struct ib_srq_init_attr {
915 void (*event_handler)(struct ib_event *, void *);
916 void *srq_context;
917 struct ib_srq_attr attr;
918 enum ib_srq_type srq_type;
919
920 union {
921 struct {
922 struct ib_xrcd *xrcd;
923 struct ib_cq *cq;
924 } xrc;
925 } ext;
926 };
927
928 struct ib_qp_cap {
929 u32 max_send_wr;
930 u32 max_recv_wr;
931 u32 max_send_sge;
932 u32 max_recv_sge;
933 u32 max_inline_data;
934
935 /*
936 * Maximum number of rdma_rw_ctx structures in flight at a time.
937 * ib_create_qp() will calculate the right amount of neededed WRs
938 * and MRs based on this.
939 */
940 u32 max_rdma_ctxs;
941 };
942
943 enum ib_sig_type {
944 IB_SIGNAL_ALL_WR,
945 IB_SIGNAL_REQ_WR
946 };
947
948 enum ib_qp_type {
949 /*
950 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
951 * here (and in that order) since the MAD layer uses them as
952 * indices into a 2-entry table.
953 */
954 IB_QPT_SMI,
955 IB_QPT_GSI,
956
957 IB_QPT_RC,
958 IB_QPT_UC,
959 IB_QPT_UD,
960 IB_QPT_RAW_IPV6,
961 IB_QPT_RAW_ETHERTYPE,
962 IB_QPT_RAW_PACKET = 8,
963 IB_QPT_XRC_INI = 9,
964 IB_QPT_XRC_TGT,
965 IB_QPT_MAX,
966 /* Reserve a range for qp types internal to the low level driver.
967 * These qp types will not be visible at the IB core layer, so the
968 * IB_QPT_MAX usages should not be affected in the core layer
969 */
970 IB_QPT_RESERVED1 = 0x1000,
971 IB_QPT_RESERVED2,
972 IB_QPT_RESERVED3,
973 IB_QPT_RESERVED4,
974 IB_QPT_RESERVED5,
975 IB_QPT_RESERVED6,
976 IB_QPT_RESERVED7,
977 IB_QPT_RESERVED8,
978 IB_QPT_RESERVED9,
979 IB_QPT_RESERVED10,
980 };
981
982 enum ib_qp_create_flags {
983 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
984 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
985 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
986 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
987 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
988 IB_QP_CREATE_NETIF_QP = 1 << 5,
989 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
990 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
991 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
992 /* reserve bits 26-31 for low level drivers' internal use */
993 IB_QP_CREATE_RESERVED_START = 1 << 26,
994 IB_QP_CREATE_RESERVED_END = 1 << 31,
995 };
996
997 /*
998 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
999 * callback to destroy the passed in QP.
1000 */
1001
1002 struct ib_qp_init_attr {
1003 void (*event_handler)(struct ib_event *, void *);
1004 void *qp_context;
1005 struct ib_cq *send_cq;
1006 struct ib_cq *recv_cq;
1007 struct ib_srq *srq;
1008 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1009 struct ib_qp_cap cap;
1010 enum ib_sig_type sq_sig_type;
1011 enum ib_qp_type qp_type;
1012 enum ib_qp_create_flags create_flags;
1013
1014 /*
1015 * Only needed for special QP types, or when using the RW API.
1016 */
1017 u8 port_num;
1018 };
1019
1020 struct ib_qp_open_attr {
1021 void (*event_handler)(struct ib_event *, void *);
1022 void *qp_context;
1023 u32 qp_num;
1024 enum ib_qp_type qp_type;
1025 };
1026
1027 enum ib_rnr_timeout {
1028 IB_RNR_TIMER_655_36 = 0,
1029 IB_RNR_TIMER_000_01 = 1,
1030 IB_RNR_TIMER_000_02 = 2,
1031 IB_RNR_TIMER_000_03 = 3,
1032 IB_RNR_TIMER_000_04 = 4,
1033 IB_RNR_TIMER_000_06 = 5,
1034 IB_RNR_TIMER_000_08 = 6,
1035 IB_RNR_TIMER_000_12 = 7,
1036 IB_RNR_TIMER_000_16 = 8,
1037 IB_RNR_TIMER_000_24 = 9,
1038 IB_RNR_TIMER_000_32 = 10,
1039 IB_RNR_TIMER_000_48 = 11,
1040 IB_RNR_TIMER_000_64 = 12,
1041 IB_RNR_TIMER_000_96 = 13,
1042 IB_RNR_TIMER_001_28 = 14,
1043 IB_RNR_TIMER_001_92 = 15,
1044 IB_RNR_TIMER_002_56 = 16,
1045 IB_RNR_TIMER_003_84 = 17,
1046 IB_RNR_TIMER_005_12 = 18,
1047 IB_RNR_TIMER_007_68 = 19,
1048 IB_RNR_TIMER_010_24 = 20,
1049 IB_RNR_TIMER_015_36 = 21,
1050 IB_RNR_TIMER_020_48 = 22,
1051 IB_RNR_TIMER_030_72 = 23,
1052 IB_RNR_TIMER_040_96 = 24,
1053 IB_RNR_TIMER_061_44 = 25,
1054 IB_RNR_TIMER_081_92 = 26,
1055 IB_RNR_TIMER_122_88 = 27,
1056 IB_RNR_TIMER_163_84 = 28,
1057 IB_RNR_TIMER_245_76 = 29,
1058 IB_RNR_TIMER_327_68 = 30,
1059 IB_RNR_TIMER_491_52 = 31
1060 };
1061
1062 enum ib_qp_attr_mask {
1063 IB_QP_STATE = 1,
1064 IB_QP_CUR_STATE = (1<<1),
1065 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1066 IB_QP_ACCESS_FLAGS = (1<<3),
1067 IB_QP_PKEY_INDEX = (1<<4),
1068 IB_QP_PORT = (1<<5),
1069 IB_QP_QKEY = (1<<6),
1070 IB_QP_AV = (1<<7),
1071 IB_QP_PATH_MTU = (1<<8),
1072 IB_QP_TIMEOUT = (1<<9),
1073 IB_QP_RETRY_CNT = (1<<10),
1074 IB_QP_RNR_RETRY = (1<<11),
1075 IB_QP_RQ_PSN = (1<<12),
1076 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1077 IB_QP_ALT_PATH = (1<<14),
1078 IB_QP_MIN_RNR_TIMER = (1<<15),
1079 IB_QP_SQ_PSN = (1<<16),
1080 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1081 IB_QP_PATH_MIG_STATE = (1<<18),
1082 IB_QP_CAP = (1<<19),
1083 IB_QP_DEST_QPN = (1<<20),
1084 IB_QP_RESERVED1 = (1<<21),
1085 IB_QP_RESERVED2 = (1<<22),
1086 IB_QP_RESERVED3 = (1<<23),
1087 IB_QP_RESERVED4 = (1<<24),
1088 };
1089
1090 enum ib_qp_state {
1091 IB_QPS_RESET,
1092 IB_QPS_INIT,
1093 IB_QPS_RTR,
1094 IB_QPS_RTS,
1095 IB_QPS_SQD,
1096 IB_QPS_SQE,
1097 IB_QPS_ERR
1098 };
1099
1100 enum ib_mig_state {
1101 IB_MIG_MIGRATED,
1102 IB_MIG_REARM,
1103 IB_MIG_ARMED
1104 };
1105
1106 enum ib_mw_type {
1107 IB_MW_TYPE_1 = 1,
1108 IB_MW_TYPE_2 = 2
1109 };
1110
1111 struct ib_qp_attr {
1112 enum ib_qp_state qp_state;
1113 enum ib_qp_state cur_qp_state;
1114 enum ib_mtu path_mtu;
1115 enum ib_mig_state path_mig_state;
1116 u32 qkey;
1117 u32 rq_psn;
1118 u32 sq_psn;
1119 u32 dest_qp_num;
1120 int qp_access_flags;
1121 struct ib_qp_cap cap;
1122 struct ib_ah_attr ah_attr;
1123 struct ib_ah_attr alt_ah_attr;
1124 u16 pkey_index;
1125 u16 alt_pkey_index;
1126 u8 en_sqd_async_notify;
1127 u8 sq_draining;
1128 u8 max_rd_atomic;
1129 u8 max_dest_rd_atomic;
1130 u8 min_rnr_timer;
1131 u8 port_num;
1132 u8 timeout;
1133 u8 retry_cnt;
1134 u8 rnr_retry;
1135 u8 alt_port_num;
1136 u8 alt_timeout;
1137 };
1138
1139 enum ib_wr_opcode {
1140 IB_WR_RDMA_WRITE,
1141 IB_WR_RDMA_WRITE_WITH_IMM,
1142 IB_WR_SEND,
1143 IB_WR_SEND_WITH_IMM,
1144 IB_WR_RDMA_READ,
1145 IB_WR_ATOMIC_CMP_AND_SWP,
1146 IB_WR_ATOMIC_FETCH_AND_ADD,
1147 IB_WR_LSO,
1148 IB_WR_SEND_WITH_INV,
1149 IB_WR_RDMA_READ_WITH_INV,
1150 IB_WR_LOCAL_INV,
1151 IB_WR_REG_MR,
1152 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1153 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1154 IB_WR_REG_SIG_MR,
1155 /* reserve values for low level drivers' internal use.
1156 * These values will not be used at all in the ib core layer.
