]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/rdma/ib_verbs.h
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66
67 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
69 extern struct workqueue_struct *ib_wq;
70 extern struct workqueue_struct *ib_comp_wq;
71 extern struct workqueue_struct *ib_comp_unbound_wq;
72
73 union ib_gid {
74 u8 raw[16];
75 struct {
76 __be64 subnet_prefix;
77 __be64 interface_id;
78 } global;
79 };
80
81 extern union ib_gid zgid;
82
83 enum ib_gid_type {
84 /* If link layer is Ethernet, this is RoCE V1 */
85 IB_GID_TYPE_IB = 0,
86 IB_GID_TYPE_ROCE = 0,
87 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
88 IB_GID_TYPE_SIZE
89 };
90
91 #define ROCE_V2_UDP_DPORT 4791
92 struct ib_gid_attr {
93 enum ib_gid_type gid_type;
94 struct net_device *ndev;
95 };
96
97 enum rdma_node_type {
98 /* IB values map to NodeInfo:NodeType. */
99 RDMA_NODE_IB_CA = 1,
100 RDMA_NODE_IB_SWITCH,
101 RDMA_NODE_IB_ROUTER,
102 RDMA_NODE_RNIC,
103 RDMA_NODE_USNIC,
104 RDMA_NODE_USNIC_UDP,
105 };
106
107 enum {
108 /* set the local administered indication */
109 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
110 };
111
112 enum rdma_transport_type {
113 RDMA_TRANSPORT_IB,
114 RDMA_TRANSPORT_IWARP,
115 RDMA_TRANSPORT_USNIC,
116 RDMA_TRANSPORT_USNIC_UDP
117 };
118
119 enum rdma_protocol_type {
120 RDMA_PROTOCOL_IB,
121 RDMA_PROTOCOL_IBOE,
122 RDMA_PROTOCOL_IWARP,
123 RDMA_PROTOCOL_USNIC_UDP
124 };
125
126 __attribute_const__ enum rdma_transport_type
127 rdma_node_get_transport(enum rdma_node_type node_type);
128
129 enum rdma_network_type {
130 RDMA_NETWORK_IB,
131 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
132 RDMA_NETWORK_IPV4,
133 RDMA_NETWORK_IPV6
134 };
135
136 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
137 {
138 if (network_type == RDMA_NETWORK_IPV4 ||
139 network_type == RDMA_NETWORK_IPV6)
140 return IB_GID_TYPE_ROCE_UDP_ENCAP;
141
142 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
143 return IB_GID_TYPE_IB;
144 }
145
146 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
147 union ib_gid *gid)
148 {
149 if (gid_type == IB_GID_TYPE_IB)
150 return RDMA_NETWORK_IB;
151
152 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
153 return RDMA_NETWORK_IPV4;
154 else
155 return RDMA_NETWORK_IPV6;
156 }
157
158 enum rdma_link_layer {
159 IB_LINK_LAYER_UNSPECIFIED,
160 IB_LINK_LAYER_INFINIBAND,
161 IB_LINK_LAYER_ETHERNET,
162 };
163
164 enum ib_device_cap_flags {
165 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
166 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
167 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
168 IB_DEVICE_RAW_MULTI = (1 << 3),
169 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
170 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
171 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
172 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
173 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
174 /* Not in use, former INIT_TYPE = (1 << 9),*/
175 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
176 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
177 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
178 IB_DEVICE_SRQ_RESIZE = (1 << 13),
179 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
180
181 /*
182 * This device supports a per-device lkey or stag that can be
183 * used without performing a memory registration for the local
184 * memory. Note that ULPs should never check this flag, but
185 * instead of use the local_dma_lkey flag in the ib_pd structure,
186 * which will always contain a usable lkey.
187 */
188 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
189 /* Reserved, old SEND_W_INV = (1 << 16),*/
190 IB_DEVICE_MEM_WINDOW = (1 << 17),
191 /*
192 * Devices should set IB_DEVICE_UD_IP_SUM if they support
193 * insertion of UDP and TCP checksum on outgoing UD IPoIB
194 * messages and can verify the validity of checksum for
195 * incoming messages. Setting this flag implies that the
196 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
197 */
198 IB_DEVICE_UD_IP_CSUM = (1 << 18),
199 IB_DEVICE_UD_TSO = (1 << 19),
200 IB_DEVICE_XRC = (1 << 20),
201
202 /*
203 * This device supports the IB "base memory management extension",
204 * which includes support for fast registrations (IB_WR_REG_MR,
205 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
206 * also be set by any iWarp device which must support FRs to comply
207 * to the iWarp verbs spec. iWarp devices also support the
208 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
209 * stag.
210 */
211 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
212 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
213 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
214 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
215 IB_DEVICE_RC_IP_CSUM = (1 << 25),
216 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
217 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
218 /*
219 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
220 * support execution of WQEs that involve synchronization
221 * of I/O operations with single completion queue managed
222 * by hardware.
223 */
224 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
225 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
226 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
227 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
228 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
229 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
230 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
231 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
232 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
233 /* The device supports padding incoming writes to cacheline. */
234 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
235 };
236
237 enum ib_signature_prot_cap {
238 IB_PROT_T10DIF_TYPE_1 = 1,
239 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
240 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
241 };
242
243 enum ib_signature_guard_cap {
244 IB_GUARD_T10DIF_CRC = 1,
245 IB_GUARD_T10DIF_CSUM = 1 << 1,
246 };
247
248 enum ib_atomic_cap {
249 IB_ATOMIC_NONE,
250 IB_ATOMIC_HCA,
251 IB_ATOMIC_GLOB
252 };
253
254 enum ib_odp_general_cap_bits {
255 IB_ODP_SUPPORT = 1 << 0,
256 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
257 };
258
259 enum ib_odp_transport_cap_bits {
260 IB_ODP_SUPPORT_SEND = 1 << 0,
261 IB_ODP_SUPPORT_RECV = 1 << 1,
262 IB_ODP_SUPPORT_WRITE = 1 << 2,
263 IB_ODP_SUPPORT_READ = 1 << 3,
264 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
265 };
266
267 struct ib_odp_caps {
268 uint64_t general_caps;
269 struct {
270 uint32_t rc_odp_caps;
271 uint32_t uc_odp_caps;
272 uint32_t ud_odp_caps;
273 } per_transport_caps;
274 };
275
276 struct ib_rss_caps {
277 /* Corresponding bit will be set if qp type from
278 * 'enum ib_qp_type' is supported, e.g.
279 * supported_qpts |= 1 << IB_QPT_UD
280 */
281 u32 supported_qpts;
282 u32 max_rwq_indirection_tables;
283 u32 max_rwq_indirection_table_size;
284 };
285
286 enum ib_tm_cap_flags {
287 /* Support tag matching with rendezvous offload for RC transport */
288 IB_TM_CAP_RNDV_RC = 1 << 0,
289 };
290
291 struct ib_tm_caps {
292 /* Max size of RNDV header */
293 u32 max_rndv_hdr_size;
294 /* Max number of entries in tag matching list */
295 u32 max_num_tags;
296 /* From enum ib_tm_cap_flags */
297 u32 flags;
298 /* Max number of outstanding list operations */
299 u32 max_ops;
300 /* Max number of SGE in tag matching entry */
301 u32 max_sge;
302 };
303
304 enum ib_cq_creation_flags {
305 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
306 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
307 };
308
309 struct ib_cq_init_attr {
310 unsigned int cqe;
311 u32 comp_vector;
312 u32 flags;
313 };
314
315 enum ib_cq_attr_mask {
316 IB_CQ_MODERATE = 1 << 0,
317 };
318
319 struct ib_cq_caps {
320 u16 max_cq_moderation_count;
321 u16 max_cq_moderation_period;
322 };
323
324 struct ib_device_attr {
325 u64 fw_ver;
326 __be64 sys_image_guid;
327 u64 max_mr_size;
328 u64 page_size_cap;
329 u32 vendor_id;
330 u32 vendor_part_id;
331 u32 hw_ver;
332 int max_qp;
333 int max_qp_wr;
334 u64 device_cap_flags;
335 int max_sge;
336 int max_sge_rd;
337 int max_cq;
338 int max_cqe;
339 int max_mr;
340 int max_pd;
341 int max_qp_rd_atom;
342 int max_ee_rd_atom;
343 int max_res_rd_atom;
344 int max_qp_init_rd_atom;
345 int max_ee_init_rd_atom;
346 enum ib_atomic_cap atomic_cap;
347 enum ib_atomic_cap masked_atomic_cap;
348 int max_ee;
349 int max_rdd;
350 int max_mw;
351 int max_raw_ipv6_qp;
352 int max_raw_ethy_qp;
353 int max_mcast_grp;
354 int max_mcast_qp_attach;
355 int max_total_mcast_qp_attach;
356 int max_ah;
357 int max_fmr;
358 int max_map_per_fmr;
359 int max_srq;
360 int max_srq_wr;
361 int max_srq_sge;
362 unsigned int max_fast_reg_page_list_len;
363 u16 max_pkeys;
364 u8 local_ca_ack_delay;
365 int sig_prot_cap;
366 int sig_guard_cap;
367 struct ib_odp_caps odp_caps;
368 uint64_t timestamp_mask;
369 uint64_t hca_core_clock; /* in KHZ */
370 struct ib_rss_caps rss_caps;
371 u32 max_wq_type_rq;
372 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
373 struct ib_tm_caps tm_caps;
374 struct ib_cq_caps cq_caps;
375 };
376
377 enum ib_mtu {
378 IB_MTU_256 = 1,
379 IB_MTU_512 = 2,
380 IB_MTU_1024 = 3,
381 IB_MTU_2048 = 4,
382 IB_MTU_4096 = 5
383 };
384
385 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
386 {
387 switch (mtu) {
388 case IB_MTU_256: return 256;
389 case IB_MTU_512: return 512;
390 case IB_MTU_1024: return 1024;
391 case IB_MTU_2048: return 2048;
392 case IB_MTU_4096: return 4096;
393 default: return -1;
394 }
395 }
396
397 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
398 {
399 if (mtu >= 4096)
400 return IB_MTU_4096;
401 else if (mtu >= 2048)
402 return IB_MTU_2048;
403 else if (mtu >= 1024)
404 return IB_MTU_1024;
405 else if (mtu >= 512)
406 return IB_MTU_512;
407 else
408 return IB_MTU_256;
409 }
410
411 enum ib_port_state {
412 IB_PORT_NOP = 0,
413 IB_PORT_DOWN = 1,
414 IB_PORT_INIT = 2,
415 IB_PORT_ARMED = 3,
416 IB_PORT_ACTIVE = 4,
417 IB_PORT_ACTIVE_DEFER = 5
418 };
419
420 enum ib_port_cap_flags {
421 IB_PORT_SM = 1 << 1,
422 IB_PORT_NOTICE_SUP = 1 << 2,
423 IB_PORT_TRAP_SUP = 1 << 3,
424 IB_PORT_OPT_IPD_SUP = 1 << 4,
425 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
426 IB_PORT_SL_MAP_SUP = 1 << 6,
427 IB_PORT_MKEY_NVRAM = 1 << 7,
428 IB_PORT_PKEY_NVRAM = 1 << 8,
429 IB_PORT_LED_INFO_SUP = 1 << 9,
430 IB_PORT_SM_DISABLED = 1 << 10,
431 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
432 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
433 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
434 IB_PORT_CM_SUP = 1 << 16,
435 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
436 IB_PORT_REINIT_SUP = 1 << 18,
437 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
438 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
439 IB_PORT_DR_NOTICE_SUP = 1 << 21,
440 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
441 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
442 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
443 IB_PORT_CLIENT_REG_SUP = 1 << 25,
444 IB_PORT_IP_BASED_GIDS = 1 << 26,
445 };
446
447 enum ib_port_width {
448 IB_WIDTH_1X = 1,
449 IB_WIDTH_4X = 2,
450 IB_WIDTH_8X = 4,
451 IB_WIDTH_12X = 8
452 };
453
454 static inline int ib_width_enum_to_int(enum ib_port_width width)
455 {
456 switch (width) {
457 case IB_WIDTH_1X: return 1;
458 case IB_WIDTH_4X: return 4;
459 case IB_WIDTH_8X: return 8;
460 case IB_WIDTH_12X: return 12;
461 default: return -1;
462 }
463 }
464
465 enum ib_port_speed {
466 IB_SPEED_SDR = 1,
467 IB_SPEED_DDR = 2,
468 IB_SPEED_QDR = 4,
469 IB_SPEED_FDR10 = 8,
470 IB_SPEED_FDR = 16,
471 IB_SPEED_EDR = 32,
472 IB_SPEED_HDR = 64
473 };
474
475 /**
476 * struct rdma_hw_stats
477 * @timestamp - Used by the core code to track when the last update was
478 * @lifespan - Used by the core code to determine how old the counters
479 * should be before being updated again. Stored in jiffies, defaults
480 * to 10 milliseconds, drivers can override the default be specifying
481 * their own value during their allocation routine.
482 * @name - Array of pointers to static names used for the counters in
483 * directory.
484 * @num_counters - How many hardware counters there are. If name is
485 * shorter than this number, a kernel oops will result. Driver authors
486 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
487 * in their code to prevent this.
488 * @value - Array of u64 counters that are accessed by the sysfs code and
489 * filled in by the drivers get_stats routine
490 */
491 struct rdma_hw_stats {
492 unsigned long timestamp;
493 unsigned long lifespan;
494 const char * const *names;
495 int num_counters;
496 u64 value[];
497 };
498
499 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
500 /**
501 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
502 * for drivers.
503 * @names - Array of static const char *
504 * @num_counters - How many elements in array
505 * @lifespan - How many milliseconds between updates
506 */
507 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
508 const char * const *names, int num_counters,
509 unsigned long lifespan)
510 {
511 struct rdma_hw_stats *stats;
512
513 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
514 GFP_KERNEL);
515 if (!stats)
516 return NULL;
517 stats->names = names;
518 stats->num_counters = num_counters;
519 stats->lifespan = msecs_to_jiffies(lifespan);
520
521 return stats;
522 }
523
524
525 /* Define bits for the various functionality this port needs to be supported by
526 * the core.
