]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/rdma/ib_verbs.h
Merge branch 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu...
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/atomic.h>
60 #include <linux/mmu_notifier.h>
61 #include <asm/uaccess.h>
62
63 extern struct workqueue_struct *ib_wq;
64 extern struct workqueue_struct *ib_comp_wq;
65
66 union ib_gid {
67 u8 raw[16];
68 struct {
69 __be64 subnet_prefix;
70 __be64 interface_id;
71 } global;
72 };
73
74 extern union ib_gid zgid;
75
76 enum ib_gid_type {
77 /* If link layer is Ethernet, this is RoCE V1 */
78 IB_GID_TYPE_IB = 0,
79 IB_GID_TYPE_ROCE = 0,
80 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
81 IB_GID_TYPE_SIZE
82 };
83
84 #define ROCE_V2_UDP_DPORT 4791
85 struct ib_gid_attr {
86 enum ib_gid_type gid_type;
87 struct net_device *ndev;
88 };
89
90 enum rdma_node_type {
91 /* IB values map to NodeInfo:NodeType. */
92 RDMA_NODE_IB_CA = 1,
93 RDMA_NODE_IB_SWITCH,
94 RDMA_NODE_IB_ROUTER,
95 RDMA_NODE_RNIC,
96 RDMA_NODE_USNIC,
97 RDMA_NODE_USNIC_UDP,
98 };
99
100 enum rdma_transport_type {
101 RDMA_TRANSPORT_IB,
102 RDMA_TRANSPORT_IWARP,
103 RDMA_TRANSPORT_USNIC,
104 RDMA_TRANSPORT_USNIC_UDP
105 };
106
107 enum rdma_protocol_type {
108 RDMA_PROTOCOL_IB,
109 RDMA_PROTOCOL_IBOE,
110 RDMA_PROTOCOL_IWARP,
111 RDMA_PROTOCOL_USNIC_UDP
112 };
113
114 __attribute_const__ enum rdma_transport_type
115 rdma_node_get_transport(enum rdma_node_type node_type);
116
117 enum rdma_network_type {
118 RDMA_NETWORK_IB,
119 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
120 RDMA_NETWORK_IPV4,
121 RDMA_NETWORK_IPV6
122 };
123
124 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
125 {
126 if (network_type == RDMA_NETWORK_IPV4 ||
127 network_type == RDMA_NETWORK_IPV6)
128 return IB_GID_TYPE_ROCE_UDP_ENCAP;
129
130 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
131 return IB_GID_TYPE_IB;
132 }
133
134 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
135 union ib_gid *gid)
136 {
137 if (gid_type == IB_GID_TYPE_IB)
138 return RDMA_NETWORK_IB;
139
140 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
141 return RDMA_NETWORK_IPV4;
142 else
143 return RDMA_NETWORK_IPV6;
144 }
145
146 enum rdma_link_layer {
147 IB_LINK_LAYER_UNSPECIFIED,
148 IB_LINK_LAYER_INFINIBAND,
149 IB_LINK_LAYER_ETHERNET,
150 };
151
152 enum ib_device_cap_flags {
153 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
154 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
155 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
156 IB_DEVICE_RAW_MULTI = (1 << 3),
157 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
158 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
159 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
160 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
161 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
162 IB_DEVICE_INIT_TYPE = (1 << 9),
163 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
164 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
165 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
166 IB_DEVICE_SRQ_RESIZE = (1 << 13),
167 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
168
169 /*
170 * This device supports a per-device lkey or stag that can be
171 * used without performing a memory registration for the local
172 * memory. Note that ULPs should never check this flag, but
173 * instead of use the local_dma_lkey flag in the ib_pd structure,
174 * which will always contain a usable lkey.
175 */
176 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
177 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
178 IB_DEVICE_MEM_WINDOW = (1 << 17),
179 /*
180 * Devices should set IB_DEVICE_UD_IP_SUM if they support
181 * insertion of UDP and TCP checksum on outgoing UD IPoIB
182 * messages and can verify the validity of checksum for
183 * incoming messages. Setting this flag implies that the
184 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
185 */
186 IB_DEVICE_UD_IP_CSUM = (1 << 18),
187 IB_DEVICE_UD_TSO = (1 << 19),
188 IB_DEVICE_XRC = (1 << 20),
189
190 /*
191 * This device supports the IB "base memory management extension",
192 * which includes support for fast registrations (IB_WR_REG_MR,
193 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
194 * also be set by any iWarp device which must support FRs to comply
195 * to the iWarp verbs spec. iWarp devices also support the
196 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
197 * stag.
198 */
199 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
200 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
201 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
202 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
203 IB_DEVICE_RC_IP_CSUM = (1 << 25),
204 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
205 /*
206 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
207 * support execution of WQEs that involve synchronization
208 * of I/O operations with single completion queue managed
209 * by hardware.