1157 */
1158 IB_WR_RESERVED1 = 0xf0,
1159 IB_WR_RESERVED2,
1160 IB_WR_RESERVED3,
1161 IB_WR_RESERVED4,
1162 IB_WR_RESERVED5,
1163 IB_WR_RESERVED6,
1164 IB_WR_RESERVED7,
1165 IB_WR_RESERVED8,
1166 IB_WR_RESERVED9,
1167 IB_WR_RESERVED10,
1168 };
1169
1170 enum ib_send_flags {
1171 IB_SEND_FENCE = 1,
1172 IB_SEND_SIGNALED = (1<<1),
1173 IB_SEND_SOLICITED = (1<<2),
1174 IB_SEND_INLINE = (1<<3),
1175 IB_SEND_IP_CSUM = (1<<4),
1176
1177 /* reserve bits 26-31 for low level drivers' internal use */
1178 IB_SEND_RESERVED_START = (1 << 26),
1179 IB_SEND_RESERVED_END = (1 << 31),
1180 };
1181
1182 struct ib_sge {
1183 u64 addr;
1184 u32 length;
1185 u32 lkey;
1186 };
1187
1188 struct ib_cqe {
1189 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1190 };
1191
1192 struct ib_send_wr {
1193 struct ib_send_wr *next;
1194 union {
1195 u64 wr_id;
1196 struct ib_cqe *wr_cqe;
1197 };
1198 struct ib_sge *sg_list;
1199 int num_sge;
1200 enum ib_wr_opcode opcode;
1201 int send_flags;
1202 union {
1203 __be32 imm_data;
1204 u32 invalidate_rkey;
1205 } ex;
1206 };
1207
1208 struct ib_rdma_wr {
1209 struct ib_send_wr wr;
1210 u64 remote_addr;
1211 u32 rkey;
1212 };
1213
1214 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1215 {
1216 return container_of(wr, struct ib_rdma_wr, wr);
1217 }
1218
1219 struct ib_atomic_wr {
1220 struct ib_send_wr wr;
1221 u64 remote_addr;
1222 u64 compare_add;
1223 u64 swap;
1224 u64 compare_add_mask;
1225 u64 swap_mask;
1226 u32 rkey;
1227 };
1228
1229 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1230 {
1231 return container_of(wr, struct ib_atomic_wr, wr);
1232 }
1233
1234 struct ib_ud_wr {
1235 struct ib_send_wr wr;
1236 struct ib_ah *ah;
1237 void *header;
1238 int hlen;
1239 int mss;
1240 u32 remote_qpn;
1241 u32 remote_qkey;
1242 u16 pkey_index; /* valid for GSI only */
1243 u8 port_num; /* valid for DR SMPs on switch only */
1244 };
1245
1246 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1247 {
1248 return container_of(wr, struct ib_ud_wr, wr);
1249 }
1250
1251 struct ib_reg_wr {
1252 struct ib_send_wr wr;
1253 struct ib_mr *mr;
1254 u32 key;
1255 int access;
1256 };
1257
1258 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1259 {
1260 return container_of(wr, struct ib_reg_wr, wr);
1261 }
1262
1263 struct ib_sig_handover_wr {
1264 struct ib_send_wr wr;
1265 struct ib_sig_attrs *sig_attrs;
1266 struct ib_mr *sig_mr;
1267 int access_flags;
1268 struct ib_sge *prot;
1269 };
1270
1271 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1272 {
1273 return container_of(wr, struct ib_sig_handover_wr, wr);
1274 }
1275
1276 struct ib_recv_wr {
1277 struct ib_recv_wr *next;
1278 union {
1279 u64 wr_id;
1280 struct ib_cqe *wr_cqe;
1281 };
1282 struct ib_sge *sg_list;
1283 int num_sge;
1284 };
1285
1286 enum ib_access_flags {
1287 IB_ACCESS_LOCAL_WRITE = 1,
1288 IB_ACCESS_REMOTE_WRITE = (1<<1),
1289 IB_ACCESS_REMOTE_READ = (1<<2),
1290 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1291 IB_ACCESS_MW_BIND = (1<<4),
1292 IB_ZERO_BASED = (1<<5),
1293 IB_ACCESS_ON_DEMAND = (1<<6),
1294 };
1295
1296 /*
1297 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1298 * are hidden here instead of a uapi header!
1299 */
1300 enum ib_mr_rereg_flags {
1301 IB_MR_REREG_TRANS = 1,
1302 IB_MR_REREG_PD = (1<<1),
1303 IB_MR_REREG_ACCESS = (1<<2),
1304 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1305 };
1306
1307 struct ib_fmr_attr {
1308 int max_pages;
1309 int max_maps;
1310 u8 page_shift;
1311 };
1312
1313 struct ib_umem;
1314
1315 struct ib_ucontext {
1316 struct ib_device *device;
1317 struct list_head pd_list;
1318 struct list_head mr_list;
1319 struct list_head mw_list;
1320 struct list_head cq_list;
1321 struct list_head qp_list;
1322 struct list_head srq_list;
1323 struct list_head ah_list;
1324 struct list_head xrcd_list;
1325 struct list_head rule_list;
1326 int closing;
1327
1328 struct pid *tgid;
1329 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1330 struct rb_root umem_tree;
1331 /*
1332 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1333 * mmu notifiers registration.
1334 */
1335 struct rw_semaphore umem_rwsem;
1336 void (*invalidate_range)(struct ib_umem *umem,
1337 unsigned long start, unsigned long end);
1338
1339 struct mmu_notifier mn;
1340 atomic_t notifier_count;
1341 /* A list of umems that don't have private mmu notifier counters yet. */
1342 struct list_head no_private_counters;
1343 int odp_mrs_count;
1344 #endif
1345 };
1346
1347 struct ib_uobject {
1348 u64 user_handle; /* handle given to us by userspace */
1349 struct ib_ucontext *context; /* associated user context */
1350 void *object; /* containing object */
1351 struct list_head list; /* link to context's list */
1352 int id; /* index into kernel idr */
1353 struct kref ref;
1354 struct rw_semaphore mutex; /* protects .live */
1355 struct rcu_head rcu; /* kfree_rcu() overhead */
1356 int live;
1357 };
1358
1359 struct ib_udata {
1360 const void __user *inbuf;
1361 void __user *outbuf;
1362 size_t inlen;
1363 size_t outlen;
1364 };
1365
1366 struct ib_pd {
1367 u32 local_dma_lkey;
1368 struct ib_device *device;
1369 struct ib_uobject *uobject;
1370 atomic_t usecnt; /* count all resources */
1371 struct ib_mr *local_mr;
1372 };
1373
1374 struct ib_xrcd {
1375 struct ib_device *device;
1376 atomic_t usecnt; /* count all exposed resources */
1377 struct inode *inode;
1378
1379 struct mutex tgt_qp_mutex;
1380 struct list_head tgt_qp_list;
1381 };
1382
1383 struct ib_ah {
1384 struct ib_device *device;
1385 struct ib_pd *pd;
1386 struct ib_uobject *uobject;
1387 };
1388
1389 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1390
1391 enum ib_poll_context {
1392 IB_POLL_DIRECT, /* caller context, no hw completions */
1393 IB_POLL_SOFTIRQ, /* poll from softirq context */
1394 IB_POLL_WORKQUEUE, /* poll from workqueue */
1395 };
1396
1397 struct ib_cq {
1398 struct ib_device *device;
1399 struct ib_uobject *uobject;
1400 ib_comp_handler comp_handler;
1401 void (*event_handler)(struct ib_event *, void *);
1402 void *cq_context;
1403 int cqe;
1404 atomic_t usecnt; /* count number of work queues */
1405 enum ib_poll_context poll_ctx;
1406 struct ib_wc *wc;
1407 union {
1408 struct irq_poll iop;
1409 struct work_struct work;
1410 };
1411 };
1412
1413 struct ib_srq {
1414 struct ib_device *device;
1415 struct ib_pd *pd;
1416 struct ib_uobject *uobject;
1417 void (*event_handler)(struct ib_event *, void *);
1418 void *srq_context;
1419 enum ib_srq_type srq_type;
1420 atomic_t usecnt;
1421
1422 union {
1423 struct {
1424 struct ib_xrcd *xrcd;
1425 struct ib_cq *cq;
1426 u32 srq_num;
1427 } xrc;
1428 } ext;
1429 };
1430
1431 struct ib_qp {
1432 struct ib_device *device;
1433 struct ib_pd *pd;
1434 struct ib_cq *send_cq;
1435 struct ib_cq *recv_cq;
1436 spinlock_t mr_lock;
1437 int mrs_used;
1438 struct list_head rdma_mrs;
1439 struct list_head sig_mrs;
1440 struct ib_srq *srq;
1441 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1442 struct list_head xrcd_list;
1443
1444 /* count times opened, mcast attaches, flow attaches */
1445 atomic_t usecnt;
1446 struct list_head open_list;
1447 struct ib_qp *real_qp;
1448 struct ib_uobject *uobject;
1449 void (*event_handler)(struct ib_event *, void *);
1450 void *qp_context;
1451 u32 qp_num;
1452 enum ib_qp_type qp_type;
1453 };
1454
1455 struct ib_mr {
1456 struct ib_device *device;
1457 struct ib_pd *pd;
1458 u32 lkey;
1459 u32 rkey;
1460 u64 iova;
1461 u32 length;
1462 unsigned int page_size;
1463 bool need_inval;
1464 union {
1465 struct ib_uobject *uobject; /* user */
1466 struct list_head qp_entry; /* FR */
1467 };
1468 };
1469
1470 struct ib_mw {
1471 struct ib_device *device;
1472 struct ib_pd *pd;
1473 struct ib_uobject *uobject;
1474 u32 rkey;
1475 enum ib_mw_type type;
1476 };
1477
1478 struct ib_fmr {
1479 struct ib_device *device;
1480 struct ib_pd *pd;
1481 struct list_head list;
1482 u32 lkey;
1483 u32 rkey;
1484 };
1485
1486 /* Supported steering options */
1487 enum ib_flow_attr_type {
1488 /* steering according to rule specifications */
1489 IB_FLOW_ATTR_NORMAL = 0x0,
1490 /* default unicast and multicast rule -
1491 * receive all Eth traffic which isn't steered to any QP
1492 */
1493 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1494 /* default multicast rule -
1495 * receive all Eth multicast traffic which isn't steered to any QP
1496 */
1497 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1498 /* sniffer rule - receive all port traffic */
1499 IB_FLOW_ATTR_SNIFFER = 0x3
1500 };
1501
1502 /* Supported steering header types */
1503 enum ib_flow_spec_type {
1504 /* L2 headers*/
1505 IB_FLOW_SPEC_ETH = 0x20,
1506 IB_FLOW_SPEC_IB = 0x22,
1507 /* L3 header*/
1508 IB_FLOW_SPEC_IPV4 = 0x30,
1509 /* L4 headers*/
1510 IB_FLOW_SPEC_TCP = 0x40,
1511 IB_FLOW_SPEC_UDP = 0x41
1512 };
1513 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1514 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1515
1516 /* Flow steering rule priority is set according to it's domain.
