]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/rdma/ib_verbs.h
dynamic_debug: add an option to enable dynamic debug for modules only
[mirror_ubuntu-jammy-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kref.h>
46 #include <linux/list.h>
47 #include <linux/rwsem.h>
48 #include <linux/workqueue.h>
49 #include <linux/irq_poll.h>
50 #include <uapi/linux/if_ether.h>
51 #include <net/ipv6.h>
52 #include <net/ip.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/netdevice.h>
56 #include <linux/refcount.h>
57 #include <linux/if_link.h>
58 #include <linux/atomic.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/uaccess.h>
61 #include <linux/cgroup_rdma.h>
62 #include <linux/irqflags.h>
63 #include <linux/preempt.h>
64 #include <linux/dim.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/rdma_counter.h>
67 #include <rdma/restrack.h>
68 #include <rdma/signature.h>
69 #include <uapi/rdma/rdma_user_ioctl.h>
70 #include <uapi/rdma/ib_user_ioctl_verbs.h>
71
72 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
73
74 struct ib_umem_odp;
75 struct ib_uqp_object;
76 struct ib_usrq_object;
77 struct ib_uwq_object;
78
79 extern struct workqueue_struct *ib_wq;
80 extern struct workqueue_struct *ib_comp_wq;
81 extern struct workqueue_struct *ib_comp_unbound_wq;
82
83 struct ib_ucq_object;
84
85 __printf(3, 4) __cold
86 void ibdev_printk(const char *level, const struct ib_device *ibdev,
87 const char *format, ...);
88 __printf(2, 3) __cold
89 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
90 __printf(2, 3) __cold
91 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
92 __printf(2, 3) __cold
93 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
94 __printf(2, 3) __cold
95 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
96 __printf(2, 3) __cold
97 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
98 __printf(2, 3) __cold
99 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
100 __printf(2, 3) __cold
101 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
102
103 #if defined(CONFIG_DYNAMIC_DEBUG) || \
104 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
105 #define ibdev_dbg(__dev, format, args...) \
106 dynamic_ibdev_dbg(__dev, format, ##args)
107 #else
108 __printf(2, 3) __cold
109 static inline
110 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
111 #endif
112
113 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
114 do { \
115 static DEFINE_RATELIMIT_STATE(_rs, \
116 DEFAULT_RATELIMIT_INTERVAL, \
117 DEFAULT_RATELIMIT_BURST); \
118 if (__ratelimit(&_rs)) \
119 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
120 } while (0)
121
122 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
123 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
124 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
125 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
126 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
127 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
128 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
129 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
130 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
131 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
132 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
133 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
134 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
135 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
136
137 #if defined(CONFIG_DYNAMIC_DEBUG) || \
138 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
139 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
140 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
141 do { \
142 static DEFINE_RATELIMIT_STATE(_rs, \
143 DEFAULT_RATELIMIT_INTERVAL, \
144 DEFAULT_RATELIMIT_BURST); \
145 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
146 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
147 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
148 ##__VA_ARGS__); \
149 } while (0)
150 #else
151 __printf(2, 3) __cold
152 static inline
153 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
154 #endif
155
156 union ib_gid {
157 u8 raw[16];
158 struct {
159 __be64 subnet_prefix;
160 __be64 interface_id;
161 } global;
162 };
163
164 extern union ib_gid zgid;
165
166 enum ib_gid_type {
167 /* If link layer is Ethernet, this is RoCE V1 */
168 IB_GID_TYPE_IB = 0,
169 IB_GID_TYPE_ROCE = 0,
170 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
171 IB_GID_TYPE_SIZE
172 };
173
174 #define ROCE_V2_UDP_DPORT 4791
175 struct ib_gid_attr {
176 struct net_device __rcu *ndev;
177 struct ib_device *device;
178 union ib_gid gid;
179 enum ib_gid_type gid_type;
180 u16 index;
181 u8 port_num;
182 };
183
184 enum {
185 /* set the local administered indication */
186 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
187 };
188
189 enum rdma_transport_type {
190 RDMA_TRANSPORT_IB,
191 RDMA_TRANSPORT_IWARP,
192 RDMA_TRANSPORT_USNIC,
193 RDMA_TRANSPORT_USNIC_UDP,
194 RDMA_TRANSPORT_UNSPECIFIED,
195 };
196
197 enum rdma_protocol_type {
198 RDMA_PROTOCOL_IB,
199 RDMA_PROTOCOL_IBOE,
200 RDMA_PROTOCOL_IWARP,
201 RDMA_PROTOCOL_USNIC_UDP
202 };
203
204 __attribute_const__ enum rdma_transport_type
205 rdma_node_get_transport(unsigned int node_type);
206
207 enum rdma_network_type {
208 RDMA_NETWORK_IB,
209 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
210 RDMA_NETWORK_IPV4,
211 RDMA_NETWORK_IPV6
212 };
213
214 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
215 {
216 if (network_type == RDMA_NETWORK_IPV4 ||
217 network_type == RDMA_NETWORK_IPV6)
218 return IB_GID_TYPE_ROCE_UDP_ENCAP;
219
220 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
221 return IB_GID_TYPE_IB;
222 }
223
224 static inline enum rdma_network_type
225 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
226 {
227 if (attr->gid_type == IB_GID_TYPE_IB)
228 return RDMA_NETWORK_IB;
229
230 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
231 return RDMA_NETWORK_IPV4;
232 else
233 return RDMA_NETWORK_IPV6;
234 }
235
236 enum rdma_link_layer {
237 IB_LINK_LAYER_UNSPECIFIED,
238 IB_LINK_LAYER_INFINIBAND,
239 IB_LINK_LAYER_ETHERNET,
240 };
241
242 enum ib_device_cap_flags {
243 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
244 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
245 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
246 IB_DEVICE_RAW_MULTI = (1 << 3),
247 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
248 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
249 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
250 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
251 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
252 /* Not in use, former INIT_TYPE = (1 << 9),*/
253 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
254 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
255 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
256 IB_DEVICE_SRQ_RESIZE = (1 << 13),
257 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
258
259 /*
260 * This device supports a per-device lkey or stag that can be
261 * used without performing a memory registration for the local
262 * memory. Note that ULPs should never check this flag, but
263 * instead of use the local_dma_lkey flag in the ib_pd structure,
264 * which will always contain a usable lkey.
265 */
266 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
267 /* Reserved, old SEND_W_INV = (1 << 16),*/
268 IB_DEVICE_MEM_WINDOW = (1 << 17),
269 /*
270 * Devices should set IB_DEVICE_UD_IP_SUM if they support
271 * insertion of UDP and TCP checksum on outgoing UD IPoIB
272 * messages and can verify the validity of checksum for
273 * incoming messages. Setting this flag implies that the
274 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
275 */
276 IB_DEVICE_UD_IP_CSUM = (1 << 18),
277 IB_DEVICE_UD_TSO = (1 << 19),
278 IB_DEVICE_XRC = (1 << 20),
279
280 /*
281 * This device supports the IB "base memory management extension",
282 * which includes support for fast registrations (IB_WR_REG_MR,
283 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
284 * also be set by any iWarp device which must support FRs to comply
285 * to the iWarp verbs spec. iWarp devices also support the
286 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
287 * stag.
288 */
289 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
290 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
291 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
292 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
293 IB_DEVICE_RC_IP_CSUM = (1 << 25),
294 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
295 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
296 /*
297 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
298 * support execution of WQEs that involve synchronization
299 * of I/O operations with single completion queue managed
300 * by hardware.
301 */
302 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
303 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
304 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
305 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
306 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
307 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
308 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
309 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
310 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35),
311 /* The device supports padding incoming writes to cacheline. */
312 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
313 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
314 };
315
316 enum ib_atomic_cap {
317 IB_ATOMIC_NONE,
318 IB_ATOMIC_HCA,
319 IB_ATOMIC_GLOB
320 };
321
322 enum ib_odp_general_cap_bits {
323 IB_ODP_SUPPORT = 1 << 0,
324 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
325 };
326
327 enum ib_odp_transport_cap_bits {
328 IB_ODP_SUPPORT_SEND = 1 << 0,
329 IB_ODP_SUPPORT_RECV = 1 << 1,
330 IB_ODP_SUPPORT_WRITE = 1 << 2,
331 IB_ODP_SUPPORT_READ = 1 << 3,
332 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
333 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
334 };
335
336 struct ib_odp_caps {
337 uint64_t general_caps;
338 struct {
339 uint32_t rc_odp_caps;
340 uint32_t uc_odp_caps;
341 uint32_t ud_odp_caps;
342 uint32_t xrc_odp_caps;
343 } per_transport_caps;
344 };
345
346 struct ib_rss_caps {
347 /* Corresponding bit will be set if qp type from
348 * 'enum ib_qp_type' is supported, e.g.
349 * supported_qpts |= 1 << IB_QPT_UD
350 */
351 u32 supported_qpts;
352 u32 max_rwq_indirection_tables;
353 u32 max_rwq_indirection_table_size;
354 };
355
356 enum ib_tm_cap_flags {
357 /* Support tag matching with rendezvous offload for RC transport */
358 IB_TM_CAP_RNDV_RC = 1 << 0,
359 };
360
361 struct ib_tm_caps {
362 /* Max size of RNDV header */
363 u32 max_rndv_hdr_size;
364 /* Max number of entries in tag matching list */
365 u32 max_num_tags;
366 /* From enum ib_tm_cap_flags */
367 u32 flags;
368 /* Max number of outstanding list operations */
369 u32 max_ops;
370 /* Max number of SGE in tag matching entry */
371 u32 max_sge;
372 };
373
374 struct ib_cq_init_attr {
375 unsigned int cqe;
376 u32 comp_vector;
377 u32 flags;
378 };
379
380 enum ib_cq_attr_mask {
381 IB_CQ_MODERATE = 1 << 0,
382 };
383
384 struct ib_cq_caps {
385 u16 max_cq_moderation_count;
386 u16 max_cq_moderation_period;
387 };
388
389 struct ib_dm_mr_attr {
390 u64 length;
391 u64 offset;
392 u32 access_flags;
393 };
394
395 struct ib_dm_alloc_attr {
396 u64 length;
397 u32 alignment;
398 u32 flags;
399 };
400
401 struct ib_device_attr {
402 u64 fw_ver;
403 __be64 sys_image_guid;
404 u64 max_mr_size;
405 u64 page_size_cap;
406 u32 vendor_id;
407 u32 vendor_part_id;
408 u32 hw_ver;
409 int max_qp;
410 int max_qp_wr;
411 u64 device_cap_flags;
412 int max_send_sge;
413 int max_recv_sge;
414 int max_sge_rd;
415 int max_cq;
416 int max_cqe;
417 int max_mr;
418 int max_pd;
419 int max_qp_rd_atom;
420 int max_ee_rd_atom;
421 int max_res_rd_atom;
422 int max_qp_init_rd_atom;
423 int max_ee_init_rd_atom;
424 enum ib_atomic_cap atomic_cap;
425 enum ib_atomic_cap masked_atomic_cap;
426 int max_ee;
427 int max_rdd;
428 int max_mw;
429 int max_raw_ipv6_qp;
430 int max_raw_ethy_qp;
431 int max_mcast_grp;
432 int max_mcast_qp_attach;
433 int max_total_mcast_qp_attach;
434 int max_ah;
435 int max_srq;
436 int max_srq_wr;
437 int max_srq_sge;
438 unsigned int max_fast_reg_page_list_len;
439 unsigned int max_pi_fast_reg_page_list_len;
440 u16 max_pkeys;
441 u8 local_ca_ack_delay;
442 int sig_prot_cap;
443 int sig_guard_cap;
444 struct ib_odp_caps odp_caps;
445 uint64_t timestamp_mask;
446 uint64_t hca_core_clock; /* in KHZ */
447 struct ib_rss_caps rss_caps;
448 u32 max_wq_type_rq;
449 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
450 struct ib_tm_caps tm_caps;
451 struct ib_cq_caps cq_caps;
452 u64 max_dm_size;
453 /* Max entries for sgl for optimized performance per READ */
454 u32 max_sgl_rd;
455 };
456
457 enum ib_mtu {
458 IB_MTU_256 = 1,
459 IB_MTU_512 = 2,
460 IB_MTU_1024 = 3,
461 IB_MTU_2048 = 4,
462 IB_MTU_4096 = 5
463 };
464
465 enum opa_mtu {
466 OPA_MTU_8192 = 6,
467 OPA_MTU_10240 = 7
468 };
469
470 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
471 {
472 switch (mtu) {
473 case IB_MTU_256: return 256;
474 case IB_MTU_512: return 512;
475 case IB_MTU_1024: return 1024;
476 case IB_MTU_2048: return 2048;
477 case IB_MTU_4096: return 4096;
478 default: return -1;
479 }
480 }
481
482 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
483 {
484 if (mtu >= 4096)
485 return IB_MTU_4096;
486 else if (mtu >= 2048)
487 return IB_MTU_2048;
488 else if (mtu >= 1024)
489 return IB_MTU_1024;
490 else if (mtu >= 512)
491 return IB_MTU_512;
492 else
493 return IB_MTU_256;
494 }
495
496 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
497 {
498 switch (mtu) {
499 case OPA_MTU_8192:
500 return 8192;
501 case OPA_MTU_10240:
502 return 10240;
503 default:
504 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
505 }
506 }
507
508 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
509 {
510 if (mtu >= 10240)
511 return OPA_MTU_10240;
512 else if (mtu >= 8192)
513 return OPA_MTU_8192;
514 else
515 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
516 }
517
518 enum ib_port_state {
519 IB_PORT_NOP = 0,
520 IB_PORT_DOWN = 1,
521 IB_PORT_INIT = 2,
522 IB_PORT_ARMED = 3,
523 IB_PORT_ACTIVE = 4,
524 IB_PORT_ACTIVE_DEFER = 5
525 };
526
527 enum ib_port_phys_state {
528 IB_PORT_PHYS_STATE_SLEEP = 1,
529 IB_PORT_PHYS_STATE_POLLING = 2,
530 IB_PORT_PHYS_STATE_DISABLED = 3,
531 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
532 IB_PORT_PHYS_STATE_LINK_UP = 5,
533 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
534 IB_PORT_PHYS_STATE_PHY_TEST = 7,
535 };
536
537 enum ib_port_width {
538 IB_WIDTH_1X = 1,
539 IB_WIDTH_2X = 16,
540 IB_WIDTH_4X = 2,
541 IB_WIDTH_8X = 4,
542 IB_WIDTH_12X = 8
543 };
544
545 static inline int ib_width_enum_to_int(enum ib_port_width width)
546 {
547 switch (width) {
548 case IB_WIDTH_1X: return 1;
549 case IB_WIDTH_2X: return 2;
550 case IB_WIDTH_4X: return 4;
551 case IB_WIDTH_8X: return 8;
552 case IB_WIDTH_12X: return 12;
553 default: return -1;
554 }
555 }
556
557 enum ib_port_speed {
558 IB_SPEED_SDR = 1,
559 IB_SPEED_DDR = 2,
560 IB_SPEED_QDR = 4,
561 IB_SPEED_FDR10 = 8,
562 IB_SPEED_FDR = 16,
563 IB_SPEED_EDR = 32,
564 IB_SPEED_HDR = 64
565 };
566
567 /**
568 * struct rdma_hw_stats
569 * @lock - Mutex to protect parallel write access to lifespan and values
570 * of counters, which are 64bits and not guaranteeed to be written
571 * atomicaly on 32bits systems.
572 * @timestamp - Used by the core code to track when the last update was
573 * @lifespan - Used by the core code to determine how old the counters
574 * should be before being updated again. Stored in jiffies, defaults
575 * to 10 milliseconds, drivers can override the default be specifying
576 * their own value during their allocation routine.
577 * @name - Array of pointers to static names used for the counters in
578 * directory.
579 * @num_counters - How many hardware counters there are. If name is
580 * shorter than this number, a kernel oops will result. Driver authors
581 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
582 * in their code to prevent this.
583 * @value - Array of u64 counters that are accessed by the sysfs code and
584 * filled in by the drivers get_stats routine
585 */
586 struct rdma_hw_stats {
587 struct mutex lock; /* Protect lifespan and values[] */
588 unsigned long timestamp;
589 unsigned long lifespan;
590 const char * const *names;
591 int num_counters;
592 u64 value[];
593 };
594
595 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
596 /**
597 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
598 * for drivers.
599 * @names - Array of static const char *
600 * @num_counters - How many elements in array
601 * @lifespan - How many milliseconds between updates
602 */
603 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
604 const char * const *names, int num_counters,
605 unsigned long lifespan)
606 {
607 struct rdma_hw_stats *stats;
608
609 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
610 GFP_KERNEL);
611 if (!stats)
612 return NULL;
613 stats->names = names;
614 stats->num_counters = num_counters;
615 stats->lifespan = msecs_to_jiffies(lifespan);
616
617 return stats;
618 }
619
620
621 /* Define bits for the various functionality this port needs to be supported by
622 * the core.