210 */
211 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
212 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
213 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
214 IB_DEVICE_ON_DEMAND_PAGING = (1 << 31),
215 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
216 };
217
218 enum ib_signature_prot_cap {
219 IB_PROT_T10DIF_TYPE_1 = 1,
220 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
221 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
222 };
223
224 enum ib_signature_guard_cap {
225 IB_GUARD_T10DIF_CRC = 1,
226 IB_GUARD_T10DIF_CSUM = 1 << 1,
227 };
228
229 enum ib_atomic_cap {
230 IB_ATOMIC_NONE,
231 IB_ATOMIC_HCA,
232 IB_ATOMIC_GLOB
233 };
234
235 enum ib_odp_general_cap_bits {
236 IB_ODP_SUPPORT = 1 << 0,
237 };
238
239 enum ib_odp_transport_cap_bits {
240 IB_ODP_SUPPORT_SEND = 1 << 0,
241 IB_ODP_SUPPORT_RECV = 1 << 1,
242 IB_ODP_SUPPORT_WRITE = 1 << 2,
243 IB_ODP_SUPPORT_READ = 1 << 3,
244 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
245 };
246
247 struct ib_odp_caps {
248 uint64_t general_caps;
249 struct {
250 uint32_t rc_odp_caps;
251 uint32_t uc_odp_caps;
252 uint32_t ud_odp_caps;
253 } per_transport_caps;
254 };
255
256 enum ib_cq_creation_flags {
257 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
258 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
259 };
260
261 struct ib_cq_init_attr {
262 unsigned int cqe;
263 int comp_vector;
264 u32 flags;
265 };
266
267 struct ib_device_attr {
268 u64 fw_ver;
269 __be64 sys_image_guid;
270 u64 max_mr_size;
271 u64 page_size_cap;
272 u32 vendor_id;
273 u32 vendor_part_id;
274 u32 hw_ver;
275 int max_qp;
276 int max_qp_wr;
277 int device_cap_flags;
278 int max_sge;
279 int max_sge_rd;
280 int max_cq;
281 int max_cqe;
282 int max_mr;
283 int max_pd;
284 int max_qp_rd_atom;
285 int max_ee_rd_atom;
286 int max_res_rd_atom;
287 int max_qp_init_rd_atom;
288 int max_ee_init_rd_atom;
289 enum ib_atomic_cap atomic_cap;
290 enum ib_atomic_cap masked_atomic_cap;
291 int max_ee;
292 int max_rdd;
293 int max_mw;
294 int max_raw_ipv6_qp;
295 int max_raw_ethy_qp;
296 int max_mcast_grp;
297 int max_mcast_qp_attach;
298 int max_total_mcast_qp_attach;
299 int max_ah;
300 int max_fmr;
301 int max_map_per_fmr;
302 int max_srq;
303 int max_srq_wr;
304 int max_srq_sge;
305 unsigned int max_fast_reg_page_list_len;
306 u16 max_pkeys;
307 u8 local_ca_ack_delay;
308 int sig_prot_cap;
309 int sig_guard_cap;
310 struct ib_odp_caps odp_caps;
311 uint64_t timestamp_mask;
312 uint64_t hca_core_clock; /* in KHZ */
313 };
314
315 enum ib_mtu {
316 IB_MTU_256 = 1,
317 IB_MTU_512 = 2,
318 IB_MTU_1024 = 3,
319 IB_MTU_2048 = 4,
320 IB_MTU_4096 = 5
321 };
322
323 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
324 {
325 switch (mtu) {
326 case IB_MTU_256: return 256;
327 case IB_MTU_512: return 512;
328 case IB_MTU_1024: return 1024;
329 case IB_MTU_2048: return 2048;
330 case IB_MTU_4096: return 4096;
331 default: return -1;
332 }
333 }
334
335 enum ib_port_state {
336 IB_PORT_NOP = 0,
337 IB_PORT_DOWN = 1,
338 IB_PORT_INIT = 2,
339 IB_PORT_ARMED = 3,
340 IB_PORT_ACTIVE = 4,
341 IB_PORT_ACTIVE_DEFER = 5
342 };
343
344 enum ib_port_cap_flags {
345 IB_PORT_SM = 1 << 1,
346 IB_PORT_NOTICE_SUP = 1 << 2,
347 IB_PORT_TRAP_SUP = 1 << 3,
348 IB_PORT_OPT_IPD_SUP = 1 << 4,
349 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
350 IB_PORT_SL_MAP_SUP = 1 << 6,
351 IB_PORT_MKEY_NVRAM = 1 << 7,
352 IB_PORT_PKEY_NVRAM = 1 << 8,
353 IB_PORT_LED_INFO_SUP = 1 << 9,
354 IB_PORT_SM_DISABLED = 1 << 10,
355 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
356 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
357 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
358 IB_PORT_CM_SUP = 1 << 16,
359 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
360 IB_PORT_REINIT_SUP = 1 << 18,
361 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
362 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
363 IB_PORT_DR_NOTICE_SUP = 1 << 21,
364 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
365 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
366 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
367 IB_PORT_CLIENT_REG_SUP = 1 << 25,
368 IB_PORT_IP_BASED_GIDS = 1 << 26,
369 };
370
371 enum ib_port_width {
372 IB_WIDTH_1X = 1,
373 IB_WIDTH_4X = 2,
374 IB_WIDTH_8X = 4,
375 IB_WIDTH_12X = 8
376 };
377
378 static inline int ib_width_enum_to_int(enum ib_port_width width)
379 {
380 switch (width) {
381 case IB_WIDTH_1X: return 1;
382 case IB_WIDTH_4X: return 4;
383 case IB_WIDTH_8X: return 8;
384 case IB_WIDTH_12X: return 12;
385 default: return -1;
386 }
387 }
388
389 enum ib_port_speed {
390 IB_SPEED_SDR = 1,
391 IB_SPEED_DDR = 2,
392 IB_SPEED_QDR = 4,
393 IB_SPEED_FDR10 = 8,
394 IB_SPEED_FDR = 16,
395 IB_SPEED_EDR = 32
396 };
397
398 struct ib_protocol_stats {
399 /* TBD... */
400 };
401
402 struct iw_protocol_stats {
403 u64 ipInReceives;
404 u64 ipInHdrErrors;
405 u64 ipInTooBigErrors;
406 u64 ipInNoRoutes;
407 u64 ipInAddrErrors;
408 u64 ipInUnknownProtos;
409 u64 ipInTruncatedPkts;
410 u64 ipInDiscards;
411 u64 ipInDelivers;
412 u64 ipOutForwDatagrams;
413 u64 ipOutRequests;
414 u64 ipOutDiscards;
415 u64 ipOutNoRoutes;
416 u64 ipReasmTimeout;
417 u64 ipReasmReqds;
418 u64 ipReasmOKs;
419 u64 ipReasmFails;
420 u64 ipFragOKs;
421 u64 ipFragFails;
422 u64 ipFragCreates;
423 u64 ipInMcastPkts;
424 u64 ipOutMcastPkts;
425 u64 ipInBcastPkts;
426 u64 ipOutBcastPkts;
427
428 u64 tcpRtoAlgorithm;
429 u64 tcpRtoMin;
430 u64 tcpRtoMax;
431 u64 tcpMaxConn;
432 u64 tcpActiveOpens;
433 u64 tcpPassiveOpens;
434 u64 tcpAttemptFails;
435 u64 tcpEstabResets;
436 u64 tcpCurrEstab;
437 u64 tcpInSegs;
438 u64 tcpOutSegs;
439 u64 tcpRetransSegs;
440 u64 tcpInErrs;
441 u64 tcpOutRsts;
442 };
443
444 union rdma_protocol_stats {
445 struct ib_protocol_stats ib;
446 struct iw_protocol_stats iw;
447 };
448
449 /* Define bits for the various functionality this port needs to be supported by
450 * the core.
