]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/rdma/ib_verbs.h
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <asm/uaccess.h>
63
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
66
67 union ib_gid {
68 u8 raw[16];
69 struct {
70 __be64 subnet_prefix;
71 __be64 interface_id;
72 } global;
73 };
74
75 extern union ib_gid zgid;
76
77 enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
82 IB_GID_TYPE_SIZE
83 };
84
85 #define ROCE_V2_UDP_DPORT 4791
86 struct ib_gid_attr {
87 enum ib_gid_type gid_type;
88 struct net_device *ndev;
89 };
90
91 enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
98 RDMA_NODE_USNIC_UDP,
99 };
100
101 enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104 };
105
106 enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
108 RDMA_TRANSPORT_IWARP,
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
111 };
112
113 enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118 };
119
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
122
123 enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128 };
129
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131 {
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138 }
139
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142 {
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150 }
151
152 enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156 };
157
158 enum ib_device_cap_flags {
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
211 /*
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
216 */
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
224 };
225
226 enum ib_signature_prot_cap {
227 IB_PROT_T10DIF_TYPE_1 = 1,
228 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
230 };
231
232 enum ib_signature_guard_cap {
233 IB_GUARD_T10DIF_CRC = 1,
234 IB_GUARD_T10DIF_CSUM = 1 << 1,
235 };
236
237 enum ib_atomic_cap {
238 IB_ATOMIC_NONE,
239 IB_ATOMIC_HCA,
240 IB_ATOMIC_GLOB
241 };
242
243 enum ib_odp_general_cap_bits {
244 IB_ODP_SUPPORT = 1 << 0,
245 };
246
247 enum ib_odp_transport_cap_bits {
248 IB_ODP_SUPPORT_SEND = 1 << 0,
249 IB_ODP_SUPPORT_RECV = 1 << 1,
250 IB_ODP_SUPPORT_WRITE = 1 << 2,
251 IB_ODP_SUPPORT_READ = 1 << 3,
252 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
253 };
254
255 struct ib_odp_caps {
256 uint64_t general_caps;
257 struct {
258 uint32_t rc_odp_caps;
259 uint32_t uc_odp_caps;
260 uint32_t ud_odp_caps;
261 } per_transport_caps;
262 };
263
264 enum ib_cq_creation_flags {
265 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
266 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
267 };
268
269 struct ib_cq_init_attr {
270 unsigned int cqe;
271 int comp_vector;
272 u32 flags;
273 };
274
275 struct ib_device_attr {
276 u64 fw_ver;
277 __be64 sys_image_guid;
278 u64 max_mr_size;
279 u64 page_size_cap;
280 u32 vendor_id;
281 u32 vendor_part_id;
282 u32 hw_ver;
283 int max_qp;
284 int max_qp_wr;
285 u64 device_cap_flags;
286 int max_sge;
287 int max_sge_rd;
288 int max_cq;
289 int max_cqe;
290 int max_mr;
291 int max_pd;
292 int max_qp_rd_atom;
293 int max_ee_rd_atom;
294 int max_res_rd_atom;
295 int max_qp_init_rd_atom;
296 int max_ee_init_rd_atom;
297 enum ib_atomic_cap atomic_cap;
298 enum ib_atomic_cap masked_atomic_cap;
299 int max_ee;
300 int max_rdd;
301 int max_mw;
302 int max_raw_ipv6_qp;
303 int max_raw_ethy_qp;
304 int max_mcast_grp;
305 int max_mcast_qp_attach;
306 int max_total_mcast_qp_attach;
307 int max_ah;
308 int max_fmr;
309 int max_map_per_fmr;
310 int max_srq;
311 int max_srq_wr;
312 int max_srq_sge;
313 unsigned int max_fast_reg_page_list_len;
314 u16 max_pkeys;
315 u8 local_ca_ack_delay;
316 int sig_prot_cap;
317 int sig_guard_cap;
318 struct ib_odp_caps odp_caps;
319 uint64_t timestamp_mask;
320 uint64_t hca_core_clock; /* in KHZ */
321 };
322
323 enum ib_mtu {
324 IB_MTU_256 = 1,
325 IB_MTU_512 = 2,
326 IB_MTU_1024 = 3,
327 IB_MTU_2048 = 4,
328 IB_MTU_4096 = 5
329 };
330
331 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
332 {
333 switch (mtu) {
334 case IB_MTU_256: return 256;
335 case IB_MTU_512: return 512;
336 case IB_MTU_1024: return 1024;
337 case IB_MTU_2048: return 2048;
338 case IB_MTU_4096: return 4096;
339 default: return -1;
340 }
341 }
342
343 enum ib_port_state {
344 IB_PORT_NOP = 0,
345 IB_PORT_DOWN = 1,
346 IB_PORT_INIT = 2,
347 IB_PORT_ARMED = 3,
348 IB_PORT_ACTIVE = 4,
349 IB_PORT_ACTIVE_DEFER = 5
350 };
351
352 enum ib_port_cap_flags {
353 IB_PORT_SM = 1 << 1,
354 IB_PORT_NOTICE_SUP = 1 << 2,
355 IB_PORT_TRAP_SUP = 1 << 3,
356 IB_PORT_OPT_IPD_SUP = 1 << 4,
357 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
358 IB_PORT_SL_MAP_SUP = 1 << 6,
359 IB_PORT_MKEY_NVRAM = 1 << 7,
360 IB_PORT_PKEY_NVRAM = 1 << 8,
361 IB_PORT_LED_INFO_SUP = 1 << 9,
362 IB_PORT_SM_DISABLED = 1 << 10,
363 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
364 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
365 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
366 IB_PORT_CM_SUP = 1 << 16,
367 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
368 IB_PORT_REINIT_SUP = 1 << 18,
369 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
370 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
371 IB_PORT_DR_NOTICE_SUP = 1 << 21,
372 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
373 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
374 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
375 IB_PORT_CLIENT_REG_SUP = 1 << 25,
376 IB_PORT_IP_BASED_GIDS = 1 << 26,
377 };
378
379 enum ib_port_width {
380 IB_WIDTH_1X = 1,
381 IB_WIDTH_4X = 2,
382 IB_WIDTH_8X = 4,
383 IB_WIDTH_12X = 8
384 };
385
386 static inline int ib_width_enum_to_int(enum ib_port_width width)
387 {
388 switch (width) {
389 case IB_WIDTH_1X: return 1;
390 case IB_WIDTH_4X: return 4;
391 case IB_WIDTH_8X: return 8;
392 case IB_WIDTH_12X: return 12;
393 default: return -1;
394 }
395 }
396
397 enum ib_port_speed {
398 IB_SPEED_SDR = 1,
399 IB_SPEED_DDR = 2,
400 IB_SPEED_QDR = 4,
401 IB_SPEED_FDR10 = 8,
402 IB_SPEED_FDR = 16,
403 IB_SPEED_EDR = 32
404 };
405
406 /**
407 * struct rdma_hw_stats
408 * @timestamp - Used by the core code to track when the last update was
409 * @lifespan - Used by the core code to determine how old the counters
410 * should be before being updated again. Stored in jiffies, defaults
411 * to 10 milliseconds, drivers can override the default be specifying
412 * their own value during their allocation routine.
413 * @name - Array of pointers to static names used for the counters in
414 * directory.
415 * @num_counters - How many hardware counters there are. If name is
416 * shorter than this number, a kernel oops will result. Driver authors
417 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
418 * in their code to prevent this.
419 * @value - Array of u64 counters that are accessed by the sysfs code and
420 * filled in by the drivers get_stats routine
421 */
422 struct rdma_hw_stats {
423 unsigned long timestamp;
424 unsigned long lifespan;
425 const char * const *names;
426 int num_counters;
427 u64 value[];
428 };
429
430 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
431 /**
432 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
433 * for drivers.
434 * @names - Array of static const char *
435 * @num_counters - How many elements in array
436 * @lifespan - How many milliseconds between updates
437 */
438 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
439 const char * const *names, int num_counters,
440 unsigned long lifespan)
441 {
442 struct rdma_hw_stats *stats;
443
444 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
445 GFP_KERNEL);
446 if (!stats)
447 return NULL;
448 stats->names = names;
449 stats->num_counters = num_counters;
450 stats->lifespan = msecs_to_jiffies(lifespan);
451
452 return stats;
453 }
454
455
456 /* Define bits for the various functionality this port needs to be supported by
457 * the core.
458 */
459 /* Management 0x00000FFF */
460 #define RDMA_CORE_CAP_IB_MAD 0x00000001
461 #define RDMA_CORE_CAP_IB_SMI 0x00000002
462 #define RDMA_CORE_CAP_IB_CM 0x00000004
463 #define RDMA_CORE_CAP_IW_CM 0x00000008
464 #define RDMA_CORE_CAP_IB_SA 0x00000010
465 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
466
467 /* Address format 0x000FF000 */
468 #define RDMA_CORE_CAP_AF_IB 0x00001000
469 #define RDMA_CORE_CAP_ETH_AH 0x00002000
470
471 /* Protocol 0xFFF00000 */
472 #define RDMA_CORE_CAP_PROT_IB 0x00100000
473 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
474 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
475 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
476
477 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
478 | RDMA_CORE_CAP_IB_MAD \
479 | RDMA_CORE_CAP_IB_SMI \
480 | RDMA_CORE_CAP_IB_CM \
481 | RDMA_CORE_CAP_IB_SA \
482 | RDMA_CORE_CAP_AF_IB)
483 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
484 | RDMA_CORE_CAP_IB_MAD \
485 | RDMA_CORE_CAP_IB_CM \
486 | RDMA_CORE_CAP_AF_IB \
487 | RDMA_CORE_CAP_ETH_AH)
488 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
489 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
490 | RDMA_CORE_CAP_IB_MAD \
491 | RDMA_CORE_CAP_IB_CM \
492 | RDMA_CORE_CAP_AF_IB \
493 | RDMA_CORE_CAP_ETH_AH)
494 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
495 | RDMA_CORE_CAP_IW_CM)
496 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
497 | RDMA_CORE_CAP_OPA_MAD)
498
499 struct ib_port_attr {
500 u64 subnet_prefix;
501 enum ib_port_state state;
502 enum ib_mtu max_mtu;
503 enum ib_mtu active_mtu;
504 int gid_tbl_len;
505 u32 port_cap_flags;
506 u32 max_msg_sz;
507 u32 bad_pkey_cntr;
508 u32 qkey_viol_cntr;
509 u16 pkey_tbl_len;
510 u16 lid;
511 u16 sm_lid;
512 u8 lmc;
513 u8 max_vl_num;
514 u8 sm_sl;
515 u8 subnet_timeout;
516 u8 init_type_reply;
517 u8 active_width;
518 u8 active_speed;
519 u8 phys_state;
520 bool grh_required;
521 };
522
523 enum ib_device_modify_flags {
524 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
525 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
526 };
527
528 struct ib_device_modify {
529 u64 sys_image_guid;
530 char node_desc[64];
531 };
532
533 enum ib_port_modify_flags {
534 IB_PORT_SHUTDOWN = 1,
535 IB_PORT_INIT_TYPE = (1<<2),
536 IB_PORT_RESET_QKEY_CNTR = (1<<3)
537 };
538
539 struct ib_port_modify {
540 u32 set_port_cap_mask;
541 u32 clr_port_cap_mask;
542 u8 init_type;
543 };
544
545 enum ib_event_type {
546 IB_EVENT_CQ_ERR,
547 IB_EVENT_QP_FATAL,
548 IB_EVENT_QP_REQ_ERR,
549 IB_EVENT_QP_ACCESS_ERR,
550 IB_EVENT_COMM_EST,
551 IB_EVENT_SQ_DRAINED,
552 IB_EVENT_PATH_MIG,
553 IB_EVENT_PATH_MIG_ERR,
554 IB_EVENT_DEVICE_FATAL,
555 IB_EVENT_PORT_ACTIVE,
556 IB_EVENT_PORT_ERR,
557 IB_EVENT_LID_CHANGE,
558 IB_EVENT_PKEY_CHANGE,
559 IB_EVENT_SM_CHANGE,
560 IB_EVENT_SRQ_ERR,
561 IB_EVENT_SRQ_LIMIT_REACHED,
562 IB_EVENT_QP_LAST_WQE_REACHED,
563 IB_EVENT_CLIENT_REREGISTER,
564 IB_EVENT_GID_CHANGE,
565 IB_EVENT_WQ_FATAL,
566 };
567
568 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
569
570 struct ib_event {
571 struct ib_device *device;
572 union {
573 struct ib_cq *cq;
574 struct ib_qp *qp;
575 struct ib_srq *srq;
576 struct ib_wq *wq;
577 u8 port_num;
578 } element;
579 enum ib_event_type event;
580 };
581
582 struct ib_event_handler {
583 struct ib_device *device;
584 void (*handler)(struct ib_event_handler *, struct ib_event *);
585 struct list_head list;
586 };
587
588 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
589 do { \
590 (_ptr)->device = _device; \
591 (_ptr)->handler = _handler; \
592 INIT_LIST_HEAD(&(_ptr)->list); \
593 } while (0)
594
595 struct ib_global_route {
596 union ib_gid dgid;
597 u32 flow_label;
598 u8 sgid_index;
599 u8 hop_limit;
600 u8 traffic_class;
601 };
602
603 struct ib_grh {
604 __be32 version_tclass_flow;
605 __be16 paylen;
606 u8 next_hdr;
607 u8 hop_limit;
608 union ib_gid sgid;
609 union ib_gid dgid;
610 };
611
612 union rdma_network_hdr {
613 struct ib_grh ibgrh;
614 struct {
615 /* The IB spec states that if it's IPv4, the header
616 * is located in the last 20 bytes of the header.