623 */
624 /* Management 0x00000FFF */
625 #define RDMA_CORE_CAP_IB_MAD 0x00000001
626 #define RDMA_CORE_CAP_IB_SMI 0x00000002
627 #define RDMA_CORE_CAP_IB_CM 0x00000004
628 #define RDMA_CORE_CAP_IW_CM 0x00000008
629 #define RDMA_CORE_CAP_IB_SA 0x00000010
630 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
631
632 /* Address format 0x000FF000 */
633 #define RDMA_CORE_CAP_AF_IB 0x00001000
634 #define RDMA_CORE_CAP_ETH_AH 0x00002000
635 #define RDMA_CORE_CAP_OPA_AH 0x00004000
636 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
637
638 /* Protocol 0xFFF00000 */
639 #define RDMA_CORE_CAP_PROT_IB 0x00100000
640 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
641 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
642 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
643 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
644 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
645
646 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
647 | RDMA_CORE_CAP_PROT_ROCE \
648 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
649
650 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
651 | RDMA_CORE_CAP_IB_MAD \
652 | RDMA_CORE_CAP_IB_SMI \
653 | RDMA_CORE_CAP_IB_CM \
654 | RDMA_CORE_CAP_IB_SA \
655 | RDMA_CORE_CAP_AF_IB)
656 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
657 | RDMA_CORE_CAP_IB_MAD \
658 | RDMA_CORE_CAP_IB_CM \
659 | RDMA_CORE_CAP_AF_IB \
660 | RDMA_CORE_CAP_ETH_AH)
661 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
662 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
663 | RDMA_CORE_CAP_IB_MAD \
664 | RDMA_CORE_CAP_IB_CM \
665 | RDMA_CORE_CAP_AF_IB \
666 | RDMA_CORE_CAP_ETH_AH)
667 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
668 | RDMA_CORE_CAP_IW_CM)
669 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
670 | RDMA_CORE_CAP_OPA_MAD)
671
672 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
673
674 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
675
676 struct ib_port_attr {
677 u64 subnet_prefix;
678 enum ib_port_state state;
679 enum ib_mtu max_mtu;
680 enum ib_mtu active_mtu;
681 u32 phys_mtu;
682 int gid_tbl_len;
683 unsigned int ip_gids:1;
684 /* This is the value from PortInfo CapabilityMask, defined by IBA */
685 u32 port_cap_flags;
686 u32 max_msg_sz;
687 u32 bad_pkey_cntr;
688 u32 qkey_viol_cntr;
689 u16 pkey_tbl_len;
690 u32 sm_lid;
691 u32 lid;
692 u8 lmc;
693 u8 max_vl_num;
694 u8 sm_sl;
695 u8 subnet_timeout;
696 u8 init_type_reply;
697 u8 active_width;
698 u8 active_speed;
699 u8 phys_state;
700 u16 port_cap_flags2;
701 };
702
703 enum ib_device_modify_flags {
704 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
705 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
706 };
707
708 #define IB_DEVICE_NODE_DESC_MAX 64
709
710 struct ib_device_modify {
711 u64 sys_image_guid;
712 char node_desc[IB_DEVICE_NODE_DESC_MAX];
713 };
714
715 enum ib_port_modify_flags {
716 IB_PORT_SHUTDOWN = 1,
717 IB_PORT_INIT_TYPE = (1<<2),
718 IB_PORT_RESET_QKEY_CNTR = (1<<3),
719 IB_PORT_OPA_MASK_CHG = (1<<4)
720 };
721
722 struct ib_port_modify {
723 u32 set_port_cap_mask;
724 u32 clr_port_cap_mask;
725 u8 init_type;
726 };
727
728 enum ib_event_type {
729 IB_EVENT_CQ_ERR,
730 IB_EVENT_QP_FATAL,
731 IB_EVENT_QP_REQ_ERR,
732 IB_EVENT_QP_ACCESS_ERR,
733 IB_EVENT_COMM_EST,
734 IB_EVENT_SQ_DRAINED,
735 IB_EVENT_PATH_MIG,
736 IB_EVENT_PATH_MIG_ERR,
737 IB_EVENT_DEVICE_FATAL,
738 IB_EVENT_PORT_ACTIVE,
739 IB_EVENT_PORT_ERR,
740 IB_EVENT_LID_CHANGE,
741 IB_EVENT_PKEY_CHANGE,
742 IB_EVENT_SM_CHANGE,
743 IB_EVENT_SRQ_ERR,
744 IB_EVENT_SRQ_LIMIT_REACHED,
745 IB_EVENT_QP_LAST_WQE_REACHED,
746 IB_EVENT_CLIENT_REREGISTER,
747 IB_EVENT_GID_CHANGE,
748 IB_EVENT_WQ_FATAL,
749 };
750
751 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
752
753 struct ib_event {
754 struct ib_device *device;
755 union {
756 struct ib_cq *cq;
757 struct ib_qp *qp;
758 struct ib_srq *srq;
759 struct ib_wq *wq;
760 u8 port_num;
761 } element;
762 enum ib_event_type event;
763 };
764
765 struct ib_event_handler {
766 struct ib_device *device;
767 void (*handler)(struct ib_event_handler *, struct ib_event *);
768 struct list_head list;
769 };
770
771 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
772 do { \
773 (_ptr)->device = _device; \
774 (_ptr)->handler = _handler; \
775 INIT_LIST_HEAD(&(_ptr)->list); \
776 } while (0)
777
778 struct ib_global_route {
779 const struct ib_gid_attr *sgid_attr;
780 union ib_gid dgid;
781 u32 flow_label;
782 u8 sgid_index;
783 u8 hop_limit;
784 u8 traffic_class;
785 };
786
787 struct ib_grh {
788 __be32 version_tclass_flow;
789 __be16 paylen;
790 u8 next_hdr;
791 u8 hop_limit;
792 union ib_gid sgid;
793 union ib_gid dgid;
794 };
795
796 union rdma_network_hdr {
797 struct ib_grh ibgrh;
798 struct {
799 /* The IB spec states that if it's IPv4, the header
800 * is located in the last 20 bytes of the header.
801 */
802 u8 reserved[20];
803 struct iphdr roce4grh;
804 };
805 };
806
807 #define IB_QPN_MASK 0xFFFFFF
808
809 enum {
810 IB_MULTICAST_QPN = 0xffffff
811 };
812
813 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
814 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
815
816 enum ib_ah_flags {
817 IB_AH_GRH = 1
818 };
819
820 enum ib_rate {
821 IB_RATE_PORT_CURRENT = 0,
822 IB_RATE_2_5_GBPS = 2,
823 IB_RATE_5_GBPS = 5,
824 IB_RATE_10_GBPS = 3,
825 IB_RATE_20_GBPS = 6,
826 IB_RATE_30_GBPS = 4,
827 IB_RATE_40_GBPS = 7,
828 IB_RATE_60_GBPS = 8,
829 IB_RATE_80_GBPS = 9,
830 IB_RATE_120_GBPS = 10,
831 IB_RATE_14_GBPS = 11,
832 IB_RATE_56_GBPS = 12,
833 IB_RATE_112_GBPS = 13,
834 IB_RATE_168_GBPS = 14,
835 IB_RATE_25_GBPS = 15,
836 IB_RATE_100_GBPS = 16,
837 IB_RATE_200_GBPS = 17,
838 IB_RATE_300_GBPS = 18,
839 IB_RATE_28_GBPS = 19,
840 IB_RATE_50_GBPS = 20,
841 IB_RATE_400_GBPS = 21,
842 IB_RATE_600_GBPS = 22,
843 };
844
845 /**
846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
847 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
849 * @rate: rate to convert.
850 */
851 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
852
853 /**
854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
855 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
856 * @rate: rate to convert.
857 */
858 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
859
860
861 /**
862 * enum ib_mr_type - memory region type
863 * @IB_MR_TYPE_MEM_REG: memory region that is used for
864 * normal registration
865 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
866 * register any arbitrary sg lists (without
867 * the normal mr constraints - see
868 * ib_map_mr_sg)
869 * @IB_MR_TYPE_DM: memory region that is used for device
870 * memory registration
871 * @IB_MR_TYPE_USER: memory region that is used for the user-space
872 * application
873 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
874 * without address translations (VA=PA)
875 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
876 * data integrity operations
877 */
878 enum ib_mr_type {
879 IB_MR_TYPE_MEM_REG,
880 IB_MR_TYPE_SG_GAPS,
881 IB_MR_TYPE_DM,
882 IB_MR_TYPE_USER,
883 IB_MR_TYPE_DMA,
884 IB_MR_TYPE_INTEGRITY,
885 };
886
887 enum ib_mr_status_check {
888 IB_MR_CHECK_SIG_STATUS = 1,
889 };
890
891 /**
892 * struct ib_mr_status - Memory region status container
893 *
894 * @fail_status: Bitmask of MR checks status. For each
895 * failed check a corresponding status bit is set.
896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
897 * failure.
898 */
899 struct ib_mr_status {
900 u32 fail_status;
901 struct ib_sig_err sig_err;
902 };
903
904 /**
905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
906 * enum.
907 * @mult: multiple to convert.
908 */
909 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
910
911 struct rdma_ah_init_attr {
912 struct rdma_ah_attr *ah_attr;
913 u32 flags;
914 struct net_device *xmit_slave;
915 };
916
917 enum rdma_ah_attr_type {
918 RDMA_AH_ATTR_TYPE_UNDEFINED,
919 RDMA_AH_ATTR_TYPE_IB,
920 RDMA_AH_ATTR_TYPE_ROCE,
921 RDMA_AH_ATTR_TYPE_OPA,
922 };
923
924 struct ib_ah_attr {
925 u16 dlid;
926 u8 src_path_bits;
927 };
928
929 struct roce_ah_attr {
930 u8 dmac[ETH_ALEN];
931 };
932
933 struct opa_ah_attr {
934 u32 dlid;
935 u8 src_path_bits;
936 bool make_grd;
937 };
938
939 struct rdma_ah_attr {
940 struct ib_global_route grh;
941 u8 sl;
942 u8 static_rate;
943 u8 port_num;
944 u8 ah_flags;
945 enum rdma_ah_attr_type type;
946 union {
947 struct ib_ah_attr ib;
948 struct roce_ah_attr roce;
949 struct opa_ah_attr opa;
950 };
951 };
952
953 enum ib_wc_status {
954 IB_WC_SUCCESS,
955 IB_WC_LOC_LEN_ERR,
956 IB_WC_LOC_QP_OP_ERR,
957 IB_WC_LOC_EEC_OP_ERR,
958 IB_WC_LOC_PROT_ERR,
959 IB_WC_WR_FLUSH_ERR,
960 IB_WC_MW_BIND_ERR,
961 IB_WC_BAD_RESP_ERR,
962 IB_WC_LOC_ACCESS_ERR,
963 IB_WC_REM_INV_REQ_ERR,
964 IB_WC_REM_ACCESS_ERR,
965 IB_WC_REM_OP_ERR,
966 IB_WC_RETRY_EXC_ERR,
967 IB_WC_RNR_RETRY_EXC_ERR,
968 IB_WC_LOC_RDD_VIOL_ERR,
969 IB_WC_REM_INV_RD_REQ_ERR,
970 IB_WC_REM_ABORT_ERR,
971 IB_WC_INV_EECN_ERR,
972 IB_WC_INV_EEC_STATE_ERR,
973 IB_WC_FATAL_ERR,
974 IB_WC_RESP_TIMEOUT_ERR,
975 IB_WC_GENERAL_ERR
976 };
977
978 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
979
980 enum ib_wc_opcode {
981 IB_WC_SEND,
982 IB_WC_RDMA_WRITE,
983 IB_WC_RDMA_READ,
984 IB_WC_COMP_SWAP,
985 IB_WC_FETCH_ADD,
986 IB_WC_LSO,
987 IB_WC_LOCAL_INV,
988 IB_WC_REG_MR,
989 IB_WC_MASKED_COMP_SWAP,
990 IB_WC_MASKED_FETCH_ADD,
991 /*
992 * Set value of IB_WC_RECV so consumers can test if a completion is a
993 * receive by testing (opcode & IB_WC_RECV).
994 */
995 IB_WC_RECV = 1 << 7,
996 IB_WC_RECV_RDMA_WITH_IMM
997 };
998
999 enum ib_wc_flags {
1000 IB_WC_GRH = 1,
1001 IB_WC_WITH_IMM = (1<<1),
1002 IB_WC_WITH_INVALIDATE = (1<<2),
1003 IB_WC_IP_CSUM_OK = (1<<3),
1004 IB_WC_WITH_SMAC = (1<<4),
1005 IB_WC_WITH_VLAN = (1<<5),
1006 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1007 };
1008
1009 struct ib_wc {
1010 union {
1011 u64 wr_id;
1012 struct ib_cqe *wr_cqe;
1013 };
1014 enum ib_wc_status status;
1015 enum ib_wc_opcode opcode;
1016 u32 vendor_err;
1017 u32 byte_len;
1018 struct ib_qp *qp;
1019 union {
1020 __be32 imm_data;
1021 u32 invalidate_rkey;
1022 } ex;
1023 u32 src_qp;
1024 u32 slid;
1025 int wc_flags;
1026 u16 pkey_index;
1027 u8 sl;
1028 u8 dlid_path_bits;
1029 u8 port_num; /* valid only for DR SMPs on switches */
1030 u8 smac[ETH_ALEN];
1031 u16 vlan_id;
1032 u8 network_hdr_type;
1033 };
1034
1035 enum ib_cq_notify_flags {
1036 IB_CQ_SOLICITED = 1 << 0,
1037 IB_CQ_NEXT_COMP = 1 << 1,
1038 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1039 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1040 };
1041
1042 enum ib_srq_type {
1043 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1044 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1045 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1046 };
1047
1048 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1049 {
1050 return srq_type == IB_SRQT_XRC ||
1051 srq_type == IB_SRQT_TM;
1052 }
1053
1054 enum ib_srq_attr_mask {
1055 IB_SRQ_MAX_WR = 1 << 0,
1056 IB_SRQ_LIMIT = 1 << 1,
1057 };
1058
1059 struct ib_srq_attr {
1060 u32 max_wr;
1061 u32 max_sge;
1062 u32 srq_limit;
1063 };
1064
1065 struct ib_srq_init_attr {
1066 void (*event_handler)(struct ib_event *, void *);
1067 void *srq_context;
1068 struct ib_srq_attr attr;
1069 enum ib_srq_type srq_type;
1070
1071 struct {
1072 struct ib_cq *cq;
1073 union {
1074 struct {
1075 struct ib_xrcd *xrcd;
1076 } xrc;
1077
1078 struct {
1079 u32 max_num_tags;
1080 } tag_matching;
1081 };
1082 } ext;
1083 };
1084
1085 struct ib_qp_cap {
1086 u32 max_send_wr;
1087 u32 max_recv_wr;
1088 u32 max_send_sge;
1089 u32 max_recv_sge;
1090 u32 max_inline_data;
1091
1092 /*
1093 * Maximum number of rdma_rw_ctx structures in flight at a time.
1094 * ib_create_qp() will calculate the right amount of neededed WRs
1095 * and MRs based on this.
1096 */
1097 u32 max_rdma_ctxs;
1098 };
1099
1100 enum ib_sig_type {
1101 IB_SIGNAL_ALL_WR,
1102 IB_SIGNAL_REQ_WR
1103 };
1104
1105 enum ib_qp_type {
1106 /*
1107 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1108 * here (and in that order) since the MAD layer uses them as
1109 * indices into a 2-entry table.
1110 */
1111 IB_QPT_SMI,
1112 IB_QPT_GSI,
1113
1114 IB_QPT_RC = IB_UVERBS_QPT_RC,
1115 IB_QPT_UC = IB_UVERBS_QPT_UC,
1116 IB_QPT_UD = IB_UVERBS_QPT_UD,
1117 IB_QPT_RAW_IPV6,
1118 IB_QPT_RAW_ETHERTYPE,
1119 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1120 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1121 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1122 IB_QPT_MAX,
1123 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1124 /* Reserve a range for qp types internal to the low level driver.
1125 * These qp types will not be visible at the IB core layer, so the
1126 * IB_QPT_MAX usages should not be affected in the core layer
1127 */
1128 IB_QPT_RESERVED1 = 0x1000,
1129 IB_QPT_RESERVED2,
1130 IB_QPT_RESERVED3,
1131 IB_QPT_RESERVED4,
1132 IB_QPT_RESERVED5,
1133 IB_QPT_RESERVED6,
1134 IB_QPT_RESERVED7,
1135 IB_QPT_RESERVED8,
1136 IB_QPT_RESERVED9,
1137 IB_QPT_RESERVED10,
1138 };
1139
1140 enum ib_qp_create_flags {
1141 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1142 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1143 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1144 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1145 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1146 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1147 IB_QP_CREATE_NETIF_QP = 1 << 5,
1148 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1149 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1150 IB_QP_CREATE_SCATTER_FCS =
1151 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1152 IB_QP_CREATE_CVLAN_STRIPPING =
1153 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1154 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1155 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1156 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1157 /* reserve bits 26-31 for low level drivers' internal use */
1158 IB_QP_CREATE_RESERVED_START = 1 << 26,
1159 IB_QP_CREATE_RESERVED_END = 1 << 31,
1160 };
1161
1162 /*
1163 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1164 * callback to destroy the passed in QP.
1165 */
1166
1167 struct ib_qp_init_attr {
1168 /* Consumer's event_handler callback must not block */
1169 void (*event_handler)(struct ib_event *, void *);
1170
1171 void *qp_context;
1172 struct ib_cq *send_cq;
1173 struct ib_cq *recv_cq;
1174 struct ib_srq *srq;
1175 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1176 struct ib_qp_cap cap;
1177 enum ib_sig_type sq_sig_type;
1178 enum ib_qp_type qp_type;
1179 u32 create_flags;
1180
1181 /*
1182 * Only needed for special QP types, or when using the RW API.