451 */
452 /* Management 0x00000FFF */
453 #define RDMA_CORE_CAP_IB_MAD 0x00000001
454 #define RDMA_CORE_CAP_IB_SMI 0x00000002
455 #define RDMA_CORE_CAP_IB_CM 0x00000004
456 #define RDMA_CORE_CAP_IW_CM 0x00000008
457 #define RDMA_CORE_CAP_IB_SA 0x00000010
458 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
459
460 /* Address format 0x000FF000 */
461 #define RDMA_CORE_CAP_AF_IB 0x00001000
462 #define RDMA_CORE_CAP_ETH_AH 0x00002000
463
464 /* Protocol 0xFFF00000 */
465 #define RDMA_CORE_CAP_PROT_IB 0x00100000
466 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
467 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
468 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
469
470 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
471 | RDMA_CORE_CAP_IB_MAD \
472 | RDMA_CORE_CAP_IB_SMI \
473 | RDMA_CORE_CAP_IB_CM \
474 | RDMA_CORE_CAP_IB_SA \
475 | RDMA_CORE_CAP_AF_IB)
476 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
477 | RDMA_CORE_CAP_IB_MAD \
478 | RDMA_CORE_CAP_IB_CM \
479 | RDMA_CORE_CAP_AF_IB \
480 | RDMA_CORE_CAP_ETH_AH)
481 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
482 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
483 | RDMA_CORE_CAP_IB_MAD \
484 | RDMA_CORE_CAP_IB_CM \
485 | RDMA_CORE_CAP_AF_IB \
486 | RDMA_CORE_CAP_ETH_AH)
487 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
488 | RDMA_CORE_CAP_IW_CM)
489 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
490 | RDMA_CORE_CAP_OPA_MAD)
491
492 struct ib_port_attr {
493 enum ib_port_state state;
494 enum ib_mtu max_mtu;
495 enum ib_mtu active_mtu;
496 int gid_tbl_len;
497 u32 port_cap_flags;
498 u32 max_msg_sz;
499 u32 bad_pkey_cntr;
500 u32 qkey_viol_cntr;
501 u16 pkey_tbl_len;
502 u16 lid;
503 u16 sm_lid;
504 u8 lmc;
505 u8 max_vl_num;
506 u8 sm_sl;
507 u8 subnet_timeout;
508 u8 init_type_reply;
509 u8 active_width;
510 u8 active_speed;
511 u8 phys_state;
512 };
513
514 enum ib_device_modify_flags {
515 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
516 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
517 };
518
519 struct ib_device_modify {
520 u64 sys_image_guid;
521 char node_desc[64];
522 };
523
524 enum ib_port_modify_flags {
525 IB_PORT_SHUTDOWN = 1,
526 IB_PORT_INIT_TYPE = (1<<2),
527 IB_PORT_RESET_QKEY_CNTR = (1<<3)
528 };
529
530 struct ib_port_modify {
531 u32 set_port_cap_mask;
532 u32 clr_port_cap_mask;
533 u8 init_type;
534 };
535
536 enum ib_event_type {
537 IB_EVENT_CQ_ERR,
538 IB_EVENT_QP_FATAL,
539 IB_EVENT_QP_REQ_ERR,
540 IB_EVENT_QP_ACCESS_ERR,
541 IB_EVENT_COMM_EST,
542 IB_EVENT_SQ_DRAINED,
543 IB_EVENT_PATH_MIG,
544 IB_EVENT_PATH_MIG_ERR,
545 IB_EVENT_DEVICE_FATAL,
546 IB_EVENT_PORT_ACTIVE,
547 IB_EVENT_PORT_ERR,
548 IB_EVENT_LID_CHANGE,
549 IB_EVENT_PKEY_CHANGE,
550 IB_EVENT_SM_CHANGE,
551 IB_EVENT_SRQ_ERR,
552 IB_EVENT_SRQ_LIMIT_REACHED,
553 IB_EVENT_QP_LAST_WQE_REACHED,
554 IB_EVENT_CLIENT_REREGISTER,
555 IB_EVENT_GID_CHANGE,
556 };
557
558 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
559
560 struct ib_event {
561 struct ib_device *device;
562 union {
563 struct ib_cq *cq;
564 struct ib_qp *qp;
565 struct ib_srq *srq;
566 u8 port_num;
567 } element;
568 enum ib_event_type event;
569 };
570
571 struct ib_event_handler {
572 struct ib_device *device;
573 void (*handler)(struct ib_event_handler *, struct ib_event *);
574 struct list_head list;
575 };
576
577 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
578 do { \
579 (_ptr)->device = _device; \
580 (_ptr)->handler = _handler; \
581 INIT_LIST_HEAD(&(_ptr)->list); \
582 } while (0)
583
584 struct ib_global_route {
585 union ib_gid dgid;
586 u32 flow_label;
587 u8 sgid_index;
588 u8 hop_limit;
589 u8 traffic_class;
590 };
591
592 struct ib_grh {
593 __be32 version_tclass_flow;
594 __be16 paylen;
595 u8 next_hdr;
596 u8 hop_limit;
597 union ib_gid sgid;
598 union ib_gid dgid;
599 };
600
601 union rdma_network_hdr {
602 struct ib_grh ibgrh;
603 struct {
604 /* The IB spec states that if it's IPv4, the header
605 * is located in the last 20 bytes of the header.
606 */
607 u8 reserved[20];
608 struct iphdr roce4grh;
609 };
610 };
611
612 enum {
613 IB_MULTICAST_QPN = 0xffffff
614 };
615
616 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
617
618 enum ib_ah_flags {
619 IB_AH_GRH = 1
620 };
621
622 enum ib_rate {
623 IB_RATE_PORT_CURRENT = 0,
624 IB_RATE_2_5_GBPS = 2,
625 IB_RATE_5_GBPS = 5,
626 IB_RATE_10_GBPS = 3,
627 IB_RATE_20_GBPS = 6,
628 IB_RATE_30_GBPS = 4,
629 IB_RATE_40_GBPS = 7,
630 IB_RATE_60_GBPS = 8,
631 IB_RATE_80_GBPS = 9,
632 IB_RATE_120_GBPS = 10,
633 IB_RATE_14_GBPS = 11,
634 IB_RATE_56_GBPS = 12,
635 IB_RATE_112_GBPS = 13,
636 IB_RATE_168_GBPS = 14,
637 IB_RATE_25_GBPS = 15,
638 IB_RATE_100_GBPS = 16,
639 IB_RATE_200_GBPS = 17,
640 IB_RATE_300_GBPS = 18
641 };
642
643 /**
644 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
645 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
646 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
647 * @rate: rate to convert.