617 */
618 u8 reserved[20];
619 struct iphdr roce4grh;
620 };
621 };
622
623 enum {
624 IB_MULTICAST_QPN = 0xffffff
625 };
626
627 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
628 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
629
630 enum ib_ah_flags {
631 IB_AH_GRH = 1
632 };
633
634 enum ib_rate {
635 IB_RATE_PORT_CURRENT = 0,
636 IB_RATE_2_5_GBPS = 2,
637 IB_RATE_5_GBPS = 5,
638 IB_RATE_10_GBPS = 3,
639 IB_RATE_20_GBPS = 6,
640 IB_RATE_30_GBPS = 4,
641 IB_RATE_40_GBPS = 7,
642 IB_RATE_60_GBPS = 8,
643 IB_RATE_80_GBPS = 9,
644 IB_RATE_120_GBPS = 10,
645 IB_RATE_14_GBPS = 11,
646 IB_RATE_56_GBPS = 12,
647 IB_RATE_112_GBPS = 13,
648 IB_RATE_168_GBPS = 14,
649 IB_RATE_25_GBPS = 15,
650 IB_RATE_100_GBPS = 16,
651 IB_RATE_200_GBPS = 17,
652 IB_RATE_300_GBPS = 18
653 };
654
655 /**
656 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
657 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
658 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
659 * @rate: rate to convert.
660 */
661 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
662
663 /**
664 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
665 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
666 * @rate: rate to convert.
667 */
668 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
669
670
671 /**
672 * enum ib_mr_type - memory region type
673 * @IB_MR_TYPE_MEM_REG: memory region that is used for
674 * normal registration
675 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
676 * signature operations (data-integrity
677 * capable regions)
678 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
679 * register any arbitrary sg lists (without
680 * the normal mr constraints - see
681 * ib_map_mr_sg)
682 */
683 enum ib_mr_type {
684 IB_MR_TYPE_MEM_REG,
685 IB_MR_TYPE_SIGNATURE,
686 IB_MR_TYPE_SG_GAPS,
687 };
688
689 /**
690 * Signature types
691 * IB_SIG_TYPE_NONE: Unprotected.
692 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
693 */
694 enum ib_signature_type {
695 IB_SIG_TYPE_NONE,
696 IB_SIG_TYPE_T10_DIF,
697 };
698
699 /**
700 * Signature T10-DIF block-guard types
701 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
702 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
703 */
704 enum ib_t10_dif_bg_type {
705 IB_T10DIF_CRC,
706 IB_T10DIF_CSUM
707 };
708
709 /**
710 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
711 * domain.
712 * @bg_type: T10-DIF block guard type (CRC|CSUM)
713 * @pi_interval: protection information interval.
714 * @bg: seed of guard computation.
715 * @app_tag: application tag of guard block
716 * @ref_tag: initial guard block reference tag.
717 * @ref_remap: Indicate wethear the reftag increments each block
718 * @app_escape: Indicate to skip block check if apptag=0xffff
719 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
720 * @apptag_check_mask: check bitmask of application tag.
721 */
722 struct ib_t10_dif_domain {
723 enum ib_t10_dif_bg_type bg_type;
724 u16 pi_interval;
725 u16 bg;
726 u16 app_tag;
727 u32 ref_tag;
728 bool ref_remap;
729 bool app_escape;
730 bool ref_escape;
731 u16 apptag_check_mask;
732 };
733
734 /**
735 * struct ib_sig_domain - Parameters for signature domain
736 * @sig_type: specific signauture type
737 * @sig: union of all signature domain attributes that may
738 * be used to set domain layout.
739 */
740 struct ib_sig_domain {
741 enum ib_signature_type sig_type;
742 union {
743 struct ib_t10_dif_domain dif;
744 } sig;
745 };
746
747 /**
748 * struct ib_sig_attrs - Parameters for signature handover operation
749 * @check_mask: bitmask for signature byte check (8 bytes)
750 * @mem: memory domain layout desciptor.
751 * @wire: wire domain layout desciptor.
752 */
753 struct ib_sig_attrs {
754 u8 check_mask;
755 struct ib_sig_domain mem;
756 struct ib_sig_domain wire;
757 };
758
759 enum ib_sig_err_type {
760 IB_SIG_BAD_GUARD,
761 IB_SIG_BAD_REFTAG,
762 IB_SIG_BAD_APPTAG,
763 };
764
765 /**
766 * struct ib_sig_err - signature error descriptor
767 */
768 struct ib_sig_err {
769 enum ib_sig_err_type err_type;
770 u32 expected;
771 u32 actual;
772 u64 sig_err_offset;
773 u32 key;
774 };
775
776 enum ib_mr_status_check {
777 IB_MR_CHECK_SIG_STATUS = 1,
778 };
779
780 /**
781 * struct ib_mr_status - Memory region status container
782 *
783 * @fail_status: Bitmask of MR checks status. For each
784 * failed check a corresponding status bit is set.
785 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
786 * failure.
787 */
788 struct ib_mr_status {
789 u32 fail_status;
790 struct ib_sig_err sig_err;
791 };
792
793 /**
794 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
795 * enum.
796 * @mult: multiple to convert.
797 */
798 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
799
800 struct ib_ah_attr {
801 struct ib_global_route grh;
802 u16 dlid;
803 u8 sl;
804 u8 src_path_bits;
805 u8 static_rate;
806 u8 ah_flags;
807 u8 port_num;
808 u8 dmac[ETH_ALEN];
809 };
810
811 enum ib_wc_status {
812 IB_WC_SUCCESS,
813 IB_WC_LOC_LEN_ERR,
814 IB_WC_LOC_QP_OP_ERR,
815 IB_WC_LOC_EEC_OP_ERR,
816 IB_WC_LOC_PROT_ERR,
817 IB_WC_WR_FLUSH_ERR,
818 IB_WC_MW_BIND_ERR,
819 IB_WC_BAD_RESP_ERR,
820 IB_WC_LOC_ACCESS_ERR,
821 IB_WC_REM_INV_REQ_ERR,
822 IB_WC_REM_ACCESS_ERR,
823 IB_WC_REM_OP_ERR,
824 IB_WC_RETRY_EXC_ERR,
825 IB_WC_RNR_RETRY_EXC_ERR,
826 IB_WC_LOC_RDD_VIOL_ERR,
827 IB_WC_REM_INV_RD_REQ_ERR,
828 IB_WC_REM_ABORT_ERR,
829 IB_WC_INV_EECN_ERR,
830 IB_WC_INV_EEC_STATE_ERR,
831 IB_WC_FATAL_ERR,
832 IB_WC_RESP_TIMEOUT_ERR,
833 IB_WC_GENERAL_ERR
834 };
835
836 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
837
838 enum ib_wc_opcode {
839 IB_WC_SEND,
840 IB_WC_RDMA_WRITE,
841 IB_WC_RDMA_READ,
842 IB_WC_COMP_SWAP,
843 IB_WC_FETCH_ADD,
844 IB_WC_LSO,
845 IB_WC_LOCAL_INV,
846 IB_WC_REG_MR,
847 IB_WC_MASKED_COMP_SWAP,
848 IB_WC_MASKED_FETCH_ADD,
849 /*
850 * Set value of IB_WC_RECV so consumers can test if a completion is a
851 * receive by testing (opcode & IB_WC_RECV).
852 */
853 IB_WC_RECV = 1 << 7,
854 IB_WC_RECV_RDMA_WITH_IMM
855 };
856
857 enum ib_wc_flags {
858 IB_WC_GRH = 1,
859 IB_WC_WITH_IMM = (1<<1),
860 IB_WC_WITH_INVALIDATE = (1<<2),
861 IB_WC_IP_CSUM_OK = (1<<3),
862 IB_WC_WITH_SMAC = (1<<4),
863 IB_WC_WITH_VLAN = (1<<5),
864 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
865 };
866
867 struct ib_wc {
868 union {
869 u64 wr_id;
870 struct ib_cqe *wr_cqe;
871 };
872 enum ib_wc_status status;
873 enum ib_wc_opcode opcode;
874 u32 vendor_err;
875 u32 byte_len;
876 struct ib_qp *qp;
877 union {
878 __be32 imm_data;
879 u32 invalidate_rkey;
880 } ex;
881 u32 src_qp;
882 int wc_flags;
883 u16 pkey_index;
884 u16 slid;
885 u8 sl;
886 u8 dlid_path_bits;
887 u8 port_num; /* valid only for DR SMPs on switches */
888 u8 smac[ETH_ALEN];
889 u16 vlan_id;
890 u8 network_hdr_type;
891 };
892
893 enum ib_cq_notify_flags {
894 IB_CQ_SOLICITED = 1 << 0,
895 IB_CQ_NEXT_COMP = 1 << 1,
896 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
897 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
898 };
899
900 enum ib_srq_type {
901 IB_SRQT_BASIC,
902 IB_SRQT_XRC
903 };
904
905 enum ib_srq_attr_mask {
906 IB_SRQ_MAX_WR = 1 << 0,
907 IB_SRQ_LIMIT = 1 << 1,
908 };
909
910 struct ib_srq_attr {
911 u32 max_wr;
912 u32 max_sge;
913 u32 srq_limit;
914 };
915
916 struct ib_srq_init_attr {
917 void (*event_handler)(struct ib_event *, void *);
918 void *srq_context;
919 struct ib_srq_attr attr;
920 enum ib_srq_type srq_type;
921
922 union {
923 struct {
924 struct ib_xrcd *xrcd;
925 struct ib_cq *cq;
926 } xrc;
927 } ext;
928 };
929
930 struct ib_qp_cap {
931 u32 max_send_wr;
932 u32 max_recv_wr;
933 u32 max_send_sge;
934 u32 max_recv_sge;
935 u32 max_inline_data;
936
937 /*
938 * Maximum number of rdma_rw_ctx structures in flight at a time.
939 * ib_create_qp() will calculate the right amount of neededed WRs
940 * and MRs based on this.
941 */
942 u32 max_rdma_ctxs;
943 };
944
945 enum ib_sig_type {
946 IB_SIGNAL_ALL_WR,
947 IB_SIGNAL_REQ_WR
948 };
949
950 enum ib_qp_type {
951 /*
952 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
953 * here (and in that order) since the MAD layer uses them as
954 * indices into a 2-entry table.
955 */
956 IB_QPT_SMI,
957 IB_QPT_GSI,
958
959 IB_QPT_RC,
960 IB_QPT_UC,
961 IB_QPT_UD,
962 IB_QPT_RAW_IPV6,
963 IB_QPT_RAW_ETHERTYPE,
964 IB_QPT_RAW_PACKET = 8,
965 IB_QPT_XRC_INI = 9,
966 IB_QPT_XRC_TGT,
967 IB_QPT_MAX,
968 /* Reserve a range for qp types internal to the low level driver.
969 * These qp types will not be visible at the IB core layer, so the
970 * IB_QPT_MAX usages should not be affected in the core layer
971 */
972 IB_QPT_RESERVED1 = 0x1000,
973 IB_QPT_RESERVED2,
974 IB_QPT_RESERVED3,
975 IB_QPT_RESERVED4,
976 IB_QPT_RESERVED5,
977 IB_QPT_RESERVED6,
978 IB_QPT_RESERVED7,
979 IB_QPT_RESERVED8,
980 IB_QPT_RESERVED9,
981 IB_QPT_RESERVED10,
982 };
983
984 enum ib_qp_create_flags {
985 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
986 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
987 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
988 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
989 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
990 IB_QP_CREATE_NETIF_QP = 1 << 5,
991 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
992 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
993 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
994 /* reserve bits 26-31 for low level drivers' internal use */
995 IB_QP_CREATE_RESERVED_START = 1 << 26,
996 IB_QP_CREATE_RESERVED_END = 1 << 31,
997 };
998
999 /*
1000 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1001 * callback to destroy the passed in QP.