1183 */
1184 u8 port_num;
1185 struct ib_rwq_ind_table *rwq_ind_tbl;
1186 u32 source_qpn;
1187 };
1188
1189 struct ib_qp_open_attr {
1190 void (*event_handler)(struct ib_event *, void *);
1191 void *qp_context;
1192 u32 qp_num;
1193 enum ib_qp_type qp_type;
1194 };
1195
1196 enum ib_rnr_timeout {
1197 IB_RNR_TIMER_655_36 = 0,
1198 IB_RNR_TIMER_000_01 = 1,
1199 IB_RNR_TIMER_000_02 = 2,
1200 IB_RNR_TIMER_000_03 = 3,
1201 IB_RNR_TIMER_000_04 = 4,
1202 IB_RNR_TIMER_000_06 = 5,
1203 IB_RNR_TIMER_000_08 = 6,
1204 IB_RNR_TIMER_000_12 = 7,
1205 IB_RNR_TIMER_000_16 = 8,
1206 IB_RNR_TIMER_000_24 = 9,
1207 IB_RNR_TIMER_000_32 = 10,
1208 IB_RNR_TIMER_000_48 = 11,
1209 IB_RNR_TIMER_000_64 = 12,
1210 IB_RNR_TIMER_000_96 = 13,
1211 IB_RNR_TIMER_001_28 = 14,
1212 IB_RNR_TIMER_001_92 = 15,
1213 IB_RNR_TIMER_002_56 = 16,
1214 IB_RNR_TIMER_003_84 = 17,
1215 IB_RNR_TIMER_005_12 = 18,
1216 IB_RNR_TIMER_007_68 = 19,
1217 IB_RNR_TIMER_010_24 = 20,
1218 IB_RNR_TIMER_015_36 = 21,
1219 IB_RNR_TIMER_020_48 = 22,
1220 IB_RNR_TIMER_030_72 = 23,
1221 IB_RNR_TIMER_040_96 = 24,
1222 IB_RNR_TIMER_061_44 = 25,
1223 IB_RNR_TIMER_081_92 = 26,
1224 IB_RNR_TIMER_122_88 = 27,
1225 IB_RNR_TIMER_163_84 = 28,
1226 IB_RNR_TIMER_245_76 = 29,
1227 IB_RNR_TIMER_327_68 = 30,
1228 IB_RNR_TIMER_491_52 = 31
1229 };
1230
1231 enum ib_qp_attr_mask {
1232 IB_QP_STATE = 1,
1233 IB_QP_CUR_STATE = (1<<1),
1234 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1235 IB_QP_ACCESS_FLAGS = (1<<3),
1236 IB_QP_PKEY_INDEX = (1<<4),
1237 IB_QP_PORT = (1<<5),
1238 IB_QP_QKEY = (1<<6),
1239 IB_QP_AV = (1<<7),
1240 IB_QP_PATH_MTU = (1<<8),
1241 IB_QP_TIMEOUT = (1<<9),
1242 IB_QP_RETRY_CNT = (1<<10),
1243 IB_QP_RNR_RETRY = (1<<11),
1244 IB_QP_RQ_PSN = (1<<12),
1245 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1246 IB_QP_ALT_PATH = (1<<14),
1247 IB_QP_MIN_RNR_TIMER = (1<<15),
1248 IB_QP_SQ_PSN = (1<<16),
1249 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1250 IB_QP_PATH_MIG_STATE = (1<<18),
1251 IB_QP_CAP = (1<<19),
1252 IB_QP_DEST_QPN = (1<<20),
1253 IB_QP_RESERVED1 = (1<<21),
1254 IB_QP_RESERVED2 = (1<<22),
1255 IB_QP_RESERVED3 = (1<<23),
1256 IB_QP_RESERVED4 = (1<<24),
1257 IB_QP_RATE_LIMIT = (1<<25),
1258 };
1259
1260 enum ib_qp_state {
1261 IB_QPS_RESET,
1262 IB_QPS_INIT,
1263 IB_QPS_RTR,
1264 IB_QPS_RTS,
1265 IB_QPS_SQD,
1266 IB_QPS_SQE,
1267 IB_QPS_ERR
1268 };
1269
1270 enum ib_mig_state {
1271 IB_MIG_MIGRATED,
1272 IB_MIG_REARM,
1273 IB_MIG_ARMED
1274 };
1275
1276 enum ib_mw_type {
1277 IB_MW_TYPE_1 = 1,
1278 IB_MW_TYPE_2 = 2
1279 };
1280
1281 struct ib_qp_attr {
1282 enum ib_qp_state qp_state;
1283 enum ib_qp_state cur_qp_state;
1284 enum ib_mtu path_mtu;
1285 enum ib_mig_state path_mig_state;
1286 u32 qkey;
1287 u32 rq_psn;
1288 u32 sq_psn;
1289 u32 dest_qp_num;
1290 int qp_access_flags;
1291 struct ib_qp_cap cap;
1292 struct rdma_ah_attr ah_attr;
1293 struct rdma_ah_attr alt_ah_attr;
1294 u16 pkey_index;
1295 u16 alt_pkey_index;
1296 u8 en_sqd_async_notify;
1297 u8 sq_draining;
1298 u8 max_rd_atomic;
1299 u8 max_dest_rd_atomic;
1300 u8 min_rnr_timer;
1301 u8 port_num;
1302 u8 timeout;
1303 u8 retry_cnt;
1304 u8 rnr_retry;
1305 u8 alt_port_num;
1306 u8 alt_timeout;
1307 u32 rate_limit;
1308 struct net_device *xmit_slave;
1309 };
1310
1311 enum ib_wr_opcode {
1312 /* These are shared with userspace */
1313 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1314 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1315 IB_WR_SEND = IB_UVERBS_WR_SEND,
1316 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1317 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1318 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1319 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1320 IB_WR_LSO = IB_UVERBS_WR_TSO,
1321 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1322 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1323 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1324 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1325 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1326 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1327 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1328
1329 /* These are kernel only and can not be issued by userspace */
1330 IB_WR_REG_MR = 0x20,
1331 IB_WR_REG_MR_INTEGRITY,
1332
1333 /* reserve values for low level drivers' internal use.
1334 * These values will not be used at all in the ib core layer.
1335 */
1336 IB_WR_RESERVED1 = 0xf0,
1337 IB_WR_RESERVED2,
1338 IB_WR_RESERVED3,
1339 IB_WR_RESERVED4,
1340 IB_WR_RESERVED5,
1341 IB_WR_RESERVED6,
1342 IB_WR_RESERVED7,
1343 IB_WR_RESERVED8,
1344 IB_WR_RESERVED9,
1345 IB_WR_RESERVED10,
1346 };
1347
1348 enum ib_send_flags {
1349 IB_SEND_FENCE = 1,
1350 IB_SEND_SIGNALED = (1<<1),
1351 IB_SEND_SOLICITED = (1<<2),
1352 IB_SEND_INLINE = (1<<3),
1353 IB_SEND_IP_CSUM = (1<<4),
1354
1355 /* reserve bits 26-31 for low level drivers' internal use */
1356 IB_SEND_RESERVED_START = (1 << 26),
1357 IB_SEND_RESERVED_END = (1 << 31),
1358 };
1359
1360 struct ib_sge {
1361 u64 addr;
1362 u32 length;
1363 u32 lkey;
1364 };
1365
1366 struct ib_cqe {
1367 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1368 };
1369
1370 struct ib_send_wr {
1371 struct ib_send_wr *next;
1372 union {
1373 u64 wr_id;
1374 struct ib_cqe *wr_cqe;
1375 };
1376 struct ib_sge *sg_list;
1377 int num_sge;
1378 enum ib_wr_opcode opcode;
1379 int send_flags;
1380 union {
1381 __be32 imm_data;
1382 u32 invalidate_rkey;
1383 } ex;
1384 };
1385
1386 struct ib_rdma_wr {
1387 struct ib_send_wr wr;
1388 u64 remote_addr;
1389 u32 rkey;
1390 };
1391
1392 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1393 {
1394 return container_of(wr, struct ib_rdma_wr, wr);
1395 }
1396
1397 struct ib_atomic_wr {
1398 struct ib_send_wr wr;
1399 u64 remote_addr;
1400 u64 compare_add;
1401 u64 swap;
1402 u64 compare_add_mask;
1403 u64 swap_mask;
1404 u32 rkey;
1405 };
1406
1407 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1408 {
1409 return container_of(wr, struct ib_atomic_wr, wr);
1410 }
1411
1412 struct ib_ud_wr {
1413 struct ib_send_wr wr;
1414 struct ib_ah *ah;
1415 void *header;
1416 int hlen;
1417 int mss;
1418 u32 remote_qpn;
1419 u32 remote_qkey;
1420 u16 pkey_index; /* valid for GSI only */
1421 u8 port_num; /* valid for DR SMPs on switch only */
1422 };
1423
1424 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1425 {
1426 return container_of(wr, struct ib_ud_wr, wr);
1427 }
1428
1429 struct ib_reg_wr {
1430 struct ib_send_wr wr;
1431 struct ib_mr *mr;
1432 u32 key;
1433 int access;
1434 };
1435
1436 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1437 {
1438 return container_of(wr, struct ib_reg_wr, wr);
1439 }
1440
1441 struct ib_recv_wr {
1442 struct ib_recv_wr *next;
1443 union {
1444 u64 wr_id;
1445 struct ib_cqe *wr_cqe;
1446 };
1447 struct ib_sge *sg_list;
1448 int num_sge;
1449 };
1450
1451 enum ib_access_flags {
1452 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1453 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1454 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1455 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1456 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1457 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1458 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1459 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1460 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1461
1462 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1463 IB_ACCESS_SUPPORTED =
1464 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1465 };
1466
1467 /*
1468 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1469 * are hidden here instead of a uapi header!
1470 */
1471 enum ib_mr_rereg_flags {
1472 IB_MR_REREG_TRANS = 1,
1473 IB_MR_REREG_PD = (1<<1),
1474 IB_MR_REREG_ACCESS = (1<<2),
1475 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1476 };
1477
1478 struct ib_umem;
1479
1480 enum rdma_remove_reason {
1481 /*
1482 * Userspace requested uobject deletion or initial try
1483 * to remove uobject via cleanup. Call could fail
1484 */
1485 RDMA_REMOVE_DESTROY,
1486 /* Context deletion. This call should delete the actual object itself */
1487 RDMA_REMOVE_CLOSE,
1488 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1489 RDMA_REMOVE_DRIVER_REMOVE,
1490 /* uobj is being cleaned-up before being committed */
1491 RDMA_REMOVE_ABORT,
1492 /*
1493 * uobj has been fully created, with the uobj->object set, but is being
1494 * cleaned up before being comitted
1495 */
1496 RDMA_REMOVE_ABORT_HWOBJ,
1497 };
1498
1499 struct ib_rdmacg_object {
1500 #ifdef CONFIG_CGROUP_RDMA
1501 struct rdma_cgroup *cg; /* owner rdma cgroup */
1502 #endif
1503 };
1504
1505 struct ib_ucontext {
1506 struct ib_device *device;
1507 struct ib_uverbs_file *ufile;
1508 /*
1509 * 'closing' can be read by the driver only during a destroy callback,
1510 * it is set when we are closing the file descriptor and indicates
1511 * that mm_sem may be locked.
1512 */
1513 bool closing;
1514
1515 bool cleanup_retryable;
1516
1517 struct ib_rdmacg_object cg_obj;
1518 /*
1519 * Implementation details of the RDMA core, don't use in drivers:
1520 */
1521 struct rdma_restrack_entry res;
1522 struct xarray mmap_xa;
1523 };
1524
1525 struct ib_uobject {
1526 u64 user_handle; /* handle given to us by userspace */
1527 /* ufile & ucontext owning this object */
1528 struct ib_uverbs_file *ufile;
1529 /* FIXME, save memory: ufile->context == context */
1530 struct ib_ucontext *context; /* associated user context */
1531 void *object; /* containing object */
1532 struct list_head list; /* link to context's list */
1533 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1534 int id; /* index into kernel idr */
1535 struct kref ref;
1536 atomic_t usecnt; /* protects exclusive access */
1537 struct rcu_head rcu; /* kfree_rcu() overhead */
1538
1539 const struct uverbs_api_object *uapi_object;
1540 };
1541
1542 struct ib_udata {
1543 const void __user *inbuf;
1544 void __user *outbuf;
1545 size_t inlen;
1546 size_t outlen;
1547 };
1548
1549 struct ib_pd {
1550 u32 local_dma_lkey;
1551 u32 flags;
1552 struct ib_device *device;
1553 struct ib_uobject *uobject;
1554 atomic_t usecnt; /* count all resources */
1555
1556 u32 unsafe_global_rkey;
1557
1558 /*
1559 * Implementation details of the RDMA core, don't use in drivers:
1560 */
1561 struct ib_mr *__internal_mr;
1562 struct rdma_restrack_entry res;
1563 };
1564
1565 struct ib_xrcd {
1566 struct ib_device *device;
1567 atomic_t usecnt; /* count all exposed resources */
1568 struct inode *inode;
1569
1570 struct mutex tgt_qp_mutex;
1571 struct list_head tgt_qp_list;
1572 };
1573
1574 struct ib_ah {
1575 struct ib_device *device;
1576 struct ib_pd *pd;
1577 struct ib_uobject *uobject;
1578 const struct ib_gid_attr *sgid_attr;
1579 enum rdma_ah_attr_type type;
1580 };
1581
1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583
1584 enum ib_poll_context {
1585 IB_POLL_SOFTIRQ, /* poll from softirq context */
1586 IB_POLL_WORKQUEUE, /* poll from workqueue */
1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589
1590 IB_POLL_DIRECT, /* caller context, no hw completions */
1591 };
1592
1593 struct ib_cq {
1594 struct ib_device *device;
1595 struct ib_ucq_object *uobject;
1596 ib_comp_handler comp_handler;
1597 void (*event_handler)(struct ib_event *, void *);
1598 void *cq_context;
1599 int cqe;
1600 unsigned int cqe_used;
1601 atomic_t usecnt; /* count number of work queues */
1602 enum ib_poll_context poll_ctx;
1603 struct ib_wc *wc;
1604 struct list_head pool_entry;
1605 union {
1606 struct irq_poll iop;
1607 struct work_struct work;
1608 };
1609 struct workqueue_struct *comp_wq;
1610 struct dim *dim;
1611
1612 /* updated only by trace points */
1613 ktime_t timestamp;
1614 u8 interrupt:1;
1615 u8 shared:1;
1616 unsigned int comp_vector;
1617
1618 /*
1619 * Implementation details of the RDMA core, don't use in drivers:
1620 */
1621 struct rdma_restrack_entry res;
1622 };
1623
1624 struct ib_srq {
1625 struct ib_device *device;
1626 struct ib_pd *pd;
1627 struct ib_usrq_object *uobject;
1628 void (*event_handler)(struct ib_event *, void *);
1629 void *srq_context;
1630 enum ib_srq_type srq_type;
1631 atomic_t usecnt;
1632
1633 struct {
1634 struct ib_cq *cq;
1635 union {
1636 struct {
1637 struct ib_xrcd *xrcd;
1638 u32 srq_num;
1639 } xrc;
1640 };
1641 } ext;
1642 };
1643
1644 enum ib_raw_packet_caps {
1645 /* Strip cvlan from incoming packet and report it in the matching work
1646 * completion is supported.
1647 */
1648 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1649 /* Scatter FCS field of an incoming packet to host memory is supported.
1650 */
1651 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1652 /* Checksum offloads are supported (for both send and receive). */
1653 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1654 /* When a packet is received for an RQ with no receive WQEs, the
1655 * packet processing is delayed.
1656 */
1657 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1658 };
1659
1660 enum ib_wq_type {
1661 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1662 };
1663
1664 enum ib_wq_state {
1665 IB_WQS_RESET,
1666 IB_WQS_RDY,
1667 IB_WQS_ERR
1668 };
1669
1670 struct ib_wq {
1671 struct ib_device *device;
1672 struct ib_uwq_object *uobject;
1673 void *wq_context;
1674 void (*event_handler)(struct ib_event *, void *);
1675 struct ib_pd *pd;
1676 struct ib_cq *cq;
1677 u32 wq_num;
1678 enum ib_wq_state state;
1679 enum ib_wq_type wq_type;
1680 atomic_t usecnt;
1681 };
1682
1683 enum ib_wq_flags {
1684 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1685 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1686 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1687 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1688 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1689 };
1690
1691 struct ib_wq_init_attr {
1692 void *wq_context;
1693 enum ib_wq_type wq_type;
1694 u32 max_wr;
1695 u32 max_sge;
1696 struct ib_cq *cq;
1697 void (*event_handler)(struct ib_event *, void *);
1698 u32 create_flags; /* Use enum ib_wq_flags */
1699 };
1700
1701 enum ib_wq_attr_mask {
1702 IB_WQ_STATE = 1 << 0,
1703 IB_WQ_CUR_STATE = 1 << 1,
1704 IB_WQ_FLAGS = 1 << 2,
1705 };
1706
1707 struct ib_wq_attr {
1708 enum ib_wq_state wq_state;
1709 enum ib_wq_state curr_wq_state;
1710 u32 flags; /* Use enum ib_wq_flags */
1711 u32 flags_mask; /* Use enum ib_wq_flags */
1712 };
1713
1714 struct ib_rwq_ind_table {
1715 struct ib_device *device;
1716 struct ib_uobject *uobject;
1717 atomic_t usecnt;
1718 u32 ind_tbl_num;
1719 u32 log_ind_tbl_size;
1720 struct ib_wq **ind_tbl;
1721 };
1722
1723 struct ib_rwq_ind_table_init_attr {
1724 u32 log_ind_tbl_size;
1725 /* Each entry is a pointer to Receive Work Queue */
1726 struct ib_wq **ind_tbl;
1727 };
1728
1729 enum port_pkey_state {
1730 IB_PORT_PKEY_NOT_VALID = 0,
1731 IB_PORT_PKEY_VALID = 1,
1732 IB_PORT_PKEY_LISTED = 2,
1733 };
1734
1735 struct ib_qp_security;
1736
1737 struct ib_port_pkey {
1738 enum port_pkey_state state;
1739 u16 pkey_index;
1740 u8 port_num;
1741 struct list_head qp_list;
1742 struct list_head to_error_list;
1743 struct ib_qp_security *sec;
1744 };
1745
1746 struct ib_ports_pkeys {
1747 struct ib_port_pkey main;
1748 struct ib_port_pkey alt;
1749 };
1750
1751 struct ib_qp_security {
1752 struct ib_qp *qp;
1753 struct ib_device *dev;
1754 /* Hold this mutex when changing port and pkey settings. */
1755 struct mutex mutex;
1756 struct ib_ports_pkeys *ports_pkeys;
1757 /* A list of all open shared QP handles. Required to enforce security
1758 * properly for all users of a shared QP.