1517 * Lower domain value means higher priority.
1518 */
1519 enum ib_flow_domain {
1520 IB_FLOW_DOMAIN_USER,
1521 IB_FLOW_DOMAIN_ETHTOOL,
1522 IB_FLOW_DOMAIN_RFS,
1523 IB_FLOW_DOMAIN_NIC,
1524 IB_FLOW_DOMAIN_NUM /* Must be last */
1525 };
1526
1527 enum ib_flow_flags {
1528 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1529 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1530 };
1531
1532 struct ib_flow_eth_filter {
1533 u8 dst_mac[6];
1534 u8 src_mac[6];
1535 __be16 ether_type;
1536 __be16 vlan_tag;
1537 };
1538
1539 struct ib_flow_spec_eth {
1540 enum ib_flow_spec_type type;
1541 u16 size;
1542 struct ib_flow_eth_filter val;
1543 struct ib_flow_eth_filter mask;
1544 };
1545
1546 struct ib_flow_ib_filter {
1547 __be16 dlid;
1548 __u8 sl;
1549 };
1550
1551 struct ib_flow_spec_ib {
1552 enum ib_flow_spec_type type;
1553 u16 size;
1554 struct ib_flow_ib_filter val;
1555 struct ib_flow_ib_filter mask;
1556 };
1557
1558 struct ib_flow_ipv4_filter {
1559 __be32 src_ip;
1560 __be32 dst_ip;
1561 };
1562
1563 struct ib_flow_spec_ipv4 {
1564 enum ib_flow_spec_type type;
1565 u16 size;
1566 struct ib_flow_ipv4_filter val;
1567 struct ib_flow_ipv4_filter mask;
1568 };
1569
1570 struct ib_flow_tcp_udp_filter {
1571 __be16 dst_port;
1572 __be16 src_port;
1573 };
1574
1575 struct ib_flow_spec_tcp_udp {
1576 enum ib_flow_spec_type type;
1577 u16 size;
1578 struct ib_flow_tcp_udp_filter val;
1579 struct ib_flow_tcp_udp_filter mask;
1580 };
1581
1582 union ib_flow_spec {
1583 struct {
1584 enum ib_flow_spec_type type;
1585 u16 size;
1586 };
1587 struct ib_flow_spec_eth eth;
1588 struct ib_flow_spec_ib ib;
1589 struct ib_flow_spec_ipv4 ipv4;
1590 struct ib_flow_spec_tcp_udp tcp_udp;
1591 };
1592
1593 struct ib_flow_attr {
1594 enum ib_flow_attr_type type;
1595 u16 size;
1596 u16 priority;
1597 u32 flags;
1598 u8 num_of_specs;
1599 u8 port;
1600 /* Following are the optional layers according to user request
1601 * struct ib_flow_spec_xxx
1602 * struct ib_flow_spec_yyy
1603 */
1604 };
1605
1606 struct ib_flow {
1607 struct ib_qp *qp;
1608 struct ib_uobject *uobject;
1609 };
1610
1611 struct ib_mad_hdr;
1612 struct ib_grh;
1613
1614 enum ib_process_mad_flags {
1615 IB_MAD_IGNORE_MKEY = 1,
1616 IB_MAD_IGNORE_BKEY = 2,
1617 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1618 };
1619
1620 enum ib_mad_result {
1621 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1622 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1623 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1624 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1625 };
1626
1627 #define IB_DEVICE_NAME_MAX 64
1628
1629 struct ib_cache {
1630 rwlock_t lock;
1631 struct ib_event_handler event_handler;
1632 struct ib_pkey_cache **pkey_cache;
1633 struct ib_gid_table **gid_cache;
1634 u8 *lmc_cache;
1635 };
1636
1637 struct ib_dma_mapping_ops {
1638 int (*mapping_error)(struct ib_device *dev,
1639 u64 dma_addr);
1640 u64 (*map_single)(struct ib_device *dev,
1641 void *ptr, size_t size,
1642 enum dma_data_direction direction);
1643 void (*unmap_single)(struct ib_device *dev,
1644 u64 addr, size_t size,
1645 enum dma_data_direction direction);
1646 u64 (*map_page)(struct ib_device *dev,
1647 struct page *page, unsigned long offset,
1648 size_t size,
1649 enum dma_data_direction direction);
1650 void (*unmap_page)(struct ib_device *dev,
1651 u64 addr, size_t size,
1652 enum dma_data_direction direction);
1653 int (*map_sg)(struct ib_device *dev,
1654 struct scatterlist *sg, int nents,
1655 enum dma_data_direction direction);
1656 void (*unmap_sg)(struct ib_device *dev,
1657 struct scatterlist *sg, int nents,
1658 enum dma_data_direction direction);
1659 void (*sync_single_for_cpu)(struct ib_device *dev,
1660 u64 dma_handle,
1661 size_t size,
1662 enum dma_data_direction dir);
1663 void (*sync_single_for_device)(struct ib_device *dev,
1664 u64 dma_handle,
1665 size_t size,
1666 enum dma_data_direction dir);
1667 void *(*alloc_coherent)(struct ib_device *dev,
1668 size_t size,
1669 u64 *dma_handle,
1670 gfp_t flag);
1671 void (*free_coherent)(struct ib_device *dev,
1672 size_t size, void *cpu_addr,
1673 u64 dma_handle);
1674 };
1675
1676 struct iw_cm_verbs;
1677
1678 struct ib_port_immutable {
1679 int pkey_tbl_len;
1680 int gid_tbl_len;
1681 u32 core_cap_flags;
1682 u32 max_mad_size;
1683 };
1684
1685 struct ib_device {
1686 struct device *dma_device;
1687
1688 char name[IB_DEVICE_NAME_MAX];
1689
1690 struct list_head event_handler_list;
1691 spinlock_t event_handler_lock;
1692
1693 spinlock_t client_data_lock;
1694 struct list_head core_list;
1695 /* Access to the client_data_list is protected by the client_data_lock
1696 * spinlock and the lists_rwsem read-write semaphore */
1697 struct list_head client_data_list;
1698
1699 struct ib_cache cache;
1700 /**
1701 * port_immutable is indexed by port number
1702 */
1703 struct ib_port_immutable *port_immutable;
1704
1705 int num_comp_vectors;
1706
1707 struct iw_cm_verbs *iwcm;
1708
1709 /**
1710 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1711 * driver initialized data. The struct is kfree()'ed by the sysfs
1712 * core when the device is removed. A lifespan of -1 in the return
1713 * struct tells the core to set a default lifespan.
1714 */
1715 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1716 u8 port_num);
1717 /**
1718 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1719 * @index - The index in the value array we wish to have updated, or
1720 * num_counters if we want all stats updated
1721 * Return codes -
1722 * < 0 - Error, no counters updated
1723 * index - Updated the single counter pointed to by index
1724 * num_counters - Updated all counters (will reset the timestamp
1725 * and prevent further calls for lifespan milliseconds)
1726 * Drivers are allowed to update all counters in leiu of just the
1727 * one given in index at their option
1728 */
1729 int (*get_hw_stats)(struct ib_device *device,
1730 struct rdma_hw_stats *stats,
1731 u8 port, int index);
1732 int (*query_device)(struct ib_device *device,
1733 struct ib_device_attr *device_attr,
1734 struct ib_udata *udata);
1735 int (*query_port)(struct ib_device *device,
1736 u8 port_num,
1737 struct ib_port_attr *port_attr);
1738 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1739 u8 port_num);
1740 /* When calling get_netdev, the HW vendor's driver should return the
1741 * net device of device @device at port @port_num or NULL if such
1742 * a net device doesn't exist. The vendor driver should call dev_hold
1743 * on this net device. The HW vendor's device driver must guarantee
1744 * that this function returns NULL before the net device reaches
1745 * NETDEV_UNREGISTER_FINAL state.