1002 */
1003
1004 struct ib_qp_init_attr {
1005 void (*event_handler)(struct ib_event *, void *);
1006 void *qp_context;
1007 struct ib_cq *send_cq;
1008 struct ib_cq *recv_cq;
1009 struct ib_srq *srq;
1010 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1011 struct ib_qp_cap cap;
1012 enum ib_sig_type sq_sig_type;
1013 enum ib_qp_type qp_type;
1014 enum ib_qp_create_flags create_flags;
1015
1016 /*
1017 * Only needed for special QP types, or when using the RW API.
1018 */
1019 u8 port_num;
1020 struct ib_rwq_ind_table *rwq_ind_tbl;
1021 };
1022
1023 struct ib_qp_open_attr {
1024 void (*event_handler)(struct ib_event *, void *);
1025 void *qp_context;
1026 u32 qp_num;
1027 enum ib_qp_type qp_type;
1028 };
1029
1030 enum ib_rnr_timeout {
1031 IB_RNR_TIMER_655_36 = 0,
1032 IB_RNR_TIMER_000_01 = 1,
1033 IB_RNR_TIMER_000_02 = 2,
1034 IB_RNR_TIMER_000_03 = 3,
1035 IB_RNR_TIMER_000_04 = 4,
1036 IB_RNR_TIMER_000_06 = 5,
1037 IB_RNR_TIMER_000_08 = 6,
1038 IB_RNR_TIMER_000_12 = 7,
1039 IB_RNR_TIMER_000_16 = 8,
1040 IB_RNR_TIMER_000_24 = 9,
1041 IB_RNR_TIMER_000_32 = 10,
1042 IB_RNR_TIMER_000_48 = 11,
1043 IB_RNR_TIMER_000_64 = 12,
1044 IB_RNR_TIMER_000_96 = 13,
1045 IB_RNR_TIMER_001_28 = 14,
1046 IB_RNR_TIMER_001_92 = 15,
1047 IB_RNR_TIMER_002_56 = 16,
1048 IB_RNR_TIMER_003_84 = 17,
1049 IB_RNR_TIMER_005_12 = 18,
1050 IB_RNR_TIMER_007_68 = 19,
1051 IB_RNR_TIMER_010_24 = 20,
1052 IB_RNR_TIMER_015_36 = 21,
1053 IB_RNR_TIMER_020_48 = 22,
1054 IB_RNR_TIMER_030_72 = 23,
1055 IB_RNR_TIMER_040_96 = 24,
1056 IB_RNR_TIMER_061_44 = 25,
1057 IB_RNR_TIMER_081_92 = 26,
1058 IB_RNR_TIMER_122_88 = 27,
1059 IB_RNR_TIMER_163_84 = 28,
1060 IB_RNR_TIMER_245_76 = 29,
1061 IB_RNR_TIMER_327_68 = 30,
1062 IB_RNR_TIMER_491_52 = 31
1063 };
1064
1065 enum ib_qp_attr_mask {
1066 IB_QP_STATE = 1,
1067 IB_QP_CUR_STATE = (1<<1),
1068 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1069 IB_QP_ACCESS_FLAGS = (1<<3),
1070 IB_QP_PKEY_INDEX = (1<<4),
1071 IB_QP_PORT = (1<<5),
1072 IB_QP_QKEY = (1<<6),
1073 IB_QP_AV = (1<<7),
1074 IB_QP_PATH_MTU = (1<<8),
1075 IB_QP_TIMEOUT = (1<<9),
1076 IB_QP_RETRY_CNT = (1<<10),
1077 IB_QP_RNR_RETRY = (1<<11),
1078 IB_QP_RQ_PSN = (1<<12),
1079 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1080 IB_QP_ALT_PATH = (1<<14),
1081 IB_QP_MIN_RNR_TIMER = (1<<15),
1082 IB_QP_SQ_PSN = (1<<16),
1083 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1084 IB_QP_PATH_MIG_STATE = (1<<18),
1085 IB_QP_CAP = (1<<19),
1086 IB_QP_DEST_QPN = (1<<20),
1087 IB_QP_RESERVED1 = (1<<21),
1088 IB_QP_RESERVED2 = (1<<22),
1089 IB_QP_RESERVED3 = (1<<23),
1090 IB_QP_RESERVED4 = (1<<24),
1091 };
1092
1093 enum ib_qp_state {
1094 IB_QPS_RESET,
1095 IB_QPS_INIT,
1096 IB_QPS_RTR,
1097 IB_QPS_RTS,
1098 IB_QPS_SQD,
1099 IB_QPS_SQE,
1100 IB_QPS_ERR
1101 };
1102
1103 enum ib_mig_state {
1104 IB_MIG_MIGRATED,
1105 IB_MIG_REARM,
1106 IB_MIG_ARMED
1107 };
1108
1109 enum ib_mw_type {
1110 IB_MW_TYPE_1 = 1,
1111 IB_MW_TYPE_2 = 2
1112 };
1113
1114 struct ib_qp_attr {
1115 enum ib_qp_state qp_state;
1116 enum ib_qp_state cur_qp_state;
1117 enum ib_mtu path_mtu;
1118 enum ib_mig_state path_mig_state;
1119 u32 qkey;
1120 u32 rq_psn;
1121 u32 sq_psn;
1122 u32 dest_qp_num;
1123 int qp_access_flags;
1124 struct ib_qp_cap cap;
1125 struct ib_ah_attr ah_attr;
1126 struct ib_ah_attr alt_ah_attr;
1127 u16 pkey_index;
1128 u16 alt_pkey_index;
1129 u8 en_sqd_async_notify;
1130 u8 sq_draining;
1131 u8 max_rd_atomic;
1132 u8 max_dest_rd_atomic;
1133 u8 min_rnr_timer;
1134 u8 port_num;
1135 u8 timeout;
1136 u8 retry_cnt;
1137 u8 rnr_retry;
1138 u8 alt_port_num;
1139 u8 alt_timeout;
1140 };
1141
1142 enum ib_wr_opcode {
1143 IB_WR_RDMA_WRITE,
1144 IB_WR_RDMA_WRITE_WITH_IMM,
1145 IB_WR_SEND,
1146 IB_WR_SEND_WITH_IMM,
1147 IB_WR_RDMA_READ,
1148 IB_WR_ATOMIC_CMP_AND_SWP,
1149 IB_WR_ATOMIC_FETCH_AND_ADD,
1150 IB_WR_LSO,
1151 IB_WR_SEND_WITH_INV,
1152 IB_WR_RDMA_READ_WITH_INV,
1153 IB_WR_LOCAL_INV,
1154 IB_WR_REG_MR,
1155 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1156 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1157 IB_WR_REG_SIG_MR,
1158 /* reserve values for low level drivers' internal use.
1159 * These values will not be used at all in the ib core layer.
1160 */
1161 IB_WR_RESERVED1 = 0xf0,
1162 IB_WR_RESERVED2,
1163 IB_WR_RESERVED3,
1164 IB_WR_RESERVED4,
1165 IB_WR_RESERVED5,
1166 IB_WR_RESERVED6,
1167 IB_WR_RESERVED7,
1168 IB_WR_RESERVED8,
1169 IB_WR_RESERVED9,
1170 IB_WR_RESERVED10,
1171 };
1172
1173 enum ib_send_flags {
1174 IB_SEND_FENCE = 1,
1175 IB_SEND_SIGNALED = (1<<1),
1176 IB_SEND_SOLICITED = (1<<2),
1177 IB_SEND_INLINE = (1<<3),
1178 IB_SEND_IP_CSUM = (1<<4),
1179
1180 /* reserve bits 26-31 for low level drivers' internal use */
1181 IB_SEND_RESERVED_START = (1 << 26),
1182 IB_SEND_RESERVED_END = (1 << 31),
1183 };
1184
1185 struct ib_sge {
1186 u64 addr;
1187 u32 length;
1188 u32 lkey;
1189 };
1190
1191 struct ib_cqe {
1192 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1193 };
1194
1195 struct ib_send_wr {
1196 struct ib_send_wr *next;
1197 union {
1198 u64 wr_id;
1199 struct ib_cqe *wr_cqe;
1200 };
1201 struct ib_sge *sg_list;
1202 int num_sge;
1203 enum ib_wr_opcode opcode;
1204 int send_flags;
1205 union {
1206 __be32 imm_data;
1207 u32 invalidate_rkey;
1208 } ex;
1209 };
1210
1211 struct ib_rdma_wr {
1212 struct ib_send_wr wr;
1213 u64 remote_addr;
1214 u32 rkey;
1215 };
1216
1217 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1218 {
1219 return container_of(wr, struct ib_rdma_wr, wr);
1220 }
1221
1222 struct ib_atomic_wr {
1223 struct ib_send_wr wr;
1224 u64 remote_addr;
1225 u64 compare_add;
1226 u64 swap;
1227 u64 compare_add_mask;
1228 u64 swap_mask;
1229 u32 rkey;
1230 };
1231
1232 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1233 {
1234 return container_of(wr, struct ib_atomic_wr, wr);
1235 }
1236
1237 struct ib_ud_wr {
1238 struct ib_send_wr wr;
1239 struct ib_ah *ah;
1240 void *header;
1241 int hlen;
1242 int mss;
1243 u32 remote_qpn;
1244 u32 remote_qkey;
1245 u16 pkey_index; /* valid for GSI only */
1246 u8 port_num; /* valid for DR SMPs on switch only */
1247 };
1248
1249 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1250 {
1251 return container_of(wr, struct ib_ud_wr, wr);
1252 }
1253
1254 struct ib_reg_wr {
1255 struct ib_send_wr wr;
1256 struct ib_mr *mr;
1257 u32 key;
1258 int access;
1259 };
1260
1261 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1262 {
1263 return container_of(wr, struct ib_reg_wr, wr);
1264 }
1265
1266 struct ib_sig_handover_wr {
1267 struct ib_send_wr wr;
1268 struct ib_sig_attrs *sig_attrs;
1269 struct ib_mr *sig_mr;
1270 int access_flags;
1271 struct ib_sge *prot;
1272 };
1273
1274 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1275 {
1276 return container_of(wr, struct ib_sig_handover_wr, wr);
1277 }
1278
1279 struct ib_recv_wr {
1280 struct ib_recv_wr *next;
1281 union {
1282 u64 wr_id;
1283 struct ib_cqe *wr_cqe;
1284 };
1285 struct ib_sge *sg_list;
1286 int num_sge;
1287 };
1288
1289 enum ib_access_flags {
1290 IB_ACCESS_LOCAL_WRITE = 1,
1291 IB_ACCESS_REMOTE_WRITE = (1<<1),
1292 IB_ACCESS_REMOTE_READ = (1<<2),
1293 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1294 IB_ACCESS_MW_BIND = (1<<4),
1295 IB_ZERO_BASED = (1<<5),
1296 IB_ACCESS_ON_DEMAND = (1<<6),
1297 };
1298
1299 /*
1300 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1301 * are hidden here instead of a uapi header!
1302 */
1303 enum ib_mr_rereg_flags {
1304 IB_MR_REREG_TRANS = 1,
1305 IB_MR_REREG_PD = (1<<1),
1306 IB_MR_REREG_ACCESS = (1<<2),
1307 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1308 };
1309
1310 struct ib_fmr_attr {
1311 int max_pages;
1312 int max_maps;
1313 u8 page_shift;
1314 };
1315
1316 struct ib_umem;
1317
1318 struct ib_ucontext {
1319 struct ib_device *device;
1320 struct list_head pd_list;
1321 struct list_head mr_list;
1322 struct list_head mw_list;
1323 struct list_head cq_list;
1324 struct list_head qp_list;
1325 struct list_head srq_list;
1326 struct list_head ah_list;
1327 struct list_head xrcd_list;
1328 struct list_head rule_list;
1329 struct list_head wq_list;
1330 struct list_head rwq_ind_tbl_list;
1331 int closing;
1332
1333 struct pid *tgid;
1334 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1335 struct rb_root umem_tree;
1336 /*
1337 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1338 * mmu notifiers registration.