1759 */
1760 struct list_head shared_qp_list;
1761 void *security;
1762 bool destroying;
1763 atomic_t error_list_count;
1764 struct completion error_complete;
1765 int error_comps_pending;
1766 };
1767
1768 /*
1769 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1770 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1771 */
1772 struct ib_qp {
1773 struct ib_device *device;
1774 struct ib_pd *pd;
1775 struct ib_cq *send_cq;
1776 struct ib_cq *recv_cq;
1777 spinlock_t mr_lock;
1778 int mrs_used;
1779 struct list_head rdma_mrs;
1780 struct list_head sig_mrs;
1781 struct ib_srq *srq;
1782 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1783 struct list_head xrcd_list;
1784
1785 /* count times opened, mcast attaches, flow attaches */
1786 atomic_t usecnt;
1787 struct list_head open_list;
1788 struct ib_qp *real_qp;
1789 struct ib_uqp_object *uobject;
1790 void (*event_handler)(struct ib_event *, void *);
1791 void *qp_context;
1792 /* sgid_attrs associated with the AV's */
1793 const struct ib_gid_attr *av_sgid_attr;
1794 const struct ib_gid_attr *alt_path_sgid_attr;
1795 u32 qp_num;
1796 u32 max_write_sge;
1797 u32 max_read_sge;
1798 enum ib_qp_type qp_type;
1799 struct ib_rwq_ind_table *rwq_ind_tbl;
1800 struct ib_qp_security *qp_sec;
1801 u8 port;
1802
1803 bool integrity_en;
1804 /*
1805 * Implementation details of the RDMA core, don't use in drivers:
1806 */
1807 struct rdma_restrack_entry res;
1808
1809 /* The counter the qp is bind to */
1810 struct rdma_counter *counter;
1811 };
1812
1813 struct ib_dm {
1814 struct ib_device *device;
1815 u32 length;
1816 u32 flags;
1817 struct ib_uobject *uobject;
1818 atomic_t usecnt;
1819 };
1820
1821 struct ib_mr {
1822 struct ib_device *device;
1823 struct ib_pd *pd;
1824 u32 lkey;
1825 u32 rkey;
1826 u64 iova;
1827 u64 length;
1828 unsigned int page_size;
1829 enum ib_mr_type type;
1830 bool need_inval;
1831 union {
1832 struct ib_uobject *uobject; /* user */
1833 struct list_head qp_entry; /* FR */
1834 };
1835
1836 struct ib_dm *dm;
1837 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1838 /*
1839 * Implementation details of the RDMA core, don't use in drivers:
1840 */
1841 struct rdma_restrack_entry res;
1842 };
1843
1844 struct ib_mw {
1845 struct ib_device *device;
1846 struct ib_pd *pd;
1847 struct ib_uobject *uobject;
1848 u32 rkey;
1849 enum ib_mw_type type;
1850 };
1851
1852 /* Supported steering options */
1853 enum ib_flow_attr_type {
1854 /* steering according to rule specifications */
1855 IB_FLOW_ATTR_NORMAL = 0x0,
1856 /* default unicast and multicast rule -
1857 * receive all Eth traffic which isn't steered to any QP
1858 */
1859 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1860 /* default multicast rule -
1861 * receive all Eth multicast traffic which isn't steered to any QP
1862 */
1863 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1864 /* sniffer rule - receive all port traffic */
1865 IB_FLOW_ATTR_SNIFFER = 0x3
1866 };
1867
1868 /* Supported steering header types */
1869 enum ib_flow_spec_type {
1870 /* L2 headers*/
1871 IB_FLOW_SPEC_ETH = 0x20,
1872 IB_FLOW_SPEC_IB = 0x22,
1873 /* L3 header*/
1874 IB_FLOW_SPEC_IPV4 = 0x30,
1875 IB_FLOW_SPEC_IPV6 = 0x31,
1876 IB_FLOW_SPEC_ESP = 0x34,
1877 /* L4 headers*/
1878 IB_FLOW_SPEC_TCP = 0x40,
1879 IB_FLOW_SPEC_UDP = 0x41,
1880 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1881 IB_FLOW_SPEC_GRE = 0x51,
1882 IB_FLOW_SPEC_MPLS = 0x60,
1883 IB_FLOW_SPEC_INNER = 0x100,
1884 /* Actions */
1885 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1886 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1887 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1888 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1889 };
1890 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1891 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1892
1893 /* Flow steering rule priority is set according to it's domain.
1894 * Lower domain value means higher priority.
1895 */
1896 enum ib_flow_domain {
1897 IB_FLOW_DOMAIN_USER,
1898 IB_FLOW_DOMAIN_ETHTOOL,
1899 IB_FLOW_DOMAIN_RFS,
1900 IB_FLOW_DOMAIN_NIC,
1901 IB_FLOW_DOMAIN_NUM /* Must be last */
1902 };
1903
1904 enum ib_flow_flags {
1905 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1906 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1908 };
1909
1910 struct ib_flow_eth_filter {
1911 u8 dst_mac[6];
1912 u8 src_mac[6];
1913 __be16 ether_type;
1914 __be16 vlan_tag;
1915 /* Must be last */
1916 u8 real_sz[];
1917 };
1918
1919 struct ib_flow_spec_eth {
1920 u32 type;
1921 u16 size;
1922 struct ib_flow_eth_filter val;
1923 struct ib_flow_eth_filter mask;
1924 };
1925
1926 struct ib_flow_ib_filter {
1927 __be16 dlid;
1928 __u8 sl;
1929 /* Must be last */
1930 u8 real_sz[];
1931 };
1932
1933 struct ib_flow_spec_ib {
1934 u32 type;
1935 u16 size;
1936 struct ib_flow_ib_filter val;
1937 struct ib_flow_ib_filter mask;
1938 };
1939
1940 /* IPv4 header flags */
1941 enum ib_ipv4_flags {
1942 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1943 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1944 last have this flag set */
1945 };
1946
1947 struct ib_flow_ipv4_filter {
1948 __be32 src_ip;
1949 __be32 dst_ip;
1950 u8 proto;
1951 u8 tos;
1952 u8 ttl;
1953 u8 flags;
1954 /* Must be last */
1955 u8 real_sz[];
1956 };
1957
1958 struct ib_flow_spec_ipv4 {
1959 u32 type;
1960 u16 size;
1961 struct ib_flow_ipv4_filter val;
1962 struct ib_flow_ipv4_filter mask;
1963 };
1964
1965 struct ib_flow_ipv6_filter {
1966 u8 src_ip[16];
1967 u8 dst_ip[16];
1968 __be32 flow_label;
1969 u8 next_hdr;
1970 u8 traffic_class;
1971 u8 hop_limit;
1972 /* Must be last */
1973 u8 real_sz[];
1974 };
1975
1976 struct ib_flow_spec_ipv6 {
1977 u32 type;
1978 u16 size;
1979 struct ib_flow_ipv6_filter val;
1980 struct ib_flow_ipv6_filter mask;
1981 };
1982
1983 struct ib_flow_tcp_udp_filter {
1984 __be16 dst_port;
1985 __be16 src_port;
1986 /* Must be last */
1987 u8 real_sz[];
1988 };
1989
1990 struct ib_flow_spec_tcp_udp {
1991 u32 type;
1992 u16 size;
1993 struct ib_flow_tcp_udp_filter val;
1994 struct ib_flow_tcp_udp_filter mask;
1995 };
1996
1997 struct ib_flow_tunnel_filter {
1998 __be32 tunnel_id;
1999 u8 real_sz[];
2000 };
2001
2002 /* ib_flow_spec_tunnel describes the Vxlan tunnel
2003 * the tunnel_id from val has the vni value
2004 */
2005 struct ib_flow_spec_tunnel {
2006 u32 type;
2007 u16 size;
2008 struct ib_flow_tunnel_filter val;
2009 struct ib_flow_tunnel_filter mask;
2010 };
2011
2012 struct ib_flow_esp_filter {
2013 __be32 spi;
2014 __be32 seq;
2015 /* Must be last */
2016 u8 real_sz[];
2017 };
2018
2019 struct ib_flow_spec_esp {
2020 u32 type;
2021 u16 size;
2022 struct ib_flow_esp_filter val;
2023 struct ib_flow_esp_filter mask;
2024 };
2025
2026 struct ib_flow_gre_filter {
2027 __be16 c_ks_res0_ver;
2028 __be16 protocol;
2029 __be32 key;
2030 /* Must be last */
2031 u8 real_sz[];
2032 };
2033
2034 struct ib_flow_spec_gre {
2035 u32 type;
2036 u16 size;
2037 struct ib_flow_gre_filter val;
2038 struct ib_flow_gre_filter mask;
2039 };
2040
2041 struct ib_flow_mpls_filter {
2042 __be32 tag;
2043 /* Must be last */
2044 u8 real_sz[];
2045 };
2046
2047 struct ib_flow_spec_mpls {
2048 u32 type;
2049 u16 size;
2050 struct ib_flow_mpls_filter val;
2051 struct ib_flow_mpls_filter mask;
2052 };
2053
2054 struct ib_flow_spec_action_tag {
2055 enum ib_flow_spec_type type;
2056 u16 size;
2057 u32 tag_id;
2058 };
2059
2060 struct ib_flow_spec_action_drop {
2061 enum ib_flow_spec_type type;
2062 u16 size;
2063 };
2064
2065 struct ib_flow_spec_action_handle {
2066 enum ib_flow_spec_type type;
2067 u16 size;
2068 struct ib_flow_action *act;
2069 };
2070
2071 enum ib_counters_description {
2072 IB_COUNTER_PACKETS,
2073 IB_COUNTER_BYTES,
2074 };
2075
2076 struct ib_flow_spec_action_count {
2077 enum ib_flow_spec_type type;
2078 u16 size;
2079 struct ib_counters *counters;
2080 };
2081
2082 union ib_flow_spec {
2083 struct {
2084 u32 type;
2085 u16 size;
2086 };
2087 struct ib_flow_spec_eth eth;
2088 struct ib_flow_spec_ib ib;
2089 struct ib_flow_spec_ipv4 ipv4;
2090 struct ib_flow_spec_tcp_udp tcp_udp;
2091 struct ib_flow_spec_ipv6 ipv6;
2092 struct ib_flow_spec_tunnel tunnel;
2093 struct ib_flow_spec_esp esp;
2094 struct ib_flow_spec_gre gre;
2095 struct ib_flow_spec_mpls mpls;
2096 struct ib_flow_spec_action_tag flow_tag;
2097 struct ib_flow_spec_action_drop drop;
2098 struct ib_flow_spec_action_handle action;
2099 struct ib_flow_spec_action_count flow_count;
2100 };
2101
2102 struct ib_flow_attr {
2103 enum ib_flow_attr_type type;
2104 u16 size;
2105 u16 priority;
2106 u32 flags;
2107 u8 num_of_specs;
2108 u8 port;
2109 union ib_flow_spec flows[];
2110 };
2111
2112 struct ib_flow {
2113 struct ib_qp *qp;
2114 struct ib_device *device;
2115 struct ib_uobject *uobject;
2116 };
2117
2118 enum ib_flow_action_type {
2119 IB_FLOW_ACTION_UNSPECIFIED,
2120 IB_FLOW_ACTION_ESP = 1,
2121 };
2122
2123 struct ib_flow_action_attrs_esp_keymats {
2124 enum ib_uverbs_flow_action_esp_keymat protocol;
2125 union {
2126 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2127 } keymat;
2128 };
2129
2130 struct ib_flow_action_attrs_esp_replays {
2131 enum ib_uverbs_flow_action_esp_replay protocol;
2132 union {
2133 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2134 } replay;
2135 };
2136
2137 enum ib_flow_action_attrs_esp_flags {
2138 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2139 * This is done in order to share the same flags between user-space and
2140 * kernel and spare an unnecessary translation.
2141 */
2142
2143 /* Kernel flags */
2144 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2145 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2146 };
2147
2148 struct ib_flow_spec_list {
2149 struct ib_flow_spec_list *next;
2150 union ib_flow_spec spec;
2151 };
2152
2153 struct ib_flow_action_attrs_esp {
2154 struct ib_flow_action_attrs_esp_keymats *keymat;
2155 struct ib_flow_action_attrs_esp_replays *replay;
2156 struct ib_flow_spec_list *encap;
2157 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2158 * Value of 0 is a valid value.
2159 */
2160 u32 esn;
2161 u32 spi;
2162 u32 seq;
2163 u32 tfc_pad;
2164 /* Use enum ib_flow_action_attrs_esp_flags */
2165 u64 flags;
2166 u64 hard_limit_pkts;
2167 };
2168
2169 struct ib_flow_action {
2170 struct ib_device *device;
2171 struct ib_uobject *uobject;
2172 enum ib_flow_action_type type;
2173 atomic_t usecnt;
2174 };
2175
2176 struct ib_mad;
2177 struct ib_grh;
2178
2179 enum ib_process_mad_flags {
2180 IB_MAD_IGNORE_MKEY = 1,
2181 IB_MAD_IGNORE_BKEY = 2,
2182 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2183 };
2184
2185 enum ib_mad_result {
2186 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2187 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2188 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2189 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2190 };
2191
2192 struct ib_port_cache {
2193 u64 subnet_prefix;
2194 struct ib_pkey_cache *pkey;
2195 struct ib_gid_table *gid;
2196 u8 lmc;
2197 enum ib_port_state port_state;
2198 };
2199
2200 struct ib_port_immutable {
2201 int pkey_tbl_len;
2202 int gid_tbl_len;
2203 u32 core_cap_flags;
2204 u32 max_mad_size;
2205 };
2206
2207 struct ib_port_data {
2208 struct ib_device *ib_dev;
2209
2210 struct ib_port_immutable immutable;
2211
2212 spinlock_t pkey_list_lock;
2213 struct list_head pkey_list;
2214
2215 struct ib_port_cache cache;
2216
2217 spinlock_t netdev_lock;
2218 struct net_device __rcu *netdev;
2219 struct hlist_node ndev_hash_link;
2220 struct rdma_port_counter port_counter;
2221 struct rdma_hw_stats *hw_stats;
2222 };
2223
2224 /* rdma netdev type - specifies protocol type */
2225 enum rdma_netdev_t {
2226 RDMA_NETDEV_OPA_VNIC,
2227 RDMA_NETDEV_IPOIB,
2228 };
2229
2230 /**
2231 * struct rdma_netdev - rdma netdev
2232 * For cases where netstack interfacing is required.
2233 */
2234 struct rdma_netdev {
2235 void *clnt_priv;
2236 struct ib_device *hca;
2237 u8 port_num;
2238 int mtu;
2239
2240 /*
2241 * cleanup function must be specified.
2242 * FIXME: This is only used for OPA_VNIC and that usage should be
2243 * removed too.
2244 */
2245 void (*free_rdma_netdev)(struct net_device *netdev);
2246
2247 /* control functions */
2248 void (*set_id)(struct net_device *netdev, int id);
2249 /* send packet */
2250 int (*send)(struct net_device *dev, struct sk_buff *skb,
2251 struct ib_ah *address, u32 dqpn);
2252 /* multicast */
2253 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2254 union ib_gid *gid, u16 mlid,
2255 int set_qkey, u32 qkey);
2256 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2257 union ib_gid *gid, u16 mlid);
2258 };
2259
2260 struct rdma_netdev_alloc_params {
2261 size_t sizeof_priv;
2262 unsigned int txqs;
2263 unsigned int rxqs;
2264 void *param;
2265
2266 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2267 struct net_device *netdev, void *param);
2268 };
2269
2270 struct ib_odp_counters {
2271 atomic64_t faults;
2272 atomic64_t invalidations;
2273 };
2274
2275 struct ib_counters {
2276 struct ib_device *device;
2277 struct ib_uobject *uobject;
2278 /* num of objects attached */
2279 atomic_t usecnt;
2280 };
2281
2282 struct ib_counters_read_attr {
2283 u64 *counters_buff;
2284 u32 ncounters;
2285 u32 flags; /* use enum ib_read_counters_flags */
2286 };
2287
2288 struct uverbs_attr_bundle;
2289 struct iw_cm_id;
2290 struct iw_cm_conn_param;
2291
2292 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2293 .size_##ib_struct = \
2294 (sizeof(struct drv_struct) + \
2295 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2296 BUILD_BUG_ON_ZERO( \
2297 !__same_type(((struct drv_struct *)NULL)->member, \
2298 struct ib_struct)))
2299
2300 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2301 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2302
2303 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2304 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2305
2306 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2307
2308 struct rdma_user_mmap_entry {
2309 struct kref ref;
2310 struct ib_ucontext *ucontext;
2311 unsigned long start_pgoff;
2312 size_t npages;
2313 bool driver_removed;
2314 };
2315
2316 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2317 static inline u64
2318 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2319 {
2320 return (u64)entry->start_pgoff << PAGE_SHIFT;
2321 }
2322
2323 /**
2324 * struct ib_device_ops - InfiniBand device operations
2325 * This structure defines all the InfiniBand device operations, providers will
2326 * need to define the supported operations, otherwise they will be set to null.
2327 */
2328 struct ib_device_ops {
2329 struct module *owner;
2330 enum rdma_driver_id driver_id;
2331 u32 uverbs_abi_ver;
2332 unsigned int uverbs_no_driver_id_binding:1;
2333
2334 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2335 const struct ib_send_wr **bad_send_wr);
2336 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2337 const struct ib_recv_wr **bad_recv_wr);
2338 void (*drain_rq)(struct ib_qp *qp);
2339 void (*drain_sq)(struct ib_qp *qp);
2340 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2341 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2342 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2343 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2344 int (*post_srq_recv)(struct ib_srq *srq,
2345 const struct ib_recv_wr *recv_wr,
2346 const struct ib_recv_wr **bad_recv_wr);
2347 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348 u8 port_num, const struct ib_wc *in_wc,
2349 const struct ib_grh *in_grh,
2350 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351 size_t *out_mad_size, u16 *out_mad_pkey_index);
2352 int (*query_device)(struct ib_device *device,
2353 struct ib_device_attr *device_attr,
2354 struct ib_udata *udata);
2355 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356 struct ib_device_modify *device_modify);
2357 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2359 int comp_vector);
2360 int (*query_port)(struct ib_device *device, u8 port_num,
2361 struct ib_port_attr *port_attr);
2362 int (*modify_port)(struct ib_device *device, u8 port_num,
2363 int port_modify_mask,
2364 struct ib_port_modify *port_modify);
2365 /**
2366 * The following mandatory functions are used only at device
2367 * registration. Keep functions such as these at the end of this
2368 * structure to avoid cache line misses when accessing struct ib_device
2369 * in fast paths.
2370 */
2371 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2372 struct ib_port_immutable *immutable);
2373 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2374 u8 port_num);
2375 /**
2376 * When calling get_netdev, the HW vendor's driver should return the
2377 * net device of device @device at port @port_num or NULL if such
2378 * a net device doesn't exist. The vendor driver should call dev_hold
2379 * on this net device. The HW vendor's device driver must guarantee
2380 * that this function returns NULL before the net device has finished
2381 * NETDEV_UNREGISTER state.