1746 */
1747 struct net_device *(*get_netdev)(struct ib_device *device,
1748 u8 port_num);
1749 int (*query_gid)(struct ib_device *device,
1750 u8 port_num, int index,
1751 union ib_gid *gid);
1752 /* When calling add_gid, the HW vendor's driver should
1753 * add the gid of device @device at gid index @index of
1754 * port @port_num to be @gid. Meta-info of that gid (for example,
1755 * the network device related to this gid is available
1756 * at @attr. @context allows the HW vendor driver to store extra
1757 * information together with a GID entry. The HW vendor may allocate
1758 * memory to contain this information and store it in @context when a
1759 * new GID entry is written to. Params are consistent until the next
1760 * call of add_gid or delete_gid. The function should return 0 on
1761 * success or error otherwise. The function could be called
1762 * concurrently for different ports. This function is only called
1763 * when roce_gid_table is used.
1764 */
1765 int (*add_gid)(struct ib_device *device,
1766 u8 port_num,
1767 unsigned int index,
1768 const union ib_gid *gid,
1769 const struct ib_gid_attr *attr,
1770 void **context);
1771 /* When calling del_gid, the HW vendor's driver should delete the
1772 * gid of device @device at gid index @index of port @port_num.
1773 * Upon the deletion of a GID entry, the HW vendor must free any
1774 * allocated memory. The caller will clear @context afterwards.
1775 * This function is only called when roce_gid_table is used.
1776 */
1777 int (*del_gid)(struct ib_device *device,
1778 u8 port_num,
1779 unsigned int index,
1780 void **context);
1781 int (*query_pkey)(struct ib_device *device,
1782 u8 port_num, u16 index, u16 *pkey);
1783 int (*modify_device)(struct ib_device *device,
1784 int device_modify_mask,
1785 struct ib_device_modify *device_modify);
1786 int (*modify_port)(struct ib_device *device,
1787 u8 port_num, int port_modify_mask,
1788 struct ib_port_modify *port_modify);
1789 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1790 struct ib_udata *udata);
1791 int (*dealloc_ucontext)(struct ib_ucontext *context);
1792 int (*mmap)(struct ib_ucontext *context,
1793 struct vm_area_struct *vma);
1794 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1795 struct ib_ucontext *context,
1796 struct ib_udata *udata);
1797 int (*dealloc_pd)(struct ib_pd *pd);
1798 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1799 struct ib_ah_attr *ah_attr);
1800 int (*modify_ah)(struct ib_ah *ah,
1801 struct ib_ah_attr *ah_attr);
1802 int (*query_ah)(struct ib_ah *ah,
1803 struct ib_ah_attr *ah_attr);
1804 int (*destroy_ah)(struct ib_ah *ah);
1805 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1806 struct ib_srq_init_attr *srq_init_attr,
1807 struct ib_udata *udata);
1808 int (*modify_srq)(struct ib_srq *srq,
1809 struct ib_srq_attr *srq_attr,
1810 enum ib_srq_attr_mask srq_attr_mask,
1811 struct ib_udata *udata);
1812 int (*query_srq)(struct ib_srq *srq,
1813 struct ib_srq_attr *srq_attr);
1814 int (*destroy_srq)(struct ib_srq *srq);
1815 int (*post_srq_recv)(struct ib_srq *srq,
1816 struct ib_recv_wr *recv_wr,
1817 struct ib_recv_wr **bad_recv_wr);
1818 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1819 struct ib_qp_init_attr *qp_init_attr,
1820 struct ib_udata *udata);
1821 int (*modify_qp)(struct ib_qp *qp,
1822 struct ib_qp_attr *qp_attr,
1823 int qp_attr_mask,
1824 struct ib_udata *udata);
1825 int (*query_qp)(struct ib_qp *qp,
1826 struct ib_qp_attr *qp_attr,
1827 int qp_attr_mask,
1828 struct ib_qp_init_attr *qp_init_attr);
1829 int (*destroy_qp)(struct ib_qp *qp);
1830 int (*post_send)(struct ib_qp *qp,
1831 struct ib_send_wr *send_wr,
1832 struct ib_send_wr **bad_send_wr);
1833 int (*post_recv)(struct ib_qp *qp,
1834 struct ib_recv_wr *recv_wr,
1835 struct ib_recv_wr **bad_recv_wr);
1836 struct ib_cq * (*create_cq)(struct ib_device *device,
1837 const struct ib_cq_init_attr *attr,
1838 struct ib_ucontext *context,
1839 struct ib_udata *udata);
1840 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1841 u16 cq_period);
1842 int (*destroy_cq)(struct ib_cq *cq);
1843 int (*resize_cq)(struct ib_cq *cq, int cqe,
1844 struct ib_udata *udata);
1845 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1846 struct ib_wc *wc);
1847 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1848 int (*req_notify_cq)(struct ib_cq *cq,
1849 enum ib_cq_notify_flags flags);
1850 int (*req_ncomp_notif)(struct ib_cq *cq,
1851 int wc_cnt);
1852 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1853 int mr_access_flags);
1854 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1855 u64 start, u64 length,
1856 u64 virt_addr,
1857 int mr_access_flags,
1858 struct ib_udata *udata);
1859 int (*rereg_user_mr)(struct ib_mr *mr,
1860 int flags,
1861 u64 start, u64 length,
1862 u64 virt_addr,
1863 int mr_access_flags,
1864 struct ib_pd *pd,
1865 struct ib_udata *udata);
1866 int (*dereg_mr)(struct ib_mr *mr);
1867 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1868 enum ib_mr_type mr_type,
1869 u32 max_num_sg);
1870 int (*map_mr_sg)(struct ib_mr *mr,
1871 struct scatterlist *sg,
1872 int sg_nents,
1873 unsigned int *sg_offset);
1874 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1875 enum ib_mw_type type,
1876 struct ib_udata *udata);
1877 int (*dealloc_mw)(struct ib_mw *mw);
1878 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1879 int mr_access_flags,
1880 struct ib_fmr_attr *fmr_attr);
1881 int (*map_phys_fmr)(struct ib_fmr *fmr,
1882 u64 *page_list, int list_len,
1883 u64 iova);
1884 int (*unmap_fmr)(struct list_head *fmr_list);
1885 int (*dealloc_fmr)(struct ib_fmr *fmr);
1886 int (*attach_mcast)(struct ib_qp *qp,
1887 union ib_gid *gid,
1888 u16 lid);
1889 int (*detach_mcast)(struct ib_qp *qp,
1890 union ib_gid *gid,
1891 u16 lid);
1892 int (*process_mad)(struct ib_device *device,
1893 int process_mad_flags,
1894 u8 port_num,
1895 const struct ib_wc *in_wc,
1896 const struct ib_grh *in_grh,
1897 const struct ib_mad_hdr *in_mad,
1898 size_t in_mad_size,
1899 struct ib_mad_hdr *out_mad,
1900 size_t *out_mad_size,
1901 u16 *out_mad_pkey_index);
1902 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1903 struct ib_ucontext *ucontext,
1904 struct ib_udata *udata);
1905 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1906 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1907 struct ib_flow_attr
1908 *flow_attr,
1909 int domain);
1910 int (*destroy_flow)(struct ib_flow *flow_id);
1911 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1912 struct ib_mr_status *mr_status);
1913 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1914 void (*drain_rq)(struct ib_qp *qp);
1915 void (*drain_sq)(struct ib_qp *qp);
1916 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
1917 int state);
1918 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
1919 struct ifla_vf_info *ivf);
1920 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
1921 struct ifla_vf_stats *stats);
1922 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
1923 int type);
1924
1925 struct ib_dma_mapping_ops *dma_ops;
1926
1927 struct module *owner;
1928 struct device dev;
1929 struct kobject *ports_parent;
1930 struct list_head port_list;
1931
1932 enum {
1933 IB_DEV_UNINITIALIZED,
1934 IB_DEV_REGISTERED,
1935 IB_DEV_UNREGISTERED
1936 } reg_state;
1937
1938 int uverbs_abi_ver;
1939 u64 uverbs_cmd_mask;
1940 u64 uverbs_ex_cmd_mask;
1941
1942 char node_desc[64];
1943 __be64 node_guid;
1944 u32 local_dma_lkey;
1945 u16 is_switch:1;
1946 u8 node_type;
1947 u8 phys_port_cnt;
1948 struct ib_device_attr attrs;
1949 struct attribute_group *hw_stats_ag;
1950 struct rdma_hw_stats *hw_stats;
1951
1952 /**
1953 * The following mandatory functions are used only at device
1954 * registration. Keep functions such as these at the end of this
1955 * structure to avoid cache line misses when accessing struct ib_device
1956 * in fast paths.
1957 */
1958 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1959 };
1960
1961 struct ib_client {
1962 char *name;
1963 void (*add) (struct ib_device *);
1964 void (*remove)(struct ib_device *, void *client_data);
1965
1966 /* Returns the net_dev belonging to this ib_client and matching the
1967 * given parameters.
1968 * @dev: An RDMA device that the net_dev use for communication.
1969 * @port: A physical port number on the RDMA device.
1970 * @pkey: P_Key that the net_dev uses if applicable.
1971 * @gid: A GID that the net_dev uses to communicate.