1339 */
1340 struct rw_semaphore umem_rwsem;
1341 void (*invalidate_range)(struct ib_umem *umem,
1342 unsigned long start, unsigned long end);
1343
1344 struct mmu_notifier mn;
1345 atomic_t notifier_count;
1346 /* A list of umems that don't have private mmu notifier counters yet. */
1347 struct list_head no_private_counters;
1348 int odp_mrs_count;
1349 #endif
1350 };
1351
1352 struct ib_uobject {
1353 u64 user_handle; /* handle given to us by userspace */
1354 struct ib_ucontext *context; /* associated user context */
1355 void *object; /* containing object */
1356 struct list_head list; /* link to context's list */
1357 int id; /* index into kernel idr */
1358 struct kref ref;
1359 struct rw_semaphore mutex; /* protects .live */
1360 struct rcu_head rcu; /* kfree_rcu() overhead */
1361 int live;
1362 };
1363
1364 struct ib_udata {
1365 const void __user *inbuf;
1366 void __user *outbuf;
1367 size_t inlen;
1368 size_t outlen;
1369 };
1370
1371 struct ib_pd {
1372 u32 local_dma_lkey;
1373 struct ib_device *device;
1374 struct ib_uobject *uobject;
1375 atomic_t usecnt; /* count all resources */
1376 struct ib_mr *local_mr;
1377 };
1378
1379 struct ib_xrcd {
1380 struct ib_device *device;
1381 atomic_t usecnt; /* count all exposed resources */
1382 struct inode *inode;
1383
1384 struct mutex tgt_qp_mutex;
1385 struct list_head tgt_qp_list;
1386 };
1387
1388 struct ib_ah {
1389 struct ib_device *device;
1390 struct ib_pd *pd;
1391 struct ib_uobject *uobject;
1392 };
1393
1394 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1395
1396 enum ib_poll_context {
1397 IB_POLL_DIRECT, /* caller context, no hw completions */
1398 IB_POLL_SOFTIRQ, /* poll from softirq context */
1399 IB_POLL_WORKQUEUE, /* poll from workqueue */
1400 };
1401
1402 struct ib_cq {
1403 struct ib_device *device;
1404 struct ib_uobject *uobject;
1405 ib_comp_handler comp_handler;
1406 void (*event_handler)(struct ib_event *, void *);
1407 void *cq_context;
1408 int cqe;
1409 atomic_t usecnt; /* count number of work queues */
1410 enum ib_poll_context poll_ctx;
1411 struct ib_wc *wc;
1412 union {
1413 struct irq_poll iop;
1414 struct work_struct work;
1415 };
1416 };
1417
1418 struct ib_srq {
1419 struct ib_device *device;
1420 struct ib_pd *pd;
1421 struct ib_uobject *uobject;
1422 void (*event_handler)(struct ib_event *, void *);
1423 void *srq_context;
1424 enum ib_srq_type srq_type;
1425 atomic_t usecnt;
1426
1427 union {
1428 struct {
1429 struct ib_xrcd *xrcd;
1430 struct ib_cq *cq;
1431 u32 srq_num;
1432 } xrc;
1433 } ext;
1434 };
1435
1436 enum ib_wq_type {
1437 IB_WQT_RQ
1438 };
1439
1440 enum ib_wq_state {
1441 IB_WQS_RESET,
1442 IB_WQS_RDY,
1443 IB_WQS_ERR
1444 };
1445
1446 struct ib_wq {
1447 struct ib_device *device;
1448 struct ib_uobject *uobject;
1449 void *wq_context;
1450 void (*event_handler)(struct ib_event *, void *);
1451 struct ib_pd *pd;
1452 struct ib_cq *cq;
1453 u32 wq_num;
1454 enum ib_wq_state state;
1455 enum ib_wq_type wq_type;
1456 atomic_t usecnt;
1457 };
1458
1459 struct ib_wq_init_attr {
1460 void *wq_context;
1461 enum ib_wq_type wq_type;
1462 u32 max_wr;
1463 u32 max_sge;
1464 struct ib_cq *cq;
1465 void (*event_handler)(struct ib_event *, void *);
1466 };
1467
1468 enum ib_wq_attr_mask {
1469 IB_WQ_STATE = 1 << 0,
1470 IB_WQ_CUR_STATE = 1 << 1,
1471 };
1472
1473 struct ib_wq_attr {
1474 enum ib_wq_state wq_state;
1475 enum ib_wq_state curr_wq_state;
1476 };
1477
1478 struct ib_rwq_ind_table {
1479 struct ib_device *device;
1480 struct ib_uobject *uobject;
1481 atomic_t usecnt;
1482 u32 ind_tbl_num;
1483 u32 log_ind_tbl_size;
1484 struct ib_wq **ind_tbl;
1485 };
1486
1487 struct ib_rwq_ind_table_init_attr {
1488 u32 log_ind_tbl_size;
1489 /* Each entry is a pointer to Receive Work Queue */
1490 struct ib_wq **ind_tbl;
1491 };
1492
1493 /*
1494 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1495 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1496 */
1497 struct ib_qp {
1498 struct ib_device *device;
1499 struct ib_pd *pd;
1500 struct ib_cq *send_cq;
1501 struct ib_cq *recv_cq;
1502 spinlock_t mr_lock;
1503 int mrs_used;
1504 struct list_head rdma_mrs;
1505 struct list_head sig_mrs;
1506 struct ib_srq *srq;
1507 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1508 struct list_head xrcd_list;
1509
1510 /* count times opened, mcast attaches, flow attaches */
1511 atomic_t usecnt;
1512 struct list_head open_list;
1513 struct ib_qp *real_qp;
1514 struct ib_uobject *uobject;
1515 void (*event_handler)(struct ib_event *, void *);
1516 void *qp_context;
1517 u32 qp_num;
1518 u32 max_write_sge;
1519 u32 max_read_sge;
1520 enum ib_qp_type qp_type;
1521 struct ib_rwq_ind_table *rwq_ind_tbl;
1522 };
1523
1524 struct ib_mr {
1525 struct ib_device *device;
1526 struct ib_pd *pd;
1527 u32 lkey;
1528 u32 rkey;
1529 u64 iova;
1530 u32 length;
1531 unsigned int page_size;
1532 bool need_inval;
1533 union {
1534 struct ib_uobject *uobject; /* user */
1535 struct list_head qp_entry; /* FR */
1536 };
1537 };
1538
1539 struct ib_mw {
1540 struct ib_device *device;
1541 struct ib_pd *pd;
1542 struct ib_uobject *uobject;
1543 u32 rkey;
1544 enum ib_mw_type type;
1545 };
1546
1547 struct ib_fmr {
1548 struct ib_device *device;
1549 struct ib_pd *pd;
1550 struct list_head list;
1551 u32 lkey;
1552 u32 rkey;
1553 };
1554
1555 /* Supported steering options */
1556 enum ib_flow_attr_type {
1557 /* steering according to rule specifications */
1558 IB_FLOW_ATTR_NORMAL = 0x0,
1559 /* default unicast and multicast rule -
1560 * receive all Eth traffic which isn't steered to any QP
1561 */
1562 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1563 /* default multicast rule -
1564 * receive all Eth multicast traffic which isn't steered to any QP
1565 */
1566 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1567 /* sniffer rule - receive all port traffic */
1568 IB_FLOW_ATTR_SNIFFER = 0x3
1569 };
1570
1571 /* Supported steering header types */
1572 enum ib_flow_spec_type {
1573 /* L2 headers*/
1574 IB_FLOW_SPEC_ETH = 0x20,
1575 IB_FLOW_SPEC_IB = 0x22,
1576 /* L3 header*/
1577 IB_FLOW_SPEC_IPV4 = 0x30,
1578 IB_FLOW_SPEC_IPV6 = 0x31,
1579 /* L4 headers*/
1580 IB_FLOW_SPEC_TCP = 0x40,
1581 IB_FLOW_SPEC_UDP = 0x41
1582 };
1583 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1584 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1585
1586 /* Flow steering rule priority is set according to it's domain.
1587 * Lower domain value means higher priority.
1588 */
1589 enum ib_flow_domain {
1590 IB_FLOW_DOMAIN_USER,
1591 IB_FLOW_DOMAIN_ETHTOOL,
1592 IB_FLOW_DOMAIN_RFS,
1593 IB_FLOW_DOMAIN_NIC,
1594 IB_FLOW_DOMAIN_NUM /* Must be last */
1595 };
1596
1597 enum ib_flow_flags {
1598 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1599 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1600 };
1601
1602 struct ib_flow_eth_filter {
1603 u8 dst_mac[6];
1604 u8 src_mac[6];
1605 __be16 ether_type;
1606 __be16 vlan_tag;
1607 };
1608
1609 struct ib_flow_spec_eth {
1610 enum ib_flow_spec_type type;
1611 u16 size;
1612 struct ib_flow_eth_filter val;
1613 struct ib_flow_eth_filter mask;
1614 };
1615
1616 struct ib_flow_ib_filter {
1617 __be16 dlid;
1618 __u8 sl;
1619 };
1620
1621 struct ib_flow_spec_ib {
1622 enum ib_flow_spec_type type;
1623 u16 size;
1624 struct ib_flow_ib_filter val;
1625 struct ib_flow_ib_filter mask;
1626 };
1627
1628 struct ib_flow_ipv4_filter {
1629 __be32 src_ip;
1630 __be32 dst_ip;
1631 };
1632
1633 struct ib_flow_spec_ipv4 {
1634 enum ib_flow_spec_type type;
1635 u16 size;
1636 struct ib_flow_ipv4_filter val;
1637 struct ib_flow_ipv4_filter mask;
1638 };
1639
1640 struct ib_flow_ipv6_filter {
1641 u8 src_ip[16];
1642 u8 dst_ip[16];
1643 };
1644
1645 struct ib_flow_spec_ipv6 {
1646 enum ib_flow_spec_type type;
1647 u16 size;
1648 struct ib_flow_ipv6_filter val;
1649 struct ib_flow_ipv6_filter mask;
1650 };
1651
1652 struct ib_flow_tcp_udp_filter {
1653 __be16 dst_port;
1654 __be16 src_port;
1655 };
1656
1657 struct ib_flow_spec_tcp_udp {
1658 enum ib_flow_spec_type type;
1659 u16 size;
1660 struct ib_flow_tcp_udp_filter val;
1661 struct ib_flow_tcp_udp_filter mask;
1662 };
1663
1664 union ib_flow_spec {
1665 struct {
1666 enum ib_flow_spec_type type;
1667 u16 size;
1668 };
1669 struct ib_flow_spec_eth eth;
1670 struct ib_flow_spec_ib ib;
1671 struct ib_flow_spec_ipv4 ipv4;
1672 struct ib_flow_spec_tcp_udp tcp_udp;
1673 struct ib_flow_spec_ipv6 ipv6;
1674 };
1675
1676 struct ib_flow_attr {
1677 enum ib_flow_attr_type type;
1678 u16 size;
1679 u16 priority;
1680 u32 flags;
1681 u8 num_of_specs;
1682 u8 port;
1683 /* Following are the optional layers according to user request
1684 * struct ib_flow_spec_xxx
1685 * struct ib_flow_spec_yyy
1686 */
1687 };
1688
1689 struct ib_flow {
1690 struct ib_qp *qp;
1691 struct ib_uobject *uobject;
1692 };
1693
1694 struct ib_mad_hdr;
1695 struct ib_grh;
1696
1697 enum ib_process_mad_flags {
1698 IB_MAD_IGNORE_MKEY = 1,
1699 IB_MAD_IGNORE_BKEY = 2,
1700 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1701 };
1702
1703 enum ib_mad_result {
1704 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1705 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1706 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1707 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1708 };
1709
1710 #define IB_DEVICE_NAME_MAX 64
1711
1712 struct ib_cache {
1713 rwlock_t lock;
1714 struct ib_event_handler event_handler;
1715 struct ib_pkey_cache **pkey_cache;
1716 struct ib_gid_table **gid_cache;
1717 u8 *lmc_cache;
1718 };
1719
1720 struct ib_dma_mapping_ops {
1721 int (*mapping_error)(struct ib_device *dev,
1722 u64 dma_addr);
1723 u64 (*map_single)(struct ib_device *dev,
1724 void *ptr, size_t size,
1725 enum dma_data_direction direction);
1726 void (*unmap_single)(struct ib_device *dev,
1727 u64 addr, size_t size,
1728 enum dma_data_direction direction);
1729 u64 (*map_page)(struct ib_device *dev,
1730 struct page *page, unsigned long offset,
1731 size_t size,
1732 enum dma_data_direction direction);
1733 void (*unmap_page)(struct ib_device *dev,
1734 u64 addr, size_t size,
1735 enum dma_data_direction direction);
1736 int (*map_sg)(struct ib_device *dev,
1737 struct scatterlist *sg, int nents,
1738 enum dma_data_direction direction);
1739 void (*unmap_sg)(struct ib_device *dev,
1740 struct scatterlist *sg, int nents,
1741 enum dma_data_direction direction);
1742 void (*sync_single_for_cpu)(struct ib_device *dev,
1743 u64 dma_handle,
1744 size_t size,
1745 enum dma_data_direction dir);
1746 void (*sync_single_for_device)(struct ib_device *dev,
1747 u64 dma_handle,
1748 size_t size,
1749 enum dma_data_direction dir);
1750 void *(*alloc_coherent)(struct ib_device *dev,
1751 size_t size,
1752 u64 *dma_handle,
1753 gfp_t flag);
1754 void (*free_coherent)(struct ib_device *dev,
1755 size_t size, void *cpu_addr,
1756 u64 dma_handle);
1757 };
1758
1759 struct iw_cm_verbs;
1760
1761 struct ib_port_immutable {
1762 int pkey_tbl_len;
1763 int gid_tbl_len;
1764 u32 core_cap_flags;
1765 u32 max_mad_size;
1766 };
1767
1768 struct ib_device {
1769 struct device *dma_device;
1770
1771 char name[IB_DEVICE_NAME_MAX];
1772
1773 struct list_head event_handler_list;
1774 spinlock_t event_handler_lock;
1775
1776 spinlock_t client_data_lock;
1777 struct list_head core_list;
1778 /* Access to the client_data_list is protected by the client_data_lock
1779 * spinlock and the lists_rwsem read-write semaphore */
1780 struct list_head client_data_list;
1781
1782 struct ib_cache cache;
1783 /**
1784 * port_immutable is indexed by port number
1785 */
1786 struct ib_port_immutable *port_immutable;
1787
1788 int num_comp_vectors;
1789
1790 struct iw_cm_verbs *iwcm;
1791
1792 /**
1793 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1794 * driver initialized data. The struct is kfree()'ed by the sysfs
1795 * core when the device is removed. A lifespan of -1 in the return
1796 * struct tells the core to set a default lifespan.