2382 */
2383 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2384 /**
2385 * rdma netdev operation
2386 *
2387 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2388 * must return -EOPNOTSUPP if it doesn't support the specified type.
2389 */
2390 struct net_device *(*alloc_rdma_netdev)(
2391 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2392 const char *name, unsigned char name_assign_type,
2393 void (*setup)(struct net_device *));
2394
2395 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2396 enum rdma_netdev_t type,
2397 struct rdma_netdev_alloc_params *params);
2398 /**
2399 * query_gid should be return GID value for @device, when @port_num
2400 * link layer is either IB or iWarp. It is no-op if @port_num port
2401 * is RoCE link layer.
2402 */
2403 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2404 union ib_gid *gid);
2405 /**
2406 * When calling add_gid, the HW vendor's driver should add the gid
2407 * of device of port at gid index available at @attr. Meta-info of
2408 * that gid (for example, the network device related to this gid) is
2409 * available at @attr. @context allows the HW vendor driver to store
2410 * extra information together with a GID entry. The HW vendor driver may
2411 * allocate memory to contain this information and store it in @context
2412 * when a new GID entry is written to. Params are consistent until the
2413 * next call of add_gid or delete_gid. The function should return 0 on
2414 * success or error otherwise. The function could be called
2415 * concurrently for different ports. This function is only called when
2416 * roce_gid_table is used.
2417 */
2418 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2419 /**
2420 * When calling del_gid, the HW vendor's driver should delete the
2421 * gid of device @device at gid index gid_index of port port_num
2422 * available in @attr.
2423 * Upon the deletion of a GID entry, the HW vendor must free any
2424 * allocated memory. The caller will clear @context afterwards.
2425 * This function is only called when roce_gid_table is used.
2426 */
2427 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2428 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2429 u16 *pkey);
2430 int (*alloc_ucontext)(struct ib_ucontext *context,
2431 struct ib_udata *udata);
2432 void (*dealloc_ucontext)(struct ib_ucontext *context);
2433 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2434 /**
2435 * This will be called once refcount of an entry in mmap_xa reaches
2436 * zero. The type of the memory that was mapped may differ between
2437 * entries and is opaque to the rdma_user_mmap interface.
2438 * Therefore needs to be implemented by the driver in mmap_free.
2439 */
2440 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2441 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2442 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2443 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2444 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2445 struct ib_udata *udata);
2446 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2447 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2448 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2449 int (*create_srq)(struct ib_srq *srq,
2450 struct ib_srq_init_attr *srq_init_attr,
2451 struct ib_udata *udata);
2452 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2453 enum ib_srq_attr_mask srq_attr_mask,
2454 struct ib_udata *udata);
2455 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2456 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2457 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2458 struct ib_qp_init_attr *qp_init_attr,
2459 struct ib_udata *udata);
2460 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2461 int qp_attr_mask, struct ib_udata *udata);
2462 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2464 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2465 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2466 struct ib_udata *udata);
2467 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2468 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2469 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2470 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2471 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2472 u64 virt_addr, int mr_access_flags,
2473 struct ib_udata *udata);
2474 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2475 u64 virt_addr, int mr_access_flags,
2476 struct ib_pd *pd, struct ib_udata *udata);
2477 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2478 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2479 u32 max_num_sg, struct ib_udata *udata);
2480 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2481 u32 max_num_data_sg,
2482 u32 max_num_meta_sg);
2483 int (*advise_mr)(struct ib_pd *pd,
2484 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2485 struct ib_sge *sg_list, u32 num_sge,
2486 struct uverbs_attr_bundle *attrs);
2487 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2488 unsigned int *sg_offset);
2489 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2490 struct ib_mr_status *mr_status);
2491 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2492 struct ib_udata *udata);
2493 int (*dealloc_mw)(struct ib_mw *mw);
2494 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2495 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2496 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2497 struct ib_udata *udata);
2498 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2499 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2500 struct ib_flow_attr *flow_attr,
2501 int domain, struct ib_udata *udata);
2502 int (*destroy_flow)(struct ib_flow *flow_id);
2503 struct ib_flow_action *(*create_flow_action_esp)(
2504 struct ib_device *device,
2505 const struct ib_flow_action_attrs_esp *attr,
2506 struct uverbs_attr_bundle *attrs);
2507 int (*destroy_flow_action)(struct ib_flow_action *action);
2508 int (*modify_flow_action_esp)(
2509 struct ib_flow_action *action,
2510 const struct ib_flow_action_attrs_esp *attr,
2511 struct uverbs_attr_bundle *attrs);
2512 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2513 int state);
2514 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2515 struct ifla_vf_info *ivf);
2516 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2517 struct ifla_vf_stats *stats);
2518 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2519 struct ifla_vf_guid *node_guid,
2520 struct ifla_vf_guid *port_guid);
2521 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2522 int type);
2523 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2524 struct ib_wq_init_attr *init_attr,
2525 struct ib_udata *udata);
2526 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2527 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2528 u32 wq_attr_mask, struct ib_udata *udata);
2529 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2530 struct ib_device *device,
2531 struct ib_rwq_ind_table_init_attr *init_attr,
2532 struct ib_udata *udata);
2533 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2534 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2535 struct ib_ucontext *context,
2536 struct ib_dm_alloc_attr *attr,
2537 struct uverbs_attr_bundle *attrs);
2538 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2539 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2540 struct ib_dm_mr_attr *attr,
2541 struct uverbs_attr_bundle *attrs);
2542 struct ib_counters *(*create_counters)(
2543 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2544 int (*destroy_counters)(struct ib_counters *counters);
2545 int (*read_counters)(struct ib_counters *counters,
2546 struct ib_counters_read_attr *counters_read_attr,
2547 struct uverbs_attr_bundle *attrs);
2548 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2549 int data_sg_nents, unsigned int *data_sg_offset,
2550 struct scatterlist *meta_sg, int meta_sg_nents,
2551 unsigned int *meta_sg_offset);
2552
2553 /**
2554 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2555 * driver initialized data. The struct is kfree()'ed by the sysfs
2556 * core when the device is removed. A lifespan of -1 in the return
2557 * struct tells the core to set a default lifespan.
2558 */
2559 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2560 u8 port_num);
2561 /**
2562 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2563 * @index - The index in the value array we wish to have updated, or
2564 * num_counters if we want all stats updated
2565 * Return codes -
2566 * < 0 - Error, no counters updated
2567 * index - Updated the single counter pointed to by index
2568 * num_counters - Updated all counters (will reset the timestamp
2569 * and prevent further calls for lifespan milliseconds)
2570 * Drivers are allowed to update all counters in leiu of just the
2571 * one given in index at their option
2572 */
2573 int (*get_hw_stats)(struct ib_device *device,
2574 struct rdma_hw_stats *stats, u8 port, int index);
2575 /*
2576 * This function is called once for each port when a ib device is
2577 * registered.
2578 */
2579 int (*init_port)(struct ib_device *device, u8 port_num,
2580 struct kobject *port_sysfs);
2581 /**
2582 * Allows rdma drivers to add their own restrack attributes.
2583 */
2584 int (*fill_res_entry)(struct sk_buff *msg,
2585 struct rdma_restrack_entry *entry);
2586
2587 /* Device lifecycle callbacks */
2588 /*
2589 * Called after the device becomes registered, before clients are
2590 * attached
2591 */
2592 int (*enable_driver)(struct ib_device *dev);
2593 /*
2594 * This is called as part of ib_dealloc_device().
2595 */
2596 void (*dealloc_driver)(struct ib_device *dev);
2597
2598 /* iWarp CM callbacks */
2599 void (*iw_add_ref)(struct ib_qp *qp);
2600 void (*iw_rem_ref)(struct ib_qp *qp);
2601 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2602 int (*iw_connect)(struct iw_cm_id *cm_id,
2603 struct iw_cm_conn_param *conn_param);
2604 int (*iw_accept)(struct iw_cm_id *cm_id,
2605 struct iw_cm_conn_param *conn_param);
2606 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2607 u8 pdata_len);
2608 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2609 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2610 /**
2611 * counter_bind_qp - Bind a QP to a counter.
2612 * @counter - The counter to be bound. If counter->id is zero then
2613 * the driver needs to allocate a new counter and set counter->id
2614 */
2615 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2616 /**
2617 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2618 * counter and bind it onto the default one
2619 */
2620 int (*counter_unbind_qp)(struct ib_qp *qp);
2621 /**
2622 * counter_dealloc -De-allocate the hw counter
2623 */
2624 int (*counter_dealloc)(struct rdma_counter *counter);
2625 /**
2626 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2627 * the driver initialized data.
2628 */
2629 struct rdma_hw_stats *(*counter_alloc_stats)(
2630 struct rdma_counter *counter);
2631 /**
2632 * counter_update_stats - Query the stats value of this counter
2633 */
2634 int (*counter_update_stats)(struct rdma_counter *counter);
2635
2636 /**
2637 * Allows rdma drivers to add their own restrack attributes
2638 * dumped via 'rdma stat' iproute2 command.
2639 */
2640 int (*fill_stat_entry)(struct sk_buff *msg,
2641 struct rdma_restrack_entry *entry);
2642
2643 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2644 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2645 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2646 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2647 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2648 };
2649
2650 struct ib_core_device {
2651 /* device must be the first element in structure until,
2652 * union of ib_core_device and device exists in ib_device.
2653 */
2654 struct device dev;
2655 possible_net_t rdma_net;
2656 struct kobject *ports_kobj;
2657 struct list_head port_list;
2658 struct ib_device *owner; /* reach back to owner ib_device */
2659 };
2660
2661 struct rdma_restrack_root;
2662 struct ib_device {
2663 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2664 struct device *dma_device;
2665 struct ib_device_ops ops;
2666 char name[IB_DEVICE_NAME_MAX];
2667 struct rcu_head rcu_head;
2668
2669 struct list_head event_handler_list;
2670 /* Protects event_handler_list */
2671 struct rw_semaphore event_handler_rwsem;
2672
2673 /* Protects QP's event_handler calls and open_qp list */
2674 spinlock_t qp_open_list_lock;
2675
2676 struct rw_semaphore client_data_rwsem;
2677 struct xarray client_data;
2678 struct mutex unregistration_lock;
2679
2680 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2681 rwlock_t cache_lock;
2682 /**
2683 * port_data is indexed by port number
2684 */
2685 struct ib_port_data *port_data;
2686
2687 int num_comp_vectors;
2688
2689 union {
2690 struct device dev;
2691 struct ib_core_device coredev;
2692 };
2693
2694 /* First group for device attributes,
2695 * Second group for driver provided attributes (optional).
2696 * It is NULL terminated array.
2697 */
2698 const struct attribute_group *groups[3];
2699
2700 u64 uverbs_cmd_mask;
2701 u64 uverbs_ex_cmd_mask;
2702
2703 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2704 __be64 node_guid;
2705 u32 local_dma_lkey;
2706 u16 is_switch:1;
2707 /* Indicates kernel verbs support, should not be used in drivers */
2708 u16 kverbs_provider:1;
2709 /* CQ adaptive moderation (RDMA DIM) */
2710 u16 use_cq_dim:1;
2711 u8 node_type;
2712 u8 phys_port_cnt;
2713 struct ib_device_attr attrs;
2714 struct attribute_group *hw_stats_ag;
2715 struct rdma_hw_stats *hw_stats;
2716
2717 #ifdef CONFIG_CGROUP_RDMA
2718 struct rdmacg_device cg_device;
2719 #endif
2720
2721 u32 index;
2722
2723 spinlock_t cq_pools_lock;
2724 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2725
2726 struct rdma_restrack_root *res;
2727
2728 const struct uapi_definition *driver_def;
2729
2730 /*
2731 * Positive refcount indicates that the device is currently
2732 * registered and cannot be unregistered.
2733 */
2734 refcount_t refcount;
2735 struct completion unreg_completion;
2736 struct work_struct unregistration_work;
2737
2738 const struct rdma_link_ops *link_ops;
2739
2740 /* Protects compat_devs xarray modifications */
2741 struct mutex compat_devs_mutex;
2742 /* Maintains compat devices for each net namespace */
2743 struct xarray compat_devs;
2744
2745 /* Used by iWarp CM */
2746 char iw_ifname[IFNAMSIZ];
2747 u32 iw_driver_flags;
2748 u32 lag_flags;
2749 };
2750
2751 struct ib_client_nl_info;
2752 struct ib_client {
2753 const char *name;
2754 int (*add)(struct ib_device *ibdev);
2755 void (*remove)(struct ib_device *, void *client_data);
2756 void (*rename)(struct ib_device *dev, void *client_data);
2757 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2758 struct ib_client_nl_info *res);
2759 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2760
2761 /* Returns the net_dev belonging to this ib_client and matching the
2762 * given parameters.
2763 * @dev: An RDMA device that the net_dev use for communication.
2764 * @port: A physical port number on the RDMA device.
2765 * @pkey: P_Key that the net_dev uses if applicable.
2766 * @gid: A GID that the net_dev uses to communicate.
2767 * @addr: An IP address the net_dev is configured with.
2768 * @client_data: The device's client data set by ib_set_client_data().
2769 *
2770 * An ib_client that implements a net_dev on top of RDMA devices
2771 * (such as IP over IB) should implement this callback, allowing the
2772 * rdma_cm module to find the right net_dev for a given request.
2773 *
2774 * The caller is responsible for calling dev_put on the returned
2775 * netdev. */
2776 struct net_device *(*get_net_dev_by_params)(
2777 struct ib_device *dev,
2778 u8 port,
2779 u16 pkey,
2780 const union ib_gid *gid,
2781 const struct sockaddr *addr,
2782 void *client_data);
2783
2784 refcount_t uses;
2785 struct completion uses_zero;
2786 u32 client_id;
2787
2788 /* kverbs are not required by the client */
2789 u8 no_kverbs_req:1;
2790 };
2791
2792 /*
2793 * IB block DMA iterator
2794 *
2795 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2796 * to a HW supported page size.
2797 */
2798 struct ib_block_iter {
2799 /* internal states */
2800 struct scatterlist *__sg; /* sg holding the current aligned block */
2801 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2802 unsigned int __sg_nents; /* number of SG entries */
2803 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2804 unsigned int __pg_bit; /* alignment of current block */
2805 };
2806
2807 struct ib_device *_ib_alloc_device(size_t size);
2808 #define ib_alloc_device(drv_struct, member) \
2809 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2810 BUILD_BUG_ON_ZERO(offsetof( \
2811 struct drv_struct, member))), \
2812 struct drv_struct, member)
2813
2814 void ib_dealloc_device(struct ib_device *device);
2815
2816 void ib_get_device_fw_str(struct ib_device *device, char *str);
2817
2818 int ib_register_device(struct ib_device *device, const char *name);
2819 void ib_unregister_device(struct ib_device *device);
2820 void ib_unregister_driver(enum rdma_driver_id driver_id);
2821 void ib_unregister_device_and_put(struct ib_device *device);
2822 void ib_unregister_device_queued(struct ib_device *ib_dev);
2823
2824 int ib_register_client (struct ib_client *client);
2825 void ib_unregister_client(struct ib_client *client);
2826
2827 void __rdma_block_iter_start(struct ib_block_iter *biter,
2828 struct scatterlist *sglist,
2829 unsigned int nents,
2830 unsigned long pgsz);
2831 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2832
2833 /**
2834 * rdma_block_iter_dma_address - get the aligned dma address of the current
2835 * block held by the block iterator.
2836 * @biter: block iterator holding the memory block
2837 */
2838 static inline dma_addr_t
2839 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2840 {
2841 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2842 }
2843
2844 /**
2845 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2846 * @sglist: sglist to iterate over
2847 * @biter: block iterator holding the memory block
2848 * @nents: maximum number of sg entries to iterate over
2849 * @pgsz: best HW supported page size to use
2850 *
2851 * Callers may use rdma_block_iter_dma_address() to get each
2852 * blocks aligned DMA address.
2853 */
2854 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2855 for (__rdma_block_iter_start(biter, sglist, nents, \
2856 pgsz); \
2857 __rdma_block_iter_next(biter);)
2858
2859 /**
2860 * ib_get_client_data - Get IB client context
2861 * @device:Device to get context for
2862 * @client:Client to get context for
2863 *
2864 * ib_get_client_data() returns the client context data set with
2865 * ib_set_client_data(). This can only be called while the client is
2866 * registered to the device, once the ib_client remove() callback returns this
2867 * cannot be called.
2868 */
2869 static inline void *ib_get_client_data(struct ib_device *device,
2870 struct ib_client *client)
2871 {
2872 return xa_load(&device->client_data, client->client_id);
2873 }
2874 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2875 void *data);
2876 void ib_set_device_ops(struct ib_device *device,
2877 const struct ib_device_ops *ops);
2878
2879 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2880 unsigned long pfn, unsigned long size, pgprot_t prot,
2881 struct rdma_user_mmap_entry *entry);
2882 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2883 struct rdma_user_mmap_entry *entry,
2884 size_t length);
2885 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2886 struct rdma_user_mmap_entry *entry,
2887 size_t length, u32 min_pgoff,
2888 u32 max_pgoff);
2889
2890 struct rdma_user_mmap_entry *
2891 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2892 unsigned long pgoff);
2893 struct rdma_user_mmap_entry *
2894 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2895 struct vm_area_struct *vma);
2896 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2897
2898 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2899
2900 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2901 {
2902 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2903 }
2904
2905 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2906 {
2907 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2908 }
2909
2910 static inline bool ib_is_buffer_cleared(const void __user *p,
2911 size_t len)
2912 {
2913 bool ret;
2914 u8 *buf;
2915
2916 if (len > USHRT_MAX)
2917 return false;
2918
2919 buf = memdup_user(p, len);
2920 if (IS_ERR(buf))
2921 return false;
2922
2923 ret = !memchr_inv(buf, 0, len);
2924 kfree(buf);
2925 return ret;
2926 }
2927
2928 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2929 size_t offset,
2930 size_t len)
2931 {
2932 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2933 }
2934
2935 /**
2936 * ib_is_destroy_retryable - Check whether the uobject destruction
2937 * is retryable.
2938 * @ret: The initial destruction return code
2939 * @why: remove reason
2940 * @uobj: The uobject that is destroyed
2941 *
2942 * This function is a helper function that IB layer and low-level drivers
2943 * can use to consider whether the destruction of the given uobject is
2944 * retry-able.