1972 * @addr: An IP address the net_dev is configured with.
1973 * @client_data: The device's client data set by ib_set_client_data().
1974 *
1975 * An ib_client that implements a net_dev on top of RDMA devices
1976 * (such as IP over IB) should implement this callback, allowing the
1977 * rdma_cm module to find the right net_dev for a given request.
1978 *
1979 * The caller is responsible for calling dev_put on the returned
1980 * netdev. */
1981 struct net_device *(*get_net_dev_by_params)(
1982 struct ib_device *dev,
1983 u8 port,
1984 u16 pkey,
1985 const union ib_gid *gid,
1986 const struct sockaddr *addr,
1987 void *client_data);
1988 struct list_head list;
1989 };
1990
1991 struct ib_device *ib_alloc_device(size_t size);
1992 void ib_dealloc_device(struct ib_device *device);
1993
1994 int ib_register_device(struct ib_device *device,
1995 int (*port_callback)(struct ib_device *,
1996 u8, struct kobject *));
1997 void ib_unregister_device(struct ib_device *device);
1998
1999 int ib_register_client (struct ib_client *client);
2000 void ib_unregister_client(struct ib_client *client);
2001
2002 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2003 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2004 void *data);
2005
2006 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2007 {
2008 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2009 }
2010
2011 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2012 {
2013 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2014 }
2015
2016 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2017 size_t offset,
2018 size_t len)
2019 {
2020 const void __user *p = udata->inbuf + offset;
2021 bool ret = false;
2022 u8 *buf;
2023
2024 if (len > USHRT_MAX)
2025 return false;
2026
2027 buf = kmalloc(len, GFP_KERNEL);
2028 if (!buf)
2029 return false;
2030
2031 if (copy_from_user(buf, p, len))
2032 goto free;
2033
2034 ret = !memchr_inv(buf, 0, len);
2035
2036 free:
2037 kfree(buf);
2038 return ret;
2039 }
2040
2041 /**
2042 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2043 * contains all required attributes and no attributes not allowed for
2044 * the given QP state transition.
2045 * @cur_state: Current QP state
2046 * @next_state: Next QP state
2047 * @type: QP type
2048 * @mask: Mask of supplied QP attributes
2049 * @ll : link layer of port
2050 *
2051 * This function is a helper function that a low-level driver's
2052 * modify_qp method can use to validate the consumer's input. It
2053 * checks that cur_state and next_state are valid QP states, that a
2054 * transition from cur_state to next_state is allowed by the IB spec,
2055 * and that the attribute mask supplied is allowed for the transition.
2056 */
2057 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2058 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2059 enum rdma_link_layer ll);
2060
2061 int ib_register_event_handler (struct ib_event_handler *event_handler);
2062 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2063 void ib_dispatch_event(struct ib_event *event);
2064
2065 int ib_query_port(struct ib_device *device,
2066 u8 port_num, struct ib_port_attr *port_attr);
2067
2068 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2069 u8 port_num);
2070
2071 /**
2072 * rdma_cap_ib_switch - Check if the device is IB switch
2073 * @device: Device to check
2074 *
2075 * Device driver is responsible for setting is_switch bit on
2076 * in ib_device structure at init time.
2077 *
2078 * Return: true if the device is IB switch.
2079 */
2080 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2081 {
2082 return device->is_switch;
2083 }
2084
2085 /**
2086 * rdma_start_port - Return the first valid port number for the device
2087 * specified
2088 *
2089 * @device: Device to be checked
2090 *
2091 * Return start port number
2092 */
2093 static inline u8 rdma_start_port(const struct ib_device *device)
2094 {
2095 return rdma_cap_ib_switch(device) ? 0 : 1;
2096 }
2097
2098 /**
2099 * rdma_end_port - Return the last valid port number for the device
2100 * specified
2101 *
2102 * @device: Device to be checked
2103 *
2104 * Return last port number
2105 */
2106 static inline u8 rdma_end_port(const struct ib_device *device)
2107 {
2108 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2109 }
2110
2111 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2112 {
2113 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2114 }
2115
2116 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2117 {
2118 return device->port_immutable[port_num].core_cap_flags &
2119 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2120 }
2121
2122 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2123 {
2124 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2125 }
2126
2127 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2128 {
2129 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2130 }
2131
2132 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2133 {
2134 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2135 }
2136
2137 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2138 {
2139 return rdma_protocol_ib(device, port_num) ||
2140 rdma_protocol_roce(device, port_num);
2141 }
2142
2143 /**
2144 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2145 * Management Datagrams.
2146 * @device: Device to check
2147 * @port_num: Port number to check
2148 *
2149 * Management Datagrams (MAD) are a required part of the InfiniBand
2150 * specification and are supported on all InfiniBand devices. A slightly
2151 * extended version are also supported on OPA interfaces.
2152 *
2153 * Return: true if the port supports sending/receiving of MAD packets.
2154 */
2155 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2156 {
2157 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2158 }
2159
2160 /**
2161 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2162 * Management Datagrams.
2163 * @device: Device to check
2164 * @port_num: Port number to check
2165 *
2166 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2167 * datagrams with their own versions. These OPA MADs share many but not all of
2168 * the characteristics of InfiniBand MADs.
2169 *
2170 * OPA MADs differ in the following ways:
2171 *
2172 * 1) MADs are variable size up to 2K
2173 * IBTA defined MADs remain fixed at 256 bytes
2174 * 2) OPA SMPs must carry valid PKeys
2175 * 3) OPA SMP packets are a different format
2176 *
2177 * Return: true if the port supports OPA MAD packet formats.
2178 */
2179 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2180 {
2181 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2182 == RDMA_CORE_CAP_OPA_MAD;
2183 }
2184
2185 /**
2186 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2187 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2188 * @device: Device to check
2189 * @port_num: Port number to check
2190 *
2191 * Each InfiniBand node is required to provide a Subnet Management Agent
2192 * that the subnet manager can access. Prior to the fabric being fully
2193 * configured by the subnet manager, the SMA is accessed via a well known
2194 * interface called the Subnet Management Interface (SMI). This interface
2195 * uses directed route packets to communicate with the SM to get around the
2196 * chicken and egg problem of the SM needing to know what's on the fabric
2197 * in order to configure the fabric, and needing to configure the fabric in
2198 * order to send packets to the devices on the fabric. These directed
2199 * route packets do not need the fabric fully configured in order to reach
2200 * their destination. The SMI is the only method allowed to send
2201 * directed route packets on an InfiniBand fabric.
2202 *
2203 * Return: true if the port provides an SMI.
2204 */
2205 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2206 {
2207 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2208 }
2209
2210 /**
2211 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2212 * Communication Manager.
2213 * @device: Device to check
2214 * @port_num: Port number to check
2215 *
2216 * The InfiniBand Communication Manager is one of many pre-defined General
2217 * Service Agents (GSA) that are accessed via the General Service
2218 * Interface (GSI). It's role is to facilitate establishment of connections
2219 * between nodes as well as other management related tasks for established
2220 * connections.
2221 *
2222 * Return: true if the port supports an IB CM (this does not guarantee that
2223 * a CM is actually running however).
2224 */
2225 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2226 {
2227 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2228 }
2229
2230 /**
2231 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2232 * Communication Manager.
2233 * @device: Device to check
2234 * @port_num: Port number to check
2235 *
2236 * Similar to above, but specific to iWARP connections which have a different
2237 * managment protocol than InfiniBand.
2238 *
2239 * Return: true if the port supports an iWARP CM (this does not guarantee that
2240 * a CM is actually running however).
2241 */
2242 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2243 {
2244 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2245 }
2246
2247 /**
2248 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2249 * Subnet Administration.
2250 * @device: Device to check
2251 * @port_num: Port number to check
2252 *
2253 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2254 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2255 * fabrics, devices should resolve routes to other hosts by contacting the
2256 * SA to query the proper route.
2257 *
2258 * Return: true if the port should act as a client to the fabric Subnet
2259 * Administration interface. This does not imply that the SA service is
2260 * running locally.
2261 */
2262 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2263 {
2264 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2265 }
2266
2267 /**
2268 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2269 * Multicast.
2270 * @device: Device to check
2271 * @port_num: Port number to check
2272 *
2273 * InfiniBand multicast registration is more complex than normal IPv4 or
2274 * IPv6 multicast registration. Each Host Channel Adapter must register
2275 * with the Subnet Manager when it wishes to join a multicast group. It
2276 * should do so only once regardless of how many queue pairs it subscribes
2277 * to this group. And it should leave the group only after all queue pairs
2278 * attached to the group have been detached.
2279 *
2280 * Return: true if the port must undertake the additional adminstrative
2281 * overhead of registering/unregistering with the SM and tracking of the
2282 * total number of queue pairs attached to the multicast group.
2283 */
2284 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2285 {
2286 return rdma_cap_ib_sa(device, port_num);
2287 }
2288
2289 /**
2290 * rdma_cap_af_ib - Check if the port of device has the capability
2291 * Native Infiniband Address.
2292 * @device: Device to check
2293 * @port_num: Port number to check
2294 *
2295 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2296 * GID. RoCE uses a different mechanism, but still generates a GID via
2297 * a prescribed mechanism and port specific data.
2298 *
2299 * Return: true if the port uses a GID address to identify devices on the
2300 * network.
2301 */
2302 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2303 {
2304 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2305 }
2306
2307 /**
2308 * rdma_cap_eth_ah - Check if the port of device has the capability
2309 * Ethernet Address Handle.