648 */
649 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
650
651 /**
652 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
653 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
654 * @rate: rate to convert.
655 */
656 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
657
658
659 /**
660 * enum ib_mr_type - memory region type
661 * @IB_MR_TYPE_MEM_REG: memory region that is used for
662 * normal registration
663 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
664 * signature operations (data-integrity
665 * capable regions)
666 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
667 * register any arbitrary sg lists (without
668 * the normal mr constraints - see
669 * ib_map_mr_sg)
670 */
671 enum ib_mr_type {
672 IB_MR_TYPE_MEM_REG,
673 IB_MR_TYPE_SIGNATURE,
674 IB_MR_TYPE_SG_GAPS,
675 };
676
677 /**
678 * Signature types
679 * IB_SIG_TYPE_NONE: Unprotected.
680 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
681 */
682 enum ib_signature_type {
683 IB_SIG_TYPE_NONE,
684 IB_SIG_TYPE_T10_DIF,
685 };
686
687 /**
688 * Signature T10-DIF block-guard types
689 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
690 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
691 */
692 enum ib_t10_dif_bg_type {
693 IB_T10DIF_CRC,
694 IB_T10DIF_CSUM
695 };
696
697 /**
698 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
699 * domain.
700 * @bg_type: T10-DIF block guard type (CRC|CSUM)
701 * @pi_interval: protection information interval.
702 * @bg: seed of guard computation.
703 * @app_tag: application tag of guard block
704 * @ref_tag: initial guard block reference tag.
705 * @ref_remap: Indicate wethear the reftag increments each block
706 * @app_escape: Indicate to skip block check if apptag=0xffff
707 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
708 * @apptag_check_mask: check bitmask of application tag.
709 */
710 struct ib_t10_dif_domain {
711 enum ib_t10_dif_bg_type bg_type;
712 u16 pi_interval;
713 u16 bg;
714 u16 app_tag;
715 u32 ref_tag;
716 bool ref_remap;
717 bool app_escape;
718 bool ref_escape;
719 u16 apptag_check_mask;
720 };
721
722 /**
723 * struct ib_sig_domain - Parameters for signature domain
724 * @sig_type: specific signauture type
725 * @sig: union of all signature domain attributes that may
726 * be used to set domain layout.
727 */
728 struct ib_sig_domain {
729 enum ib_signature_type sig_type;
730 union {
731 struct ib_t10_dif_domain dif;
732 } sig;
733 };
734
735 /**
736 * struct ib_sig_attrs - Parameters for signature handover operation
737 * @check_mask: bitmask for signature byte check (8 bytes)
738 * @mem: memory domain layout desciptor.
739 * @wire: wire domain layout desciptor.
740 */
741 struct ib_sig_attrs {
742 u8 check_mask;
743 struct ib_sig_domain mem;
744 struct ib_sig_domain wire;
745 };
746
747 enum ib_sig_err_type {
748 IB_SIG_BAD_GUARD,
749 IB_SIG_BAD_REFTAG,
750 IB_SIG_BAD_APPTAG,
751 };
752
753 /**
754 * struct ib_sig_err - signature error descriptor
755 */
756 struct ib_sig_err {
757 enum ib_sig_err_type err_type;
758 u32 expected;
759 u32 actual;
760 u64 sig_err_offset;
761 u32 key;
762 };
763
764 enum ib_mr_status_check {
765 IB_MR_CHECK_SIG_STATUS = 1,
766 };
767
768 /**
769 * struct ib_mr_status - Memory region status container
770 *
771 * @fail_status: Bitmask of MR checks status. For each
772 * failed check a corresponding status bit is set.
773 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
774 * failure.
775 */
776 struct ib_mr_status {
777 u32 fail_status;
778 struct ib_sig_err sig_err;
779 };
780
781 /**
782 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
783 * enum.
784 * @mult: multiple to convert.
785 */
786 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
787
788 struct ib_ah_attr {
789 struct ib_global_route grh;
790 u16 dlid;
791 u8 sl;
792 u8 src_path_bits;
793 u8 static_rate;
794 u8 ah_flags;
795 u8 port_num;
796 u8 dmac[ETH_ALEN];
797 };
798
799 enum ib_wc_status {
800 IB_WC_SUCCESS,
801 IB_WC_LOC_LEN_ERR,
802 IB_WC_LOC_QP_OP_ERR,
803 IB_WC_LOC_EEC_OP_ERR,
804 IB_WC_LOC_PROT_ERR,
805 IB_WC_WR_FLUSH_ERR,
806 IB_WC_MW_BIND_ERR,
807 IB_WC_BAD_RESP_ERR,
808 IB_WC_LOC_ACCESS_ERR,
809 IB_WC_REM_INV_REQ_ERR,
810 IB_WC_REM_ACCESS_ERR,
811 IB_WC_REM_OP_ERR,
812 IB_WC_RETRY_EXC_ERR,
813 IB_WC_RNR_RETRY_EXC_ERR,
814 IB_WC_LOC_RDD_VIOL_ERR,
815 IB_WC_REM_INV_RD_REQ_ERR,
816 IB_WC_REM_ABORT_ERR,
817 IB_WC_INV_EECN_ERR,
818 IB_WC_INV_EEC_STATE_ERR,
819 IB_WC_FATAL_ERR,
820 IB_WC_RESP_TIMEOUT_ERR,
821 IB_WC_GENERAL_ERR
822 };
823
824 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
825
826 enum ib_wc_opcode {
827 IB_WC_SEND,
828 IB_WC_RDMA_WRITE,
829 IB_WC_RDMA_READ,
830 IB_WC_COMP_SWAP,
831 IB_WC_FETCH_ADD,
832 IB_WC_LSO,
833 IB_WC_LOCAL_INV,
834 IB_WC_REG_MR,
835 IB_WC_MASKED_COMP_SWAP,
836 IB_WC_MASKED_FETCH_ADD,
837 /*
838 * Set value of IB_WC_RECV so consumers can test if a completion is a
839 * receive by testing (opcode & IB_WC_RECV).