2945 * It checks the original return code, if it wasn't success the destruction
2946 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2947 * the remove reason. (i.e. why).
2948 * Must be called with the object locked for destroy.
2949 */
2950 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2951 struct ib_uobject *uobj)
2952 {
2953 return ret && (why == RDMA_REMOVE_DESTROY ||
2954 uobj->context->cleanup_retryable);
2955 }
2956
2957 /**
2958 * ib_destroy_usecnt - Called during destruction to check the usecnt
2959 * @usecnt: The usecnt atomic
2960 * @why: remove reason
2961 * @uobj: The uobject that is destroyed
2962 *
2963 * Non-zero usecnts will block destruction unless destruction was triggered by
2964 * a ucontext cleanup.
2965 */
2966 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2967 enum rdma_remove_reason why,
2968 struct ib_uobject *uobj)
2969 {
2970 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2971 return -EBUSY;
2972 return 0;
2973 }
2974
2975 /**
2976 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2977 * contains all required attributes and no attributes not allowed for
2978 * the given QP state transition.
2979 * @cur_state: Current QP state
2980 * @next_state: Next QP state
2981 * @type: QP type
2982 * @mask: Mask of supplied QP attributes
2983 *
2984 * This function is a helper function that a low-level driver's
2985 * modify_qp method can use to validate the consumer's input. It
2986 * checks that cur_state and next_state are valid QP states, that a
2987 * transition from cur_state to next_state is allowed by the IB spec,
2988 * and that the attribute mask supplied is allowed for the transition.
2989 */
2990 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2991 enum ib_qp_type type, enum ib_qp_attr_mask mask);
2992
2993 void ib_register_event_handler(struct ib_event_handler *event_handler);
2994 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2995 void ib_dispatch_event(const struct ib_event *event);
2996
2997 int ib_query_port(struct ib_device *device,
2998 u8 port_num, struct ib_port_attr *port_attr);
2999
3000 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3001 u8 port_num);
3002
3003 /**
3004 * rdma_cap_ib_switch - Check if the device is IB switch
3005 * @device: Device to check
3006 *
3007 * Device driver is responsible for setting is_switch bit on
3008 * in ib_device structure at init time.
3009 *
3010 * Return: true if the device is IB switch.
3011 */
3012 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3013 {
3014 return device->is_switch;
3015 }
3016
3017 /**
3018 * rdma_start_port - Return the first valid port number for the device
3019 * specified
3020 *
3021 * @device: Device to be checked
3022 *
3023 * Return start port number
3024 */
3025 static inline u8 rdma_start_port(const struct ib_device *device)
3026 {
3027 return rdma_cap_ib_switch(device) ? 0 : 1;
3028 }
3029
3030 /**
3031 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3032 * @device - The struct ib_device * to iterate over
3033 * @iter - The unsigned int to store the port number
3034 */
3035 #define rdma_for_each_port(device, iter) \
3036 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
3037 unsigned int, iter))); \
3038 iter <= rdma_end_port(device); (iter)++)
3039
3040 /**
3041 * rdma_end_port - Return the last valid port number for the device
3042 * specified
3043 *
3044 * @device: Device to be checked
3045 *
3046 * Return last port number
3047 */
3048 static inline u8 rdma_end_port(const struct ib_device *device)
3049 {
3050 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3051 }
3052
3053 static inline int rdma_is_port_valid(const struct ib_device *device,
3054 unsigned int port)
3055 {
3056 return (port >= rdma_start_port(device) &&
3057 port <= rdma_end_port(device));
3058 }
3059
3060 static inline bool rdma_is_grh_required(const struct ib_device *device,
3061 u8 port_num)
3062 {
3063 return device->port_data[port_num].immutable.core_cap_flags &
3064 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3065 }
3066
3067 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
3068 {
3069 return device->port_data[port_num].immutable.core_cap_flags &
3070 RDMA_CORE_CAP_PROT_IB;
3071 }
3072
3073 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
3074 {
3075 return device->port_data[port_num].immutable.core_cap_flags &
3076 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3077 }
3078
3079 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3080 {
3081 return device->port_data[port_num].immutable.core_cap_flags &
3082 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3083 }
3084
3085 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
3086 {
3087 return device->port_data[port_num].immutable.core_cap_flags &
3088 RDMA_CORE_CAP_PROT_ROCE;
3089 }
3090
3091 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3092 {
3093 return device->port_data[port_num].immutable.core_cap_flags &
3094 RDMA_CORE_CAP_PROT_IWARP;
3095 }
3096
3097 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3098 {
3099 return rdma_protocol_ib(device, port_num) ||
3100 rdma_protocol_roce(device, port_num);
3101 }
3102
3103 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3104 {
3105 return device->port_data[port_num].immutable.core_cap_flags &
3106 RDMA_CORE_CAP_PROT_RAW_PACKET;
3107 }
3108
3109 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3110 {
3111 return device->port_data[port_num].immutable.core_cap_flags &
3112 RDMA_CORE_CAP_PROT_USNIC;
3113 }
3114
3115 /**
3116 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3117 * Management Datagrams.
3118 * @device: Device to check
3119 * @port_num: Port number to check
3120 *
3121 * Management Datagrams (MAD) are a required part of the InfiniBand
3122 * specification and are supported on all InfiniBand devices. A slightly
3123 * extended version are also supported on OPA interfaces.
3124 *
3125 * Return: true if the port supports sending/receiving of MAD packets.
3126 */
3127 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3128 {
3129 return device->port_data[port_num].immutable.core_cap_flags &
3130 RDMA_CORE_CAP_IB_MAD;
3131 }
3132
3133 /**
3134 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3135 * Management Datagrams.
3136 * @device: Device to check
3137 * @port_num: Port number to check
3138 *
3139 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3140 * datagrams with their own versions. These OPA MADs share many but not all of
3141 * the characteristics of InfiniBand MADs.
3142 *
3143 * OPA MADs differ in the following ways:
3144 *
3145 * 1) MADs are variable size up to 2K
3146 * IBTA defined MADs remain fixed at 256 bytes
3147 * 2) OPA SMPs must carry valid PKeys
3148 * 3) OPA SMP packets are a different format
3149 *
3150 * Return: true if the port supports OPA MAD packet formats.
3151 */
3152 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3153 {
3154 return device->port_data[port_num].immutable.core_cap_flags &
3155 RDMA_CORE_CAP_OPA_MAD;
3156 }
3157
3158 /**
3159 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3160 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3161 * @device: Device to check
3162 * @port_num: Port number to check
3163 *
3164 * Each InfiniBand node is required to provide a Subnet Management Agent
3165 * that the subnet manager can access. Prior to the fabric being fully
3166 * configured by the subnet manager, the SMA is accessed via a well known
3167 * interface called the Subnet Management Interface (SMI). This interface
3168 * uses directed route packets to communicate with the SM to get around the
3169 * chicken and egg problem of the SM needing to know what's on the fabric
3170 * in order to configure the fabric, and needing to configure the fabric in
3171 * order to send packets to the devices on the fabric. These directed
3172 * route packets do not need the fabric fully configured in order to reach
3173 * their destination. The SMI is the only method allowed to send
3174 * directed route packets on an InfiniBand fabric.
3175 *
3176 * Return: true if the port provides an SMI.
3177 */
3178 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3179 {
3180 return device->port_data[port_num].immutable.core_cap_flags &
3181 RDMA_CORE_CAP_IB_SMI;
3182 }
3183
3184 /**
3185 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3186 * Communication Manager.
3187 * @device: Device to check
3188 * @port_num: Port number to check
3189 *
3190 * The InfiniBand Communication Manager is one of many pre-defined General
3191 * Service Agents (GSA) that are accessed via the General Service
3192 * Interface (GSI). It's role is to facilitate establishment of connections
3193 * between nodes as well as other management related tasks for established
3194 * connections.
3195 *
3196 * Return: true if the port supports an IB CM (this does not guarantee that
3197 * a CM is actually running however).
3198 */
3199 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3200 {
3201 return device->port_data[port_num].immutable.core_cap_flags &
3202 RDMA_CORE_CAP_IB_CM;
3203 }
3204
3205 /**
3206 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3207 * Communication Manager.
3208 * @device: Device to check
3209 * @port_num: Port number to check
3210 *
3211 * Similar to above, but specific to iWARP connections which have a different
3212 * managment protocol than InfiniBand.
3213 *
3214 * Return: true if the port supports an iWARP CM (this does not guarantee that
3215 * a CM is actually running however).
3216 */
3217 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3218 {
3219 return device->port_data[port_num].immutable.core_cap_flags &
3220 RDMA_CORE_CAP_IW_CM;
3221 }
3222
3223 /**
3224 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3225 * Subnet Administration.
3226 * @device: Device to check
3227 * @port_num: Port number to check
3228 *
3229 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3230 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3231 * fabrics, devices should resolve routes to other hosts by contacting the
3232 * SA to query the proper route.
3233 *
3234 * Return: true if the port should act as a client to the fabric Subnet
3235 * Administration interface. This does not imply that the SA service is
3236 * running locally.
3237 */
3238 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3239 {
3240 return device->port_data[port_num].immutable.core_cap_flags &
3241 RDMA_CORE_CAP_IB_SA;
3242 }
3243
3244 /**
3245 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3246 * Multicast.
3247 * @device: Device to check
3248 * @port_num: Port number to check
3249 *
3250 * InfiniBand multicast registration is more complex than normal IPv4 or
3251 * IPv6 multicast registration. Each Host Channel Adapter must register
3252 * with the Subnet Manager when it wishes to join a multicast group. It
3253 * should do so only once regardless of how many queue pairs it subscribes
3254 * to this group. And it should leave the group only after all queue pairs
3255 * attached to the group have been detached.
3256 *
3257 * Return: true if the port must undertake the additional adminstrative
3258 * overhead of registering/unregistering with the SM and tracking of the
3259 * total number of queue pairs attached to the multicast group.
3260 */
3261 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3262 {
3263 return rdma_cap_ib_sa(device, port_num);
3264 }
3265
3266 /**
3267 * rdma_cap_af_ib - Check if the port of device has the capability
3268 * Native Infiniband Address.
3269 * @device: Device to check
3270 * @port_num: Port number to check
3271 *
3272 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3273 * GID. RoCE uses a different mechanism, but still generates a GID via
3274 * a prescribed mechanism and port specific data.
3275 *
3276 * Return: true if the port uses a GID address to identify devices on the
3277 * network.
3278 */
3279 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3280 {
3281 return device->port_data[port_num].immutable.core_cap_flags &
3282 RDMA_CORE_CAP_AF_IB;
3283 }
3284
3285 /**
3286 * rdma_cap_eth_ah - Check if the port of device has the capability
3287 * Ethernet Address Handle.
3288 * @device: Device to check
3289 * @port_num: Port number to check
3290 *
3291 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3292 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3293 * port. Normally, packet headers are generated by the sending host
3294 * adapter, but when sending connectionless datagrams, we must manually
3295 * inject the proper headers for the fabric we are communicating over.
3296 *
3297 * Return: true if we are running as a RoCE port and must force the
3298 * addition of a Global Route Header built from our Ethernet Address
3299 * Handle into our header list for connectionless packets.
3300 */
3301 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3302 {
3303 return device->port_data[port_num].immutable.core_cap_flags &
3304 RDMA_CORE_CAP_ETH_AH;
3305 }
3306
3307 /**
3308 * rdma_cap_opa_ah - Check if the port of device supports
3309 * OPA Address handles
3310 * @device: Device to check
3311 * @port_num: Port number to check
3312 *
3313 * Return: true if we are running on an OPA device which supports
3314 * the extended OPA addressing.
3315 */
3316 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3317 {
3318 return (device->port_data[port_num].immutable.core_cap_flags &
3319 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3320 }
3321
3322 /**
3323 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3324 *
3325 * @device: Device
3326 * @port_num: Port number
3327 *
3328 * This MAD size includes the MAD headers and MAD payload. No other headers
3329 * are included.
3330 *
3331 * Return the max MAD size required by the Port. Will return 0 if the port
3332 * does not support MADs
3333 */
3334 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3335 {
3336 return device->port_data[port_num].immutable.max_mad_size;
3337 }
3338
3339 /**
3340 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3341 * @device: Device to check
3342 * @port_num: Port number to check
3343 *
3344 * RoCE GID table mechanism manages the various GIDs for a device.
3345 *
3346 * NOTE: if allocating the port's GID table has failed, this call will still
3347 * return true, but any RoCE GID table API will fail.
3348 *
3349 * Return: true if the port uses RoCE GID table mechanism in order to manage
3350 * its GIDs.
3351 */
3352 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3353 u8 port_num)
3354 {
3355 return rdma_protocol_roce(device, port_num) &&
3356 device->ops.add_gid && device->ops.del_gid;
3357 }
3358
3359 /*
3360 * Check if the device supports READ W/ INVALIDATE.
3361 */
3362 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3363 {
3364 /*
3365 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3366 * has support for it yet.
3367 */
3368 return rdma_protocol_iwarp(dev, port_num);
3369 }
3370
3371 /**
3372 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3373 *
3374 * @addr: address
3375 * @pgsz_bitmap: bitmap of HW supported page sizes
3376 */
3377 static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3378 unsigned long pgsz_bitmap)
3379 {
3380 unsigned long align;
3381 unsigned long pgsz;
3382
3383 align = addr & -addr;
3384
3385 /* Find page bit such that addr is aligned to the highest supported
3386 * HW page size
3387 */
3388 pgsz = pgsz_bitmap & ~(-align << 1);
3389 if (!pgsz)
3390 return __ffs(pgsz_bitmap);
3391
3392 return __fls(pgsz);
3393 }
3394
3395 /**
3396 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3397 * @device: Device
3398 * @port_num: 1 based Port number
3399 *
3400 * Return true if port is an Intel OPA port , false if not
3401 */
3402 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3403 u32 port_num)
3404 {
3405 return (device->port_data[port_num].immutable.core_cap_flags &
3406 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3407 }
3408
3409 /**
3410 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3411 * @device: Device
3412 * @port_num: Port number
3413 * @mtu: enum value of MTU
3414 *
3415 * Return the MTU size supported by the port as an integer value. Will return
3416 * -1 if enum value of mtu is not supported.
3417 */
3418 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3419 int mtu)
3420 {
3421 if (rdma_core_cap_opa_port(device, port))
3422 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3423 else
3424 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3425 }
3426
3427 /**
3428 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3429 * @device: Device
3430 * @port_num: Port number
3431 * @attr: port attribute
3432 *
3433 * Return the MTU size supported by the port as an integer value.
3434 */
3435 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3436 struct ib_port_attr *attr)
3437 {
3438 if (rdma_core_cap_opa_port(device, port))
3439 return attr->phys_mtu;
3440 else
3441 return ib_mtu_enum_to_int(attr->max_mtu);
3442 }
3443
3444 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3445 int state);
3446 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3447 struct ifla_vf_info *info);
3448 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3449 struct ifla_vf_stats *stats);
3450 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3451 struct ifla_vf_guid *node_guid,
3452 struct ifla_vf_guid *port_guid);
3453 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3454 int type);
3455
3456 int ib_query_pkey(struct ib_device *device,
3457 u8 port_num, u16 index, u16 *pkey);
3458
3459 int ib_modify_device(struct ib_device *device,
3460 int device_modify_mask,
3461 struct ib_device_modify *device_modify);
3462
3463 int ib_modify_port(struct ib_device *device,
3464 u8 port_num, int port_modify_mask,
3465 struct ib_port_modify *port_modify);
3466
3467 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3468 u8 *port_num, u16 *index);
3469
3470 int ib_find_pkey(struct ib_device *device,
3471 u8 port_num, u16 pkey, u16 *index);
3472
3473 enum ib_pd_flags {
3474 /*
3475 * Create a memory registration for all memory in the system and place
3476 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3477 * ULPs to avoid the overhead of dynamic MRs.
3478 *
3479 * This flag is generally considered unsafe and must only be used in
3480 * extremly trusted environments. Every use of it will log a warning
3481 * in the kernel log.
3482 */
3483 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3484 };
3485
3486 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3487 const char *caller);
3488
3489 #define ib_alloc_pd(device, flags) \
3490 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3491
3492 /**
3493 * ib_dealloc_pd_user - Deallocate kernel/user PD
3494 * @pd: The protection domain
3495 * @udata: Valid user data or NULL for kernel objects
3496 */
3497 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3498
3499 /**
3500 * ib_dealloc_pd - Deallocate kernel PD
3501 * @pd: The protection domain
3502 *
3503 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3504 */
3505 static inline void ib_dealloc_pd(struct ib_pd *pd)
3506 {
3507 ib_dealloc_pd_user(pd, NULL);
3508 }
3509
3510 enum rdma_create_ah_flags {
3511 /* In a sleepable context */
3512 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3513 };
3514
3515 /**
3516 * rdma_create_ah - Creates an address handle for the given address vector.
3517 * @pd: The protection domain associated with the address handle.
3518 * @ah_attr: The attributes of the address vector.
3519 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3520 *
3521 * The address handle is used to reference a local or global destination
3522 * in all UD QP post sends.
3523 */
3524 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3525 u32 flags);
3526
3527 /**
3528 * rdma_create_user_ah - Creates an address handle for the given address vector.
3529 * It resolves destination mac address for ah attribute of RoCE type.
3530 * @pd: The protection domain associated with the address handle.
3531 * @ah_attr: The attributes of the address vector.
3532 * @udata: pointer to user's input output buffer information need by
3533 * provider driver.
3534 *
3535 * It returns 0 on success and returns appropriate error code on error.
3536 * The address handle is used to reference a local or global destination
3537 * in all UD QP post sends.
3538 */
3539 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3540 struct rdma_ah_attr *ah_attr,
3541 struct ib_udata *udata);
3542 /**
3543 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3544 * work completion.
3545 * @hdr: the L3 header to parse
3546 * @net_type: type of header to parse
3547 * @sgid: place to store source gid
3548 * @dgid: place to store destination gid
3549 */
3550 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3551 enum rdma_network_type net_type,
3552 union ib_gid *sgid, union ib_gid *dgid);
3553
3554 /**
3555 * ib_get_rdma_header_version - Get the header version
3556 * @hdr: the L3 header to parse
3557 */
3558 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3559
3560 /**
3561 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3562 * work completion.