527 */
528 /* Management 0x00000FFF */
529 #define RDMA_CORE_CAP_IB_MAD 0x00000001
530 #define RDMA_CORE_CAP_IB_SMI 0x00000002
531 #define RDMA_CORE_CAP_IB_CM 0x00000004
532 #define RDMA_CORE_CAP_IW_CM 0x00000008
533 #define RDMA_CORE_CAP_IB_SA 0x00000010
534 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
535
536 /* Address format 0x000FF000 */
537 #define RDMA_CORE_CAP_AF_IB 0x00001000
538 #define RDMA_CORE_CAP_ETH_AH 0x00002000
539 #define RDMA_CORE_CAP_OPA_AH 0x00004000
540
541 /* Protocol 0xFFF00000 */
542 #define RDMA_CORE_CAP_PROT_IB 0x00100000
543 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
544 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
545 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
546 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
547 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
548
549 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
550 | RDMA_CORE_CAP_IB_MAD \
551 | RDMA_CORE_CAP_IB_SMI \
552 | RDMA_CORE_CAP_IB_CM \
553 | RDMA_CORE_CAP_IB_SA \
554 | RDMA_CORE_CAP_AF_IB)
555 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
556 | RDMA_CORE_CAP_IB_MAD \
557 | RDMA_CORE_CAP_IB_CM \
558 | RDMA_CORE_CAP_AF_IB \
559 | RDMA_CORE_CAP_ETH_AH)
560 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
561 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
562 | RDMA_CORE_CAP_IB_MAD \
563 | RDMA_CORE_CAP_IB_CM \
564 | RDMA_CORE_CAP_AF_IB \
565 | RDMA_CORE_CAP_ETH_AH)
566 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
567 | RDMA_CORE_CAP_IW_CM)
568 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
569 | RDMA_CORE_CAP_OPA_MAD)
570
571 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
572
573 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
574
575 struct ib_port_attr {
576 u64 subnet_prefix;
577 enum ib_port_state state;
578 enum ib_mtu max_mtu;
579 enum ib_mtu active_mtu;
580 int gid_tbl_len;
581 u32 port_cap_flags;
582 u32 max_msg_sz;
583 u32 bad_pkey_cntr;
584 u32 qkey_viol_cntr;
585 u16 pkey_tbl_len;
586 u32 sm_lid;
587 u32 lid;
588 u8 lmc;
589 u8 max_vl_num;
590 u8 sm_sl;
591 u8 subnet_timeout;
592 u8 init_type_reply;
593 u8 active_width;
594 u8 active_speed;
595 u8 phys_state;
596 bool grh_required;
597 };
598
599 enum ib_device_modify_flags {
600 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
601 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
602 };
603
604 #define IB_DEVICE_NODE_DESC_MAX 64
605
606 struct ib_device_modify {
607 u64 sys_image_guid;
608 char node_desc[IB_DEVICE_NODE_DESC_MAX];
609 };
610
611 enum ib_port_modify_flags {
612 IB_PORT_SHUTDOWN = 1,
613 IB_PORT_INIT_TYPE = (1<<2),
614 IB_PORT_RESET_QKEY_CNTR = (1<<3),
615 IB_PORT_OPA_MASK_CHG = (1<<4)
616 };
617
618 struct ib_port_modify {
619 u32 set_port_cap_mask;
620 u32 clr_port_cap_mask;
621 u8 init_type;
622 };
623
624 enum ib_event_type {
625 IB_EVENT_CQ_ERR,
626 IB_EVENT_QP_FATAL,
627 IB_EVENT_QP_REQ_ERR,
628 IB_EVENT_QP_ACCESS_ERR,
629 IB_EVENT_COMM_EST,
630 IB_EVENT_SQ_DRAINED,
631 IB_EVENT_PATH_MIG,
632 IB_EVENT_PATH_MIG_ERR,
633 IB_EVENT_DEVICE_FATAL,
634 IB_EVENT_PORT_ACTIVE,
635 IB_EVENT_PORT_ERR,
636 IB_EVENT_LID_CHANGE,
637 IB_EVENT_PKEY_CHANGE,
638 IB_EVENT_SM_CHANGE,
639 IB_EVENT_SRQ_ERR,
640 IB_EVENT_SRQ_LIMIT_REACHED,
641 IB_EVENT_QP_LAST_WQE_REACHED,
642 IB_EVENT_CLIENT_REREGISTER,
643 IB_EVENT_GID_CHANGE,
644 IB_EVENT_WQ_FATAL,
645 };
646
647 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
648
649 struct ib_event {
650 struct ib_device *device;
651 union {
652 struct ib_cq *cq;
653 struct ib_qp *qp;
654 struct ib_srq *srq;
655 struct ib_wq *wq;
656 u8 port_num;
657 } element;
658 enum ib_event_type event;
659 };
660
661 struct ib_event_handler {
662 struct ib_device *device;
663 void (*handler)(struct ib_event_handler *, struct ib_event *);
664 struct list_head list;
665 };
666
667 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
668 do { \
669 (_ptr)->device = _device; \
670 (_ptr)->handler = _handler; \
671 INIT_LIST_HEAD(&(_ptr)->list); \
672 } while (0)
673
674 struct ib_global_route {
675 union ib_gid dgid;
676 u32 flow_label;
677 u8 sgid_index;
678 u8 hop_limit;
679 u8 traffic_class;
680 };
681
682 struct ib_grh {
683 __be32 version_tclass_flow;
684 __be16 paylen;
685 u8 next_hdr;
686 u8 hop_limit;
687 union ib_gid sgid;
688 union ib_gid dgid;
689 };
690
691 union rdma_network_hdr {
692 struct ib_grh ibgrh;
693 struct {
694 /* The IB spec states that if it's IPv4, the header
695 * is located in the last 20 bytes of the header.
696 */
697 u8 reserved[20];
698 struct iphdr roce4grh;
699 };
700 };
701
702 #define IB_QPN_MASK 0xFFFFFF
703
704 enum {
705 IB_MULTICAST_QPN = 0xffffff
706 };
707
708 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
709 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
710
711 enum ib_ah_flags {
712 IB_AH_GRH = 1
713 };
714
715 enum ib_rate {
716 IB_RATE_PORT_CURRENT = 0,
717 IB_RATE_2_5_GBPS = 2,
718 IB_RATE_5_GBPS = 5,
719 IB_RATE_10_GBPS = 3,
720 IB_RATE_20_GBPS = 6,
721 IB_RATE_30_GBPS = 4,
722 IB_RATE_40_GBPS = 7,
723 IB_RATE_60_GBPS = 8,
724 IB_RATE_80_GBPS = 9,
725 IB_RATE_120_GBPS = 10,
726 IB_RATE_14_GBPS = 11,
727 IB_RATE_56_GBPS = 12,
728 IB_RATE_112_GBPS = 13,
729 IB_RATE_168_GBPS = 14,
730 IB_RATE_25_GBPS = 15,
731 IB_RATE_100_GBPS = 16,
732 IB_RATE_200_GBPS = 17,
733 IB_RATE_300_GBPS = 18
734 };
735
736 /**
737 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
738 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
739 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
740 * @rate: rate to convert.
741 */
742 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
743
744 /**
745 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
746 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
747 * @rate: rate to convert.
748 */
749 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
750
751
752 /**
753 * enum ib_mr_type - memory region type
754 * @IB_MR_TYPE_MEM_REG: memory region that is used for
755 * normal registration
756 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
757 * signature operations (data-integrity
758 * capable regions)
759 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
760 * register any arbitrary sg lists (without
761 * the normal mr constraints - see
762 * ib_map_mr_sg)
763 */
764 enum ib_mr_type {
765 IB_MR_TYPE_MEM_REG,
766 IB_MR_TYPE_SIGNATURE,
767 IB_MR_TYPE_SG_GAPS,
768 };
769
770 /**
771 * Signature types
772 * IB_SIG_TYPE_NONE: Unprotected.
773 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
774 */
775 enum ib_signature_type {
776 IB_SIG_TYPE_NONE,
777 IB_SIG_TYPE_T10_DIF,
778 };
779
780 /**
781 * Signature T10-DIF block-guard types
782 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
783 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
784 */
785 enum ib_t10_dif_bg_type {
786 IB_T10DIF_CRC,
787 IB_T10DIF_CSUM
788 };
789
790 /**
791 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
792 * domain.
793 * @bg_type: T10-DIF block guard type (CRC|CSUM)
794 * @pi_interval: protection information interval.
795 * @bg: seed of guard computation.
796 * @app_tag: application tag of guard block
797 * @ref_tag: initial guard block reference tag.
798 * @ref_remap: Indicate wethear the reftag increments each block
799 * @app_escape: Indicate to skip block check if apptag=0xffff
800 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
801 * @apptag_check_mask: check bitmask of application tag.
802 */
803 struct ib_t10_dif_domain {
804 enum ib_t10_dif_bg_type bg_type;
805 u16 pi_interval;
806 u16 bg;
807 u16 app_tag;
808 u32 ref_tag;
809 bool ref_remap;
810 bool app_escape;
811 bool ref_escape;
812 u16 apptag_check_mask;
813 };
814
815 /**
816 * struct ib_sig_domain - Parameters for signature domain
817 * @sig_type: specific signauture type
818 * @sig: union of all signature domain attributes that may
819 * be used to set domain layout.
820 */
821 struct ib_sig_domain {
822 enum ib_signature_type sig_type;
823 union {
824 struct ib_t10_dif_domain dif;
825 } sig;
826 };
827
828 /**
829 * struct ib_sig_attrs - Parameters for signature handover operation
830 * @check_mask: bitmask for signature byte check (8 bytes)
831 * @mem: memory domain layout desciptor.
832 * @wire: wire domain layout desciptor.
833 */
834 struct ib_sig_attrs {
835 u8 check_mask;
836 struct ib_sig_domain mem;
837 struct ib_sig_domain wire;
838 };
839
840 enum ib_sig_err_type {
841 IB_SIG_BAD_GUARD,
842 IB_SIG_BAD_REFTAG,
843 IB_SIG_BAD_APPTAG,
844 };
845
846 /**
847 * struct ib_sig_err - signature error descriptor
848 */
849 struct ib_sig_err {
850 enum ib_sig_err_type err_type;
851 u32 expected;
852 u32 actual;
853 u64 sig_err_offset;
854 u32 key;
855 };
856
857 enum ib_mr_status_check {
858 IB_MR_CHECK_SIG_STATUS = 1,
859 };
860
861 /**
862 * struct ib_mr_status - Memory region status container
863 *
864 * @fail_status: Bitmask of MR checks status. For each
865 * failed check a corresponding status bit is set.
866 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
867 * failure.
868 */
869 struct ib_mr_status {
870 u32 fail_status;
871 struct ib_sig_err sig_err;
872 };
873
874 /**
875 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
876 * enum.
877 * @mult: multiple to convert.
878 */
879 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
880
881 enum rdma_ah_attr_type {
882 RDMA_AH_ATTR_TYPE_UNDEFINED,
883 RDMA_AH_ATTR_TYPE_IB,
884 RDMA_AH_ATTR_TYPE_ROCE,
885 RDMA_AH_ATTR_TYPE_OPA,
886 };
887
888 struct ib_ah_attr {
889 u16 dlid;
890 u8 src_path_bits;
891 };
892
893 struct roce_ah_attr {
894 u8 dmac[ETH_ALEN];
895 };
896
897 struct opa_ah_attr {
898 u32 dlid;
899 u8 src_path_bits;
900 bool make_grd;
901 };
902
903 struct rdma_ah_attr {
904 struct ib_global_route grh;
905 u8 sl;
906 u8 static_rate;
907 u8 port_num;
908 u8 ah_flags;
909 enum rdma_ah_attr_type type;
910 union {
911 struct ib_ah_attr ib;
912 struct roce_ah_attr roce;
913 struct opa_ah_attr opa;
914 };
915 };
916
917 enum ib_wc_status {
918 IB_WC_SUCCESS,
919 IB_WC_LOC_LEN_ERR,
920 IB_WC_LOC_QP_OP_ERR,
921 IB_WC_LOC_EEC_OP_ERR,
922 IB_WC_LOC_PROT_ERR,
923 IB_WC_WR_FLUSH_ERR,
924 IB_WC_MW_BIND_ERR,
925 IB_WC_BAD_RESP_ERR,
926 IB_WC_LOC_ACCESS_ERR,
927 IB_WC_REM_INV_REQ_ERR,
928 IB_WC_REM_ACCESS_ERR,
929 IB_WC_REM_OP_ERR,
930 IB_WC_RETRY_EXC_ERR,
931 IB_WC_RNR_RETRY_EXC_ERR,
932 IB_WC_LOC_RDD_VIOL_ERR,
933 IB_WC_REM_INV_RD_REQ_ERR,
934 IB_WC_REM_ABORT_ERR,
935 IB_WC_INV_EECN_ERR,
936 IB_WC_INV_EEC_STATE_ERR,
937 IB_WC_FATAL_ERR,
938 IB_WC_RESP_TIMEOUT_ERR,
939 IB_WC_GENERAL_ERR
940 };
941
942 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
943
944 enum ib_wc_opcode {
945 IB_WC_SEND,
946 IB_WC_RDMA_WRITE,
947 IB_WC_RDMA_READ,
948 IB_WC_COMP_SWAP,
949 IB_WC_FETCH_ADD,
950 IB_WC_LSO,
951 IB_WC_LOCAL_INV,
952 IB_WC_REG_MR,
953 IB_WC_MASKED_COMP_SWAP,
954 IB_WC_MASKED_FETCH_ADD,
955 /*
956 * Set value of IB_WC_RECV so consumers can test if a completion is a
957 * receive by testing (opcode & IB_WC_RECV).
958 */
959 IB_WC_RECV = 1 << 7,
960 IB_WC_RECV_RDMA_WITH_IMM
961 };
962
963 enum ib_wc_flags {
964 IB_WC_GRH = 1,
965 IB_WC_WITH_IMM = (1<<1),
966 IB_WC_WITH_INVALIDATE = (1<<2),
967 IB_WC_IP_CSUM_OK = (1<<3),
968 IB_WC_WITH_SMAC = (1<<4),
969 IB_WC_WITH_VLAN = (1<<5),
970 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
971 };
972
973 struct ib_wc {
974 union {
975 u64 wr_id;
976 struct ib_cqe *wr_cqe;
977 };
978 enum ib_wc_status status;
979 enum ib_wc_opcode opcode;
980 u32 vendor_err;
981 u32 byte_len;
982 struct ib_qp *qp;
983 union {
984 __be32 imm_data;
985 u32 invalidate_rkey;
986 } ex;
987 u32 src_qp;
988 u32 slid;
989 int wc_flags;
990 u16 pkey_index;
991 u8 sl;
992 u8 dlid_path_bits;
993 u8 port_num; /* valid only for DR SMPs on switches */
994 u8 smac[ETH_ALEN];
995 u16 vlan_id;
996 u8 network_hdr_type;
997 };
998
999 enum ib_cq_notify_flags {
1000 IB_CQ_SOLICITED = 1 << 0,
1001 IB_CQ_NEXT_COMP = 1 << 1,
1002 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1003 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1004 };
1005
1006 enum ib_srq_type {
1007 IB_SRQT_BASIC,
1008 IB_SRQT_XRC,
1009 IB_SRQT_TM,
1010 };
1011
1012 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1013 {
1014 return srq_type == IB_SRQT_XRC ||
1015 srq_type == IB_SRQT_TM;
1016 }
1017
1018 enum ib_srq_attr_mask {
1019 IB_SRQ_MAX_WR = 1 << 0,
1020 IB_SRQ_LIMIT = 1 << 1,
1021 };
1022
1023 struct ib_srq_attr {
1024 u32 max_wr;
1025 u32 max_sge;
1026 u32 srq_limit;
1027 };
1028
1029 struct ib_srq_init_attr {
1030 void (*event_handler)(struct ib_event *, void *);
1031 void *srq_context;
1032 struct ib_srq_attr attr;
1033 enum ib_srq_type srq_type;
1034
1035 struct {
1036 struct ib_cq *cq;
1037 union {
1038 struct {
1039 struct ib_xrcd *xrcd;
1040 } xrc;
1041
1042 struct {
1043 u32 max_num_tags;
1044 } tag_matching;
1045 };
1046 } ext;
1047 };
1048
1049 struct ib_qp_cap {
1050 u32 max_send_wr;
1051 u32 max_recv_wr;
1052 u32 max_send_sge;
1053 u32 max_recv_sge;
1054 u32 max_inline_data;
1055
1056 /*
1057 * Maximum number of rdma_rw_ctx structures in flight at a time.