840 */
841 IB_WC_RECV = 1 << 7,
842 IB_WC_RECV_RDMA_WITH_IMM
843 };
844
845 enum ib_wc_flags {
846 IB_WC_GRH = 1,
847 IB_WC_WITH_IMM = (1<<1),
848 IB_WC_WITH_INVALIDATE = (1<<2),
849 IB_WC_IP_CSUM_OK = (1<<3),
850 IB_WC_WITH_SMAC = (1<<4),
851 IB_WC_WITH_VLAN = (1<<5),
852 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
853 };
854
855 struct ib_wc {
856 union {
857 u64 wr_id;
858 struct ib_cqe *wr_cqe;
859 };
860 enum ib_wc_status status;
861 enum ib_wc_opcode opcode;
862 u32 vendor_err;
863 u32 byte_len;
864 struct ib_qp *qp;
865 union {
866 __be32 imm_data;
867 u32 invalidate_rkey;
868 } ex;
869 u32 src_qp;
870 int wc_flags;
871 u16 pkey_index;
872 u16 slid;
873 u8 sl;
874 u8 dlid_path_bits;
875 u8 port_num; /* valid only for DR SMPs on switches */
876 u8 smac[ETH_ALEN];
877 u16 vlan_id;
878 u8 network_hdr_type;
879 };
880
881 enum ib_cq_notify_flags {
882 IB_CQ_SOLICITED = 1 << 0,
883 IB_CQ_NEXT_COMP = 1 << 1,
884 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
885 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
886 };
887
888 enum ib_srq_type {
889 IB_SRQT_BASIC,
890 IB_SRQT_XRC
891 };
892
893 enum ib_srq_attr_mask {
894 IB_SRQ_MAX_WR = 1 << 0,
895 IB_SRQ_LIMIT = 1 << 1,
896 };
897
898 struct ib_srq_attr {
899 u32 max_wr;
900 u32 max_sge;
901 u32 srq_limit;
902 };
903
904 struct ib_srq_init_attr {
905 void (*event_handler)(struct ib_event *, void *);
906 void *srq_context;
907 struct ib_srq_attr attr;
908 enum ib_srq_type srq_type;
909
910 union {
911 struct {
912 struct ib_xrcd *xrcd;
913 struct ib_cq *cq;
914 } xrc;
915 } ext;
916 };
917
918 struct ib_qp_cap {
919 u32 max_send_wr;
920 u32 max_recv_wr;
921 u32 max_send_sge;
922 u32 max_recv_sge;
923 u32 max_inline_data;
924 };
925
926 enum ib_sig_type {
927 IB_SIGNAL_ALL_WR,
928 IB_SIGNAL_REQ_WR
929 };
930
931 enum ib_qp_type {
932 /*
933 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
934 * here (and in that order) since the MAD layer uses them as
935 * indices into a 2-entry table.
936 */
937 IB_QPT_SMI,
938 IB_QPT_GSI,
939
940 IB_QPT_RC,
941 IB_QPT_UC,
942 IB_QPT_UD,
943 IB_QPT_RAW_IPV6,
944 IB_QPT_RAW_ETHERTYPE,
945 IB_QPT_RAW_PACKET = 8,
946 IB_QPT_XRC_INI = 9,
947 IB_QPT_XRC_TGT,
948 IB_QPT_MAX,
949 /* Reserve a range for qp types internal to the low level driver.
950 * These qp types will not be visible at the IB core layer, so the
951 * IB_QPT_MAX usages should not be affected in the core layer
952 */
953 IB_QPT_RESERVED1 = 0x1000,
954 IB_QPT_RESERVED2,
955 IB_QPT_RESERVED3,
956 IB_QPT_RESERVED4,
957 IB_QPT_RESERVED5,
958 IB_QPT_RESERVED6,
959 IB_QPT_RESERVED7,
960 IB_QPT_RESERVED8,
961 IB_QPT_RESERVED9,
962 IB_QPT_RESERVED10,
963 };
964
965 enum ib_qp_create_flags {
966 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
967 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
968 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
969 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
970 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
971 IB_QP_CREATE_NETIF_QP = 1 << 5,
972 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
973 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
974 /* reserve bits 26-31 for low level drivers' internal use */
975 IB_QP_CREATE_RESERVED_START = 1 << 26,
976 IB_QP_CREATE_RESERVED_END = 1 << 31,
977 };
978
979 /*
980 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
981 * callback to destroy the passed in QP.