3563 * @device: Device on which the received message arrived.
3564 * @port_num: Port on which the received message arrived.
3565 * @wc: Work completion associated with the received message.
3566 * @grh: References the received global route header. This parameter is
3567 * ignored unless the work completion indicates that the GRH is valid.
3568 * @ah_attr: Returned attributes that can be used when creating an address
3569 * handle for replying to the message.
3570 * When ib_init_ah_attr_from_wc() returns success,
3571 * (a) for IB link layer it optionally contains a reference to SGID attribute
3572 * when GRH is present for IB link layer.
3573 * (b) for RoCE link layer it contains a reference to SGID attribute.
3574 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3575 * attributes which are initialized using ib_init_ah_attr_from_wc().
3576 *
3577 */
3578 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3579 const struct ib_wc *wc, const struct ib_grh *grh,
3580 struct rdma_ah_attr *ah_attr);
3581
3582 /**
3583 * ib_create_ah_from_wc - Creates an address handle associated with the
3584 * sender of the specified work completion.
3585 * @pd: The protection domain associated with the address handle.
3586 * @wc: Work completion information associated with a received message.
3587 * @grh: References the received global route header. This parameter is
3588 * ignored unless the work completion indicates that the GRH is valid.
3589 * @port_num: The outbound port number to associate with the address.
3590 *
3591 * The address handle is used to reference a local or global destination
3592 * in all UD QP post sends.
3593 */
3594 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3595 const struct ib_grh *grh, u8 port_num);
3596
3597 /**
3598 * rdma_modify_ah - Modifies the address vector associated with an address
3599 * handle.
3600 * @ah: The address handle to modify.
3601 * @ah_attr: The new address vector attributes to associate with the
3602 * address handle.
3603 */
3604 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3605
3606 /**
3607 * rdma_query_ah - Queries the address vector associated with an address
3608 * handle.
3609 * @ah: The address handle to query.
3610 * @ah_attr: The address vector attributes associated with the address
3611 * handle.
3612 */
3613 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3614
3615 enum rdma_destroy_ah_flags {
3616 /* In a sleepable context */
3617 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3618 };
3619
3620 /**
3621 * rdma_destroy_ah_user - Destroys an address handle.
3622 * @ah: The address handle to destroy.
3623 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3624 * @udata: Valid user data or NULL for kernel objects
3625 */
3626 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3627
3628 /**
3629 * rdma_destroy_ah - Destroys an kernel address handle.
3630 * @ah: The address handle to destroy.
3631 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3632 *
3633 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3634 */
3635 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3636 {
3637 return rdma_destroy_ah_user(ah, flags, NULL);
3638 }
3639
3640 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3641 struct ib_srq_init_attr *srq_init_attr,
3642 struct ib_usrq_object *uobject,
3643 struct ib_udata *udata);
3644 static inline struct ib_srq *
3645 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3646 {
3647 if (!pd->device->ops.create_srq)
3648 return ERR_PTR(-EOPNOTSUPP);
3649
3650 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3651 }
3652
3653 /**
3654 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3655 * @srq: The SRQ to modify.
3656 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3657 * the current values of selected SRQ attributes are returned.
3658 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3659 * are being modified.
3660 *
3661 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3662 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3663 * the number of receives queued drops below the limit.
3664 */
3665 int ib_modify_srq(struct ib_srq *srq,
3666 struct ib_srq_attr *srq_attr,
3667 enum ib_srq_attr_mask srq_attr_mask);
3668
3669 /**
3670 * ib_query_srq - Returns the attribute list and current values for the
3671 * specified SRQ.
3672 * @srq: The SRQ to query.
3673 * @srq_attr: The attributes of the specified SRQ.
3674 */
3675 int ib_query_srq(struct ib_srq *srq,
3676 struct ib_srq_attr *srq_attr);
3677
3678 /**
3679 * ib_destroy_srq_user - Destroys the specified SRQ.
3680 * @srq: The SRQ to destroy.
3681 * @udata: Valid user data or NULL for kernel objects
3682 */
3683 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3684
3685 /**
3686 * ib_destroy_srq - Destroys the specified kernel SRQ.
3687 * @srq: The SRQ to destroy.
3688 *
3689 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3690 */
3691 static inline int ib_destroy_srq(struct ib_srq *srq)
3692 {
3693 return ib_destroy_srq_user(srq, NULL);
3694 }
3695
3696 /**
3697 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3698 * @srq: The SRQ to post the work request on.
3699 * @recv_wr: A list of work requests to post on the receive queue.
3700 * @bad_recv_wr: On an immediate failure, this parameter will reference
3701 * the work request that failed to be posted on the QP.
3702 */
3703 static inline int ib_post_srq_recv(struct ib_srq *srq,
3704 const struct ib_recv_wr *recv_wr,
3705 const struct ib_recv_wr **bad_recv_wr)
3706 {
3707 const struct ib_recv_wr *dummy;
3708
3709 return srq->device->ops.post_srq_recv(srq, recv_wr,
3710 bad_recv_wr ? : &dummy);
3711 }
3712
3713 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3714 struct ib_qp_init_attr *qp_init_attr);
3715
3716 /**
3717 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3718 * @qp: The QP to modify.
3719 * @attr: On input, specifies the QP attributes to modify. On output,
3720 * the current values of selected QP attributes are returned.
3721 * @attr_mask: A bit-mask used to specify which attributes of the QP
3722 * are being modified.
3723 * @udata: pointer to user's input output buffer information
3724 * are being modified.
3725 * It returns 0 on success and returns appropriate error code on error.
3726 */
3727 int ib_modify_qp_with_udata(struct ib_qp *qp,
3728 struct ib_qp_attr *attr,
3729 int attr_mask,
3730 struct ib_udata *udata);
3731
3732 /**
3733 * ib_modify_qp - Modifies the attributes for the specified QP and then
3734 * transitions the QP to the given state.
3735 * @qp: The QP to modify.
3736 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3737 * the current values of selected QP attributes are returned.
3738 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3739 * are being modified.
3740 */
3741 int ib_modify_qp(struct ib_qp *qp,
3742 struct ib_qp_attr *qp_attr,
3743 int qp_attr_mask);
3744
3745 /**
3746 * ib_query_qp - Returns the attribute list and current values for the
3747 * specified QP.
3748 * @qp: The QP to query.
3749 * @qp_attr: The attributes of the specified QP.
3750 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3751 * @qp_init_attr: Additional attributes of the selected QP.
3752 *
3753 * The qp_attr_mask may be used to limit the query to gathering only the
3754 * selected attributes.
3755 */
3756 int ib_query_qp(struct ib_qp *qp,
3757 struct ib_qp_attr *qp_attr,
3758 int qp_attr_mask,
3759 struct ib_qp_init_attr *qp_init_attr);
3760
3761 /**
3762 * ib_destroy_qp - Destroys the specified QP.
3763 * @qp: The QP to destroy.
3764 * @udata: Valid udata or NULL for kernel objects
3765 */
3766 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3767
3768 /**
3769 * ib_destroy_qp - Destroys the specified kernel QP.
3770 * @qp: The QP to destroy.
3771 *
3772 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3773 */
3774 static inline int ib_destroy_qp(struct ib_qp *qp)
3775 {
3776 return ib_destroy_qp_user(qp, NULL);
3777 }
3778
3779 /**
3780 * ib_open_qp - Obtain a reference to an existing sharable QP.
3781 * @xrcd - XRC domain
3782 * @qp_open_attr: Attributes identifying the QP to open.
3783 *
3784 * Returns a reference to a sharable QP.
3785 */
3786 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3787 struct ib_qp_open_attr *qp_open_attr);
3788
3789 /**
3790 * ib_close_qp - Release an external reference to a QP.
3791 * @qp: The QP handle to release
3792 *
3793 * The opened QP handle is released by the caller. The underlying
3794 * shared QP is not destroyed until all internal references are released.
3795 */
3796 int ib_close_qp(struct ib_qp *qp);
3797
3798 /**
3799 * ib_post_send - Posts a list of work requests to the send queue of
3800 * the specified QP.
3801 * @qp: The QP to post the work request on.
3802 * @send_wr: A list of work requests to post on the send queue.
3803 * @bad_send_wr: On an immediate failure, this parameter will reference
3804 * the work request that failed to be posted on the QP.
3805 *
3806 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3807 * error is returned, the QP state shall not be affected,
3808 * ib_post_send() will return an immediate error after queueing any
3809 * earlier work requests in the list.
3810 */
3811 static inline int ib_post_send(struct ib_qp *qp,
3812 const struct ib_send_wr *send_wr,
3813 const struct ib_send_wr **bad_send_wr)
3814 {
3815 const struct ib_send_wr *dummy;
3816
3817 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3818 }
3819
3820 /**
3821 * ib_post_recv - Posts a list of work requests to the receive queue of
3822 * the specified QP.
3823 * @qp: The QP to post the work request on.
3824 * @recv_wr: A list of work requests to post on the receive queue.
3825 * @bad_recv_wr: On an immediate failure, this parameter will reference
3826 * the work request that failed to be posted on the QP.
3827 */
3828 static inline int ib_post_recv(struct ib_qp *qp,
3829 const struct ib_recv_wr *recv_wr,
3830 const struct ib_recv_wr **bad_recv_wr)
3831 {
3832 const struct ib_recv_wr *dummy;
3833
3834 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3835 }
3836
3837 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3838 int nr_cqe, int comp_vector,
3839 enum ib_poll_context poll_ctx,
3840 const char *caller, struct ib_udata *udata);
3841
3842 /**
3843 * ib_alloc_cq_user: Allocate kernel/user CQ
3844 * @dev: The IB device
3845 * @private: Private data attached to the CQE
3846 * @nr_cqe: Number of CQEs in the CQ
3847 * @comp_vector: Completion vector used for the IRQs
3848 * @poll_ctx: Context used for polling the CQ
3849 * @udata: Valid user data or NULL for kernel objects
3850 */
3851 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3852 void *private, int nr_cqe,
3853 int comp_vector,
3854 enum ib_poll_context poll_ctx,
3855 struct ib_udata *udata)
3856 {
3857 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3858 KBUILD_MODNAME, udata);
3859 }
3860
3861 /**
3862 * ib_alloc_cq: Allocate kernel CQ
3863 * @dev: The IB device
3864 * @private: Private data attached to the CQE
3865 * @nr_cqe: Number of CQEs in the CQ
3866 * @comp_vector: Completion vector used for the IRQs
3867 * @poll_ctx: Context used for polling the CQ
3868 *
3869 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3870 */
3871 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3872 int nr_cqe, int comp_vector,
3873 enum ib_poll_context poll_ctx)
3874 {
3875 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3876 NULL);
3877 }
3878
3879 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3880 int nr_cqe, enum ib_poll_context poll_ctx,
3881 const char *caller);
3882
3883 /**
3884 * ib_alloc_cq_any: Allocate kernel CQ
3885 * @dev: The IB device
3886 * @private: Private data attached to the CQE
3887 * @nr_cqe: Number of CQEs in the CQ
3888 * @poll_ctx: Context used for polling the CQ
3889 */
3890 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3891 void *private, int nr_cqe,
3892 enum ib_poll_context poll_ctx)
3893 {
3894 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3895 KBUILD_MODNAME);
3896 }
3897
3898 /**
3899 * ib_free_cq_user - Free kernel/user CQ
3900 * @cq: The CQ to free
3901 * @udata: Valid user data or NULL for kernel objects
3902 *
3903 * NOTE: This function shouldn't be called on shared CQs.
3904 */
3905 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3906
3907 /**
3908 * ib_free_cq - Free kernel CQ
3909 * @cq: The CQ to free
3910 *
3911 * NOTE: for user cq use ib_free_cq_user with valid udata!
3912 */
3913 static inline void ib_free_cq(struct ib_cq *cq)
3914 {
3915 ib_free_cq_user(cq, NULL);
3916 }
3917
3918 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3919
3920 /**
3921 * ib_create_cq - Creates a CQ on the specified device.
3922 * @device: The device on which to create the CQ.
3923 * @comp_handler: A user-specified callback that is invoked when a
3924 * completion event occurs on the CQ.
3925 * @event_handler: A user-specified callback that is invoked when an
3926 * asynchronous event not associated with a completion occurs on the CQ.
3927 * @cq_context: Context associated with the CQ returned to the user via
3928 * the associated completion and event handlers.
3929 * @cq_attr: The attributes the CQ should be created upon.
3930 *
3931 * Users can examine the cq structure to determine the actual CQ size.
3932 */
3933 struct ib_cq *__ib_create_cq(struct ib_device *device,
3934 ib_comp_handler comp_handler,
3935 void (*event_handler)(struct ib_event *, void *),
3936 void *cq_context,
3937 const struct ib_cq_init_attr *cq_attr,
3938 const char *caller);
3939 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3940 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3941
3942 /**
3943 * ib_resize_cq - Modifies the capacity of the CQ.
3944 * @cq: The CQ to resize.
3945 * @cqe: The minimum size of the CQ.
3946 *
3947 * Users can examine the cq structure to determine the actual CQ size.
3948 */
3949 int ib_resize_cq(struct ib_cq *cq, int cqe);
3950
3951 /**
3952 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3953 * @cq: The CQ to modify.
3954 * @cq_count: number of CQEs that will trigger an event
3955 * @cq_period: max period of time in usec before triggering an event
3956 *
3957 */
3958 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3959
3960 /**
3961 * ib_destroy_cq_user - Destroys the specified CQ.
3962 * @cq: The CQ to destroy.
3963 * @udata: Valid user data or NULL for kernel objects
3964 */
3965 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3966
3967 /**
3968 * ib_destroy_cq - Destroys the specified kernel CQ.
3969 * @cq: The CQ to destroy.
3970 *
3971 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3972 */
3973 static inline void ib_destroy_cq(struct ib_cq *cq)
3974 {
3975 ib_destroy_cq_user(cq, NULL);
3976 }
3977
3978 /**
3979 * ib_poll_cq - poll a CQ for completion(s)
3980 * @cq:the CQ being polled
3981 * @num_entries:maximum number of completions to return
3982 * @wc:array of at least @num_entries &struct ib_wc where completions
3983 * will be returned
3984 *
3985 * Poll a CQ for (possibly multiple) completions. If the return value
3986 * is < 0, an error occurred. If the return value is >= 0, it is the
3987 * number of completions returned. If the return value is
3988 * non-negative and < num_entries, then the CQ was emptied.
3989 */
3990 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3991 struct ib_wc *wc)
3992 {
3993 return cq->device->ops.poll_cq(cq, num_entries, wc);
3994 }
3995
3996 /**
3997 * ib_req_notify_cq - Request completion notification on a CQ.
3998 * @cq: The CQ to generate an event for.
3999 * @flags:
4000 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4001 * to request an event on the next solicited event or next work
4002 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4003 * may also be |ed in to request a hint about missed events, as
4004 * described below.
4005 *
4006 * Return Value:
4007 * < 0 means an error occurred while requesting notification
4008 * == 0 means notification was requested successfully, and if
4009 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4010 * were missed and it is safe to wait for another event. In
4011 * this case is it guaranteed that any work completions added
4012 * to the CQ since the last CQ poll will trigger a completion
4013 * notification event.
4014 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4015 * in. It means that the consumer must poll the CQ again to
4016 * make sure it is empty to avoid missing an event because of a
4017 * race between requesting notification and an entry being
4018 * added to the CQ. This return value means it is possible
4019 * (but not guaranteed) that a work completion has been added
4020 * to the CQ since the last poll without triggering a
4021 * completion notification event.
4022 */
4023 static inline int ib_req_notify_cq(struct ib_cq *cq,
4024 enum ib_cq_notify_flags flags)
4025 {
4026 return cq->device->ops.req_notify_cq(cq, flags);
4027 }
4028
4029 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4030 int comp_vector_hint,
4031 enum ib_poll_context poll_ctx);
4032
4033 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4034
4035 /**
4036 * ib_req_ncomp_notif - Request completion notification when there are
4037 * at least the specified number of unreaped completions on the CQ.
4038 * @cq: The CQ to generate an event for.
4039 * @wc_cnt: The number of unreaped completions that should be on the
4040 * CQ before an event is generated.
4041 */
4042 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
4043 {
4044 return cq->device->ops.req_ncomp_notif ?