2310 * @device: Device to check
2311 * @port_num: Port number to check
2312 *
2313 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2314 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2315 * port. Normally, packet headers are generated by the sending host
2316 * adapter, but when sending connectionless datagrams, we must manually
2317 * inject the proper headers for the fabric we are communicating over.
2318 *
2319 * Return: true if we are running as a RoCE port and must force the
2320 * addition of a Global Route Header built from our Ethernet Address
2321 * Handle into our header list for connectionless packets.
2322 */
2323 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2324 {
2325 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2326 }
2327
2328 /**
2329 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2330 *
2331 * @device: Device
2332 * @port_num: Port number
2333 *
2334 * This MAD size includes the MAD headers and MAD payload. No other headers
2335 * are included.
2336 *
2337 * Return the max MAD size required by the Port. Will return 0 if the port
2338 * does not support MADs
2339 */
2340 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2341 {
2342 return device->port_immutable[port_num].max_mad_size;
2343 }
2344
2345 /**
2346 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2347 * @device: Device to check
2348 * @port_num: Port number to check
2349 *
2350 * RoCE GID table mechanism manages the various GIDs for a device.
2351 *
2352 * NOTE: if allocating the port's GID table has failed, this call will still
2353 * return true, but any RoCE GID table API will fail.
2354 *
2355 * Return: true if the port uses RoCE GID table mechanism in order to manage
2356 * its GIDs.
2357 */
2358 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2359 u8 port_num)
2360 {
2361 return rdma_protocol_roce(device, port_num) &&
2362 device->add_gid && device->del_gid;
2363 }
2364
2365 /*
2366 * Check if the device supports READ W/ INVALIDATE.
2367 */
2368 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2369 {
2370 /*
2371 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2372 * has support for it yet.
2373 */
2374 return rdma_protocol_iwarp(dev, port_num);
2375 }
2376
2377 int ib_query_gid(struct ib_device *device,
2378 u8 port_num, int index, union ib_gid *gid,
2379 struct ib_gid_attr *attr);
2380
2381 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2382 int state);
2383 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2384 struct ifla_vf_info *info);
2385 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2386 struct ifla_vf_stats *stats);
2387 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2388 int type);
2389
2390 int ib_query_pkey(struct ib_device *device,
2391 u8 port_num, u16 index, u16 *pkey);
2392
2393 int ib_modify_device(struct ib_device *device,
2394 int device_modify_mask,
2395 struct ib_device_modify *device_modify);
2396
2397 int ib_modify_port(struct ib_device *device,
2398 u8 port_num, int port_modify_mask,
2399 struct ib_port_modify *port_modify);
2400
2401 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2402 enum ib_gid_type gid_type, struct net_device *ndev,
2403 u8 *port_num, u16 *index);
2404
2405 int ib_find_pkey(struct ib_device *device,
2406 u8 port_num, u16 pkey, u16 *index);
2407
2408 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2409
2410 void ib_dealloc_pd(struct ib_pd *pd);
2411
2412 /**
2413 * ib_create_ah - Creates an address handle for the given address vector.
2414 * @pd: The protection domain associated with the address handle.
2415 * @ah_attr: The attributes of the address vector.
2416 *
2417 * The address handle is used to reference a local or global destination
2418 * in all UD QP post sends.
2419 */
2420 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2421
2422 /**
2423 * ib_init_ah_from_wc - Initializes address handle attributes from a
2424 * work completion.
2425 * @device: Device on which the received message arrived.
2426 * @port_num: Port on which the received message arrived.
2427 * @wc: Work completion associated with the received message.
2428 * @grh: References the received global route header. This parameter is
2429 * ignored unless the work completion indicates that the GRH is valid.
2430 * @ah_attr: Returned attributes that can be used when creating an address
2431 * handle for replying to the message.
2432 */
2433 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2434 const struct ib_wc *wc, const struct ib_grh *grh,
2435 struct ib_ah_attr *ah_attr);
2436
2437 /**
2438 * ib_create_ah_from_wc - Creates an address handle associated with the
2439 * sender of the specified work completion.
2440 * @pd: The protection domain associated with the address handle.
2441 * @wc: Work completion information associated with a received message.
2442 * @grh: References the received global route header. This parameter is
2443 * ignored unless the work completion indicates that the GRH is valid.
2444 * @port_num: The outbound port number to associate with the address.
2445 *
2446 * The address handle is used to reference a local or global destination
2447 * in all UD QP post sends.
2448 */
2449 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2450 const struct ib_grh *grh, u8 port_num);
2451
2452 /**
2453 * ib_modify_ah - Modifies the address vector associated with an address
2454 * handle.
2455 * @ah: The address handle to modify.
2456 * @ah_attr: The new address vector attributes to associate with the
2457 * address handle.
2458 */
2459 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2460
2461 /**
2462 * ib_query_ah - Queries the address vector associated with an address
2463 * handle.
2464 * @ah: The address handle to query.
2465 * @ah_attr: The address vector attributes associated with the address
2466 * handle.
2467 */
2468 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2469
2470 /**
2471 * ib_destroy_ah - Destroys an address handle.
2472 * @ah: The address handle to destroy.
2473 */
2474 int ib_destroy_ah(struct ib_ah *ah);
2475
2476 /**
2477 * ib_create_srq - Creates a SRQ associated with the specified protection
2478 * domain.
2479 * @pd: The protection domain associated with the SRQ.
2480 * @srq_init_attr: A list of initial attributes required to create the
2481 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2482 * the actual capabilities of the created SRQ.
2483 *
2484 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2485 * requested size of the SRQ, and set to the actual values allocated
2486 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2487 * will always be at least as large as the requested values.
2488 */
2489 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2490 struct ib_srq_init_attr *srq_init_attr);
2491
2492 /**
2493 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2494 * @srq: The SRQ to modify.
2495 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2496 * the current values of selected SRQ attributes are returned.
2497 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2498 * are being modified.
2499 *
2500 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2501 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2502 * the number of receives queued drops below the limit.
2503 */
2504 int ib_modify_srq(struct ib_srq *srq,
2505 struct ib_srq_attr *srq_attr,
2506 enum ib_srq_attr_mask srq_attr_mask);
2507
2508 /**
2509 * ib_query_srq - Returns the attribute list and current values for the
2510 * specified SRQ.
2511 * @srq: The SRQ to query.
2512 * @srq_attr: The attributes of the specified SRQ.
2513 */
2514 int ib_query_srq(struct ib_srq *srq,
2515 struct ib_srq_attr *srq_attr);
2516
2517 /**
2518 * ib_destroy_srq - Destroys the specified SRQ.
2519 * @srq: The SRQ to destroy.
2520 */
2521 int ib_destroy_srq(struct ib_srq *srq);
2522
2523 /**
2524 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2525 * @srq: The SRQ to post the work request on.
2526 * @recv_wr: A list of work requests to post on the receive queue.
2527 * @bad_recv_wr: On an immediate failure, this parameter will reference
2528 * the work request that failed to be posted on the QP.
2529 */
2530 static inline int ib_post_srq_recv(struct ib_srq *srq,
2531 struct ib_recv_wr *recv_wr,
2532 struct ib_recv_wr **bad_recv_wr)
2533 {
2534 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2535 }
2536
2537 /**
2538 * ib_create_qp - Creates a QP associated with the specified protection
2539 * domain.
2540 * @pd: The protection domain associated with the QP.
2541 * @qp_init_attr: A list of initial attributes required to create the
2542 * QP. If QP creation succeeds, then the attributes are updated to
2543 * the actual capabilities of the created QP.
2544 */
2545 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2546 struct ib_qp_init_attr *qp_init_attr);
2547
2548 /**
2549 * ib_modify_qp - Modifies the attributes for the specified QP and then
2550 * transitions the QP to the given state.
2551 * @qp: The QP to modify.
2552 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2553 * the current values of selected QP attributes are returned.
2554 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2555 * are being modified.
2556 */
2557 int ib_modify_qp(struct ib_qp *qp,
2558 struct ib_qp_attr *qp_attr,
2559 int qp_attr_mask);
2560
2561 /**
2562 * ib_query_qp - Returns the attribute list and current values for the
2563 * specified QP.
2564 * @qp: The QP to query.
2565 * @qp_attr: The attributes of the specified QP.
2566 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2567 * @qp_init_attr: Additional attributes of the selected QP.
2568 *
2569 * The qp_attr_mask may be used to limit the query to gathering only the
2570 * selected attributes.
2571 */
2572 int ib_query_qp(struct ib_qp *qp,
2573 struct ib_qp_attr *qp_attr,
2574 int qp_attr_mask,
2575 struct ib_qp_init_attr *qp_init_attr);
2576
2577 /**
2578 * ib_destroy_qp - Destroys the specified QP.
2579 * @qp: The QP to destroy.
2580 */
2581 int ib_destroy_qp(struct ib_qp *qp);
2582
2583 /**
2584 * ib_open_qp - Obtain a reference to an existing sharable QP.
2585 * @xrcd - XRC domain
2586 * @qp_open_attr: Attributes identifying the QP to open.
2587 *
2588 * Returns a reference to a sharable QP.
2589 */
2590 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2591 struct ib_qp_open_attr *qp_open_attr);
2592
2593 /**
2594 * ib_close_qp - Release an external reference to a QP.