982 */
983
984 struct ib_qp_init_attr {
985 void (*event_handler)(struct ib_event *, void *);
986 void *qp_context;
987 struct ib_cq *send_cq;
988 struct ib_cq *recv_cq;
989 struct ib_srq *srq;
990 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
991 struct ib_qp_cap cap;
992 enum ib_sig_type sq_sig_type;
993 enum ib_qp_type qp_type;
994 enum ib_qp_create_flags create_flags;
995 u8 port_num; /* special QP types only */
996 };
997
998 struct ib_qp_open_attr {
999 void (*event_handler)(struct ib_event *, void *);
1000 void *qp_context;
1001 u32 qp_num;
1002 enum ib_qp_type qp_type;
1003 };
1004
1005 enum ib_rnr_timeout {
1006 IB_RNR_TIMER_655_36 = 0,
1007 IB_RNR_TIMER_000_01 = 1,
1008 IB_RNR_TIMER_000_02 = 2,
1009 IB_RNR_TIMER_000_03 = 3,
1010 IB_RNR_TIMER_000_04 = 4,
1011 IB_RNR_TIMER_000_06 = 5,
1012 IB_RNR_TIMER_000_08 = 6,
1013 IB_RNR_TIMER_000_12 = 7,
1014 IB_RNR_TIMER_000_16 = 8,
1015 IB_RNR_TIMER_000_24 = 9,
1016 IB_RNR_TIMER_000_32 = 10,
1017 IB_RNR_TIMER_000_48 = 11,
1018 IB_RNR_TIMER_000_64 = 12,
1019 IB_RNR_TIMER_000_96 = 13,
1020 IB_RNR_TIMER_001_28 = 14,
1021 IB_RNR_TIMER_001_92 = 15,
1022 IB_RNR_TIMER_002_56 = 16,
1023 IB_RNR_TIMER_003_84 = 17,
1024 IB_RNR_TIMER_005_12 = 18,
1025 IB_RNR_TIMER_007_68 = 19,
1026 IB_RNR_TIMER_010_24 = 20,
1027 IB_RNR_TIMER_015_36 = 21,
1028 IB_RNR_TIMER_020_48 = 22,
1029 IB_RNR_TIMER_030_72 = 23,
1030 IB_RNR_TIMER_040_96 = 24,
1031 IB_RNR_TIMER_061_44 = 25,
1032 IB_RNR_TIMER_081_92 = 26,
1033 IB_RNR_TIMER_122_88 = 27,
1034 IB_RNR_TIMER_163_84 = 28,
1035 IB_RNR_TIMER_245_76 = 29,
1036 IB_RNR_TIMER_327_68 = 30,
1037 IB_RNR_TIMER_491_52 = 31
1038 };
1039
1040 enum ib_qp_attr_mask {
1041 IB_QP_STATE = 1,
1042 IB_QP_CUR_STATE = (1<<1),
1043 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1044 IB_QP_ACCESS_FLAGS = (1<<3),
1045 IB_QP_PKEY_INDEX = (1<<4),
1046 IB_QP_PORT = (1<<5),
1047 IB_QP_QKEY = (1<<6),
1048 IB_QP_AV = (1<<7),
1049 IB_QP_PATH_MTU = (1<<8),
1050 IB_QP_TIMEOUT = (1<<9),
1051 IB_QP_RETRY_CNT = (1<<10),
1052 IB_QP_RNR_RETRY = (1<<11),
1053 IB_QP_RQ_PSN = (1<<12),
1054 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1055 IB_QP_ALT_PATH = (1<<14),
1056 IB_QP_MIN_RNR_TIMER = (1<<15),
1057 IB_QP_SQ_PSN = (1<<16),
1058 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1059 IB_QP_PATH_MIG_STATE = (1<<18),
1060 IB_QP_CAP = (1<<19),
1061 IB_QP_DEST_QPN = (1<<20),
1062 IB_QP_RESERVED1 = (1<<21),
1063 IB_QP_RESERVED2 = (1<<22),
1064 IB_QP_RESERVED3 = (1<<23),
1065 IB_QP_RESERVED4 = (1<<24),
1066 };
1067
1068 enum ib_qp_state {
1069 IB_QPS_RESET,
1070 IB_QPS_INIT,
1071 IB_QPS_RTR,
1072 IB_QPS_RTS,
1073 IB_QPS_SQD,
1074 IB_QPS_SQE,
1075 IB_QPS_ERR
1076 };
1077
1078 enum ib_mig_state {
1079 IB_MIG_MIGRATED,
1080 IB_MIG_REARM,
1081 IB_MIG_ARMED
1082 };
1083
1084 enum ib_mw_type {
1085 IB_MW_TYPE_1 = 1,
1086 IB_MW_TYPE_2 = 2
1087 };
1088
1089 struct ib_qp_attr {
1090 enum ib_qp_state qp_state;
1091 enum ib_qp_state cur_qp_state;
1092 enum ib_mtu path_mtu;
1093 enum ib_mig_state path_mig_state;
1094 u32 qkey;
1095 u32 rq_psn;
1096 u32 sq_psn;
1097 u32 dest_qp_num;
1098 int qp_access_flags;
1099 struct ib_qp_cap cap;
1100 struct ib_ah_attr ah_attr;
1101 struct ib_ah_attr alt_ah_attr;
1102 u16 pkey_index;
1103 u16 alt_pkey_index;
1104 u8 en_sqd_async_notify;
1105 u8 sq_draining;
1106 u8 max_rd_atomic;
1107 u8 max_dest_rd_atomic;
1108 u8 min_rnr_timer;
1109 u8 port_num;
1110 u8 timeout;
1111 u8 retry_cnt;
1112 u8 rnr_retry;
1113 u8 alt_port_num;
1114 u8 alt_timeout;
1115 };
1116
1117 enum ib_wr_opcode {
1118 IB_WR_RDMA_WRITE,
1119 IB_WR_RDMA_WRITE_WITH_IMM,
1120 IB_WR_SEND,
1121 IB_WR_SEND_WITH_IMM,
1122 IB_WR_RDMA_READ,
1123 IB_WR_ATOMIC_CMP_AND_SWP,
1124 IB_WR_ATOMIC_FETCH_AND_ADD,
1125 IB_WR_LSO,
1126 IB_WR_SEND_WITH_INV,
1127 IB_WR_RDMA_READ_WITH_INV,
1128 IB_WR_LOCAL_INV,
1129 IB_WR_REG_MR,
1130 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1131 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1132 IB_WR_REG_SIG_MR,
1133 /* reserve values for low level drivers' internal use.
1134 * These values will not be used at all in the ib core layer.