1058 * ib_create_qp() will calculate the right amount of neededed WRs
1059 * and MRs based on this.
1060 */
1061 u32 max_rdma_ctxs;
1062 };
1063
1064 enum ib_sig_type {
1065 IB_SIGNAL_ALL_WR,
1066 IB_SIGNAL_REQ_WR
1067 };
1068
1069 enum ib_qp_type {
1070 /*
1071 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1072 * here (and in that order) since the MAD layer uses them as
1073 * indices into a 2-entry table.
1074 */
1075 IB_QPT_SMI,
1076 IB_QPT_GSI,
1077
1078 IB_QPT_RC,
1079 IB_QPT_UC,
1080 IB_QPT_UD,
1081 IB_QPT_RAW_IPV6,
1082 IB_QPT_RAW_ETHERTYPE,
1083 IB_QPT_RAW_PACKET = 8,
1084 IB_QPT_XRC_INI = 9,
1085 IB_QPT_XRC_TGT,
1086 IB_QPT_MAX,
1087 /* Reserve a range for qp types internal to the low level driver.
1088 * These qp types will not be visible at the IB core layer, so the
1089 * IB_QPT_MAX usages should not be affected in the core layer
1090 */
1091 IB_QPT_RESERVED1 = 0x1000,
1092 IB_QPT_RESERVED2,
1093 IB_QPT_RESERVED3,
1094 IB_QPT_RESERVED4,
1095 IB_QPT_RESERVED5,
1096 IB_QPT_RESERVED6,
1097 IB_QPT_RESERVED7,
1098 IB_QPT_RESERVED8,
1099 IB_QPT_RESERVED9,
1100 IB_QPT_RESERVED10,
1101 };
1102
1103 enum ib_qp_create_flags {
1104 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1105 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1106 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1107 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1108 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1109 IB_QP_CREATE_NETIF_QP = 1 << 5,
1110 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1111 /* FREE = 1 << 7, */
1112 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1113 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1114 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1115 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1116 /* reserve bits 26-31 for low level drivers' internal use */
1117 IB_QP_CREATE_RESERVED_START = 1 << 26,
1118 IB_QP_CREATE_RESERVED_END = 1 << 31,
1119 };
1120
1121 /*
1122 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1123 * callback to destroy the passed in QP.
1124 */
1125
1126 struct ib_qp_init_attr {
1127 void (*event_handler)(struct ib_event *, void *);
1128 void *qp_context;
1129 struct ib_cq *send_cq;
1130 struct ib_cq *recv_cq;
1131 struct ib_srq *srq;
1132 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1133 struct ib_qp_cap cap;
1134 enum ib_sig_type sq_sig_type;
1135 enum ib_qp_type qp_type;
1136 u32 create_flags;
1137
1138 /*
1139 * Only needed for special QP types, or when using the RW API.
1140 */
1141 u8 port_num;
1142 struct ib_rwq_ind_table *rwq_ind_tbl;
1143 u32 source_qpn;
1144 };
1145
1146 struct ib_qp_open_attr {
1147 void (*event_handler)(struct ib_event *, void *);
1148 void *qp_context;
1149 u32 qp_num;
1150 enum ib_qp_type qp_type;
1151 };
1152
1153 enum ib_rnr_timeout {
1154 IB_RNR_TIMER_655_36 = 0,
1155 IB_RNR_TIMER_000_01 = 1,
1156 IB_RNR_TIMER_000_02 = 2,
1157 IB_RNR_TIMER_000_03 = 3,
1158 IB_RNR_TIMER_000_04 = 4,
1159 IB_RNR_TIMER_000_06 = 5,
1160 IB_RNR_TIMER_000_08 = 6,
1161 IB_RNR_TIMER_000_12 = 7,
1162 IB_RNR_TIMER_000_16 = 8,
1163 IB_RNR_TIMER_000_24 = 9,
1164 IB_RNR_TIMER_000_32 = 10,
1165 IB_RNR_TIMER_000_48 = 11,
1166 IB_RNR_TIMER_000_64 = 12,
1167 IB_RNR_TIMER_000_96 = 13,
1168 IB_RNR_TIMER_001_28 = 14,
1169 IB_RNR_TIMER_001_92 = 15,
1170 IB_RNR_TIMER_002_56 = 16,
1171 IB_RNR_TIMER_003_84 = 17,
1172 IB_RNR_TIMER_005_12 = 18,
1173 IB_RNR_TIMER_007_68 = 19,
1174 IB_RNR_TIMER_010_24 = 20,
1175 IB_RNR_TIMER_015_36 = 21,
1176 IB_RNR_TIMER_020_48 = 22,
1177 IB_RNR_TIMER_030_72 = 23,
1178 IB_RNR_TIMER_040_96 = 24,
1179 IB_RNR_TIMER_061_44 = 25,
1180 IB_RNR_TIMER_081_92 = 26,
1181 IB_RNR_TIMER_122_88 = 27,
1182 IB_RNR_TIMER_163_84 = 28,
1183 IB_RNR_TIMER_245_76 = 29,
1184 IB_RNR_TIMER_327_68 = 30,
1185 IB_RNR_TIMER_491_52 = 31
1186 };
1187
1188 enum ib_qp_attr_mask {
1189 IB_QP_STATE = 1,
1190 IB_QP_CUR_STATE = (1<<1),
1191 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1192 IB_QP_ACCESS_FLAGS = (1<<3),
1193 IB_QP_PKEY_INDEX = (1<<4),
1194 IB_QP_PORT = (1<<5),
1195 IB_QP_QKEY = (1<<6),
1196 IB_QP_AV = (1<<7),
1197 IB_QP_PATH_MTU = (1<<8),
1198 IB_QP_TIMEOUT = (1<<9),
1199 IB_QP_RETRY_CNT = (1<<10),
1200 IB_QP_RNR_RETRY = (1<<11),
1201 IB_QP_RQ_PSN = (1<<12),
1202 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1203 IB_QP_ALT_PATH = (1<<14),
1204 IB_QP_MIN_RNR_TIMER = (1<<15),
1205 IB_QP_SQ_PSN = (1<<16),
1206 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1207 IB_QP_PATH_MIG_STATE = (1<<18),
1208 IB_QP_CAP = (1<<19),
1209 IB_QP_DEST_QPN = (1<<20),
1210 IB_QP_RESERVED1 = (1<<21),
1211 IB_QP_RESERVED2 = (1<<22),
1212 IB_QP_RESERVED3 = (1<<23),
1213 IB_QP_RESERVED4 = (1<<24),
1214 IB_QP_RATE_LIMIT = (1<<25),
1215 };
1216
1217 enum ib_qp_state {
1218 IB_QPS_RESET,
1219 IB_QPS_INIT,
1220 IB_QPS_RTR,
1221 IB_QPS_RTS,
1222 IB_QPS_SQD,
1223 IB_QPS_SQE,
1224 IB_QPS_ERR
1225 };
1226
1227 enum ib_mig_state {
1228 IB_MIG_MIGRATED,
1229 IB_MIG_REARM,
1230 IB_MIG_ARMED
1231 };
1232
1233 enum ib_mw_type {
1234 IB_MW_TYPE_1 = 1,
1235 IB_MW_TYPE_2 = 2
1236 };
1237
1238 struct ib_qp_attr {
1239 enum ib_qp_state qp_state;
1240 enum ib_qp_state cur_qp_state;
1241 enum ib_mtu path_mtu;
1242 enum ib_mig_state path_mig_state;
1243 u32 qkey;
1244 u32 rq_psn;
1245 u32 sq_psn;
1246 u32 dest_qp_num;
1247 int qp_access_flags;
1248 struct ib_qp_cap cap;
1249 struct rdma_ah_attr ah_attr;
1250 struct rdma_ah_attr alt_ah_attr;
1251 u16 pkey_index;
1252 u16 alt_pkey_index;
1253 u8 en_sqd_async_notify;
1254 u8 sq_draining;
1255 u8 max_rd_atomic;
1256 u8 max_dest_rd_atomic;
1257 u8 min_rnr_timer;
1258 u8 port_num;
1259 u8 timeout;
1260 u8 retry_cnt;
1261 u8 rnr_retry;
1262 u8 alt_port_num;
1263 u8 alt_timeout;
1264 u32 rate_limit;
1265 };
1266
1267 enum ib_wr_opcode {
1268 /* These are shared with userspace */
1269 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1270 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1271 IB_WR_SEND = IB_UVERBS_WR_SEND,
1272 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1273 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1274 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1275 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1276 IB_WR_LSO = IB_UVERBS_WR_TSO,
1277 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1278 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1279 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1280 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1281 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1282 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1283 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1284
1285 /* These are kernel only and can not be issued by userspace */
1286 IB_WR_REG_MR = 0x20,
1287 IB_WR_REG_SIG_MR,
1288
1289 /* reserve values for low level drivers' internal use.
1290 * These values will not be used at all in the ib core layer.
1291 */
1292 IB_WR_RESERVED1 = 0xf0,
1293 IB_WR_RESERVED2,
1294 IB_WR_RESERVED3,
1295 IB_WR_RESERVED4,
1296 IB_WR_RESERVED5,
1297 IB_WR_RESERVED6,
1298 IB_WR_RESERVED7,
1299 IB_WR_RESERVED8,
1300 IB_WR_RESERVED9,
1301 IB_WR_RESERVED10,
1302 };
1303
1304 enum ib_send_flags {
1305 IB_SEND_FENCE = 1,
1306 IB_SEND_SIGNALED = (1<<1),
1307 IB_SEND_SOLICITED = (1<<2),
1308 IB_SEND_INLINE = (1<<3),
1309 IB_SEND_IP_CSUM = (1<<4),
1310
1311 /* reserve bits 26-31 for low level drivers' internal use */
1312 IB_SEND_RESERVED_START = (1 << 26),
1313 IB_SEND_RESERVED_END = (1 << 31),
1314 };
1315
1316 struct ib_sge {
1317 u64 addr;
1318 u32 length;
1319 u32 lkey;
1320 };
1321
1322 struct ib_cqe {
1323 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1324 };
1325
1326 struct ib_send_wr {
1327 struct ib_send_wr *next;
1328 union {
1329 u64 wr_id;
1330 struct ib_cqe *wr_cqe;
1331 };
1332 struct ib_sge *sg_list;
1333 int num_sge;
1334 enum ib_wr_opcode opcode;
1335 int send_flags;
1336 union {
1337 __be32 imm_data;
1338 u32 invalidate_rkey;
1339 } ex;
1340 };
1341
1342 struct ib_rdma_wr {
1343 struct ib_send_wr wr;
1344 u64 remote_addr;
1345 u32 rkey;
1346 };
1347
1348 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1349 {
1350 return container_of(wr, struct ib_rdma_wr, wr);
1351 }
1352
1353 struct ib_atomic_wr {
1354 struct ib_send_wr wr;
1355 u64 remote_addr;
1356 u64 compare_add;
1357 u64 swap;
1358 u64 compare_add_mask;
1359 u64 swap_mask;
1360 u32 rkey;
1361 };
1362
1363 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1364 {
1365 return container_of(wr, struct ib_atomic_wr, wr);
1366 }
1367
1368 struct ib_ud_wr {
1369 struct ib_send_wr wr;
1370 struct ib_ah *ah;
1371 void *header;
1372 int hlen;
1373 int mss;
1374 u32 remote_qpn;
1375 u32 remote_qkey;
1376 u16 pkey_index; /* valid for GSI only */
1377 u8 port_num; /* valid for DR SMPs on switch only */
1378 };
1379
1380 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1381 {
1382 return container_of(wr, struct ib_ud_wr, wr);
1383 }
1384
1385 struct ib_reg_wr {
1386 struct ib_send_wr wr;
1387 struct ib_mr *mr;
1388 u32 key;
1389 int access;
1390 };
1391
1392 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1393 {
1394 return container_of(wr, struct ib_reg_wr, wr);
1395 }
1396
1397 struct ib_sig_handover_wr {
1398 struct ib_send_wr wr;
1399 struct ib_sig_attrs *sig_attrs;
1400 struct ib_mr *sig_mr;
1401 int access_flags;
1402 struct ib_sge *prot;
1403 };
1404
1405 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1406 {
1407 return container_of(wr, struct ib_sig_handover_wr, wr);
1408 }
1409
1410 struct ib_recv_wr {
1411 struct ib_recv_wr *next;
1412 union {
1413 u64 wr_id;
1414 struct ib_cqe *wr_cqe;
1415 };
1416 struct ib_sge *sg_list;
1417 int num_sge;
1418 };
1419
1420 enum ib_access_flags {
1421 IB_ACCESS_LOCAL_WRITE = 1,
1422 IB_ACCESS_REMOTE_WRITE = (1<<1),
1423 IB_ACCESS_REMOTE_READ = (1<<2),
1424 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1425 IB_ACCESS_MW_BIND = (1<<4),
1426 IB_ZERO_BASED = (1<<5),
1427 IB_ACCESS_ON_DEMAND = (1<<6),
1428 IB_ACCESS_HUGETLB = (1<<7),
1429 };
1430
1431 /*
1432 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1433 * are hidden here instead of a uapi header!
1434 */
1435 enum ib_mr_rereg_flags {
1436 IB_MR_REREG_TRANS = 1,
1437 IB_MR_REREG_PD = (1<<1),
1438 IB_MR_REREG_ACCESS = (1<<2),
1439 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1440 };
1441
1442 struct ib_fmr_attr {
1443 int max_pages;
1444 int max_maps;
1445 u8 page_shift;
1446 };
1447
1448 struct ib_umem;
1449
1450 enum rdma_remove_reason {
1451 /* Userspace requested uobject deletion. Call could fail */
1452 RDMA_REMOVE_DESTROY,
1453 /* Context deletion. This call should delete the actual object itself */
1454 RDMA_REMOVE_CLOSE,
1455 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1456 RDMA_REMOVE_DRIVER_REMOVE,
1457 /* Context is being cleaned-up, but commit was just completed */
1458 RDMA_REMOVE_DURING_CLEANUP,
1459 };
1460
1461 struct ib_rdmacg_object {
1462 #ifdef CONFIG_CGROUP_RDMA
1463 struct rdma_cgroup *cg; /* owner rdma cgroup */
1464 #endif
1465 };
1466
1467 struct ib_ucontext {
1468 struct ib_device *device;
1469 struct ib_uverbs_file *ufile;
1470 int closing;
1471
1472 /* locking the uobjects_list */
1473 struct mutex uobjects_lock;
1474 struct list_head uobjects;
1475 /* protects cleanup process from other actions */
1476 struct rw_semaphore cleanup_rwsem;
1477 enum rdma_remove_reason cleanup_reason;
1478
1479 struct pid *tgid;
1480 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1481 struct rb_root_cached umem_tree;
1482 /*
1483 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1484 * mmu notifiers registration.