2595 * @qp: The QP handle to release
2596 *
2597 * The opened QP handle is released by the caller. The underlying
2598 * shared QP is not destroyed until all internal references are released.
2599 */
2600 int ib_close_qp(struct ib_qp *qp);
2601
2602 /**
2603 * ib_post_send - Posts a list of work requests to the send queue of
2604 * the specified QP.
2605 * @qp: The QP to post the work request on.
2606 * @send_wr: A list of work requests to post on the send queue.
2607 * @bad_send_wr: On an immediate failure, this parameter will reference
2608 * the work request that failed to be posted on the QP.
2609 *
2610 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2611 * error is returned, the QP state shall not be affected,
2612 * ib_post_send() will return an immediate error after queueing any
2613 * earlier work requests in the list.
2614 */
2615 static inline int ib_post_send(struct ib_qp *qp,
2616 struct ib_send_wr *send_wr,
2617 struct ib_send_wr **bad_send_wr)
2618 {
2619 return qp->device->post_send(qp, send_wr, bad_send_wr);
2620 }
2621
2622 /**
2623 * ib_post_recv - Posts a list of work requests to the receive queue of
2624 * the specified QP.
2625 * @qp: The QP to post the work request on.
2626 * @recv_wr: A list of work requests to post on the receive queue.
2627 * @bad_recv_wr: On an immediate failure, this parameter will reference
2628 * the work request that failed to be posted on the QP.
2629 */
2630 static inline int ib_post_recv(struct ib_qp *qp,
2631 struct ib_recv_wr *recv_wr,
2632 struct ib_recv_wr **bad_recv_wr)
2633 {
2634 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2635 }
2636
2637 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2638 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2639 void ib_free_cq(struct ib_cq *cq);
2640 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2641
2642 /**
2643 * ib_create_cq - Creates a CQ on the specified device.
2644 * @device: The device on which to create the CQ.
2645 * @comp_handler: A user-specified callback that is invoked when a
2646 * completion event occurs on the CQ.
2647 * @event_handler: A user-specified callback that is invoked when an
2648 * asynchronous event not associated with a completion occurs on the CQ.
2649 * @cq_context: Context associated with the CQ returned to the user via
2650 * the associated completion and event handlers.
2651 * @cq_attr: The attributes the CQ should be created upon.
2652 *
2653 * Users can examine the cq structure to determine the actual CQ size.
2654 */
2655 struct ib_cq *ib_create_cq(struct ib_device *device,
2656 ib_comp_handler comp_handler,
2657 void (*event_handler)(struct ib_event *, void *),
2658 void *cq_context,
2659 const struct ib_cq_init_attr *cq_attr);
2660
2661 /**
2662 * ib_resize_cq - Modifies the capacity of the CQ.
2663 * @cq: The CQ to resize.
2664 * @cqe: The minimum size of the CQ.
2665 *
2666 * Users can examine the cq structure to determine the actual CQ size.
2667 */
2668 int ib_resize_cq(struct ib_cq *cq, int cqe);
2669
2670 /**
2671 * ib_modify_cq - Modifies moderation params of the CQ
2672 * @cq: The CQ to modify.
2673 * @cq_count: number of CQEs that will trigger an event
2674 * @cq_period: max period of time in usec before triggering an event
2675 *
2676 */
2677 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2678
2679 /**
2680 * ib_destroy_cq - Destroys the specified CQ.
2681 * @cq: The CQ to destroy.
2682 */
2683 int ib_destroy_cq(struct ib_cq *cq);
2684
2685 /**
2686 * ib_poll_cq - poll a CQ for completion(s)
2687 * @cq:the CQ being polled
2688 * @num_entries:maximum number of completions to return
2689 * @wc:array of at least @num_entries &struct ib_wc where completions
2690 * will be returned
2691 *
2692 * Poll a CQ for (possibly multiple) completions. If the return value
2693 * is < 0, an error occurred. If the return value is >= 0, it is the
2694 * number of completions returned. If the return value is
2695 * non-negative and < num_entries, then the CQ was emptied.
2696 */
2697 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2698 struct ib_wc *wc)
2699 {
2700 return cq->device->poll_cq(cq, num_entries, wc);
2701 }
2702
2703 /**
2704 * ib_peek_cq - Returns the number of unreaped completions currently
2705 * on the specified CQ.
2706 * @cq: The CQ to peek.
2707 * @wc_cnt: A minimum number of unreaped completions to check for.
2708 *
2709 * If the number of unreaped completions is greater than or equal to wc_cnt,
2710 * this function returns wc_cnt, otherwise, it returns the actual number of
2711 * unreaped completions.
2712 */
2713 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2714
2715 /**
2716 * ib_req_notify_cq - Request completion notification on a CQ.
2717 * @cq: The CQ to generate an event for.
2718 * @flags:
2719 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2720 * to request an event on the next solicited event or next work
2721 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2722 * may also be |ed in to request a hint about missed events, as
2723 * described below.
2724 *
2725 * Return Value:
2726 * < 0 means an error occurred while requesting notification
2727 * == 0 means notification was requested successfully, and if
2728 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2729 * were missed and it is safe to wait for another event. In
2730 * this case is it guaranteed that any work completions added
2731 * to the CQ since the last CQ poll will trigger a completion
2732 * notification event.
2733 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2734 * in. It means that the consumer must poll the CQ again to
2735 * make sure it is empty to avoid missing an event because of a
2736 * race between requesting notification and an entry being
2737 * added to the CQ. This return value means it is possible
2738 * (but not guaranteed) that a work completion has been added
2739 * to the CQ since the last poll without triggering a
2740 * completion notification event.
2741 */
2742 static inline int ib_req_notify_cq(struct ib_cq *cq,
2743 enum ib_cq_notify_flags flags)
2744 {
2745 return cq->device->req_notify_cq(cq, flags);
2746 }
2747
2748 /**
2749 * ib_req_ncomp_notif - Request completion notification when there are
2750 * at least the specified number of unreaped completions on the CQ.
2751 * @cq: The CQ to generate an event for.
2752 * @wc_cnt: The number of unreaped completions that should be on the
2753 * CQ before an event is generated.
2754 */
2755 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2756 {
2757 return cq->device->req_ncomp_notif ?
2758 cq->device->req_ncomp_notif(cq, wc_cnt) :
2759 -ENOSYS;
2760 }
2761
2762 /**
2763 * ib_get_dma_mr - Returns a memory region for system memory that is
2764 * usable for DMA.
2765 * @pd: The protection domain associated with the memory region.
2766 * @mr_access_flags: Specifies the memory access rights.
2767 *
2768 * Note that the ib_dma_*() functions defined below must be used
2769 * to create/destroy addresses used with the Lkey or Rkey returned
2770 * by ib_get_dma_mr().
2771 */
2772 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2773
2774 /**
2775 * ib_dma_mapping_error - check a DMA addr for error
2776 * @dev: The device for which the dma_addr was created
2777 * @dma_addr: The DMA address to check
2778 */
2779 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2780 {
2781 if (dev->dma_ops)
2782 return dev->dma_ops->mapping_error(dev, dma_addr);
2783 return dma_mapping_error(dev->dma_device, dma_addr);
2784 }
2785
2786 /**
2787 * ib_dma_map_single - Map a kernel virtual address to DMA address
2788 * @dev: The device for which the dma_addr is to be created
2789 * @cpu_addr: The kernel virtual address
2790 * @size: The size of the region in bytes
2791 * @direction: The direction of the DMA
2792 */
2793 static inline u64 ib_dma_map_single(struct ib_device *dev,
2794 void *cpu_addr, size_t size,
2795 enum dma_data_direction direction)
2796 {
2797 if (dev->dma_ops)
2798 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2799 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2800 }
2801
2802 /**
2803 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2804 * @dev: The device for which the DMA address was created
2805 * @addr: The DMA address
2806 * @size: The size of the region in bytes
2807 * @direction: The direction of the DMA
2808 */
2809 static inline void ib_dma_unmap_single(struct ib_device *dev,
2810 u64 addr, size_t size,
2811 enum dma_data_direction direction)
2812 {
2813 if (dev->dma_ops)
2814 dev->dma_ops->unmap_single(dev, addr, size, direction);
2815 else
2816 dma_unmap_single(dev->dma_device, addr, size, direction);
2817 }
2818
2819 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2820 void *cpu_addr, size_t size,
2821 enum dma_data_direction direction,
2822 unsigned long dma_attrs)
2823 {
2824 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2825 direction, dma_attrs);
2826 }
2827
2828 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2829 u64 addr, size_t size,
2830 enum dma_data_direction direction,
2831 unsigned long dma_attrs)
2832 {
2833 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2834 direction, dma_attrs);
2835 }
2836
2837 /**
2838 * ib_dma_map_page - Map a physical page to DMA address
2839 * @dev: The device for which the dma_addr is to be created
2840 * @page: The page to be mapped
2841 * @offset: The offset within the page
2842 * @size: The size of the region in bytes
2843 * @direction: The direction of the DMA
2844 */
2845 static inline u64 ib_dma_map_page(struct ib_device *dev,
2846 struct page *page,
2847 unsigned long offset,
2848 size_t size,
2849 enum dma_data_direction direction)
2850 {
2851 if (dev->dma_ops)
2852 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2853 return dma_map_page(dev->dma_device, page, offset, size, direction);
2854 }
2855
2856 /**
2857 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2858 * @dev: The device for which the DMA address was created
2859 * @addr: The DMA address
2860 * @size: The size of the region in bytes
2861 * @direction: The direction of the DMA
2862 */
2863 static inline void ib_dma_unmap_page(struct ib_device *dev,
2864 u64 addr, size_t size,
2865 enum dma_data_direction direction)
2866 {
2867 if (dev->dma_ops)
2868 dev->dma_ops->unmap_page(dev, addr, size, direction);
2869 else
2870 dma_unmap_page(dev->dma_device, addr, size, direction);
2871 }
2872
2873 /**
2874 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2875 * @dev: The device for which the DMA addresses are to be created
2876 * @sg: The array of scatter/gather entries
2877 * @nents: The number of scatter/gather entries
2878 * @direction: The direction of the DMA
2879 */
2880 static inline int ib_dma_map_sg(struct ib_device *dev,
2881 struct scatterlist *sg, int nents,
2882 enum dma_data_direction direction)
2883 {
2884 if (dev->dma_ops)
2885 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2886 return dma_map_sg(dev->dma_device, sg, nents, direction);
2887 }
2888
2889 /**
2890 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2891 * @dev: The device for which the DMA addresses were created
2892 * @sg: The array of scatter/gather entries
2893 * @nents: The number of scatter/gather entries
2894 * @direction: The direction of the DMA
2895 */
2896 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2897 struct scatterlist *sg, int nents,
2898 enum dma_data_direction direction)
2899 {
2900 if (dev->dma_ops)
2901 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2902 else
2903 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2904 }
2905
2906 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2907 struct scatterlist *sg, int nents,
2908 enum dma_data_direction direction,
2909 unsigned long dma_attrs)
2910 {
2911 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
2912 dma_attrs);
2913 }
2914
2915 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2916 struct scatterlist *sg, int nents,
2917 enum dma_data_direction direction,
2918 unsigned long dma_attrs)
2919 {
2920 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
2921 }
2922 /**
2923 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2924 * @dev: The device for which the DMA addresses were created
2925 * @sg: The scatter/gather entry
2926 *
2927 * Note: this function is obsolete. To do: change all occurrences of
2928 * ib_sg_dma_address() into sg_dma_address().