1135 */
1136 IB_WR_RESERVED1 = 0xf0,
1137 IB_WR_RESERVED2,
1138 IB_WR_RESERVED3,
1139 IB_WR_RESERVED4,
1140 IB_WR_RESERVED5,
1141 IB_WR_RESERVED6,
1142 IB_WR_RESERVED7,
1143 IB_WR_RESERVED8,
1144 IB_WR_RESERVED9,
1145 IB_WR_RESERVED10,
1146 };
1147
1148 enum ib_send_flags {
1149 IB_SEND_FENCE = 1,
1150 IB_SEND_SIGNALED = (1<<1),
1151 IB_SEND_SOLICITED = (1<<2),
1152 IB_SEND_INLINE = (1<<3),
1153 IB_SEND_IP_CSUM = (1<<4),
1154
1155 /* reserve bits 26-31 for low level drivers' internal use */
1156 IB_SEND_RESERVED_START = (1 << 26),
1157 IB_SEND_RESERVED_END = (1 << 31),
1158 };
1159
1160 struct ib_sge {
1161 u64 addr;
1162 u32 length;
1163 u32 lkey;
1164 };
1165
1166 struct ib_cqe {
1167 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1168 };
1169
1170 struct ib_send_wr {
1171 struct ib_send_wr *next;
1172 union {
1173 u64 wr_id;
1174 struct ib_cqe *wr_cqe;
1175 };
1176 struct ib_sge *sg_list;
1177 int num_sge;
1178 enum ib_wr_opcode opcode;
1179 int send_flags;
1180 union {
1181 __be32 imm_data;
1182 u32 invalidate_rkey;
1183 } ex;
1184 };
1185
1186 struct ib_rdma_wr {
1187 struct ib_send_wr wr;
1188 u64 remote_addr;
1189 u32 rkey;
1190 };
1191
1192 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1193 {
1194 return container_of(wr, struct ib_rdma_wr, wr);
1195 }
1196
1197 struct ib_atomic_wr {
1198 struct ib_send_wr wr;
1199 u64 remote_addr;
1200 u64 compare_add;
1201 u64 swap;
1202 u64 compare_add_mask;
1203 u64 swap_mask;
1204 u32 rkey;
1205 };
1206
1207 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1208 {
1209 return container_of(wr, struct ib_atomic_wr, wr);
1210 }
1211
1212 struct ib_ud_wr {
1213 struct ib_send_wr wr;
1214 struct ib_ah *ah;
1215 void *header;
1216 int hlen;
1217 int mss;
1218 u32 remote_qpn;
1219 u32 remote_qkey;
1220 u16 pkey_index; /* valid for GSI only */
1221 u8 port_num; /* valid for DR SMPs on switch only */
1222 };
1223
1224 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1225 {
1226 return container_of(wr, struct ib_ud_wr, wr);
1227 }
1228
1229 struct ib_reg_wr {
1230 struct ib_send_wr wr;
1231 struct ib_mr *mr;
1232 u32 key;
1233 int access;
1234 };
1235
1236 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1237 {
1238 return container_of(wr, struct ib_reg_wr, wr);
1239 }
1240
1241 struct ib_sig_handover_wr {
1242 struct ib_send_wr wr;
1243 struct ib_sig_attrs *sig_attrs;
1244 struct ib_mr *sig_mr;
1245 int access_flags;
1246 struct ib_sge *prot;
1247 };
1248
1249 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1250 {
1251 return container_of(wr, struct ib_sig_handover_wr, wr);
1252 }
1253
1254 struct ib_recv_wr {
1255 struct ib_recv_wr *next;
1256 union {
1257 u64 wr_id;
1258 struct ib_cqe *wr_cqe;
1259 };
1260 struct ib_sge *sg_list;
1261 int num_sge;
1262 };
1263
1264 enum ib_access_flags {
1265 IB_ACCESS_LOCAL_WRITE = 1,
1266 IB_ACCESS_REMOTE_WRITE = (1<<1),
1267 IB_ACCESS_REMOTE_READ = (1<<2),
1268 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1269 IB_ACCESS_MW_BIND = (1<<4),
1270 IB_ZERO_BASED = (1<<5),
1271 IB_ACCESS_ON_DEMAND = (1<<6),
1272 };
1273
1274 /*
1275 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1276 * are hidden here instead of a uapi header!
1277 */
1278 enum ib_mr_rereg_flags {
1279 IB_MR_REREG_TRANS = 1,
1280 IB_MR_REREG_PD = (1<<1),
1281 IB_MR_REREG_ACCESS = (1<<2),
1282 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1283 };
1284
1285 struct ib_fmr_attr {
1286 int max_pages;
1287 int max_maps;
1288 u8 page_shift;
1289 };
1290
1291 struct ib_umem;
1292
1293 struct ib_ucontext {
1294 struct ib_device *device;
1295 struct list_head pd_list;
1296 struct list_head mr_list;
1297 struct list_head mw_list;
1298 struct list_head cq_list;
1299 struct list_head qp_list;
1300 struct list_head srq_list;
1301 struct list_head ah_list;
1302 struct list_head xrcd_list;
1303 struct list_head rule_list;
1304 int closing;
1305
1306 struct pid *tgid;
1307 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1308 struct rb_root umem_tree;
1309 /*
1310 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1311 * mmu notifiers registration.
1312 */
1313 struct rw_semaphore umem_rwsem;
1314 void (*invalidate_range)(struct ib_umem *umem,
1315 unsigned long start, unsigned long end);
1316
1317 struct mmu_notifier mn;
1318 atomic_t notifier_count;
1319 /* A list of umems that don't have private mmu notifier counters yet. */
1320 struct list_head no_private_counters;
1321 int odp_mrs_count;
1322 #endif
1323 };
1324
1325 struct ib_uobject {
1326 u64 user_handle; /* handle given to us by userspace */
1327 struct ib_ucontext *context; /* associated user context */
1328 void *object; /* containing object */
1329 struct list_head list; /* link to context's list */
1330 int id; /* index into kernel idr */
1331 struct kref ref;
1332 struct rw_semaphore mutex; /* protects .live */
1333 struct rcu_head rcu; /* kfree_rcu() overhead */
1334 int live;
1335 };
1336
1337 struct ib_udata {
1338 const void __user *inbuf;
1339 void __user *outbuf;
1340 size_t inlen;
1341 size_t outlen;
1342 };
1343
1344 struct ib_pd {
1345 u32 local_dma_lkey;
1346 struct ib_device *device;
1347 struct ib_uobject *uobject;
1348 atomic_t usecnt; /* count all resources */
1349 struct ib_mr *local_mr;
1350 };
1351
1352 struct ib_xrcd {
1353 struct ib_device *device;
1354 atomic_t usecnt; /* count all exposed resources */
1355 struct inode *inode;