1485 */
1486 struct rw_semaphore umem_rwsem;
1487 void (*invalidate_range)(struct ib_umem *umem,
1488 unsigned long start, unsigned long end);
1489
1490 struct mmu_notifier mn;
1491 atomic_t notifier_count;
1492 /* A list of umems that don't have private mmu notifier counters yet. */
1493 struct list_head no_private_counters;
1494 int odp_mrs_count;
1495 #endif
1496
1497 struct ib_rdmacg_object cg_obj;
1498 };
1499
1500 struct ib_uobject {
1501 u64 user_handle; /* handle given to us by userspace */
1502 struct ib_ucontext *context; /* associated user context */
1503 void *object; /* containing object */
1504 struct list_head list; /* link to context's list */
1505 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1506 int id; /* index into kernel idr */
1507 struct kref ref;
1508 atomic_t usecnt; /* protects exclusive access */
1509 struct rcu_head rcu; /* kfree_rcu() overhead */
1510
1511 const struct uverbs_obj_type *type;
1512 };
1513
1514 struct ib_uobject_file {
1515 struct ib_uobject uobj;
1516 /* ufile contains the lock between context release and file close */
1517 struct ib_uverbs_file *ufile;
1518 };
1519
1520 struct ib_udata {
1521 const void __user *inbuf;
1522 void __user *outbuf;
1523 size_t inlen;
1524 size_t outlen;
1525 };
1526
1527 struct ib_pd {
1528 u32 local_dma_lkey;
1529 u32 flags;
1530 struct ib_device *device;
1531 struct ib_uobject *uobject;
1532 atomic_t usecnt; /* count all resources */
1533
1534 u32 unsafe_global_rkey;
1535
1536 /*
1537 * Implementation details of the RDMA core, don't use in drivers:
1538 */
1539 struct ib_mr *__internal_mr;
1540 };
1541
1542 struct ib_xrcd {
1543 struct ib_device *device;
1544 atomic_t usecnt; /* count all exposed resources */
1545 struct inode *inode;
1546
1547 struct mutex tgt_qp_mutex;
1548 struct list_head tgt_qp_list;
1549 };
1550
1551 struct ib_ah {
1552 struct ib_device *device;
1553 struct ib_pd *pd;
1554 struct ib_uobject *uobject;
1555 enum rdma_ah_attr_type type;
1556 };
1557
1558 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1559
1560 enum ib_poll_context {
1561 IB_POLL_DIRECT, /* caller context, no hw completions */
1562 IB_POLL_SOFTIRQ, /* poll from softirq context */
1563 IB_POLL_WORKQUEUE, /* poll from workqueue */
1564 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1565 };
1566
1567 struct ib_cq {
1568 struct ib_device *device;
1569 struct ib_uobject *uobject;
1570 ib_comp_handler comp_handler;
1571 void (*event_handler)(struct ib_event *, void *);
1572 void *cq_context;
1573 int cqe;
1574 atomic_t usecnt; /* count number of work queues */
1575 enum ib_poll_context poll_ctx;
1576 struct ib_wc *wc;
1577 union {
1578 struct irq_poll iop;
1579 struct work_struct work;
1580 };
1581 struct workqueue_struct *comp_wq;
1582 };
1583
1584 struct ib_srq {
1585 struct ib_device *device;
1586 struct ib_pd *pd;
1587 struct ib_uobject *uobject;
1588 void (*event_handler)(struct ib_event *, void *);
1589 void *srq_context;
1590 enum ib_srq_type srq_type;
1591 atomic_t usecnt;
1592
1593 struct {
1594 struct ib_cq *cq;
1595 union {
1596 struct {
1597 struct ib_xrcd *xrcd;
1598 u32 srq_num;
1599 } xrc;
1600 };
1601 } ext;
1602 };
1603
1604 enum ib_raw_packet_caps {
1605 /* Strip cvlan from incoming packet and report it in the matching work
1606 * completion is supported.
1607 */
1608 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1609 /* Scatter FCS field of an incoming packet to host memory is supported.
1610 */
1611 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1612 /* Checksum offloads are supported (for both send and receive). */
1613 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1614 /* When a packet is received for an RQ with no receive WQEs, the
1615 * packet processing is delayed.
1616 */
1617 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1618 };
1619
1620 enum ib_wq_type {
1621 IB_WQT_RQ
1622 };
1623
1624 enum ib_wq_state {
1625 IB_WQS_RESET,
1626 IB_WQS_RDY,
1627 IB_WQS_ERR
1628 };
1629
1630 struct ib_wq {
1631 struct ib_device *device;
1632 struct ib_uobject *uobject;
1633 void *wq_context;
1634 void (*event_handler)(struct ib_event *, void *);
1635 struct ib_pd *pd;
1636 struct ib_cq *cq;
1637 u32 wq_num;
1638 enum ib_wq_state state;
1639 enum ib_wq_type wq_type;
1640 atomic_t usecnt;
1641 };
1642
1643 enum ib_wq_flags {
1644 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1645 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1646 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1647 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1648 };
1649
1650 struct ib_wq_init_attr {
1651 void *wq_context;
1652 enum ib_wq_type wq_type;
1653 u32 max_wr;
1654 u32 max_sge;
1655 struct ib_cq *cq;
1656 void (*event_handler)(struct ib_event *, void *);
1657 u32 create_flags; /* Use enum ib_wq_flags */
1658 };
1659
1660 enum ib_wq_attr_mask {
1661 IB_WQ_STATE = 1 << 0,
1662 IB_WQ_CUR_STATE = 1 << 1,
1663 IB_WQ_FLAGS = 1 << 2,
1664 };
1665
1666 struct ib_wq_attr {
1667 enum ib_wq_state wq_state;
1668 enum ib_wq_state curr_wq_state;
1669 u32 flags; /* Use enum ib_wq_flags */
1670 u32 flags_mask; /* Use enum ib_wq_flags */
1671 };
1672
1673 struct ib_rwq_ind_table {
1674 struct ib_device *device;
1675 struct ib_uobject *uobject;
1676 atomic_t usecnt;
1677 u32 ind_tbl_num;
1678 u32 log_ind_tbl_size;
1679 struct ib_wq **ind_tbl;
1680 };
1681
1682 struct ib_rwq_ind_table_init_attr {
1683 u32 log_ind_tbl_size;
1684 /* Each entry is a pointer to Receive Work Queue */
1685 struct ib_wq **ind_tbl;
1686 };
1687
1688 enum port_pkey_state {
1689 IB_PORT_PKEY_NOT_VALID = 0,
1690 IB_PORT_PKEY_VALID = 1,
1691 IB_PORT_PKEY_LISTED = 2,
1692 };
1693
1694 struct ib_qp_security;
1695
1696 struct ib_port_pkey {
1697 enum port_pkey_state state;
1698 u16 pkey_index;
1699 u8 port_num;
1700 struct list_head qp_list;
1701 struct list_head to_error_list;
1702 struct ib_qp_security *sec;
1703 };
1704
1705 struct ib_ports_pkeys {
1706 struct ib_port_pkey main;
1707 struct ib_port_pkey alt;
1708 };
1709
1710 struct ib_qp_security {
1711 struct ib_qp *qp;
1712 struct ib_device *dev;
1713 /* Hold this mutex when changing port and pkey settings. */
1714 struct mutex mutex;
1715 struct ib_ports_pkeys *ports_pkeys;
1716 /* A list of all open shared QP handles. Required to enforce security
1717 * properly for all users of a shared QP.
1718 */
1719 struct list_head shared_qp_list;
1720 void *security;
1721 bool destroying;
1722 atomic_t error_list_count;
1723 struct completion error_complete;
1724 int error_comps_pending;
1725 };
1726
1727 /*
1728 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1729 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1730 */
1731 struct ib_qp {
1732 struct ib_device *device;
1733 struct ib_pd *pd;
1734 struct ib_cq *send_cq;
1735 struct ib_cq *recv_cq;
1736 spinlock_t mr_lock;
1737 int mrs_used;
1738 struct list_head rdma_mrs;
1739 struct list_head sig_mrs;
1740 struct ib_srq *srq;
1741 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1742 struct list_head xrcd_list;
1743
1744 /* count times opened, mcast attaches, flow attaches */
1745 atomic_t usecnt;
1746 struct list_head open_list;
1747 struct ib_qp *real_qp;
1748 struct ib_uobject *uobject;
1749 void (*event_handler)(struct ib_event *, void *);
1750 void *qp_context;
1751 u32 qp_num;
1752 u32 max_write_sge;
1753 u32 max_read_sge;
1754 enum ib_qp_type qp_type;
1755 struct ib_rwq_ind_table *rwq_ind_tbl;
1756 struct ib_qp_security *qp_sec;
1757 u8 port;
1758 };
1759
1760 struct ib_mr {
1761 struct ib_device *device;
1762 struct ib_pd *pd;
1763 u32 lkey;
1764 u32 rkey;
1765 u64 iova;
1766 u64 length;
1767 unsigned int page_size;
1768 bool need_inval;
1769 union {
1770 struct ib_uobject *uobject; /* user */
1771 struct list_head qp_entry; /* FR */
1772 };
1773 };
1774
1775 struct ib_mw {
1776 struct ib_device *device;
1777 struct ib_pd *pd;
1778 struct ib_uobject *uobject;
1779 u32 rkey;
1780 enum ib_mw_type type;
1781 };
1782
1783 struct ib_fmr {
1784 struct ib_device *device;
1785 struct ib_pd *pd;
1786 struct list_head list;
1787 u32 lkey;
1788 u32 rkey;
1789 };
1790
1791 /* Supported steering options */
1792 enum ib_flow_attr_type {
1793 /* steering according to rule specifications */
1794 IB_FLOW_ATTR_NORMAL = 0x0,
1795 /* default unicast and multicast rule -
1796 * receive all Eth traffic which isn't steered to any QP
1797 */
1798 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1799 /* default multicast rule -
1800 * receive all Eth multicast traffic which isn't steered to any QP
1801 */
1802 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1803 /* sniffer rule - receive all port traffic */
1804 IB_FLOW_ATTR_SNIFFER = 0x3
1805 };
1806
1807 /* Supported steering header types */
1808 enum ib_flow_spec_type {
1809 /* L2 headers*/
1810 IB_FLOW_SPEC_ETH = 0x20,
1811 IB_FLOW_SPEC_IB = 0x22,
1812 /* L3 header*/
1813 IB_FLOW_SPEC_IPV4 = 0x30,
1814 IB_FLOW_SPEC_IPV6 = 0x31,
1815 /* L4 headers*/
1816 IB_FLOW_SPEC_TCP = 0x40,
1817 IB_FLOW_SPEC_UDP = 0x41,
1818 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1819 IB_FLOW_SPEC_INNER = 0x100,
1820 /* Actions */
1821 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1822 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1823 };
1824 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1825 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1826
1827 /* Flow steering rule priority is set according to it's domain.
1828 * Lower domain value means higher priority.
1829 */
1830 enum ib_flow_domain {
1831 IB_FLOW_DOMAIN_USER,
1832 IB_FLOW_DOMAIN_ETHTOOL,
1833 IB_FLOW_DOMAIN_RFS,
1834 IB_FLOW_DOMAIN_NIC,
1835 IB_FLOW_DOMAIN_NUM /* Must be last */
1836 };
1837
1838 enum ib_flow_flags {
1839 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1840 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1841 };
1842
1843 struct ib_flow_eth_filter {
1844 u8 dst_mac[6];
1845 u8 src_mac[6];
1846 __be16 ether_type;
1847 __be16 vlan_tag;
1848 /* Must be last */
1849 u8 real_sz[0];
1850 };
1851
1852 struct ib_flow_spec_eth {
1853 u32 type;
1854 u16 size;
1855 struct ib_flow_eth_filter val;
1856 struct ib_flow_eth_filter mask;
1857 };
1858
1859 struct ib_flow_ib_filter {
1860 __be16 dlid;
1861 __u8 sl;
1862 /* Must be last */
1863 u8 real_sz[0];
1864 };
1865
1866 struct ib_flow_spec_ib {
1867 u32 type;
1868 u16 size;
1869 struct ib_flow_ib_filter val;
1870 struct ib_flow_ib_filter mask;
1871 };
1872
1873 /* IPv4 header flags */
1874 enum ib_ipv4_flags {
1875 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1876 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1877 last have this flag set */
1878 };
1879
1880 struct ib_flow_ipv4_filter {
1881 __be32 src_ip;
1882 __be32 dst_ip;
1883 u8 proto;
1884 u8 tos;
1885 u8 ttl;
1886 u8 flags;
1887 /* Must be last */
1888 u8 real_sz[0];
1889 };
1890
1891 struct ib_flow_spec_ipv4 {
1892 u32 type;
1893 u16 size;
1894 struct ib_flow_ipv4_filter val;
1895 struct ib_flow_ipv4_filter mask;
1896 };
1897
1898 struct ib_flow_ipv6_filter {
1899 u8 src_ip[16];
1900 u8 dst_ip[16];
1901 __be32 flow_label;
1902 u8 next_hdr;
1903 u8 traffic_class;
1904 u8 hop_limit;
1905 /* Must be last */
1906 u8 real_sz[0];
1907 };
1908
1909 struct ib_flow_spec_ipv6 {
1910 u32 type;
1911 u16 size;
1912 struct ib_flow_ipv6_filter val;
1913 struct ib_flow_ipv6_filter mask;
1914 };
1915
1916 struct ib_flow_tcp_udp_filter {
1917 __be16 dst_port;
1918 __be16 src_port;
1919 /* Must be last */
1920 u8 real_sz[0];
1921 };
1922
1923 struct ib_flow_spec_tcp_udp {
1924 u32 type;
1925 u16 size;
1926 struct ib_flow_tcp_udp_filter val;
1927 struct ib_flow_tcp_udp_filter mask;
1928 };
1929
1930 struct ib_flow_tunnel_filter {
1931 __be32 tunnel_id;
1932 u8 real_sz[0];
1933 };
1934
1935 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1936 * the tunnel_id from val has the vni value
1937 */
1938 struct ib_flow_spec_tunnel {
1939 u32 type;
1940 u16 size;
1941 struct ib_flow_tunnel_filter val;
1942 struct ib_flow_tunnel_filter mask;
1943 };
1944
1945 struct ib_flow_spec_action_tag {
1946 enum ib_flow_spec_type type;
1947 u16 size;
1948 u32 tag_id;
1949 };
1950
1951 struct ib_flow_spec_action_drop {
1952 enum ib_flow_spec_type type;
1953 u16 size;
1954 };
1955
1956 union ib_flow_spec {
1957 struct {
1958 u32 type;
1959 u16 size;
1960 };
1961 struct ib_flow_spec_eth eth;
1962 struct ib_flow_spec_ib ib;
1963 struct ib_flow_spec_ipv4 ipv4;
1964 struct ib_flow_spec_tcp_udp tcp_udp;
1965 struct ib_flow_spec_ipv6 ipv6;
1966 struct ib_flow_spec_tunnel tunnel;
1967 struct ib_flow_spec_action_tag flow_tag;
1968 struct ib_flow_spec_action_drop drop;
1969 };
1970
1971 struct ib_flow_attr {
1972 enum ib_flow_attr_type type;
1973 u16 size;
1974 u16 priority;
1975 u32 flags;
1976 u8 num_of_specs;
1977 u8 port;
1978 /* Following are the optional layers according to user request
1979 * struct ib_flow_spec_xxx
1980 * struct ib_flow_spec_yyy
1981 */
1982 };
1983
1984 struct ib_flow {
1985 struct ib_qp *qp;
1986 struct ib_uobject *uobject;
1987 };
1988
1989 struct ib_mad_hdr;
1990 struct ib_grh;
1991
1992 enum ib_process_mad_flags {
1993 IB_MAD_IGNORE_MKEY = 1,
1994 IB_MAD_IGNORE_BKEY = 2,
1995 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1996 };
1997
1998 enum ib_mad_result {
1999 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2000 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2001 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2002 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2003 };
2004
2005 struct ib_port_cache {
2006 u64 subnet_prefix;
2007 struct ib_pkey_cache *pkey;
2008 struct ib_gid_table *gid;
2009 u8 lmc;
2010 enum ib_port_state port_state;
2011 };
2012
2013 struct ib_cache {
2014 rwlock_t lock;
2015 struct ib_event_handler event_handler;
2016 struct ib_port_cache *ports;
2017 };
2018
2019 struct iw_cm_verbs;
2020
2021 struct ib_port_immutable {
2022 int pkey_tbl_len;
2023 int gid_tbl_len;
2024 u32 core_cap_flags;
2025 u32 max_mad_size;
2026 };
2027
2028 /* rdma netdev type - specifies protocol type */
2029 enum rdma_netdev_t {
2030 RDMA_NETDEV_OPA_VNIC,
2031 RDMA_NETDEV_IPOIB,
2032 };
2033
2034 /**
2035 * struct rdma_netdev - rdma netdev
2036 * For cases where netstack interfacing is required.