2929 */
2930 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2931 struct scatterlist *sg)
2932 {
2933 return sg_dma_address(sg);
2934 }
2935
2936 /**
2937 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2938 * @dev: The device for which the DMA addresses were created
2939 * @sg: The scatter/gather entry
2940 *
2941 * Note: this function is obsolete. To do: change all occurrences of
2942 * ib_sg_dma_len() into sg_dma_len().
2943 */
2944 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2945 struct scatterlist *sg)
2946 {
2947 return sg_dma_len(sg);
2948 }
2949
2950 /**
2951 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2952 * @dev: The device for which the DMA address was created
2953 * @addr: The DMA address
2954 * @size: The size of the region in bytes
2955 * @dir: The direction of the DMA
2956 */
2957 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2958 u64 addr,
2959 size_t size,
2960 enum dma_data_direction dir)
2961 {
2962 if (dev->dma_ops)
2963 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2964 else
2965 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2966 }
2967
2968 /**
2969 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2970 * @dev: The device for which the DMA address was created
2971 * @addr: The DMA address
2972 * @size: The size of the region in bytes
2973 * @dir: The direction of the DMA
2974 */
2975 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2976 u64 addr,
2977 size_t size,
2978 enum dma_data_direction dir)
2979 {
2980 if (dev->dma_ops)
2981 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2982 else
2983 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2984 }
2985
2986 /**
2987 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2988 * @dev: The device for which the DMA address is requested
2989 * @size: The size of the region to allocate in bytes
2990 * @dma_handle: A pointer for returning the DMA address of the region
2991 * @flag: memory allocator flags
2992 */
2993 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2994 size_t size,
2995 u64 *dma_handle,
2996 gfp_t flag)
2997 {
2998 if (dev->dma_ops)
2999 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3000 else {
3001 dma_addr_t handle;
3002 void *ret;
3003
3004 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3005 *dma_handle = handle;
3006 return ret;
3007 }
3008 }
3009
3010 /**
3011 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3012 * @dev: The device for which the DMA addresses were allocated
3013 * @size: The size of the region
3014 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3015 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3016 */
3017 static inline void ib_dma_free_coherent(struct ib_device *dev,
3018 size_t size, void *cpu_addr,
3019 u64 dma_handle)
3020 {
3021 if (dev->dma_ops)
3022 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3023 else
3024 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3025 }
3026
3027 /**
3028 * ib_dereg_mr - Deregisters a memory region and removes it from the
3029 * HCA translation table.
3030 * @mr: The memory region to deregister.
3031 *
3032 * This function can fail, if the memory region has memory windows bound to it.
3033 */
3034 int ib_dereg_mr(struct ib_mr *mr);
3035
3036 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3037 enum ib_mr_type mr_type,
3038 u32 max_num_sg);
3039
3040 /**
3041 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3042 * R_Key and L_Key.
3043 * @mr - struct ib_mr pointer to be updated.
3044 * @newkey - new key to be used.
3045 */
3046 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3047 {
3048 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3049 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3050 }
3051
3052 /**
3053 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3054 * for calculating a new rkey for type 2 memory windows.
3055 * @rkey - the rkey to increment.
3056 */
3057 static inline u32 ib_inc_rkey(u32 rkey)
3058 {
3059 const u32 mask = 0x000000ff;
3060 return ((rkey + 1) & mask) | (rkey & ~mask);
3061 }
3062
3063 /**
3064 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3065 * @pd: The protection domain associated with the unmapped region.
3066 * @mr_access_flags: Specifies the memory access rights.
3067 * @fmr_attr: Attributes of the unmapped region.
3068 *
3069 * A fast memory region must be mapped before it can be used as part of
3070 * a work request.
3071 */
3072 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3073 int mr_access_flags,
3074 struct ib_fmr_attr *fmr_attr);
3075
3076 /**
3077 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3078 * @fmr: The fast memory region to associate with the pages.
3079 * @page_list: An array of physical pages to map to the fast memory region.
3080 * @list_len: The number of pages in page_list.
3081 * @iova: The I/O virtual address to use with the mapped region.
3082 */
3083 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3084 u64 *page_list, int list_len,
3085 u64 iova)
3086 {
3087 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3088 }
3089
3090 /**
3091 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3092 * @fmr_list: A linked list of fast memory regions to unmap.
3093 */
3094 int ib_unmap_fmr(struct list_head *fmr_list);
3095
3096 /**
3097 * ib_dealloc_fmr - Deallocates a fast memory region.
3098 * @fmr: The fast memory region to deallocate.
3099 */
3100 int ib_dealloc_fmr(struct ib_fmr *fmr);
3101
3102 /**
3103 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3104 * @qp: QP to attach to the multicast group. The QP must be type
3105 * IB_QPT_UD.
3106 * @gid: Multicast group GID.
3107 * @lid: Multicast group LID in host byte order.
3108 *
3109 * In order to send and receive multicast packets, subnet
3110 * administration must have created the multicast group and configured
3111 * the fabric appropriately. The port associated with the specified
3112 * QP must also be a member of the multicast group.
3113 */
3114 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3115
3116 /**
3117 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3118 * @qp: QP to detach from the multicast group.
3119 * @gid: Multicast group GID.
3120 * @lid: Multicast group LID in host byte order.
3121 */
3122 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3123
3124 /**
3125 * ib_alloc_xrcd - Allocates an XRC domain.
3126 * @device: The device on which to allocate the XRC domain.
3127 */
3128 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3129
3130 /**
3131 * ib_dealloc_xrcd - Deallocates an XRC domain.
3132 * @xrcd: The XRC domain to deallocate.
3133 */
3134 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3135
3136 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3137 struct ib_flow_attr *flow_attr, int domain);
3138 int ib_destroy_flow(struct ib_flow *flow_id);
3139
3140 static inline int ib_check_mr_access(int flags)
3141 {
3142 /*
3143 * Local write permission is required if remote write or
3144 * remote atomic permission is also requested.
3145 */
3146 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3147 !(flags & IB_ACCESS_LOCAL_WRITE))
3148 return -EINVAL;
3149
3150 return 0;
3151 }
3152
3153 /**
3154 * ib_check_mr_status: lightweight check of MR status.
3155 * This routine may provide status checks on a selected
3156 * ib_mr. first use is for signature status check.
3157 *
3158 * @mr: A memory region.
3159 * @check_mask: Bitmask of which checks to perform from
3160 * ib_mr_status_check enumeration.
3161 * @mr_status: The container of relevant status checks.
3162 * failed checks will be indicated in the status bitmask
3163 * and the relevant info shall be in the error item.
3164 */
3165 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3166 struct ib_mr_status *mr_status);
3167
3168 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3169 u16 pkey, const union ib_gid *gid,
3170 const struct sockaddr *addr);
3171
3172 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3173 unsigned int *sg_offset, unsigned int page_size);
3174
3175 static inline int
3176 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3177 unsigned int *sg_offset, unsigned int page_size)
3178 {
3179 int n;
3180
3181 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3182 mr->iova = 0;
3183
3184 return n;
3185 }
3186
3187 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3188 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3189
3190 void ib_drain_rq(struct ib_qp *qp);
3191 void ib_drain_sq(struct ib_qp *qp);
3192 void ib_drain_qp(struct ib_qp *qp);
3193 #endif /* IB_VERBS_H */