1797 */
1798 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1799 u8 port_num);
1800 /**
1801 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1802 * @index - The index in the value array we wish to have updated, or
1803 * num_counters if we want all stats updated
1804 * Return codes -
1805 * < 0 - Error, no counters updated
1806 * index - Updated the single counter pointed to by index
1807 * num_counters - Updated all counters (will reset the timestamp
1808 * and prevent further calls for lifespan milliseconds)
1809 * Drivers are allowed to update all counters in leiu of just the
1810 * one given in index at their option
1811 */
1812 int (*get_hw_stats)(struct ib_device *device,
1813 struct rdma_hw_stats *stats,
1814 u8 port, int index);
1815 int (*query_device)(struct ib_device *device,
1816 struct ib_device_attr *device_attr,
1817 struct ib_udata *udata);
1818 int (*query_port)(struct ib_device *device,
1819 u8 port_num,
1820 struct ib_port_attr *port_attr);
1821 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1822 u8 port_num);
1823 /* When calling get_netdev, the HW vendor's driver should return the
1824 * net device of device @device at port @port_num or NULL if such
1825 * a net device doesn't exist. The vendor driver should call dev_hold
1826 * on this net device. The HW vendor's device driver must guarantee
1827 * that this function returns NULL before the net device reaches
1828 * NETDEV_UNREGISTER_FINAL state.
1829 */
1830 struct net_device *(*get_netdev)(struct ib_device *device,
1831 u8 port_num);
1832 int (*query_gid)(struct ib_device *device,
1833 u8 port_num, int index,
1834 union ib_gid *gid);
1835 /* When calling add_gid, the HW vendor's driver should
1836 * add the gid of device @device at gid index @index of
1837 * port @port_num to be @gid. Meta-info of that gid (for example,
1838 * the network device related to this gid is available
1839 * at @attr. @context allows the HW vendor driver to store extra
1840 * information together with a GID entry. The HW vendor may allocate
1841 * memory to contain this information and store it in @context when a
1842 * new GID entry is written to. Params are consistent until the next
1843 * call of add_gid or delete_gid. The function should return 0 on
1844 * success or error otherwise. The function could be called
1845 * concurrently for different ports. This function is only called
1846 * when roce_gid_table is used.
1847 */
1848 int (*add_gid)(struct ib_device *device,
1849 u8 port_num,
1850 unsigned int index,
1851 const union ib_gid *gid,
1852 const struct ib_gid_attr *attr,
1853 void **context);
1854 /* When calling del_gid, the HW vendor's driver should delete the
1855 * gid of device @device at gid index @index of port @port_num.
1856 * Upon the deletion of a GID entry, the HW vendor must free any
1857 * allocated memory. The caller will clear @context afterwards.
1858 * This function is only called when roce_gid_table is used.
1859 */
1860 int (*del_gid)(struct ib_device *device,
1861 u8 port_num,
1862 unsigned int index,
1863 void **context);
1864 int (*query_pkey)(struct ib_device *device,
1865 u8 port_num, u16 index, u16 *pkey);
1866 int (*modify_device)(struct ib_device *device,
1867 int device_modify_mask,
1868 struct ib_device_modify *device_modify);
1869 int (*modify_port)(struct ib_device *device,
1870 u8 port_num, int port_modify_mask,
1871 struct ib_port_modify *port_modify);
1872 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1873 struct ib_udata *udata);
1874 int (*dealloc_ucontext)(struct ib_ucontext *context);
1875 int (*mmap)(struct ib_ucontext *context,
1876 struct vm_area_struct *vma);
1877 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1878 struct ib_ucontext *context,
1879 struct ib_udata *udata);
1880 int (*dealloc_pd)(struct ib_pd *pd);
1881 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1882 struct ib_ah_attr *ah_attr);
1883 int (*modify_ah)(struct ib_ah *ah,
1884 struct ib_ah_attr *ah_attr);
1885 int (*query_ah)(struct ib_ah *ah,
1886 struct ib_ah_attr *ah_attr);
1887 int (*destroy_ah)(struct ib_ah *ah);
1888 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1889 struct ib_srq_init_attr *srq_init_attr,
1890 struct ib_udata *udata);
1891 int (*modify_srq)(struct ib_srq *srq,
1892 struct ib_srq_attr *srq_attr,
1893 enum ib_srq_attr_mask srq_attr_mask,
1894 struct ib_udata *udata);
1895 int (*query_srq)(struct ib_srq *srq,
1896 struct ib_srq_attr *srq_attr);
1897 int (*destroy_srq)(struct ib_srq *srq);
1898 int (*post_srq_recv)(struct ib_srq *srq,
1899 struct ib_recv_wr *recv_wr,
1900 struct ib_recv_wr **bad_recv_wr);
1901 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1902 struct ib_qp_init_attr *qp_init_attr,
1903 struct ib_udata *udata);
1904 int (*modify_qp)(struct ib_qp *qp,
1905 struct ib_qp_attr *qp_attr,
1906 int qp_attr_mask,
1907 struct ib_udata *udata);
1908 int (*query_qp)(struct ib_qp *qp,
1909 struct ib_qp_attr *qp_attr,
1910 int qp_attr_mask,
1911 struct ib_qp_init_attr *qp_init_attr);
1912 int (*destroy_qp)(struct ib_qp *qp);
1913 int (*post_send)(struct ib_qp *qp,
1914 struct ib_send_wr *send_wr,
1915 struct ib_send_wr **bad_send_wr);
1916 int (*post_recv)(struct ib_qp *qp,
1917 struct ib_recv_wr *recv_wr,
1918 struct ib_recv_wr **bad_recv_wr);
1919 struct ib_cq * (*create_cq)(struct ib_device *device,
1920 const struct ib_cq_init_attr *attr,
1921 struct ib_ucontext *context,
1922 struct ib_udata *udata);
1923 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1924 u16 cq_period);
1925 int (*destroy_cq)(struct ib_cq *cq);
1926 int (*resize_cq)(struct ib_cq *cq, int cqe,
1927 struct ib_udata *udata);
1928 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1929 struct ib_wc *wc);
1930 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1931 int (*req_notify_cq)(struct ib_cq *cq,
1932 enum ib_cq_notify_flags flags);
1933 int (*req_ncomp_notif)(struct ib_cq *cq,
1934 int wc_cnt);
1935 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1936 int mr_access_flags);
1937 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1938 u64 start, u64 length,
1939 u64 virt_addr,
1940 int mr_access_flags,
1941 struct ib_udata *udata);
1942 int (*rereg_user_mr)(struct ib_mr *mr,
1943 int flags,
1944 u64 start, u64 length,
1945 u64 virt_addr,
1946 int mr_access_flags,
1947 struct ib_pd *pd,
1948 struct ib_udata *udata);
1949 int (*dereg_mr)(struct ib_mr *mr);
1950 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1951 enum ib_mr_type mr_type,
1952 u32 max_num_sg);
1953 int (*map_mr_sg)(struct ib_mr *mr,
1954 struct scatterlist *sg,
1955 int sg_nents,
1956 unsigned int *sg_offset);
1957 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1958 enum ib_mw_type type,
1959 struct ib_udata *udata);
1960 int (*dealloc_mw)(struct ib_mw *mw);
1961 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1962 int mr_access_flags,
1963 struct ib_fmr_attr *fmr_attr);
1964 int (*map_phys_fmr)(struct ib_fmr *fmr,
1965 u64 *page_list, int list_len,
1966 u64 iova);
1967 int (*unmap_fmr)(struct list_head *fmr_list);
1968 int (*dealloc_fmr)(struct ib_fmr *fmr);
1969 int (*attach_mcast)(struct ib_qp *qp,
1970 union ib_gid *gid,
1971 u16 lid);
1972 int (*detach_mcast)(struct ib_qp *qp,
1973 union ib_gid *gid,
1974 u16 lid);
1975 int (*process_mad)(struct ib_device *device,
1976 int process_mad_flags,
1977 u8 port_num,
1978 const struct ib_wc *in_wc,
1979 const struct ib_grh *in_grh,
1980 const struct ib_mad_hdr *in_mad,
1981 size_t in_mad_size,
1982 struct ib_mad_hdr *out_mad,
1983 size_t *out_mad_size,
1984 u16 *out_mad_pkey_index);
1985 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1986 struct ib_ucontext *ucontext,
1987 struct ib_udata *udata);
1988 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1989 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1990 struct ib_flow_attr
1991 *flow_attr,
1992 int domain);
1993 int (*destroy_flow)(struct ib_flow *flow_id);
1994 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1995 struct ib_mr_status *mr_status);
1996 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1997 void (*drain_rq)(struct ib_qp *qp);
1998 void (*drain_sq)(struct ib_qp *qp);
1999 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2000 int state);
2001 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2002 struct ifla_vf_info *ivf);
2003 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2004 struct ifla_vf_stats *stats);
2005 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2006 int type);
2007 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2008 struct ib_wq_init_attr *init_attr,
2009 struct ib_udata *udata);
2010 int (*destroy_wq)(struct ib_wq *wq);
2011 int (*modify_wq)(struct ib_wq *wq,
2012 struct ib_wq_attr *attr,
2013 u32 wq_attr_mask,
2014 struct ib_udata *udata);
2015 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2016 struct ib_rwq_ind_table_init_attr *init_attr,
2017 struct ib_udata *udata);
2018 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2019 struct ib_dma_mapping_ops *dma_ops;
2020
2021 struct module *owner;
2022 struct device dev;
2023 struct kobject *ports_parent;
2024 struct list_head port_list;
2025
2026 enum {
2027 IB_DEV_UNINITIALIZED,
2028 IB_DEV_REGISTERED,
2029 IB_DEV_UNREGISTERED
2030 } reg_state;
2031
2032 int uverbs_abi_ver;
2033 u64 uverbs_cmd_mask;
2034 u64 uverbs_ex_cmd_mask;
2035
2036 char node_desc[64];
2037 __be64 node_guid;
2038 u32 local_dma_lkey;
2039 u16 is_switch:1;
2040 u8 node_type;
2041 u8 phys_port_cnt;
2042 struct ib_device_attr attrs;
2043 struct attribute_group *hw_stats_ag;
2044 struct rdma_hw_stats *hw_stats;
2045
2046 /**
2047 * The following mandatory functions are used only at device
2048 * registration. Keep functions such as these at the end of this
2049 * structure to avoid cache line misses when accessing struct ib_device
2050 * in fast paths.
2051 */
2052 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2053 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2054 };
2055
2056 struct ib_client {
2057 char *name;
2058 void (*add) (struct ib_device *);
2059 void (*remove)(struct ib_device *, void *client_data);
2060
2061 /* Returns the net_dev belonging to this ib_client and matching the
2062 * given parameters.