2037 */
2038 struct rdma_netdev {
2039 void *clnt_priv;
2040 struct ib_device *hca;
2041 u8 port_num;
2042
2043 /* cleanup function must be specified */
2044 void (*free_rdma_netdev)(struct net_device *netdev);
2045
2046 /* control functions */
2047 void (*set_id)(struct net_device *netdev, int id);
2048 /* send packet */
2049 int (*send)(struct net_device *dev, struct sk_buff *skb,
2050 struct ib_ah *address, u32 dqpn);
2051 /* multicast */
2052 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2053 union ib_gid *gid, u16 mlid,
2054 int set_qkey, u32 qkey);
2055 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2056 union ib_gid *gid, u16 mlid);
2057 };
2058
2059 struct ib_port_pkey_list {
2060 /* Lock to hold while modifying the list. */
2061 spinlock_t list_lock;
2062 struct list_head pkey_list;
2063 };
2064
2065 struct ib_device {
2066 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2067 struct device *dma_device;
2068
2069 char name[IB_DEVICE_NAME_MAX];
2070
2071 struct list_head event_handler_list;
2072 spinlock_t event_handler_lock;
2073
2074 spinlock_t client_data_lock;
2075 struct list_head core_list;
2076 /* Access to the client_data_list is protected by the client_data_lock
2077 * spinlock and the lists_rwsem read-write semaphore */
2078 struct list_head client_data_list;
2079
2080 struct ib_cache cache;
2081 /**
2082 * port_immutable is indexed by port number
2083 */
2084 struct ib_port_immutable *port_immutable;
2085
2086 int num_comp_vectors;
2087
2088 struct ib_port_pkey_list *port_pkey_list;
2089
2090 struct iw_cm_verbs *iwcm;
2091
2092 /**
2093 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2094 * driver initialized data. The struct is kfree()'ed by the sysfs
2095 * core when the device is removed. A lifespan of -1 in the return
2096 * struct tells the core to set a default lifespan.
2097 */
2098 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2099 u8 port_num);
2100 /**
2101 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2102 * @index - The index in the value array we wish to have updated, or
2103 * num_counters if we want all stats updated
2104 * Return codes -
2105 * < 0 - Error, no counters updated
2106 * index - Updated the single counter pointed to by index
2107 * num_counters - Updated all counters (will reset the timestamp
2108 * and prevent further calls for lifespan milliseconds)
2109 * Drivers are allowed to update all counters in leiu of just the
2110 * one given in index at their option
2111 */
2112 int (*get_hw_stats)(struct ib_device *device,
2113 struct rdma_hw_stats *stats,
2114 u8 port, int index);
2115 int (*query_device)(struct ib_device *device,
2116 struct ib_device_attr *device_attr,
2117 struct ib_udata *udata);
2118 int (*query_port)(struct ib_device *device,
2119 u8 port_num,
2120 struct ib_port_attr *port_attr);
2121 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2122 u8 port_num);
2123 /* When calling get_netdev, the HW vendor's driver should return the
2124 * net device of device @device at port @port_num or NULL if such
2125 * a net device doesn't exist. The vendor driver should call dev_hold
2126 * on this net device. The HW vendor's device driver must guarantee
2127 * that this function returns NULL before the net device reaches
2128 * NETDEV_UNREGISTER_FINAL state.
2129 */
2130 struct net_device *(*get_netdev)(struct ib_device *device,
2131 u8 port_num);
2132 int (*query_gid)(struct ib_device *device,
2133 u8 port_num, int index,
2134 union ib_gid *gid);
2135 /* When calling add_gid, the HW vendor's driver should
2136 * add the gid of device @device at gid index @index of
2137 * port @port_num to be @gid. Meta-info of that gid (for example,
2138 * the network device related to this gid is available
2139 * at @attr. @context allows the HW vendor driver to store extra
2140 * information together with a GID entry. The HW vendor may allocate
2141 * memory to contain this information and store it in @context when a
2142 * new GID entry is written to. Params are consistent until the next
2143 * call of add_gid or delete_gid. The function should return 0 on
2144 * success or error otherwise. The function could be called
2145 * concurrently for different ports. This function is only called
2146 * when roce_gid_table is used.
2147 */
2148 int (*add_gid)(struct ib_device *device,
2149 u8 port_num,
2150 unsigned int index,
2151 const union ib_gid *gid,
2152 const struct ib_gid_attr *attr,
2153 void **context);
2154 /* When calling del_gid, the HW vendor's driver should delete the
2155 * gid of device @device at gid index @index of port @port_num.
2156 * Upon the deletion of a GID entry, the HW vendor must free any
2157 * allocated memory. The caller will clear @context afterwards.
2158 * This function is only called when roce_gid_table is used.
2159 */
2160 int (*del_gid)(struct ib_device *device,
2161 u8 port_num,
2162 unsigned int index,
2163 void **context);
2164 int (*query_pkey)(struct ib_device *device,
2165 u8 port_num, u16 index, u16 *pkey);
2166 int (*modify_device)(struct ib_device *device,
2167 int device_modify_mask,
2168 struct ib_device_modify *device_modify);
2169 int (*modify_port)(struct ib_device *device,
2170 u8 port_num, int port_modify_mask,
2171 struct ib_port_modify *port_modify);
2172 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2173 struct ib_udata *udata);
2174 int (*dealloc_ucontext)(struct ib_ucontext *context);
2175 int (*mmap)(struct ib_ucontext *context,
2176 struct vm_area_struct *vma);
2177 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2178 struct ib_ucontext *context,
2179 struct ib_udata *udata);
2180 int (*dealloc_pd)(struct ib_pd *pd);
2181 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2182 struct rdma_ah_attr *ah_attr,
2183 struct ib_udata *udata);
2184 int (*modify_ah)(struct ib_ah *ah,
2185 struct rdma_ah_attr *ah_attr);
2186 int (*query_ah)(struct ib_ah *ah,
2187 struct rdma_ah_attr *ah_attr);
2188 int (*destroy_ah)(struct ib_ah *ah);
2189 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2190 struct ib_srq_init_attr *srq_init_attr,
2191 struct ib_udata *udata);
2192 int (*modify_srq)(struct ib_srq *srq,
2193 struct ib_srq_attr *srq_attr,
2194 enum ib_srq_attr_mask srq_attr_mask,
2195 struct ib_udata *udata);
2196 int (*query_srq)(struct ib_srq *srq,
2197 struct ib_srq_attr *srq_attr);
2198 int (*destroy_srq)(struct ib_srq *srq);
2199 int (*post_srq_recv)(struct ib_srq *srq,
2200 struct ib_recv_wr *recv_wr,
2201 struct ib_recv_wr **bad_recv_wr);
2202 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2203 struct ib_qp_init_attr *qp_init_attr,
2204 struct ib_udata *udata);
2205 int (*modify_qp)(struct ib_qp *qp,
2206 struct ib_qp_attr *qp_attr,
2207 int qp_attr_mask,
2208 struct ib_udata *udata);
2209 int (*query_qp)(struct ib_qp *qp,
2210 struct ib_qp_attr *qp_attr,
2211 int qp_attr_mask,
2212 struct ib_qp_init_attr *qp_init_attr);
2213 int (*destroy_qp)(struct ib_qp *qp);
2214 int (*post_send)(struct ib_qp *qp,
2215 struct ib_send_wr *send_wr,
2216 struct ib_send_wr **bad_send_wr);
2217 int (*post_recv)(struct ib_qp *qp,
2218 struct ib_recv_wr *recv_wr,
2219 struct ib_recv_wr **bad_recv_wr);
2220 struct ib_cq * (*create_cq)(struct ib_device *device,
2221 const struct ib_cq_init_attr *attr,
2222 struct ib_ucontext *context,
2223 struct ib_udata *udata);
2224 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2225 u16 cq_period);
2226 int (*destroy_cq)(struct ib_cq *cq);
2227 int (*resize_cq)(struct ib_cq *cq, int cqe,
2228 struct ib_udata *udata);
2229 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2230 struct ib_wc *wc);
2231 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2232 int (*req_notify_cq)(struct ib_cq *cq,
2233 enum ib_cq_notify_flags flags);
2234 int (*req_ncomp_notif)(struct ib_cq *cq,
2235 int wc_cnt);
2236 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2237 int mr_access_flags);
2238 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2239 u64 start, u64 length,
2240 u64 virt_addr,
2241 int mr_access_flags,
2242 struct ib_udata *udata);
2243 int (*rereg_user_mr)(struct ib_mr *mr,
2244 int flags,
2245 u64 start, u64 length,
2246 u64 virt_addr,
2247 int mr_access_flags,
2248 struct ib_pd *pd,
2249 struct ib_udata *udata);
2250 int (*dereg_mr)(struct ib_mr *mr);
2251 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2252 enum ib_mr_type mr_type,
2253 u32 max_num_sg);
2254 int (*map_mr_sg)(struct ib_mr *mr,
2255 struct scatterlist *sg,
2256 int sg_nents,
2257 unsigned int *sg_offset);
2258 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2259 enum ib_mw_type type,
2260 struct ib_udata *udata);
2261 int (*dealloc_mw)(struct ib_mw *mw);
2262 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2263 int mr_access_flags,
2264 struct ib_fmr_attr *fmr_attr);
2265 int (*map_phys_fmr)(struct ib_fmr *fmr,
2266 u64 *page_list, int list_len,
2267 u64 iova);
2268 int (*unmap_fmr)(struct list_head *fmr_list);
2269 int (*dealloc_fmr)(struct ib_fmr *fmr);
2270 int (*attach_mcast)(struct ib_qp *qp,
2271 union ib_gid *gid,
2272 u16 lid);
2273 int (*detach_mcast)(struct ib_qp *qp,
2274 union ib_gid *gid,
2275 u16 lid);
2276 int (*process_mad)(struct ib_device *device,
2277 int process_mad_flags,
2278 u8 port_num,
2279 const struct ib_wc *in_wc,
2280 const struct ib_grh *in_grh,
2281 const struct ib_mad_hdr *in_mad,
2282 size_t in_mad_size,
2283 struct ib_mad_hdr *out_mad,
2284 size_t *out_mad_size,
2285 u16 *out_mad_pkey_index);
2286 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2287 struct ib_ucontext *ucontext,
2288 struct ib_udata *udata);
2289 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2290 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2291 struct ib_flow_attr
2292 *flow_attr,
2293 int domain);
2294 int (*destroy_flow)(struct ib_flow *flow_id);
2295 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2296 struct ib_mr_status *mr_status);
2297 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2298 void (*drain_rq)(struct ib_qp *qp);
2299 void (*drain_sq)(struct ib_qp *qp);
2300 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2301 int state);
2302 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2303 struct ifla_vf_info *ivf);
2304 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2305 struct ifla_vf_stats *stats);
2306 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2307 int type);
2308 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2309 struct ib_wq_init_attr *init_attr,
2310 struct ib_udata *udata);
2311 int (*destroy_wq)(struct ib_wq *wq);
2312 int (*modify_wq)(struct ib_wq *wq,
2313 struct ib_wq_attr *attr,
2314 u32 wq_attr_mask,
2315 struct ib_udata *udata);
2316 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2317 struct ib_rwq_ind_table_init_attr *init_attr,
2318 struct ib_udata *udata);
2319 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2320 /**
2321 * rdma netdev operation
2322 *
2323 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2324 * doesn't support the specified rdma netdev type.
2325 */
2326 struct net_device *(*alloc_rdma_netdev)(
2327 struct ib_device *device,
2328 u8 port_num,
2329 enum rdma_netdev_t type,
2330 const char *name,
2331 unsigned char name_assign_type,
2332 void (*setup)(struct net_device *));
2333
2334 struct module *owner;
2335 struct device dev;
2336 struct kobject *ports_parent;
2337 struct list_head port_list;
2338
2339 enum {
2340 IB_DEV_UNINITIALIZED,
2341 IB_DEV_REGISTERED,
2342 IB_DEV_UNREGISTERED
2343 } reg_state;
2344
2345 int uverbs_abi_ver;
2346 u64 uverbs_cmd_mask;
2347 u64 uverbs_ex_cmd_mask;
2348
2349 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2350 __be64 node_guid;
2351 u32 local_dma_lkey;
2352 u16 is_switch:1;
2353 u8 node_type;
2354 u8 phys_port_cnt;
2355 struct ib_device_attr attrs;
2356 struct attribute_group *hw_stats_ag;
2357 struct rdma_hw_stats *hw_stats;
2358
2359 #ifdef CONFIG_CGROUP_RDMA
2360 struct rdmacg_device cg_device;
2361 #endif
2362
2363 u32 index;
2364
2365 /**
2366 * The following mandatory functions are used only at device
2367 * registration. Keep functions such as these at the end of this
2368 * structure to avoid cache line misses when accessing struct ib_device
2369 * in fast paths.