4045 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
4046 -ENOSYS;
4047 }
4048
4049 /**
4050 * ib_dma_mapping_error - check a DMA addr for error
4051 * @dev: The device for which the dma_addr was created
4052 * @dma_addr: The DMA address to check
4053 */
4054 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4055 {
4056 return dma_mapping_error(dev->dma_device, dma_addr);
4057 }
4058
4059 /**
4060 * ib_dma_map_single - Map a kernel virtual address to DMA address
4061 * @dev: The device for which the dma_addr is to be created
4062 * @cpu_addr: The kernel virtual address
4063 * @size: The size of the region in bytes
4064 * @direction: The direction of the DMA
4065 */
4066 static inline u64 ib_dma_map_single(struct ib_device *dev,
4067 void *cpu_addr, size_t size,
4068 enum dma_data_direction direction)
4069 {
4070 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4071 }
4072
4073 /**
4074 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4075 * @dev: The device for which the DMA address was created
4076 * @addr: The DMA address
4077 * @size: The size of the region in bytes
4078 * @direction: The direction of the DMA
4079 */
4080 static inline void ib_dma_unmap_single(struct ib_device *dev,
4081 u64 addr, size_t size,
4082 enum dma_data_direction direction)
4083 {
4084 dma_unmap_single(dev->dma_device, addr, size, direction);
4085 }
4086
4087 /**
4088 * ib_dma_map_page - Map a physical page to DMA address
4089 * @dev: The device for which the dma_addr is to be created
4090 * @page: The page to be mapped
4091 * @offset: The offset within the page
4092 * @size: The size of the region in bytes
4093 * @direction: The direction of the DMA
4094 */
4095 static inline u64 ib_dma_map_page(struct ib_device *dev,
4096 struct page *page,
4097 unsigned long offset,
4098 size_t size,
4099 enum dma_data_direction direction)
4100 {
4101 return dma_map_page(dev->dma_device, page, offset, size, direction);
4102 }
4103
4104 /**
4105 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4106 * @dev: The device for which the DMA address was created
4107 * @addr: The DMA address
4108 * @size: The size of the region in bytes
4109 * @direction: The direction of the DMA
4110 */
4111 static inline void ib_dma_unmap_page(struct ib_device *dev,
4112 u64 addr, size_t size,
4113 enum dma_data_direction direction)
4114 {
4115 dma_unmap_page(dev->dma_device, addr, size, direction);
4116 }
4117
4118 /**
4119 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4120 * @dev: The device for which the DMA addresses are to be created
4121 * @sg: The array of scatter/gather entries
4122 * @nents: The number of scatter/gather entries
4123 * @direction: The direction of the DMA
4124 */
4125 static inline int ib_dma_map_sg(struct ib_device *dev,
4126 struct scatterlist *sg, int nents,
4127 enum dma_data_direction direction)
4128 {
4129 return dma_map_sg(dev->dma_device, sg, nents, direction);
4130 }
4131
4132 /**
4133 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4134 * @dev: The device for which the DMA addresses were created
4135 * @sg: The array of scatter/gather entries
4136 * @nents: The number of scatter/gather entries
4137 * @direction: The direction of the DMA
4138 */
4139 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4140 struct scatterlist *sg, int nents,
4141 enum dma_data_direction direction)
4142 {
4143 dma_unmap_sg(dev->dma_device, sg, nents, direction);
4144 }
4145
4146 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4147 struct scatterlist *sg, int nents,
4148 enum dma_data_direction direction,
4149 unsigned long dma_attrs)
4150 {
4151 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4152 dma_attrs);
4153 }
4154
4155 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4156 struct scatterlist *sg, int nents,
4157 enum dma_data_direction direction,
4158 unsigned long dma_attrs)
4159 {
4160 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4161 }
4162
4163 /**
4164 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4165 * @dev: The device to query
4166 *
4167 * The returned value represents a size in bytes.
4168 */
4169 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4170 {
4171 return dma_get_max_seg_size(dev->dma_device);
4172 }
4173
4174 /**
4175 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4176 * @dev: The device for which the DMA address was created
4177 * @addr: The DMA address
4178 * @size: The size of the region in bytes
4179 * @dir: The direction of the DMA
4180 */
4181 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4182 u64 addr,
4183 size_t size,
4184 enum dma_data_direction dir)
4185 {
4186 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4187 }
4188
4189 /**
4190 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4191 * @dev: The device for which the DMA address was created
4192 * @addr: The DMA address
4193 * @size: The size of the region in bytes
4194 * @dir: The direction of the DMA
4195 */
4196 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4197 u64 addr,
4198 size_t size,
4199 enum dma_data_direction dir)
4200 {
4201 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4202 }
4203
4204 /**
4205 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4206 * @dev: The device for which the DMA address is requested
4207 * @size: The size of the region to allocate in bytes
4208 * @dma_handle: A pointer for returning the DMA address of the region
4209 * @flag: memory allocator flags
4210 */
4211 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4212 size_t size,
4213 dma_addr_t *dma_handle,
4214 gfp_t flag)
4215 {
4216 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4217 }
4218
4219 /**
4220 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4221 * @dev: The device for which the DMA addresses were allocated
4222 * @size: The size of the region
4223 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4224 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4225 */
4226 static inline void ib_dma_free_coherent(struct ib_device *dev,
4227 size_t size, void *cpu_addr,
4228 dma_addr_t dma_handle)
4229 {
4230 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4231 }
4232
4233 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4234 * space. This function should be called when 'current' is the owning MM.
4235 */
4236 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4237 u64 virt_addr, int mr_access_flags);
4238
4239 /* ib_advise_mr - give an advice about an address range in a memory region */
4240 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4241 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4242 /**
4243 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4244 * HCA translation table.
4245 * @mr: The memory region to deregister.
4246 * @udata: Valid user data or NULL for kernel object
4247 *
4248 * This function can fail, if the memory region has memory windows bound to it.
4249 */
4250 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4251
4252 /**
4253 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4254 * HCA translation table.
4255 * @mr: The memory region to deregister.
4256 *
4257 * This function can fail, if the memory region has memory windows bound to it.
4258 *
4259 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4260 */
4261 static inline int ib_dereg_mr(struct ib_mr *mr)
4262 {
4263 return ib_dereg_mr_user(mr, NULL);
4264 }
4265
4266 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4267 u32 max_num_sg, struct ib_udata *udata);
4268
4269 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4270 enum ib_mr_type mr_type, u32 max_num_sg)
4271 {
4272 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4273 }
4274
4275 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4276 u32 max_num_data_sg,
4277 u32 max_num_meta_sg);
4278
4279 /**
4280 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4281 * R_Key and L_Key.
4282 * @mr - struct ib_mr pointer to be updated.
4283 * @newkey - new key to be used.
4284 */
4285 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4286 {
4287 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4288 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4289 }
4290
4291 /**
4292 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4293 * for calculating a new rkey for type 2 memory windows.
4294 * @rkey - the rkey to increment.
4295 */
4296 static inline u32 ib_inc_rkey(u32 rkey)
4297 {
4298 const u32 mask = 0x000000ff;
4299 return ((rkey + 1) & mask) | (rkey & ~mask);
4300 }
4301
4302 /**
4303 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4304 * @qp: QP to attach to the multicast group. The QP must be type
4305 * IB_QPT_UD.
4306 * @gid: Multicast group GID.
4307 * @lid: Multicast group LID in host byte order.
4308 *
4309 * In order to send and receive multicast packets, subnet
4310 * administration must have created the multicast group and configured
4311 * the fabric appropriately. The port associated with the specified
4312 * QP must also be a member of the multicast group.
4313 */
4314 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4315
4316 /**
4317 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4318 * @qp: QP to detach from the multicast group.
4319 * @gid: Multicast group GID.
4320 * @lid: Multicast group LID in host byte order.
4321 */
4322 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4323
4324 /**
4325 * ib_alloc_xrcd - Allocates an XRC domain.
4326 * @device: The device on which to allocate the XRC domain.
4327 * @caller: Module name for kernel consumers
4328 */
4329 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4330 #define ib_alloc_xrcd(device) \
4331 __ib_alloc_xrcd((device), KBUILD_MODNAME)
4332
4333 /**
4334 * ib_dealloc_xrcd - Deallocates an XRC domain.
4335 * @xrcd: The XRC domain to deallocate.
4336 * @udata: Valid user data or NULL for kernel object
4337 */
4338 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
4339
4340 static inline int ib_check_mr_access(int flags)
4341 {
4342 /*
4343 * Local write permission is required if remote write or
4344 * remote atomic permission is also requested.
4345 */
4346 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4347 !(flags & IB_ACCESS_LOCAL_WRITE))
4348 return -EINVAL;
4349
4350 if (flags & ~IB_ACCESS_SUPPORTED)
4351 return -EINVAL;
4352
4353 return 0;
4354 }
4355
4356 static inline bool ib_access_writable(int access_flags)
4357 {
4358 /*
4359 * We have writable memory backing the MR if any of the following
4360 * access flags are set. "Local write" and "remote write" obviously
4361 * require write access. "Remote atomic" can do things like fetch and
4362 * add, which will modify memory, and "MW bind" can change permissions
4363 * by binding a window.
4364 */
4365 return access_flags &
4366 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4367 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4368 }
4369
4370 /**
4371 * ib_check_mr_status: lightweight check of MR status.
4372 * This routine may provide status checks on a selected
4373 * ib_mr. first use is for signature status check.
4374 *
4375 * @mr: A memory region.
4376 * @check_mask: Bitmask of which checks to perform from
4377 * ib_mr_status_check enumeration.
4378 * @mr_status: The container of relevant status checks.
4379 * failed checks will be indicated in the status bitmask
4380 * and the relevant info shall be in the error item.
4381 */
4382 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4383 struct ib_mr_status *mr_status);
4384
4385 /**
4386 * ib_device_try_get: Hold a registration lock
4387 * device: The device to lock
4388 *
4389 * A device under an active registration lock cannot become unregistered. It
4390 * is only possible to obtain a registration lock on a device that is fully
4391 * registered, otherwise this function returns false.
4392 *
4393 * The registration lock is only necessary for actions which require the
4394 * device to still be registered. Uses that only require the device pointer to
4395 * be valid should use get_device(&ibdev->dev) to hold the memory.
4396 *
4397 */
4398 static inline bool ib_device_try_get(struct ib_device *dev)
4399 {
4400 return refcount_inc_not_zero(&dev->refcount);
4401 }
4402
4403 void ib_device_put(struct ib_device *device);
4404 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4405 enum rdma_driver_id driver_id);
4406 struct ib_device *ib_device_get_by_name(const char *name,
4407 enum rdma_driver_id driver_id);
4408 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4409 u16 pkey, const union ib_gid *gid,
4410 const struct sockaddr *addr);
4411 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4412 unsigned int port);
4413 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4414
4415 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4416 struct ib_wq_init_attr *init_attr);
4417 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4418 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4419 u32 wq_attr_mask);
4420 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4421 struct ib_rwq_ind_table_init_attr*
4422 wq_ind_table_init_attr);
4423 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4424
4425 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4426 unsigned int *sg_offset, unsigned int page_size);
4427 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4428 int data_sg_nents, unsigned int *data_sg_offset,
4429 struct scatterlist *meta_sg, int meta_sg_nents,
4430 unsigned int *meta_sg_offset, unsigned int page_size);
4431
4432 static inline int
4433 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4434 unsigned int *sg_offset, unsigned int page_size)
4435 {
4436 int n;
4437
4438 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4439 mr->iova = 0;
4440
4441 return n;
4442 }
4443
4444 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4445 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4446
4447 void ib_drain_rq(struct ib_qp *qp);
4448 void ib_drain_sq(struct ib_qp *qp);
4449 void ib_drain_qp(struct ib_qp *qp);
4450
4451 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4452
4453 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4454 {
4455 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4456 return attr->roce.dmac;
4457 return NULL;
4458 }
4459
4460 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4461 {
4462 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4463 attr->ib.dlid = (u16)dlid;
4464 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4465 attr->opa.dlid = dlid;
4466 }
4467
4468 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4469 {
4470 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4471 return attr->ib.dlid;
4472 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4473 return attr->opa.dlid;
4474 return 0;
4475 }
4476
4477 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4478 {
4479 attr->sl = sl;
4480 }
4481
4482 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4483 {
4484 return attr->sl;
4485 }
4486
4487 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4488 u8 src_path_bits)
4489 {
4490 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4491 attr->ib.src_path_bits = src_path_bits;
4492 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4493 attr->opa.src_path_bits = src_path_bits;
4494 }
4495
4496 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4497 {
4498 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4499 return attr->ib.src_path_bits;
4500 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4501 return attr->opa.src_path_bits;
4502 return 0;
4503 }
4504
4505 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4506 bool make_grd)
4507 {
4508 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4509 attr->opa.make_grd = make_grd;
4510 }
4511
4512 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4513 {
4514 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4515 return attr->opa.make_grd;
4516 return false;
4517 }
4518
4519 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4520 {
4521 attr->port_num = port_num;
4522 }
4523
4524 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4525 {
4526 return attr->port_num;
4527 }
4528
4529 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4530 u8 static_rate)
4531 {
4532 attr->static_rate = static_rate;
4533 }
4534
4535 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4536 {
4537 return attr->static_rate;
4538 }
4539
4540 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4541 enum ib_ah_flags flag)
4542 {
4543 attr->ah_flags = flag;
4544 }
4545
4546 static inline enum ib_ah_flags
4547 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4548 {
4549 return attr->ah_flags;
4550 }
4551
4552 static inline const struct ib_global_route
4553 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4554 {
4555 return &attr->grh;
4556 }
4557
4558 /*To retrieve and modify the grh */
4559 static inline struct ib_global_route
4560 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4561 {
4562 return &attr->grh;
4563 }
4564
4565 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4566 {
4567 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4568
4569 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4570 }
4571
4572 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4573 __be64 prefix)
4574 {
4575 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4576
4577 grh->dgid.global.subnet_prefix = prefix;
4578 }
4579
4580 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4581 __be64 if_id)
4582 {
4583 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4584
4585 grh->dgid.global.interface_id = if_id;
4586 }
4587
4588 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4589 union ib_gid *dgid, u32 flow_label,
4590 u8 sgid_index, u8 hop_limit,
4591 u8 traffic_class)
4592 {
4593 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4594
4595 attr->ah_flags = IB_AH_GRH;
4596 if (dgid)
4597 grh->dgid = *dgid;
4598 grh->flow_label = flow_label;
4599 grh->sgid_index = sgid_index;
4600 grh->hop_limit = hop_limit;
4601 grh->traffic_class = traffic_class;
4602 grh->sgid_attr = NULL;
4603 }
4604
4605 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4606 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4607 u32 flow_label, u8 hop_limit, u8 traffic_class,
4608 const struct ib_gid_attr *sgid_attr);
4609 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4610 const struct rdma_ah_attr *src);
4611 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4612 const struct rdma_ah_attr *new);
4613 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4614
4615 /**
4616 * rdma_ah_find_type - Return address handle type.
4617 *
4618 * @dev: Device to be checked
4619 * @port_num: Port number
4620 */
4621 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4622 u8 port_num)
4623 {
4624 if (rdma_protocol_roce(dev, port_num))
4625 return RDMA_AH_ATTR_TYPE_ROCE;
4626 if (rdma_protocol_ib(dev, port_num)) {
4627 if (rdma_cap_opa_ah(dev, port_num))
4628 return RDMA_AH_ATTR_TYPE_OPA;
4629 return RDMA_AH_ATTR_TYPE_IB;
4630 }
4631
4632 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4633 }
4634
4635 /**
4636 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4637 * In the current implementation the only way to get
4638 * get the 32bit lid is from other sources for OPA.
4639 * For IB, lids will always be 16bits so cast the
4640 * value accordingly.
4641 *
4642 * @lid: A 32bit LID
4643 */
4644 static inline u16 ib_lid_cpu16(u32 lid)
4645 {
4646 WARN_ON_ONCE(lid & 0xFFFF0000);
4647 return (u16)lid;
4648 }
4649
4650 /**
4651 * ib_lid_be16 - Return lid in 16bit BE encoding.
4652 *
4653 * @lid: A 32bit LID
4654 */
4655 static inline __be16 ib_lid_be16(u32 lid)
4656 {
4657 WARN_ON_ONCE(lid & 0xFFFF0000);
4658 return cpu_to_be16((u16)lid);
4659 }
4660
4661 /**
4662 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4663 * vector
4664 * @device: the rdma device
4665 * @comp_vector: index of completion vector
4666 *
4667 * Returns NULL on failure, otherwise a corresponding cpu map of the
4668 * completion vector (returns all-cpus map if the device driver doesn't
4669 * implement get_vector_affinity).
4670 */
4671 static inline const struct cpumask *
4672 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4673 {
4674 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4675 !device->ops.get_vector_affinity)
4676 return NULL;
4677
4678 return device->ops.get_vector_affinity(device, comp_vector);
4679
4680 }
4681
4682 /**
4683 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4684 * and add their gids, as needed, to the relevant RoCE devices.
4685 *
4686 * @device: the rdma device
4687 */
4688 void rdma_roce_rescan_device(struct ib_device *ibdev);
4689
4690 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4691
4692 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4693
4694 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4695 enum rdma_netdev_t type, const char *name,
4696 unsigned char name_assign_type,
4697 void (*setup)(struct net_device *));
4698
4699 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4700 enum rdma_netdev_t type, const char *name,
4701 unsigned char name_assign_type,
4702 void (*setup)(struct net_device *),
4703 struct net_device *netdev);
4704
4705 /**
4706 * rdma_set_device_sysfs_group - Set device attributes group to have
4707 * driver specific sysfs entries at
4708 * for infiniband class.
4709 *
4710 * @device: device pointer for which attributes to be created
4711 * @group: Pointer to group which should be added when device
4712 * is registered with sysfs.
4713 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4714 * group per device to have sysfs attributes.
4715 *
4716 * NOTE: New drivers should not make use of this API; instead new device
4717 * parameter should be exposed via netlink command. This API and mechanism
4718 * exist only for existing drivers.
4719 */
4720 static inline void
4721 rdma_set_device_sysfs_group(struct ib_device *dev,
4722 const struct attribute_group *group)
4723 {
4724 dev->groups[1] = group;
4725 }
4726
4727 /**
4728 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4729 *
4730 * @device: device pointer for which ib_device pointer to retrieve
4731 *
4732 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4733 *
4734 */
4735 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4736 {
4737 struct ib_core_device *coredev =
4738 container_of(device, struct ib_core_device, dev);
4739
4740 return coredev->owner;
4741 }
4742
4743 /**
4744 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4745 * ib_device holder structure from device pointer.
4746 *
4747 * NOTE: New drivers should not make use of this API; This API is only for
4748 * existing drivers who have exposed sysfs entries using
4749 * rdma_set_device_sysfs_group().
4750 */
4751 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4752 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4753
4754 bool rdma_dev_access_netns(const struct ib_device *device,
4755 const struct net *net);
4756
4757 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4758 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4759
4760 /**
4761 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4762 * on the flow_label
4763 *
4764 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4765 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4766 * convention.
4767 */
4768 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4769 {
4770 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4771
4772 fl_low ^= fl_high >> 14;
4773 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4774 }
4775
4776 /**
4777 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4778 * local and remote qpn values
4779 *
4780 * This function folded the multiplication results of two qpns, 24 bit each,
4781 * fields, and converts it to a 20 bit results.
4782 *
4783 * This function will create symmetric flow_label value based on the local
4784 * and remote qpn values. this will allow both the requester and responder
4785 * to calculate the same flow_label for a given connection.
4786 *
4787 * This helper function should be used by driver in case the upper layer
4788 * provide a zero flow_label value. This is to improve entropy of RDMA
4789 * traffic in the network.
4790 */
4791 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4792 {
4793 u64 v = (u64)lqpn * rqpn;
4794
4795 v ^= v >> 20;
4796 v ^= v >> 40;
4797
4798 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4799 }
4800 #endif /* IB_VERBS_H */