2063 * @dev: An RDMA device that the net_dev use for communication.
2064 * @port: A physical port number on the RDMA device.
2065 * @pkey: P_Key that the net_dev uses if applicable.
2066 * @gid: A GID that the net_dev uses to communicate.
2067 * @addr: An IP address the net_dev is configured with.
2068 * @client_data: The device's client data set by ib_set_client_data().
2069 *
2070 * An ib_client that implements a net_dev on top of RDMA devices
2071 * (such as IP over IB) should implement this callback, allowing the
2072 * rdma_cm module to find the right net_dev for a given request.
2073 *
2074 * The caller is responsible for calling dev_put on the returned
2075 * netdev. */
2076 struct net_device *(*get_net_dev_by_params)(
2077 struct ib_device *dev,
2078 u8 port,
2079 u16 pkey,
2080 const union ib_gid *gid,
2081 const struct sockaddr *addr,
2082 void *client_data);
2083 struct list_head list;
2084 };
2085
2086 struct ib_device *ib_alloc_device(size_t size);
2087 void ib_dealloc_device(struct ib_device *device);
2088
2089 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2090
2091 int ib_register_device(struct ib_device *device,
2092 int (*port_callback)(struct ib_device *,
2093 u8, struct kobject *));
2094 void ib_unregister_device(struct ib_device *device);
2095
2096 int ib_register_client (struct ib_client *client);
2097 void ib_unregister_client(struct ib_client *client);
2098
2099 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2100 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2101 void *data);
2102
2103 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2104 {
2105 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2106 }
2107
2108 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2109 {
2110 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2111 }
2112
2113 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2114 size_t offset,
2115 size_t len)
2116 {
2117 const void __user *p = udata->inbuf + offset;
2118 bool ret;
2119 u8 *buf;
2120
2121 if (len > USHRT_MAX)
2122 return false;
2123
2124 buf = memdup_user(p, len);
2125 if (IS_ERR(buf))
2126 return false;
2127
2128 ret = !memchr_inv(buf, 0, len);
2129 kfree(buf);
2130 return ret;
2131 }
2132
2133 /**
2134 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2135 * contains all required attributes and no attributes not allowed for
2136 * the given QP state transition.
2137 * @cur_state: Current QP state
2138 * @next_state: Next QP state
2139 * @type: QP type
2140 * @mask: Mask of supplied QP attributes
2141 * @ll : link layer of port
2142 *
2143 * This function is a helper function that a low-level driver's
2144 * modify_qp method can use to validate the consumer's input. It
2145 * checks that cur_state and next_state are valid QP states, that a
2146 * transition from cur_state to next_state is allowed by the IB spec,
2147 * and that the attribute mask supplied is allowed for the transition.
2148 */
2149 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2150 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2151 enum rdma_link_layer ll);
2152
2153 int ib_register_event_handler (struct ib_event_handler *event_handler);
2154 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2155 void ib_dispatch_event(struct ib_event *event);
2156
2157 int ib_query_port(struct ib_device *device,
2158 u8 port_num, struct ib_port_attr *port_attr);
2159
2160 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2161 u8 port_num);
2162
2163 /**
2164 * rdma_cap_ib_switch - Check if the device is IB switch
2165 * @device: Device to check
2166 *
2167 * Device driver is responsible for setting is_switch bit on
2168 * in ib_device structure at init time.
2169 *
2170 * Return: true if the device is IB switch.
2171 */
2172 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2173 {
2174 return device->is_switch;
2175 }
2176
2177 /**
2178 * rdma_start_port - Return the first valid port number for the device
2179 * specified
2180 *
2181 * @device: Device to be checked
2182 *
2183 * Return start port number
2184 */
2185 static inline u8 rdma_start_port(const struct ib_device *device)
2186 {
2187 return rdma_cap_ib_switch(device) ? 0 : 1;
2188 }
2189
2190 /**
2191 * rdma_end_port - Return the last valid port number for the device
2192 * specified
2193 *
2194 * @device: Device to be checked
2195 *
2196 * Return last port number
2197 */
2198 static inline u8 rdma_end_port(const struct ib_device *device)
2199 {
2200 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2201 }
2202
2203 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2204 {
2205 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2206 }
2207
2208 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2209 {
2210 return device->port_immutable[port_num].core_cap_flags &
2211 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2212 }
2213
2214 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2215 {
2216 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2217 }
2218
2219 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2220 {
2221 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2222 }
2223
2224 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2225 {
2226 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2227 }
2228
2229 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2230 {
2231 return rdma_protocol_ib(device, port_num) ||
2232 rdma_protocol_roce(device, port_num);
2233 }
2234
2235 /**
2236 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2237 * Management Datagrams.
2238 * @device: Device to check
2239 * @port_num: Port number to check
2240 *
2241 * Management Datagrams (MAD) are a required part of the InfiniBand
2242 * specification and are supported on all InfiniBand devices. A slightly
2243 * extended version are also supported on OPA interfaces.
2244 *
2245 * Return: true if the port supports sending/receiving of MAD packets.
2246 */
2247 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2248 {
2249 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2250 }
2251
2252 /**
2253 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2254 * Management Datagrams.
2255 * @device: Device to check
2256 * @port_num: Port number to check
2257 *
2258 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2259 * datagrams with their own versions. These OPA MADs share many but not all of
2260 * the characteristics of InfiniBand MADs.
2261 *
2262 * OPA MADs differ in the following ways:
2263 *
2264 * 1) MADs are variable size up to 2K
2265 * IBTA defined MADs remain fixed at 256 bytes
2266 * 2) OPA SMPs must carry valid PKeys
2267 * 3) OPA SMP packets are a different format
2268 *
2269 * Return: true if the port supports OPA MAD packet formats.
2270 */
2271 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2272 {
2273 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2274 == RDMA_CORE_CAP_OPA_MAD;
2275 }
2276
2277 /**
2278 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2279 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2280 * @device: Device to check
2281 * @port_num: Port number to check
2282 *
2283 * Each InfiniBand node is required to provide a Subnet Management Agent
2284 * that the subnet manager can access. Prior to the fabric being fully
2285 * configured by the subnet manager, the SMA is accessed via a well known
2286 * interface called the Subnet Management Interface (SMI). This interface
2287 * uses directed route packets to communicate with the SM to get around the
2288 * chicken and egg problem of the SM needing to know what's on the fabric
2289 * in order to configure the fabric, and needing to configure the fabric in
2290 * order to send packets to the devices on the fabric. These directed
2291 * route packets do not need the fabric fully configured in order to reach
2292 * their destination. The SMI is the only method allowed to send
2293 * directed route packets on an InfiniBand fabric.
2294 *
2295 * Return: true if the port provides an SMI.
2296 */
2297 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2298 {
2299 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2300 }
2301
2302 /**
2303 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2304 * Communication Manager.
2305 * @device: Device to check
2306 * @port_num: Port number to check
2307 *
2308 * The InfiniBand Communication Manager is one of many pre-defined General
2309 * Service Agents (GSA) that are accessed via the General Service
2310 * Interface (GSI). It's role is to facilitate establishment of connections
2311 * between nodes as well as other management related tasks for established
2312 * connections.
2313 *
2314 * Return: true if the port supports an IB CM (this does not guarantee that
2315 * a CM is actually running however).
2316 */
2317 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2318 {
2319 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2320 }
2321
2322 /**
2323 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2324 * Communication Manager.
2325 * @device: Device to check
2326 * @port_num: Port number to check
2327 *
2328 * Similar to above, but specific to iWARP connections which have a different
2329 * managment protocol than InfiniBand.
2330 *
2331 * Return: true if the port supports an iWARP CM (this does not guarantee that
2332 * a CM is actually running however).
2333 */
2334 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2335 {
2336 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2337 }
2338
2339 /**
2340 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2341 * Subnet Administration.
2342 * @device: Device to check
2343 * @port_num: Port number to check
2344 *
2345 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2346 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2347 * fabrics, devices should resolve routes to other hosts by contacting the
2348 * SA to query the proper route.
2349 *
2350 * Return: true if the port should act as a client to the fabric Subnet
2351 * Administration interface. This does not imply that the SA service is
2352 * running locally.
2353 */
2354 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2355 {
2356 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2357 }
2358
2359 /**
2360 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2361 * Multicast.
2362 * @device: Device to check
2363 * @port_num: Port number to check
2364 *
2365 * InfiniBand multicast registration is more complex than normal IPv4 or
2366 * IPv6 multicast registration. Each Host Channel Adapter must register
2367 * with the Subnet Manager when it wishes to join a multicast group. It
2368 * should do so only once regardless of how many queue pairs it subscribes
2369 * to this group. And it should leave the group only after all queue pairs
2370 * attached to the group have been detached.
2371 *
2372 * Return: true if the port must undertake the additional adminstrative
2373 * overhead of registering/unregistering with the SM and tracking of the
2374 * total number of queue pairs attached to the multicast group.
2375 */
2376 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2377 {
2378 return rdma_cap_ib_sa(device, port_num);
2379 }
2380
2381 /**
2382 * rdma_cap_af_ib - Check if the port of device has the capability
2383 * Native Infiniband Address.
2384 * @device: Device to check
2385 * @port_num: Port number to check
2386 *
2387 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2388 * GID. RoCE uses a different mechanism, but still generates a GID via
2389 * a prescribed mechanism and port specific data.
2390 *
2391 * Return: true if the port uses a GID address to identify devices on the
2392 * network.
2393 */
2394 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2395 {
2396 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2397 }
2398
2399 /**
2400 * rdma_cap_eth_ah - Check if the port of device has the capability
2401 * Ethernet Address Handle.
2402 * @device: Device to check
2403 * @port_num: Port number to check
2404 *
2405 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2406 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2407 * port. Normally, packet headers are generated by the sending host
2408 * adapter, but when sending connectionless datagrams, we must manually
2409 * inject the proper headers for the fabric we are communicating over.
2410 *
2411 * Return: true if we are running as a RoCE port and must force the
2412 * addition of a Global Route Header built from our Ethernet Address
2413 * Handle into our header list for connectionless packets.
2414 */
2415 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2416 {
2417 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2418 }
2419
2420 /**
2421 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2422 *
2423 * @device: Device
2424 * @port_num: Port number
2425 *
2426 * This MAD size includes the MAD headers and MAD payload. No other headers
2427 * are included.
2428 *
2429 * Return the max MAD size required by the Port. Will return 0 if the port
2430 * does not support MADs
2431 */
2432 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2433 {
2434 return device->port_immutable[port_num].max_mad_size;
2435 }
2436
2437 /**
2438 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2439 * @device: Device to check
2440 * @port_num: Port number to check
2441 *
2442 * RoCE GID table mechanism manages the various GIDs for a device.
2443 *
2444 * NOTE: if allocating the port's GID table has failed, this call will still
2445 * return true, but any RoCE GID table API will fail.
2446 *
2447 * Return: true if the port uses RoCE GID table mechanism in order to manage
2448 * its GIDs.
2449 */
2450 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2451 u8 port_num)
2452 {
2453 return rdma_protocol_roce(device, port_num) &&
2454 device->add_gid && device->del_gid;
2455 }
2456
2457 /*
2458 * Check if the device supports READ W/ INVALIDATE.
2459 */
2460 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2461 {
2462 /*
2463 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2464 * has support for it yet.
2465 */
2466 return rdma_protocol_iwarp(dev, port_num);
2467 }
2468
2469 int ib_query_gid(struct ib_device *device,
2470 u8 port_num, int index, union ib_gid *gid,
2471 struct ib_gid_attr *attr);
2472
2473 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2474 int state);
2475 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2476 struct ifla_vf_info *info);
2477 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2478 struct ifla_vf_stats *stats);
2479 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2480 int type);
2481
2482 int ib_query_pkey(struct ib_device *device,
2483 u8 port_num, u16 index, u16 *pkey);
2484
2485 int ib_modify_device(struct ib_device *device,
2486 int device_modify_mask,
2487 struct ib_device_modify *device_modify);
2488
2489 int ib_modify_port(struct ib_device *device,
2490 u8 port_num, int port_modify_mask,
2491 struct ib_port_modify *port_modify);
2492
2493 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2494 enum ib_gid_type gid_type, struct net_device *ndev,
2495 u8 *port_num, u16 *index);
2496
2497 int ib_find_pkey(struct ib_device *device,
2498 u8 port_num, u16 pkey, u16 *index);
2499
2500 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2501
2502 void ib_dealloc_pd(struct ib_pd *pd);
2503
2504 /**
2505 * ib_create_ah - Creates an address handle for the given address vector.