2370 */
2371 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2372 void (*get_dev_fw_str)(struct ib_device *, char *str);
2373 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2374 int comp_vector);
2375
2376 struct uverbs_root_spec *specs_root;
2377 };
2378
2379 struct ib_client {
2380 char *name;
2381 void (*add) (struct ib_device *);
2382 void (*remove)(struct ib_device *, void *client_data);
2383
2384 /* Returns the net_dev belonging to this ib_client and matching the
2385 * given parameters.
2386 * @dev: An RDMA device that the net_dev use for communication.
2387 * @port: A physical port number on the RDMA device.
2388 * @pkey: P_Key that the net_dev uses if applicable.
2389 * @gid: A GID that the net_dev uses to communicate.
2390 * @addr: An IP address the net_dev is configured with.
2391 * @client_data: The device's client data set by ib_set_client_data().
2392 *
2393 * An ib_client that implements a net_dev on top of RDMA devices
2394 * (such as IP over IB) should implement this callback, allowing the
2395 * rdma_cm module to find the right net_dev for a given request.
2396 *
2397 * The caller is responsible for calling dev_put on the returned
2398 * netdev. */
2399 struct net_device *(*get_net_dev_by_params)(
2400 struct ib_device *dev,
2401 u8 port,
2402 u16 pkey,
2403 const union ib_gid *gid,
2404 const struct sockaddr *addr,
2405 void *client_data);
2406 struct list_head list;
2407 };
2408
2409 struct ib_device *ib_alloc_device(size_t size);
2410 void ib_dealloc_device(struct ib_device *device);
2411
2412 void ib_get_device_fw_str(struct ib_device *device, char *str);
2413
2414 int ib_register_device(struct ib_device *device,
2415 int (*port_callback)(struct ib_device *,
2416 u8, struct kobject *));
2417 void ib_unregister_device(struct ib_device *device);
2418
2419 int ib_register_client (struct ib_client *client);
2420 void ib_unregister_client(struct ib_client *client);
2421
2422 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2423 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2424 void *data);
2425
2426 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2427 {
2428 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2429 }
2430
2431 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2432 {
2433 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2434 }
2435
2436 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2437 size_t offset,
2438 size_t len)
2439 {
2440 const void __user *p = udata->inbuf + offset;
2441 bool ret;
2442 u8 *buf;
2443
2444 if (len > USHRT_MAX)
2445 return false;
2446
2447 buf = memdup_user(p, len);
2448 if (IS_ERR(buf))
2449 return false;
2450
2451 ret = !memchr_inv(buf, 0, len);
2452 kfree(buf);
2453 return ret;
2454 }
2455
2456 /**
2457 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2458 * contains all required attributes and no attributes not allowed for
2459 * the given QP state transition.
2460 * @cur_state: Current QP state
2461 * @next_state: Next QP state
2462 * @type: QP type
2463 * @mask: Mask of supplied QP attributes
2464 * @ll : link layer of port
2465 *
2466 * This function is a helper function that a low-level driver's
2467 * modify_qp method can use to validate the consumer's input. It
2468 * checks that cur_state and next_state are valid QP states, that a
2469 * transition from cur_state to next_state is allowed by the IB spec,
2470 * and that the attribute mask supplied is allowed for the transition.
2471 */
2472 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2473 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2474 enum rdma_link_layer ll);
2475
2476 void ib_register_event_handler(struct ib_event_handler *event_handler);
2477 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2478 void ib_dispatch_event(struct ib_event *event);
2479
2480 int ib_query_port(struct ib_device *device,
2481 u8 port_num, struct ib_port_attr *port_attr);
2482
2483 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2484 u8 port_num);
2485
2486 /**
2487 * rdma_cap_ib_switch - Check if the device is IB switch
2488 * @device: Device to check
2489 *
2490 * Device driver is responsible for setting is_switch bit on
2491 * in ib_device structure at init time.
2492 *
2493 * Return: true if the device is IB switch.
2494 */
2495 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2496 {
2497 return device->is_switch;
2498 }
2499
2500 /**
2501 * rdma_start_port - Return the first valid port number for the device
2502 * specified
2503 *
2504 * @device: Device to be checked
2505 *
2506 * Return start port number
2507 */
2508 static inline u8 rdma_start_port(const struct ib_device *device)
2509 {
2510 return rdma_cap_ib_switch(device) ? 0 : 1;
2511 }
2512
2513 /**
2514 * rdma_end_port - Return the last valid port number for the device
2515 * specified
2516 *
2517 * @device: Device to be checked
2518 *
2519 * Return last port number
2520 */
2521 static inline u8 rdma_end_port(const struct ib_device *device)
2522 {
2523 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2524 }
2525
2526 static inline int rdma_is_port_valid(const struct ib_device *device,
2527 unsigned int port)
2528 {
2529 return (port >= rdma_start_port(device) &&
2530 port <= rdma_end_port(device));
2531 }
2532
2533 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2534 {
2535 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2536 }
2537
2538 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2539 {
2540 return device->port_immutable[port_num].core_cap_flags &
2541 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2542 }
2543
2544 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2545 {
2546 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2547 }
2548
2549 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2550 {
2551 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2552 }
2553
2554 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2555 {
2556 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2557 }
2558
2559 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2560 {
2561 return rdma_protocol_ib(device, port_num) ||
2562 rdma_protocol_roce(device, port_num);
2563 }
2564
2565 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2566 {
2567 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2568 }
2569
2570 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2571 {
2572 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2573 }
2574
2575 /**
2576 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2577 * Management Datagrams.
2578 * @device: Device to check
2579 * @port_num: Port number to check
2580 *
2581 * Management Datagrams (MAD) are a required part of the InfiniBand
2582 * specification and are supported on all InfiniBand devices. A slightly
2583 * extended version are also supported on OPA interfaces.
2584 *
2585 * Return: true if the port supports sending/receiving of MAD packets.
2586 */
2587 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2588 {
2589 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2590 }
2591
2592 /**
2593 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2594 * Management Datagrams.
2595 * @device: Device to check
2596 * @port_num: Port number to check
2597 *
2598 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2599 * datagrams with their own versions. These OPA MADs share many but not all of
2600 * the characteristics of InfiniBand MADs.
2601 *
2602 * OPA MADs differ in the following ways:
2603 *
2604 * 1) MADs are variable size up to 2K
2605 * IBTA defined MADs remain fixed at 256 bytes
2606 * 2) OPA SMPs must carry valid PKeys
2607 * 3) OPA SMP packets are a different format
2608 *
2609 * Return: true if the port supports OPA MAD packet formats.
2610 */
2611 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2612 {
2613 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2614 == RDMA_CORE_CAP_OPA_MAD;
2615 }
2616
2617 /**
2618 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2619 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2620 * @device: Device to check
2621 * @port_num: Port number to check
2622 *
2623 * Each InfiniBand node is required to provide a Subnet Management Agent
2624 * that the subnet manager can access. Prior to the fabric being fully
2625 * configured by the subnet manager, the SMA is accessed via a well known
2626 * interface called the Subnet Management Interface (SMI). This interface
2627 * uses directed route packets to communicate with the SM to get around the
2628 * chicken and egg problem of the SM needing to know what's on the fabric
2629 * in order to configure the fabric, and needing to configure the fabric in
2630 * order to send packets to the devices on the fabric. These directed
2631 * route packets do not need the fabric fully configured in order to reach
2632 * their destination. The SMI is the only method allowed to send
2633 * directed route packets on an InfiniBand fabric.
2634 *
2635 * Return: true if the port provides an SMI.
2636 */
2637 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2638 {
2639 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2640 }
2641
2642 /**
2643 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2644 * Communication Manager.
2645 * @device: Device to check
2646 * @port_num: Port number to check
2647 *
2648 * The InfiniBand Communication Manager is one of many pre-defined General
2649 * Service Agents (GSA) that are accessed via the General Service
2650 * Interface (GSI). It's role is to facilitate establishment of connections
2651 * between nodes as well as other management related tasks for established
2652 * connections.
2653 *
2654 * Return: true if the port supports an IB CM (this does not guarantee that
2655 * a CM is actually running however).
2656 */
2657 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2658 {
2659 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2660 }
2661
2662 /**
2663 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2664 * Communication Manager.
2665 * @device: Device to check
2666 * @port_num: Port number to check
2667 *
2668 * Similar to above, but specific to iWARP connections which have a different
2669 * managment protocol than InfiniBand.
2670 *
2671 * Return: true if the port supports an iWARP CM (this does not guarantee that
2672 * a CM is actually running however).
2673 */
2674 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2675 {
2676 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2677 }
2678
2679 /**
2680 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2681 * Subnet Administration.
2682 * @device: Device to check
2683 * @port_num: Port number to check
2684 *
2685 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2686 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2687 * fabrics, devices should resolve routes to other hosts by contacting the
2688 * SA to query the proper route.
2689 *
2690 * Return: true if the port should act as a client to the fabric Subnet
2691 * Administration interface. This does not imply that the SA service is
2692 * running locally.
2693 */
2694 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2695 {
2696 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2697 }
2698
2699 /**
2700 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2701 * Multicast.
2702 * @device: Device to check
2703 * @port_num: Port number to check
2704 *
2705 * InfiniBand multicast registration is more complex than normal IPv4 or
2706 * IPv6 multicast registration. Each Host Channel Adapter must register
2707 * with the Subnet Manager when it wishes to join a multicast group. It
2708 * should do so only once regardless of how many queue pairs it subscribes
2709 * to this group. And it should leave the group only after all queue pairs
2710 * attached to the group have been detached.
2711 *
2712 * Return: true if the port must undertake the additional adminstrative
2713 * overhead of registering/unregistering with the SM and tracking of the
2714 * total number of queue pairs attached to the multicast group.
2715 */
2716 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2717 {
2718 return rdma_cap_ib_sa(device, port_num);
2719 }
2720
2721 /**
2722 * rdma_cap_af_ib - Check if the port of device has the capability
2723 * Native Infiniband Address.
2724 * @device: Device to check
2725 * @port_num: Port number to check
2726 *
2727 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2728 * GID. RoCE uses a different mechanism, but still generates a GID via
2729 * a prescribed mechanism and port specific data.
2730 *
2731 * Return: true if the port uses a GID address to identify devices on the
2732 * network.
2733 */
2734 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2735 {
2736 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2737 }
2738
2739 /**
2740 * rdma_cap_eth_ah - Check if the port of device has the capability
2741 * Ethernet Address Handle.
2742 * @device: Device to check
2743 * @port_num: Port number to check
2744 *
2745 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2746 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2747 * port. Normally, packet headers are generated by the sending host
2748 * adapter, but when sending connectionless datagrams, we must manually
2749 * inject the proper headers for the fabric we are communicating over.
2750 *
2751 * Return: true if we are running as a RoCE port and must force the
2752 * addition of a Global Route Header built from our Ethernet Address
2753 * Handle into our header list for connectionless packets.
2754 */
2755 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2756 {
2757 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2758 }
2759
2760 /**
2761 * rdma_cap_opa_ah - Check if the port of device supports
2762 * OPA Address handles
2763 * @device: Device to check
2764 * @port_num: Port number to check
2765 *
2766 * Return: true if we are running on an OPA device which supports
2767 * the extended OPA addressing.
2768 */
2769 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2770 {
2771 return (device->port_immutable[port_num].core_cap_flags &
2772 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2773 }
2774
2775 /**
2776 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2777 *
2778 * @device: Device
2779 * @port_num: Port number
2780 *
2781 * This MAD size includes the MAD headers and MAD payload. No other headers
2782 * are included.
2783 *
2784 * Return the max MAD size required by the Port. Will return 0 if the port
2785 * does not support MADs
2786 */
2787 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2788 {
2789 return device->port_immutable[port_num].max_mad_size;
2790 }
2791
2792 /**
2793 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2794 * @device: Device to check
2795 * @port_num: Port number to check
2796 *
2797 * RoCE GID table mechanism manages the various GIDs for a device.
2798 *
2799 * NOTE: if allocating the port's GID table has failed, this call will still
2800 * return true, but any RoCE GID table API will fail.
2801 *
2802 * Return: true if the port uses RoCE GID table mechanism in order to manage
2803 * its GIDs.
2804 */
2805 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2806 u8 port_num)
2807 {
2808 return rdma_protocol_roce(device, port_num) &&
2809 device->add_gid && device->del_gid;
2810 }
2811
2812 /*
2813 * Check if the device supports READ W/ INVALIDATE.
2814 */
2815 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2816 {
2817 /*
2818 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2819 * has support for it yet.
2820 */
2821 return rdma_protocol_iwarp(dev, port_num);
2822 }
2823
2824 int ib_query_gid(struct ib_device *device,
2825 u8 port_num, int index, union ib_gid *gid,
2826 struct ib_gid_attr *attr);
2827
2828 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2829 int state);
2830 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2831 struct ifla_vf_info *info);
2832 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2833 struct ifla_vf_stats *stats);
2834 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2835 int type);
2836
2837 int ib_query_pkey(struct ib_device *device,
2838 u8 port_num, u16 index, u16 *pkey);
2839
2840 int ib_modify_device(struct ib_device *device,
2841 int device_modify_mask,
2842 struct ib_device_modify *device_modify);
2843
2844 int ib_modify_port(struct ib_device *device,
2845 u8 port_num, int port_modify_mask,
2846 struct ib_port_modify *port_modify);
2847
2848 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2849 enum ib_gid_type gid_type, struct net_device *ndev,
2850 u8 *port_num, u16 *index);
2851
2852 int ib_find_pkey(struct ib_device *device,
2853 u8 port_num, u16 pkey, u16 *index);
2854
2855 enum ib_pd_flags {
2856 /*
2857 * Create a memory registration for all memory in the system and place
2858 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2859 * ULPs to avoid the overhead of dynamic MRs.
2860 *
2861 * This flag is generally considered unsafe and must only be used in
2862 * extremly trusted environments. Every use of it will log a warning
2863 * in the kernel log.
2864 */
2865 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2866 };
2867
2868 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2869 const char *caller);
2870 #define ib_alloc_pd(device, flags) \
2871 __ib_alloc_pd((device), (flags), __func__)
2872 void ib_dealloc_pd(struct ib_pd *pd);
2873
2874 /**
2875 * rdma_create_ah - Creates an address handle for the given address vector.
2876 * @pd: The protection domain associated with the address handle.
2877 * @ah_attr: The attributes of the address vector.
2878 *
2879 * The address handle is used to reference a local or global destination
2880 * in all UD QP post sends.
2881 */
2882 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2883
2884 /**
2885 * rdma_create_user_ah - Creates an address handle for the given address vector.
2886 * It resolves destination mac address for ah attribute of RoCE type.
2887 * @pd: The protection domain associated with the address handle.
2888 * @ah_attr: The attributes of the address vector.
2889 * @udata: pointer to user's input output buffer information need by
2890 * provider driver.
2891 *
2892 * It returns 0 on success and returns appropriate error code on error.
2893 * The address handle is used to reference a local or global destination
2894 * in all UD QP post sends.
2895 */
2896 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
2897 struct rdma_ah_attr *ah_attr,
2898 struct ib_udata *udata);
2899 /**
2900 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2901 * work completion.
2902 * @hdr: the L3 header to parse
2903 * @net_type: type of header to parse
2904 * @sgid: place to store source gid
2905 * @dgid: place to store destination gid
2906 */
2907 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2908 enum rdma_network_type net_type,
2909 union ib_gid *sgid, union ib_gid *dgid);
2910
2911 /**
2912 * ib_get_rdma_header_version - Get the header version
2913 * @hdr: the L3 header to parse
2914 */
2915 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2916
2917 /**
2918 * ib_init_ah_from_wc - Initializes address handle attributes from a
2919 * work completion.
2920 * @device: Device on which the received message arrived.
2921 * @port_num: Port on which the received message arrived.
2922 * @wc: Work completion associated with the received message.
2923 * @grh: References the received global route header. This parameter is
2924 * ignored unless the work completion indicates that the GRH is valid.
2925 * @ah_attr: Returned attributes that can be used when creating an address
2926 * handle for replying to the message.
2927 */
2928 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2929 const struct ib_wc *wc, const struct ib_grh *grh,
2930 struct rdma_ah_attr *ah_attr);
2931
2932 /**
2933 * ib_create_ah_from_wc - Creates an address handle associated with the
2934 * sender of the specified work completion.
2935 * @pd: The protection domain associated with the address handle.
2936 * @wc: Work completion information associated with a received message.
2937 * @grh: References the received global route header. This parameter is
2938 * ignored unless the work completion indicates that the GRH is valid.
2939 * @port_num: The outbound port number to associate with the address.
2940 *
2941 * The address handle is used to reference a local or global destination
2942 * in all UD QP post sends.
2943 */
2944 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2945 const struct ib_grh *grh, u8 port_num);
2946
2947 /**
2948 * rdma_modify_ah - Modifies the address vector associated with an address
2949 * handle.
2950 * @ah: The address handle to modify.
2951 * @ah_attr: The new address vector attributes to associate with the
2952 * address handle.
2953 */
2954 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2955
2956 /**
2957 * rdma_query_ah - Queries the address vector associated with an address
2958 * handle.
2959 * @ah: The address handle to query.
2960 * @ah_attr: The address vector attributes associated with the address
2961 * handle.
2962 */
2963 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2964
2965 /**
2966 * rdma_destroy_ah - Destroys an address handle.
2967 * @ah: The address handle to destroy.
2968 */
2969 int rdma_destroy_ah(struct ib_ah *ah);
2970
2971 /**
2972 * ib_create_srq - Creates a SRQ associated with the specified protection
2973 * domain.
2974 * @pd: The protection domain associated with the SRQ.
2975 * @srq_init_attr: A list of initial attributes required to create the
2976 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2977 * the actual capabilities of the created SRQ.
2978 *
2979 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2980 * requested size of the SRQ, and set to the actual values allocated
2981 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2982 * will always be at least as large as the requested values.
2983 */
2984 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2985 struct ib_srq_init_attr *srq_init_attr);
2986
2987 /**
2988 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2989 * @srq: The SRQ to modify.
2990 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2991 * the current values of selected SRQ attributes are returned.
2992 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2993 * are being modified.
2994 *
2995 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2996 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2997 * the number of receives queued drops below the limit.
2998 */
2999 int ib_modify_srq(struct ib_srq *srq,
3000 struct ib_srq_attr *srq_attr,
3001 enum ib_srq_attr_mask srq_attr_mask);
3002
3003 /**
3004 * ib_query_srq - Returns the attribute list and current values for the
3005 * specified SRQ.
3006 * @srq: The SRQ to query.
3007 * @srq_attr: The attributes of the specified SRQ.
3008 */
3009 int ib_query_srq(struct ib_srq *srq,
3010 struct ib_srq_attr *srq_attr);
3011
3012 /**
3013 * ib_destroy_srq - Destroys the specified SRQ.
3014 * @srq: The SRQ to destroy.
3015 */
3016 int ib_destroy_srq(struct ib_srq *srq);
3017
3018 /**
3019 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3020 * @srq: The SRQ to post the work request on.
3021 * @recv_wr: A list of work requests to post on the receive queue.
3022 * @bad_recv_wr: On an immediate failure, this parameter will reference
3023 * the work request that failed to be posted on the QP.
3024 */
3025 static inline int ib_post_srq_recv(struct ib_srq *srq,
3026 struct ib_recv_wr *recv_wr,
3027 struct ib_recv_wr **bad_recv_wr)
3028 {
3029 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3030 }
3031
3032 /**
3033 * ib_create_qp - Creates a QP associated with the specified protection
3034 * domain.
3035 * @pd: The protection domain associated with the QP.
3036 * @qp_init_attr: A list of initial attributes required to create the
3037 * QP. If QP creation succeeds, then the attributes are updated to
3038 * the actual capabilities of the created QP.
3039 */
3040 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3041 struct ib_qp_init_attr *qp_init_attr);
3042
3043 /**
3044 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3045 * @qp: The QP to modify.
3046 * @attr: On input, specifies the QP attributes to modify. On output,
3047 * the current values of selected QP attributes are returned.
3048 * @attr_mask: A bit-mask used to specify which attributes of the QP
3049 * are being modified.
3050 * @udata: pointer to user's input output buffer information
3051 * are being modified.
3052 * It returns 0 on success and returns appropriate error code on error.
3053 */
3054 int ib_modify_qp_with_udata(struct ib_qp *qp,
3055 struct ib_qp_attr *attr,
3056 int attr_mask,
3057 struct ib_udata *udata);
3058
3059 /**
3060 * ib_modify_qp - Modifies the attributes for the specified QP and then
3061 * transitions the QP to the given state.
3062 * @qp: The QP to modify.
3063 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3064 * the current values of selected QP attributes are returned.
3065 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3066 * are being modified.
3067 */
3068 int ib_modify_qp(struct ib_qp *qp,
3069 struct ib_qp_attr *qp_attr,
3070 int qp_attr_mask);
3071
3072 /**
3073 * ib_query_qp - Returns the attribute list and current values for the
3074 * specified QP.
3075 * @qp: The QP to query.
3076 * @qp_attr: The attributes of the specified QP.
3077 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3078 * @qp_init_attr: Additional attributes of the selected QP.
3079 *
3080 * The qp_attr_mask may be used to limit the query to gathering only the
3081 * selected attributes.
3082 */
3083 int ib_query_qp(struct ib_qp *qp,
3084 struct ib_qp_attr *qp_attr,
3085 int qp_attr_mask,
3086 struct ib_qp_init_attr *qp_init_attr);
3087
3088 /**
3089 * ib_destroy_qp - Destroys the specified QP.
3090 * @qp: The QP to destroy.
3091 */
3092 int ib_destroy_qp(struct ib_qp *qp);
3093
3094 /**
3095 * ib_open_qp - Obtain a reference to an existing sharable QP.
3096 * @xrcd - XRC domain
3097 * @qp_open_attr: Attributes identifying the QP to open.
3098 *
3099 * Returns a reference to a sharable QP.
3100 */
3101 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3102 struct ib_qp_open_attr *qp_open_attr);
3103
3104 /**
3105 * ib_close_qp - Release an external reference to a QP.
3106 * @qp: The QP handle to release
3107 *
3108 * The opened QP handle is released by the caller. The underlying
3109 * shared QP is not destroyed until all internal references are released.
3110 */
3111 int ib_close_qp(struct ib_qp *qp);
3112
3113 /**
3114 * ib_post_send - Posts a list of work requests to the send queue of
3115 * the specified QP.
3116 * @qp: The QP to post the work request on.
3117 * @send_wr: A list of work requests to post on the send queue.
3118 * @bad_send_wr: On an immediate failure, this parameter will reference
3119 * the work request that failed to be posted on the QP.
3120 *
3121 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3122 * error is returned, the QP state shall not be affected,
3123 * ib_post_send() will return an immediate error after queueing any
3124 * earlier work requests in the list.
3125 */
3126 static inline int ib_post_send(struct ib_qp *qp,
3127 struct ib_send_wr *send_wr,
3128 struct ib_send_wr **bad_send_wr)
3129 {
3130 return qp->device->post_send(qp, send_wr, bad_send_wr);
3131 }
3132
3133 /**
3134 * ib_post_recv - Posts a list of work requests to the receive queue of
3135 * the specified QP.
3136 * @qp: The QP to post the work request on.
3137 * @recv_wr: A list of work requests to post on the receive queue.
3138 * @bad_recv_wr: On an immediate failure, this parameter will reference
3139 * the work request that failed to be posted on the QP.
3140 */
3141 static inline int ib_post_recv(struct ib_qp *qp,
3142 struct ib_recv_wr *recv_wr,
3143 struct ib_recv_wr **bad_recv_wr)
3144 {
3145 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3146 }
3147
3148 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3149 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
3150 void ib_free_cq(struct ib_cq *cq);
3151 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3152
3153 /**
3154 * ib_create_cq - Creates a CQ on the specified device.
3155 * @device: The device on which to create the CQ.
3156 * @comp_handler: A user-specified callback that is invoked when a
3157 * completion event occurs on the CQ.
3158 * @event_handler: A user-specified callback that is invoked when an
3159 * asynchronous event not associated with a completion occurs on the CQ.
3160 * @cq_context: Context associated with the CQ returned to the user via
3161 * the associated completion and event handlers.
3162 * @cq_attr: The attributes the CQ should be created upon.
3163 *
3164 * Users can examine the cq structure to determine the actual CQ size.
3165 */
3166 struct ib_cq *ib_create_cq(struct ib_device *device,
3167 ib_comp_handler comp_handler,
3168 void (*event_handler)(struct ib_event *, void *),
3169 void *cq_context,
3170 const struct ib_cq_init_attr *cq_attr);
3171
3172 /**
3173 * ib_resize_cq - Modifies the capacity of the CQ.
3174 * @cq: The CQ to resize.
3175 * @cqe: The minimum size of the CQ.
3176 *
3177 * Users can examine the cq structure to determine the actual CQ size.
3178 */
3179 int ib_resize_cq(struct ib_cq *cq, int cqe);
3180
3181 /**
3182 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3183 * @cq: The CQ to modify.
3184 * @cq_count: number of CQEs that will trigger an event
3185 * @cq_period: max period of time in usec before triggering an event
3186 *
3187 */
3188 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3189
3190 /**
3191 * ib_destroy_cq - Destroys the specified CQ.
3192 * @cq: The CQ to destroy.
3193 */
3194 int ib_destroy_cq(struct ib_cq *cq);
3195
3196 /**
3197 * ib_poll_cq - poll a CQ for completion(s)
3198 * @cq:the CQ being polled
3199 * @num_entries:maximum number of completions to return
3200 * @wc:array of at least @num_entries &struct ib_wc where completions
3201 * will be returned
3202 *
3203 * Poll a CQ for (possibly multiple) completions. If the return value
3204 * is < 0, an error occurred. If the return value is >= 0, it is the
3205 * number of completions returned. If the return value is
3206 * non-negative and < num_entries, then the CQ was emptied.
3207 */
3208 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3209 struct ib_wc *wc)
3210 {
3211 return cq->device->poll_cq(cq, num_entries, wc);
3212 }
3213
3214 /**
3215 * ib_peek_cq - Returns the number of unreaped completions currently
3216 * on the specified CQ.
3217 * @cq: The CQ to peek.
3218 * @wc_cnt: A minimum number of unreaped completions to check for.
3219 *
3220 * If the number of unreaped completions is greater than or equal to wc_cnt,
3221 * this function returns wc_cnt, otherwise, it returns the actual number of
3222 * unreaped completions.
3223 */
3224 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3225
3226 /**
3227 * ib_req_notify_cq - Request completion notification on a CQ.
3228 * @cq: The CQ to generate an event for.
3229 * @flags:
3230 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3231 * to request an event on the next solicited event or next work
3232 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3233 * may also be |ed in to request a hint about missed events, as
3234 * described below.
3235 *
3236 * Return Value:
3237 * < 0 means an error occurred while requesting notification
3238 * == 0 means notification was requested successfully, and if
3239 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3240 * were missed and it is safe to wait for another event. In
3241 * this case is it guaranteed that any work completions added
3242 * to the CQ since the last CQ poll will trigger a completion
3243 * notification event.
3244 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3245 * in. It means that the consumer must poll the CQ again to
3246 * make sure it is empty to avoid missing an event because of a
3247 * race between requesting notification and an entry being
3248 * added to the CQ. This return value means it is possible
3249 * (but not guaranteed) that a work completion has been added
3250 * to the CQ since the last poll without triggering a
3251 * completion notification event.
3252 */
3253 static inline int ib_req_notify_cq(struct ib_cq *cq,
3254 enum ib_cq_notify_flags flags)
3255 {
3256 return cq->device->req_notify_cq(cq, flags);
3257 }
3258
3259 /**
3260 * ib_req_ncomp_notif - Request completion notification when there are
3261 * at least the specified number of unreaped completions on the CQ.
3262 * @cq: The CQ to generate an event for.
3263 * @wc_cnt: The number of unreaped completions that should be on the
3264 * CQ before an event is generated.
3265 */
3266 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3267 {
3268 return cq->device->req_ncomp_notif ?