2506 * @pd: The protection domain associated with the address handle.
2507 * @ah_attr: The attributes of the address vector.
2508 *
2509 * The address handle is used to reference a local or global destination
2510 * in all UD QP post sends.
2511 */
2512 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2513
2514 /**
2515 * ib_init_ah_from_wc - Initializes address handle attributes from a
2516 * work completion.
2517 * @device: Device on which the received message arrived.
2518 * @port_num: Port on which the received message arrived.
2519 * @wc: Work completion associated with the received message.
2520 * @grh: References the received global route header. This parameter is
2521 * ignored unless the work completion indicates that the GRH is valid.
2522 * @ah_attr: Returned attributes that can be used when creating an address
2523 * handle for replying to the message.
2524 */
2525 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2526 const struct ib_wc *wc, const struct ib_grh *grh,
2527 struct ib_ah_attr *ah_attr);
2528
2529 /**
2530 * ib_create_ah_from_wc - Creates an address handle associated with the
2531 * sender of the specified work completion.
2532 * @pd: The protection domain associated with the address handle.
2533 * @wc: Work completion information associated with a received message.
2534 * @grh: References the received global route header. This parameter is
2535 * ignored unless the work completion indicates that the GRH is valid.
2536 * @port_num: The outbound port number to associate with the address.
2537 *
2538 * The address handle is used to reference a local or global destination
2539 * in all UD QP post sends.
2540 */
2541 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2542 const struct ib_grh *grh, u8 port_num);
2543
2544 /**
2545 * ib_modify_ah - Modifies the address vector associated with an address
2546 * handle.
2547 * @ah: The address handle to modify.
2548 * @ah_attr: The new address vector attributes to associate with the
2549 * address handle.
2550 */
2551 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2552
2553 /**
2554 * ib_query_ah - Queries the address vector associated with an address
2555 * handle.
2556 * @ah: The address handle to query.
2557 * @ah_attr: The address vector attributes associated with the address
2558 * handle.
2559 */
2560 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2561
2562 /**
2563 * ib_destroy_ah - Destroys an address handle.
2564 * @ah: The address handle to destroy.
2565 */
2566 int ib_destroy_ah(struct ib_ah *ah);
2567
2568 /**
2569 * ib_create_srq - Creates a SRQ associated with the specified protection
2570 * domain.
2571 * @pd: The protection domain associated with the SRQ.
2572 * @srq_init_attr: A list of initial attributes required to create the
2573 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2574 * the actual capabilities of the created SRQ.
2575 *
2576 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2577 * requested size of the SRQ, and set to the actual values allocated
2578 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2579 * will always be at least as large as the requested values.
2580 */
2581 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2582 struct ib_srq_init_attr *srq_init_attr);
2583
2584 /**
2585 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2586 * @srq: The SRQ to modify.
2587 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2588 * the current values of selected SRQ attributes are returned.
2589 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2590 * are being modified.
2591 *
2592 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2593 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2594 * the number of receives queued drops below the limit.
2595 */
2596 int ib_modify_srq(struct ib_srq *srq,
2597 struct ib_srq_attr *srq_attr,
2598 enum ib_srq_attr_mask srq_attr_mask);
2599
2600 /**
2601 * ib_query_srq - Returns the attribute list and current values for the
2602 * specified SRQ.
2603 * @srq: The SRQ to query.
2604 * @srq_attr: The attributes of the specified SRQ.
2605 */
2606 int ib_query_srq(struct ib_srq *srq,
2607 struct ib_srq_attr *srq_attr);
2608
2609 /**
2610 * ib_destroy_srq - Destroys the specified SRQ.
2611 * @srq: The SRQ to destroy.
2612 */
2613 int ib_destroy_srq(struct ib_srq *srq);
2614
2615 /**
2616 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2617 * @srq: The SRQ to post the work request on.
2618 * @recv_wr: A list of work requests to post on the receive queue.
2619 * @bad_recv_wr: On an immediate failure, this parameter will reference
2620 * the work request that failed to be posted on the QP.
2621 */
2622 static inline int ib_post_srq_recv(struct ib_srq *srq,
2623 struct ib_recv_wr *recv_wr,
2624 struct ib_recv_wr **bad_recv_wr)
2625 {
2626 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2627 }
2628
2629 /**
2630 * ib_create_qp - Creates a QP associated with the specified protection
2631 * domain.
2632 * @pd: The protection domain associated with the QP.
2633 * @qp_init_attr: A list of initial attributes required to create the
2634 * QP. If QP creation succeeds, then the attributes are updated to
2635 * the actual capabilities of the created QP.
2636 */
2637 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2638 struct ib_qp_init_attr *qp_init_attr);
2639
2640 /**
2641 * ib_modify_qp - Modifies the attributes for the specified QP and then
2642 * transitions the QP to the given state.
2643 * @qp: The QP to modify.
2644 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2645 * the current values of selected QP attributes are returned.
2646 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2647 * are being modified.
2648 */
2649 int ib_modify_qp(struct ib_qp *qp,
2650 struct ib_qp_attr *qp_attr,
2651 int qp_attr_mask);
2652
2653 /**
2654 * ib_query_qp - Returns the attribute list and current values for the
2655 * specified QP.
2656 * @qp: The QP to query.
2657 * @qp_attr: The attributes of the specified QP.
2658 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2659 * @qp_init_attr: Additional attributes of the selected QP.
2660 *
2661 * The qp_attr_mask may be used to limit the query to gathering only the
2662 * selected attributes.
2663 */
2664 int ib_query_qp(struct ib_qp *qp,
2665 struct ib_qp_attr *qp_attr,
2666 int qp_attr_mask,
2667 struct ib_qp_init_attr *qp_init_attr);
2668
2669 /**
2670 * ib_destroy_qp - Destroys the specified QP.
2671 * @qp: The QP to destroy.
2672 */
2673 int ib_destroy_qp(struct ib_qp *qp);
2674
2675 /**
2676 * ib_open_qp - Obtain a reference to an existing sharable QP.
2677 * @xrcd - XRC domain
2678 * @qp_open_attr: Attributes identifying the QP to open.
2679 *
2680 * Returns a reference to a sharable QP.
2681 */
2682 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2683 struct ib_qp_open_attr *qp_open_attr);
2684
2685 /**
2686 * ib_close_qp - Release an external reference to a QP.
2687 * @qp: The QP handle to release
2688 *
2689 * The opened QP handle is released by the caller. The underlying
2690 * shared QP is not destroyed until all internal references are released.
2691 */
2692 int ib_close_qp(struct ib_qp *qp);
2693
2694 /**
2695 * ib_post_send - Posts a list of work requests to the send queue of
2696 * the specified QP.
2697 * @qp: The QP to post the work request on.
2698 * @send_wr: A list of work requests to post on the send queue.
2699 * @bad_send_wr: On an immediate failure, this parameter will reference
2700 * the work request that failed to be posted on the QP.
2701 *
2702 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2703 * error is returned, the QP state shall not be affected,
2704 * ib_post_send() will return an immediate error after queueing any
2705 * earlier work requests in the list.
2706 */
2707 static inline int ib_post_send(struct ib_qp *qp,
2708 struct ib_send_wr *send_wr,
2709 struct ib_send_wr **bad_send_wr)
2710 {
2711 return qp->device->post_send(qp, send_wr, bad_send_wr);
2712 }
2713
2714 /**
2715 * ib_post_recv - Posts a list of work requests to the receive queue of
2716 * the specified QP.
2717 * @qp: The QP to post the work request on.
2718 * @recv_wr: A list of work requests to post on the receive queue.
2719 * @bad_recv_wr: On an immediate failure, this parameter will reference
2720 * the work request that failed to be posted on the QP.
2721 */
2722 static inline int ib_post_recv(struct ib_qp *qp,
2723 struct ib_recv_wr *recv_wr,
2724 struct ib_recv_wr **bad_recv_wr)
2725 {
2726 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2727 }
2728
2729 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2730 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2731 void ib_free_cq(struct ib_cq *cq);
2732 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2733
2734 /**
2735 * ib_create_cq - Creates a CQ on the specified device.
2736 * @device: The device on which to create the CQ.
2737 * @comp_handler: A user-specified callback that is invoked when a
2738 * completion event occurs on the CQ.
2739 * @event_handler: A user-specified callback that is invoked when an
2740 * asynchronous event not associated with a completion occurs on the CQ.
2741 * @cq_context: Context associated with the CQ returned to the user via
2742 * the associated completion and event handlers.
2743 * @cq_attr: The attributes the CQ should be created upon.
2744 *
2745 * Users can examine the cq structure to determine the actual CQ size.
2746 */
2747 struct ib_cq *ib_create_cq(struct ib_device *device,
2748 ib_comp_handler comp_handler,
2749 void (*event_handler)(struct ib_event *, void *),
2750 void *cq_context,
2751 const struct ib_cq_init_attr *cq_attr);
2752
2753 /**
2754 * ib_resize_cq - Modifies the capacity of the CQ.
2755 * @cq: The CQ to resize.
2756 * @cqe: The minimum size of the CQ.
2757 *
2758 * Users can examine the cq structure to determine the actual CQ size.
2759 */
2760 int ib_resize_cq(struct ib_cq *cq, int cqe);
2761
2762 /**
2763 * ib_modify_cq - Modifies moderation params of the CQ
2764 * @cq: The CQ to modify.
2765 * @cq_count: number of CQEs that will trigger an event
2766 * @cq_period: max period of time in usec before triggering an event
2767 *
2768 */
2769 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2770
2771 /**
2772 * ib_destroy_cq - Destroys the specified CQ.
2773 * @cq: The CQ to destroy.
2774 */
2775 int ib_destroy_cq(struct ib_cq *cq);
2776
2777 /**
2778 * ib_poll_cq - poll a CQ for completion(s)
2779 * @cq:the CQ being polled
2780 * @num_entries:maximum number of completions to return
2781 * @wc:array of at least @num_entries &struct ib_wc where completions
2782 * will be returned
2783 *
2784 * Poll a CQ for (possibly multiple) completions. If the return value
2785 * is < 0, an error occurred. If the return value is >= 0, it is the
2786 * number of completions returned. If the return value is
2787 * non-negative and < num_entries, then the CQ was emptied.
2788 */
2789 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2790 struct ib_wc *wc)
2791 {
2792 return cq->device->poll_cq(cq, num_entries, wc);
2793 }
2794
2795 /**
2796 * ib_peek_cq - Returns the number of unreaped completions currently
2797 * on the specified CQ.
2798 * @cq: The CQ to peek.
2799 * @wc_cnt: A minimum number of unreaped completions to check for.
2800 *
2801 * If the number of unreaped completions is greater than or equal to wc_cnt,
2802 * this function returns wc_cnt, otherwise, it returns the actual number of
2803 * unreaped completions.
2804 */
2805 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2806
2807 /**
2808 * ib_req_notify_cq - Request completion notification on a CQ.
2809 * @cq: The CQ to generate an event for.
2810 * @flags:
2811 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2812 * to request an event on the next solicited event or next work
2813 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2814 * may also be |ed in to request a hint about missed events, as
2815 * described below.
2816 *
2817 * Return Value:
2818 * < 0 means an error occurred while requesting notification
2819 * == 0 means notification was requested successfully, and if
2820 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2821 * were missed and it is safe to wait for another event. In
2822 * this case is it guaranteed that any work completions added
2823 * to the CQ since the last CQ poll will trigger a completion
2824 * notification event.
2825 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2826 * in. It means that the consumer must poll the CQ again to
2827 * make sure it is empty to avoid missing an event because of a
2828 * race between requesting notification and an entry being
2829 * added to the CQ. This return value means it is possible
2830 * (but not guaranteed) that a work completion has been added
2831 * to the CQ since the last poll without triggering a
2832 * completion notification event.
2833 */
2834 static inline int ib_req_notify_cq(struct ib_cq *cq,
2835 enum ib_cq_notify_flags flags)
2836 {
2837 return cq->device->req_notify_cq(cq, flags);
2838 }
2839
2840 /**
2841 * ib_req_ncomp_notif - Request completion notification when there are
2842 * at least the specified number of unreaped completions on the CQ.
2843 * @cq: The CQ to generate an event for.
2844 * @wc_cnt: The number of unreaped completions that should be on the
2845 * CQ before an event is generated.
2846 */
2847 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2848 {
2849 return cq->device->req_ncomp_notif ?
2850 cq->device->req_ncomp_notif(cq, wc_cnt) :
2851 -ENOSYS;
2852 }
2853
2854 /**
2855 * ib_get_dma_mr - Returns a memory region for system memory that is
2856 * usable for DMA.
2857 * @pd: The protection domain associated with the memory region.
2858 * @mr_access_flags: Specifies the memory access rights.
2859 *
2860 * Note that the ib_dma_*() functions defined below must be used
2861 * to create/destroy addresses used with the Lkey or Rkey returned
2862 * by ib_get_dma_mr().
2863 */
2864 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2865
2866 /**
2867 * ib_dma_mapping_error - check a DMA addr for error
2868 * @dev: The device for which the dma_addr was created
2869 * @dma_addr: The DMA address to check
2870 */
2871 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2872 {
2873 if (dev->dma_ops)
2874 return dev->dma_ops->mapping_error(dev, dma_addr);
2875 return dma_mapping_error(dev->dma_device, dma_addr);
2876 }
2877
2878 /**
2879 * ib_dma_map_single - Map a kernel virtual address to DMA address
2880 * @dev: The device for which the dma_addr is to be created
2881 * @cpu_addr: The kernel virtual address
2882 * @size: The size of the region in bytes
2883 * @direction: The direction of the DMA
2884 */
2885 static inline u64 ib_dma_map_single(struct ib_device *dev,
2886 void *cpu_addr, size_t size,
2887 enum dma_data_direction direction)
2888 {
2889 if (dev->dma_ops)
2890 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2891 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2892 }
2893
2894 /**
2895 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2896 * @dev: The device for which the DMA address was created
2897 * @addr: The DMA address
2898 * @size: The size of the region in bytes
2899 * @direction: The direction of the DMA
2900 */
2901 static inline void ib_dma_unmap_single(struct ib_device *dev,
2902 u64 addr, size_t size,
2903 enum dma_data_direction direction)
2904 {
2905 if (dev->dma_ops)
2906 dev->dma_ops->unmap_single(dev, addr, size, direction);
2907 else
2908 dma_unmap_single(dev->dma_device, addr, size, direction);
2909 }
2910
2911 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2912 void *cpu_addr, size_t size,
2913 enum dma_data_direction direction,
2914 unsigned long dma_attrs)
2915 {
2916 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2917 direction, dma_attrs);
2918 }
2919
2920 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2921 u64 addr, size_t size,
2922 enum dma_data_direction direction,
2923 unsigned long dma_attrs)
2924 {
2925 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2926 direction, dma_attrs);
2927 }
2928
2929 /**
2930 * ib_dma_map_page - Map a physical page to DMA address
2931 * @dev: The device for which the dma_addr is to be created
2932 * @page: The page to be mapped
2933 * @offset: The offset within the page
2934 * @size: The size of the region in bytes
2935 * @direction: The direction of the DMA
2936 */
2937 static inline u64 ib_dma_map_page(struct ib_device *dev,
2938 struct page *page,
2939 unsigned long offset,
2940 size_t size,
2941 enum dma_data_direction direction)
2942 {
2943 if (dev->dma_ops)
2944 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2945 return dma_map_page(dev->dma_device, page, offset, size, direction);
2946 }
2947
2948 /**
2949 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2950 * @dev: The device for which the DMA address was created
2951 * @addr: The DMA address
2952 * @size: The size of the region in bytes
2953 * @direction: The direction of the DMA
2954 */
2955 static inline void ib_dma_unmap_page(struct ib_device *dev,
2956 u64 addr, size_t size,
2957 enum dma_data_direction direction)
2958 {
2959 if (dev->dma_ops)
2960 dev->dma_ops->unmap_page(dev, addr, size, direction);
2961 else
2962 dma_unmap_page(dev->dma_device, addr, size, direction);
2963 }
2964
2965 /**
2966 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2967 * @dev: The device for which the DMA addresses are to be created
2968 * @sg: The array of scatter/gather entries
2969 * @nents: The number of scatter/gather entries
2970 * @direction: The direction of the DMA
2971 */
2972 static inline int ib_dma_map_sg(struct ib_device *dev,
2973 struct scatterlist *sg, int nents,
2974 enum dma_data_direction direction)
2975 {
2976 if (dev->dma_ops)
2977 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2978 return dma_map_sg(dev->dma_device, sg, nents, direction);
2979 }
2980
2981 /**
2982 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2983 * @dev: The device for which the DMA addresses were created
2984 * @sg: The array of scatter/gather entries
2985 * @nents: The number of scatter/gather entries
2986 * @direction: The direction of the DMA
2987 */
2988 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2989 struct scatterlist *sg, int nents,
2990 enum dma_data_direction direction)
2991 {
2992 if (dev->dma_ops)
2993 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2994 else
2995 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2996 }
2997
2998 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2999 struct scatterlist *sg, int nents,
3000 enum dma_data_direction direction,
3001 unsigned long dma_attrs)
3002 {
3003 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3004 dma_attrs);
3005 }
3006
3007 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3008 struct scatterlist *sg, int nents,
3009 enum dma_data_direction direction,
3010 unsigned long dma_attrs)
3011 {
3012 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3013 }
3014 /**
3015 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3016 * @dev: The device for which the DMA addresses were created
3017 * @sg: The scatter/gather entry
3018 *
3019 * Note: this function is obsolete. To do: change all occurrences of
3020 * ib_sg_dma_address() into sg_dma_address().
3021 */
3022 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3023 struct scatterlist *sg)
3024 {
3025 return sg_dma_address(sg);
3026 }
3027
3028 /**
3029 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3030 * @dev: The device for which the DMA addresses were created
3031 * @sg: The scatter/gather entry
3032 *
3033 * Note: this function is obsolete. To do: change all occurrences of
3034 * ib_sg_dma_len() into sg_dma_len().
3035 */
3036 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3037 struct scatterlist *sg)
3038 {
3039 return sg_dma_len(sg);
3040 }
3041
3042 /**
3043 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3044 * @dev: The device for which the DMA address was created
3045 * @addr: The DMA address
3046 * @size: The size of the region in bytes
3047 * @dir: The direction of the DMA
3048 */
3049 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3050 u64 addr,
3051 size_t size,
3052 enum dma_data_direction dir)
3053 {
3054 if (dev->dma_ops)
3055 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3056 else
3057 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3058 }
3059
3060 /**
3061 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3062 * @dev: The device for which the DMA address was created
3063 * @addr: The DMA address
3064 * @size: The size of the region in bytes
3065 * @dir: The direction of the DMA
3066 */
3067 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3068 u64 addr,
3069 size_t size,
3070 enum dma_data_direction dir)
3071 {
3072 if (dev->dma_ops)
3073 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3074 else
3075 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3076 }
3077
3078 /**
3079 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3080 * @dev: The device for which the DMA address is requested
3081 * @size: The size of the region to allocate in bytes
3082 * @dma_handle: A pointer for returning the DMA address of the region
3083 * @flag: memory allocator flags
3084 */
3085 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3086 size_t size,
3087 u64 *dma_handle,
3088 gfp_t flag)
3089 {
3090 if (dev->dma_ops)
3091 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3092 else {
3093 dma_addr_t handle;
3094 void *ret;
3095
3096 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3097 *dma_handle = handle;
3098 return ret;
3099 }
3100 }
3101
3102 /**
3103 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3104 * @dev: The device for which the DMA addresses were allocated
3105 * @size: The size of the region
3106 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3107 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3108 */
3109 static inline void ib_dma_free_coherent(struct ib_device *dev,
3110 size_t size, void *cpu_addr,
3111 u64 dma_handle)
3112 {
3113 if (dev->dma_ops)
3114 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3115 else
3116 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3117 }
3118
3119 /**
3120 * ib_dereg_mr - Deregisters a memory region and removes it from the
3121 * HCA translation table.
3122 * @mr: The memory region to deregister.
3123 *
3124 * This function can fail, if the memory region has memory windows bound to it.
3125 */
3126 int ib_dereg_mr(struct ib_mr *mr);
3127
3128 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3129 enum ib_mr_type mr_type,
3130 u32 max_num_sg);
3131
3132 /**
3133 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3134 * R_Key and L_Key.
3135 * @mr - struct ib_mr pointer to be updated.
3136 * @newkey - new key to be used.
3137 */
3138 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3139 {
3140 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3141 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3142 }
3143
3144 /**
3145 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3146 * for calculating a new rkey for type 2 memory windows.
3147 * @rkey - the rkey to increment.
3148 */
3149 static inline u32 ib_inc_rkey(u32 rkey)
3150 {
3151 const u32 mask = 0x000000ff;
3152 return ((rkey + 1) & mask) | (rkey & ~mask);
3153 }
3154
3155 /**
3156 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3157 * @pd: The protection domain associated with the unmapped region.
3158 * @mr_access_flags: Specifies the memory access rights.
3159 * @fmr_attr: Attributes of the unmapped region.
3160 *
3161 * A fast memory region must be mapped before it can be used as part of
3162 * a work request.
3163 */
3164 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3165 int mr_access_flags,
3166 struct ib_fmr_attr *fmr_attr);
3167
3168 /**
3169 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3170 * @fmr: The fast memory region to associate with the pages.
3171 * @page_list: An array of physical pages to map to the fast memory region.
3172 * @list_len: The number of pages in page_list.
3173 * @iova: The I/O virtual address to use with the mapped region.
3174 */
3175 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3176 u64 *page_list, int list_len,
3177 u64 iova)
3178 {
3179 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3180 }
3181
3182 /**
3183 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3184 * @fmr_list: A linked list of fast memory regions to unmap.
3185 */
3186 int ib_unmap_fmr(struct list_head *fmr_list);
3187
3188 /**
3189 * ib_dealloc_fmr - Deallocates a fast memory region.
3190 * @fmr: The fast memory region to deallocate.
3191 */
3192 int ib_dealloc_fmr(struct ib_fmr *fmr);
3193
3194 /**
3195 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3196 * @qp: QP to attach to the multicast group. The QP must be type
3197 * IB_QPT_UD.
3198 * @gid: Multicast group GID.
3199 * @lid: Multicast group LID in host byte order.
3200 *
3201 * In order to send and receive multicast packets, subnet
3202 * administration must have created the multicast group and configured
3203 * the fabric appropriately. The port associated with the specified
3204 * QP must also be a member of the multicast group.
3205 */
3206 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3207
3208 /**
3209 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3210 * @qp: QP to detach from the multicast group.
3211 * @gid: Multicast group GID.
3212 * @lid: Multicast group LID in host byte order.
3213 */
3214 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3215
3216 /**
3217 * ib_alloc_xrcd - Allocates an XRC domain.
3218 * @device: The device on which to allocate the XRC domain.
3219 */
3220 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3221
3222 /**
3223 * ib_dealloc_xrcd - Deallocates an XRC domain.
3224 * @xrcd: The XRC domain to deallocate.
3225 */
3226 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3227
3228 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3229 struct ib_flow_attr *flow_attr, int domain);
3230 int ib_destroy_flow(struct ib_flow *flow_id);
3231
3232 static inline int ib_check_mr_access(int flags)
3233 {
3234 /*
3235 * Local write permission is required if remote write or
3236 * remote atomic permission is also requested.
3237 */
3238 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3239 !(flags & IB_ACCESS_LOCAL_WRITE))
3240 return -EINVAL;
3241
3242 return 0;
3243 }
3244
3245 /**
3246 * ib_check_mr_status: lightweight check of MR status.
3247 * This routine may provide status checks on a selected
3248 * ib_mr. first use is for signature status check.
3249 *
3250 * @mr: A memory region.
3251 * @check_mask: Bitmask of which checks to perform from
3252 * ib_mr_status_check enumeration.
3253 * @mr_status: The container of relevant status checks.
3254 * failed checks will be indicated in the status bitmask
3255 * and the relevant info shall be in the error item.
3256 */
3257 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3258 struct ib_mr_status *mr_status);
3259
3260 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3261 u16 pkey, const union ib_gid *gid,
3262 const struct sockaddr *addr);
3263 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3264 struct ib_wq_init_attr *init_attr);
3265 int ib_destroy_wq(struct ib_wq *wq);
3266 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3267 u32 wq_attr_mask);
3268 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3269 struct ib_rwq_ind_table_init_attr*
3270 wq_ind_table_init_attr);
3271 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3272
3273 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3274 unsigned int *sg_offset, unsigned int page_size);
3275
3276 static inline int
3277 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3278 unsigned int *sg_offset, unsigned int page_size)
3279 {
3280 int n;
3281
3282 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3283 mr->iova = 0;
3284
3285 return n;
3286 }
3287
3288 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3289 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3290
3291 void ib_drain_rq(struct ib_qp *qp);
3292 void ib_drain_sq(struct ib_qp *qp);
3293 void ib_drain_qp(struct ib_qp *qp);
3294 #endif /* IB_VERBS_H */