3269 cq->device->req_ncomp_notif(cq, wc_cnt) :
3270 -ENOSYS;
3271 }
3272
3273 /**
3274 * ib_dma_mapping_error - check a DMA addr for error
3275 * @dev: The device for which the dma_addr was created
3276 * @dma_addr: The DMA address to check
3277 */
3278 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3279 {
3280 return dma_mapping_error(dev->dma_device, dma_addr);
3281 }
3282
3283 /**
3284 * ib_dma_map_single - Map a kernel virtual address to DMA address
3285 * @dev: The device for which the dma_addr is to be created
3286 * @cpu_addr: The kernel virtual address
3287 * @size: The size of the region in bytes
3288 * @direction: The direction of the DMA
3289 */
3290 static inline u64 ib_dma_map_single(struct ib_device *dev,
3291 void *cpu_addr, size_t size,
3292 enum dma_data_direction direction)
3293 {
3294 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3295 }
3296
3297 /**
3298 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3299 * @dev: The device for which the DMA address was created
3300 * @addr: The DMA address
3301 * @size: The size of the region in bytes
3302 * @direction: The direction of the DMA
3303 */
3304 static inline void ib_dma_unmap_single(struct ib_device *dev,
3305 u64 addr, size_t size,
3306 enum dma_data_direction direction)
3307 {
3308 dma_unmap_single(dev->dma_device, addr, size, direction);
3309 }
3310
3311 /**
3312 * ib_dma_map_page - Map a physical page to DMA address
3313 * @dev: The device for which the dma_addr is to be created
3314 * @page: The page to be mapped
3315 * @offset: The offset within the page
3316 * @size: The size of the region in bytes
3317 * @direction: The direction of the DMA
3318 */
3319 static inline u64 ib_dma_map_page(struct ib_device *dev,
3320 struct page *page,
3321 unsigned long offset,
3322 size_t size,
3323 enum dma_data_direction direction)
3324 {
3325 return dma_map_page(dev->dma_device, page, offset, size, direction);
3326 }
3327
3328 /**
3329 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3330 * @dev: The device for which the DMA address was created
3331 * @addr: The DMA address
3332 * @size: The size of the region in bytes
3333 * @direction: The direction of the DMA
3334 */
3335 static inline void ib_dma_unmap_page(struct ib_device *dev,
3336 u64 addr, size_t size,
3337 enum dma_data_direction direction)
3338 {
3339 dma_unmap_page(dev->dma_device, addr, size, direction);
3340 }
3341
3342 /**
3343 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3344 * @dev: The device for which the DMA addresses are to be created
3345 * @sg: The array of scatter/gather entries
3346 * @nents: The number of scatter/gather entries
3347 * @direction: The direction of the DMA
3348 */
3349 static inline int ib_dma_map_sg(struct ib_device *dev,
3350 struct scatterlist *sg, int nents,
3351 enum dma_data_direction direction)
3352 {
3353 return dma_map_sg(dev->dma_device, sg, nents, direction);
3354 }
3355
3356 /**
3357 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3358 * @dev: The device for which the DMA addresses were created
3359 * @sg: The array of scatter/gather entries
3360 * @nents: The number of scatter/gather entries
3361 * @direction: The direction of the DMA
3362 */
3363 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3364 struct scatterlist *sg, int nents,
3365 enum dma_data_direction direction)
3366 {
3367 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3368 }
3369
3370 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3371 struct scatterlist *sg, int nents,
3372 enum dma_data_direction direction,
3373 unsigned long dma_attrs)
3374 {
3375 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3376 dma_attrs);
3377 }
3378
3379 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3380 struct scatterlist *sg, int nents,
3381 enum dma_data_direction direction,
3382 unsigned long dma_attrs)
3383 {
3384 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3385 }
3386 /**
3387 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3388 * @dev: The device for which the DMA addresses were created
3389 * @sg: The scatter/gather entry
3390 *
3391 * Note: this function is obsolete. To do: change all occurrences of
3392 * ib_sg_dma_address() into sg_dma_address().
3393 */
3394 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3395 struct scatterlist *sg)
3396 {
3397 return sg_dma_address(sg);
3398 }
3399
3400 /**
3401 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3402 * @dev: The device for which the DMA addresses were created
3403 * @sg: The scatter/gather entry
3404 *
3405 * Note: this function is obsolete. To do: change all occurrences of
3406 * ib_sg_dma_len() into sg_dma_len().
3407 */
3408 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3409 struct scatterlist *sg)
3410 {
3411 return sg_dma_len(sg);
3412 }
3413
3414 /**
3415 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3416 * @dev: The device for which the DMA address was created
3417 * @addr: The DMA address
3418 * @size: The size of the region in bytes
3419 * @dir: The direction of the DMA
3420 */
3421 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3422 u64 addr,
3423 size_t size,
3424 enum dma_data_direction dir)
3425 {
3426 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3427 }
3428
3429 /**
3430 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3431 * @dev: The device for which the DMA address was created
3432 * @addr: The DMA address
3433 * @size: The size of the region in bytes
3434 * @dir: The direction of the DMA
3435 */
3436 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3437 u64 addr,
3438 size_t size,
3439 enum dma_data_direction dir)
3440 {
3441 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3442 }
3443
3444 /**
3445 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3446 * @dev: The device for which the DMA address is requested
3447 * @size: The size of the region to allocate in bytes
3448 * @dma_handle: A pointer for returning the DMA address of the region
3449 * @flag: memory allocator flags
3450 */
3451 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3452 size_t size,
3453 dma_addr_t *dma_handle,
3454 gfp_t flag)
3455 {
3456 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3457 }
3458
3459 /**
3460 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3461 * @dev: The device for which the DMA addresses were allocated
3462 * @size: The size of the region
3463 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3464 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3465 */
3466 static inline void ib_dma_free_coherent(struct ib_device *dev,
3467 size_t size, void *cpu_addr,
3468 dma_addr_t dma_handle)
3469 {
3470 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3471 }
3472
3473 /**
3474 * ib_dereg_mr - Deregisters a memory region and removes it from the
3475 * HCA translation table.
3476 * @mr: The memory region to deregister.
3477 *
3478 * This function can fail, if the memory region has memory windows bound to it.
3479 */
3480 int ib_dereg_mr(struct ib_mr *mr);
3481
3482 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3483 enum ib_mr_type mr_type,
3484 u32 max_num_sg);
3485
3486 /**
3487 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3488 * R_Key and L_Key.
3489 * @mr - struct ib_mr pointer to be updated.
3490 * @newkey - new key to be used.
3491 */
3492 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3493 {
3494 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3495 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3496 }
3497
3498 /**
3499 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3500 * for calculating a new rkey for type 2 memory windows.
3501 * @rkey - the rkey to increment.
3502 */
3503 static inline u32 ib_inc_rkey(u32 rkey)
3504 {
3505 const u32 mask = 0x000000ff;
3506 return ((rkey + 1) & mask) | (rkey & ~mask);
3507 }
3508
3509 /**
3510 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3511 * @pd: The protection domain associated with the unmapped region.
3512 * @mr_access_flags: Specifies the memory access rights.
3513 * @fmr_attr: Attributes of the unmapped region.
3514 *
3515 * A fast memory region must be mapped before it can be used as part of
3516 * a work request.
3517 */
3518 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3519 int mr_access_flags,
3520 struct ib_fmr_attr *fmr_attr);
3521
3522 /**
3523 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3524 * @fmr: The fast memory region to associate with the pages.
3525 * @page_list: An array of physical pages to map to the fast memory region.
3526 * @list_len: The number of pages in page_list.
3527 * @iova: The I/O virtual address to use with the mapped region.
3528 */
3529 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3530 u64 *page_list, int list_len,
3531 u64 iova)
3532 {
3533 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3534 }
3535
3536 /**
3537 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3538 * @fmr_list: A linked list of fast memory regions to unmap.
3539 */
3540 int ib_unmap_fmr(struct list_head *fmr_list);
3541
3542 /**
3543 * ib_dealloc_fmr - Deallocates a fast memory region.
3544 * @fmr: The fast memory region to deallocate.
3545 */
3546 int ib_dealloc_fmr(struct ib_fmr *fmr);
3547
3548 /**
3549 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3550 * @qp: QP to attach to the multicast group. The QP must be type
3551 * IB_QPT_UD.
3552 * @gid: Multicast group GID.
3553 * @lid: Multicast group LID in host byte order.
3554 *
3555 * In order to send and receive multicast packets, subnet
3556 * administration must have created the multicast group and configured
3557 * the fabric appropriately. The port associated with the specified
3558 * QP must also be a member of the multicast group.
3559 */
3560 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3561
3562 /**
3563 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3564 * @qp: QP to detach from the multicast group.
3565 * @gid: Multicast group GID.
3566 * @lid: Multicast group LID in host byte order.
3567 */
3568 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3569
3570 /**
3571 * ib_alloc_xrcd - Allocates an XRC domain.
3572 * @device: The device on which to allocate the XRC domain.
3573 */
3574 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3575
3576 /**
3577 * ib_dealloc_xrcd - Deallocates an XRC domain.
3578 * @xrcd: The XRC domain to deallocate.
3579 */
3580 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3581
3582 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3583 struct ib_flow_attr *flow_attr, int domain);
3584 int ib_destroy_flow(struct ib_flow *flow_id);
3585
3586 static inline int ib_check_mr_access(int flags)
3587 {
3588 /*
3589 * Local write permission is required if remote write or
3590 * remote atomic permission is also requested.
3591 */
3592 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3593 !(flags & IB_ACCESS_LOCAL_WRITE))
3594 return -EINVAL;
3595
3596 return 0;
3597 }
3598
3599 static inline bool ib_access_writable(int access_flags)
3600 {
3601 /*
3602 * We have writable memory backing the MR if any of the following
3603 * access flags are set. "Local write" and "remote write" obviously
3604 * require write access. "Remote atomic" can do things like fetch and
3605 * add, which will modify memory, and "MW bind" can change permissions
3606 * by binding a window.
3607 */
3608 return access_flags &
3609 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3610 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3611 }
3612
3613 /**
3614 * ib_check_mr_status: lightweight check of MR status.
3615 * This routine may provide status checks on a selected
3616 * ib_mr. first use is for signature status check.
3617 *
3618 * @mr: A memory region.
3619 * @check_mask: Bitmask of which checks to perform from
3620 * ib_mr_status_check enumeration.
3621 * @mr_status: The container of relevant status checks.
3622 * failed checks will be indicated in the status bitmask
3623 * and the relevant info shall be in the error item.
3624 */
3625 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3626 struct ib_mr_status *mr_status);
3627
3628 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3629 u16 pkey, const union ib_gid *gid,
3630 const struct sockaddr *addr);
3631 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3632 struct ib_wq_init_attr *init_attr);
3633 int ib_destroy_wq(struct ib_wq *wq);
3634 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3635 u32 wq_attr_mask);
3636 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3637 struct ib_rwq_ind_table_init_attr*
3638 wq_ind_table_init_attr);
3639 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3640
3641 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3642 unsigned int *sg_offset, unsigned int page_size);
3643
3644 static inline int
3645 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3646 unsigned int *sg_offset, unsigned int page_size)
3647 {
3648 int n;
3649
3650 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3651 mr->iova = 0;
3652
3653 return n;
3654 }
3655
3656 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3657 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3658
3659 void ib_drain_rq(struct ib_qp *qp);
3660 void ib_drain_sq(struct ib_qp *qp);
3661 void ib_drain_qp(struct ib_qp *qp);
3662
3663 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3664
3665 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3666 {
3667 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3668 return attr->roce.dmac;
3669 return NULL;
3670 }
3671
3672 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3673 {
3674 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3675 attr->ib.dlid = (u16)dlid;
3676 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3677 attr->opa.dlid = dlid;
3678 }
3679
3680 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3681 {
3682 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3683 return attr->ib.dlid;
3684 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3685 return attr->opa.dlid;
3686 return 0;
3687 }
3688
3689 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3690 {
3691 attr->sl = sl;
3692 }
3693
3694 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3695 {
3696 return attr->sl;
3697 }
3698
3699 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3700 u8 src_path_bits)
3701 {
3702 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3703 attr->ib.src_path_bits = src_path_bits;
3704 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3705 attr->opa.src_path_bits = src_path_bits;
3706 }
3707
3708 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3709 {
3710 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3711 return attr->ib.src_path_bits;
3712 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3713 return attr->opa.src_path_bits;
3714 return 0;
3715 }
3716
3717 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3718 bool make_grd)
3719 {
3720 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3721 attr->opa.make_grd = make_grd;
3722 }
3723
3724 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3725 {
3726 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3727 return attr->opa.make_grd;
3728 return false;
3729 }
3730
3731 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3732 {
3733 attr->port_num = port_num;
3734 }
3735
3736 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3737 {
3738 return attr->port_num;
3739 }
3740
3741 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3742 u8 static_rate)
3743 {
3744 attr->static_rate = static_rate;
3745 }
3746
3747 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3748 {
3749 return attr->static_rate;
3750 }
3751
3752 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3753 enum ib_ah_flags flag)
3754 {
3755 attr->ah_flags = flag;
3756 }
3757
3758 static inline enum ib_ah_flags
3759 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3760 {
3761 return attr->ah_flags;
3762 }
3763
3764 static inline const struct ib_global_route
3765 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3766 {
3767 return &attr->grh;
3768 }
3769
3770 /*To retrieve and modify the grh */
3771 static inline struct ib_global_route
3772 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3773 {
3774 return &attr->grh;
3775 }
3776
3777 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3778 {
3779 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3780
3781 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3782 }
3783
3784 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3785 __be64 prefix)
3786 {
3787 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3788
3789 grh->dgid.global.subnet_prefix = prefix;
3790 }
3791
3792 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3793 __be64 if_id)
3794 {
3795 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3796
3797 grh->dgid.global.interface_id = if_id;
3798 }
3799
3800 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3801 union ib_gid *dgid, u32 flow_label,
3802 u8 sgid_index, u8 hop_limit,
3803 u8 traffic_class)
3804 {
3805 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3806
3807 attr->ah_flags = IB_AH_GRH;
3808 if (dgid)
3809 grh->dgid = *dgid;
3810 grh->flow_label = flow_label;
3811 grh->sgid_index = sgid_index;
3812 grh->hop_limit = hop_limit;
3813 grh->traffic_class = traffic_class;
3814 }
3815
3816 /**
3817 * rdma_ah_find_type - Return address handle type.
3818 *
3819 * @dev: Device to be checked
3820 * @port_num: Port number
3821 */
3822 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3823 u8 port_num)
3824 {
3825 if (rdma_protocol_roce(dev, port_num))
3826 return RDMA_AH_ATTR_TYPE_ROCE;
3827 if (rdma_protocol_ib(dev, port_num)) {
3828 if (rdma_cap_opa_ah(dev, port_num))
3829 return RDMA_AH_ATTR_TYPE_OPA;
3830 return RDMA_AH_ATTR_TYPE_IB;
3831 }
3832
3833 return RDMA_AH_ATTR_TYPE_UNDEFINED;
3834 }
3835
3836 /**
3837 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3838 * In the current implementation the only way to get
3839 * get the 32bit lid is from other sources for OPA.
3840 * For IB, lids will always be 16bits so cast the
3841 * value accordingly.
3842 *
3843 * @lid: A 32bit LID
3844 */
3845 static inline u16 ib_lid_cpu16(u32 lid)
3846 {
3847 WARN_ON_ONCE(lid & 0xFFFF0000);
3848 return (u16)lid;
3849 }
3850
3851 /**
3852 * ib_lid_be16 - Return lid in 16bit BE encoding.
3853 *
3854 * @lid: A 32bit LID
3855 */
3856 static inline __be16 ib_lid_be16(u32 lid)
3857 {
3858 WARN_ON_ONCE(lid & 0xFFFF0000);
3859 return cpu_to_be16((u16)lid);
3860 }
3861
3862 /**
3863 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3864 * vector
3865 * @device: the rdma device
3866 * @comp_vector: index of completion vector
3867 *
3868 * Returns NULL on failure, otherwise a corresponding cpu map of the
3869 * completion vector (returns all-cpus map if the device driver doesn't
3870 * implement get_vector_affinity).
3871 */
3872 static inline const struct cpumask *
3873 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3874 {
3875 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3876 !device->get_vector_affinity)
3877 return NULL;
3878
3879 return device->get_vector_affinity(device, comp_vector);
3880
3881 }
3882
3883 #endif /* IB_VERBS_H */