1356
1357 struct mutex tgt_qp_mutex;
1358 struct list_head tgt_qp_list;
1359 };
1360
1361 struct ib_ah {
1362 struct ib_device *device;
1363 struct ib_pd *pd;
1364 struct ib_uobject *uobject;
1365 };
1366
1367 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1368
1369 enum ib_poll_context {
1370 IB_POLL_DIRECT, /* caller context, no hw completions */
1371 IB_POLL_SOFTIRQ, /* poll from softirq context */
1372 IB_POLL_WORKQUEUE, /* poll from workqueue */
1373 };
1374
1375 struct ib_cq {
1376 struct ib_device *device;
1377 struct ib_uobject *uobject;
1378 ib_comp_handler comp_handler;
1379 void (*event_handler)(struct ib_event *, void *);
1380 void *cq_context;
1381 int cqe;
1382 atomic_t usecnt; /* count number of work queues */
1383 enum ib_poll_context poll_ctx;
1384 struct ib_wc *wc;
1385 union {
1386 struct irq_poll iop;
1387 struct work_struct work;
1388 };
1389 };
1390
1391 struct ib_srq {
1392 struct ib_device *device;
1393 struct ib_pd *pd;
1394 struct ib_uobject *uobject;
1395 void (*event_handler)(struct ib_event *, void *);
1396 void *srq_context;
1397 enum ib_srq_type srq_type;
1398 atomic_t usecnt;
1399
1400 union {
1401 struct {
1402 struct ib_xrcd *xrcd;
1403 struct ib_cq *cq;
1404 u32 srq_num;
1405 } xrc;
1406 } ext;
1407 };
1408
1409 struct ib_qp {
1410 struct ib_device *device;
1411 struct ib_pd *pd;
1412 struct ib_cq *send_cq;
1413 struct ib_cq *recv_cq;
1414 struct ib_srq *srq;
1415 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1416 struct list_head xrcd_list;
1417 /* count times opened, mcast attaches, flow attaches */
1418 atomic_t usecnt;
1419 struct list_head open_list;
1420 struct ib_qp *real_qp;
1421 struct ib_uobject *uobject;
1422 void (*event_handler)(struct ib_event *, void *);
1423 void *qp_context;
1424 u32 qp_num;
1425 enum ib_qp_type qp_type;
1426 };
1427
1428 struct ib_mr {
1429 struct ib_device *device;
1430 struct ib_pd *pd;
1431 struct ib_uobject *uobject;
1432 u32 lkey;
1433 u32 rkey;
1434 u64 iova;
1435 u32 length;
1436 unsigned int page_size;
1437 };
1438
1439 struct ib_mw {
1440 struct ib_device *device;
1441 struct ib_pd *pd;
1442 struct ib_uobject *uobject;
1443 u32 rkey;
1444 enum ib_mw_type type;
1445 };
1446
1447 struct ib_fmr {
1448 struct ib_device *device;
1449 struct ib_pd *pd;
1450 struct list_head list;
1451 u32 lkey;
1452 u32 rkey;
1453 };
1454
1455 /* Supported steering options */
1456 enum ib_flow_attr_type {
1457 /* steering according to rule specifications */
1458 IB_FLOW_ATTR_NORMAL = 0x0,
1459 /* default unicast and multicast rule -
1460 * receive all Eth traffic which isn't steered to any QP
1461 */
1462 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1463 /* default multicast rule -
1464 * receive all Eth multicast traffic which isn't steered to any QP
1465 */
1466 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1467 /* sniffer rule - receive all port traffic */
1468 IB_FLOW_ATTR_SNIFFER = 0x3
1469 };
1470
1471 /* Supported steering header types */
1472 enum ib_flow_spec_type {
1473 /* L2 headers*/
1474 IB_FLOW_SPEC_ETH = 0x20,
1475 IB_FLOW_SPEC_IB = 0x22,
1476 /* L3 header*/
1477 IB_FLOW_SPEC_IPV4 = 0x30,
1478 /* L4 headers*/
1479 IB_FLOW_SPEC_TCP = 0x40,
1480 IB_FLOW_SPEC_UDP = 0x41
1481 };
1482 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1483 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1484
1485 /* Flow steering rule priority is set according to it's domain.
1486 * Lower domain value means higher priority.
1487 */
1488 enum ib_flow_domain {
1489 IB_FLOW_DOMAIN_USER,
1490 IB_FLOW_DOMAIN_ETHTOOL,
1491 IB_FLOW_DOMAIN_RFS,
1492 IB_FLOW_DOMAIN_NIC,
1493 IB_FLOW_DOMAIN_NUM /* Must be last */
1494 };
1495
1496 enum ib_flow_flags {
1497 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1498 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1499 };
1500
1501 struct ib_flow_eth_filter {
1502 u8 dst_mac[6];
1503 u8 src_mac[6];
1504 __be16 ether_type;
1505 __be16 vlan_tag;
1506 };
1507
1508 struct ib_flow_spec_eth {
1509 enum ib_flow_spec_type type;
1510 u16 size;
1511 struct ib_flow_eth_filter val;
1512 struct ib_flow_eth_filter mask;
1513 };
1514
1515 struct ib_flow_ib_filter {
1516 __be16 dlid;
1517 __u8 sl;
1518 };
1519
1520 struct ib_flow_spec_ib {
1521 enum ib_flow_spec_type type;
1522 u16 size;
1523 struct ib_flow_ib_filter val;
1524 struct ib_flow_ib_filter mask;
1525 };
1526
1527 struct ib_flow_ipv4_filter {
1528 __be32 src_ip;
1529 __be32 dst_ip;
1530 };
1531
1532 struct ib_flow_spec_ipv4 {
1533 enum ib_flow_spec_type type;
1534 u16 size;
1535 struct ib_flow_ipv4_filter val;
1536 struct ib_flow_ipv4_filter mask;
1537 };
1538
1539 struct ib_flow_tcp_udp_filter {
1540 __be16 dst_port;
1541 __be16 src_port;
1542 };
1543
1544 struct ib_flow_spec_tcp_udp {
1545 enum ib_flow_spec_type type;
1546 u16 size;
1547 struct ib_flow_tcp_udp_filter val;
1548 struct ib_flow_tcp_udp_filter mask;
1549 };
1550
1551 union ib_flow_spec {
1552 struct {
1553 enum ib_flow_spec_type type;
1554 u16 size;
1555 };
1556 struct ib_flow_spec_eth eth;
1557 struct ib_flow_spec_ib ib;
1558 struct ib_flow_spec_ipv4 ipv4;
1559 struct ib_flow_spec_tcp_udp tcp_udp;
1560 };
1561
1562 struct ib_flow_attr {
1563 enum ib_flow_attr_type type;
1564 u16 size;
1565 u16 priority;
1566 u32 flags;
1567 u8 num_of_specs;
1568 u8 port;
1569 /* Following are the optional layers according to user request
1570 * struct ib_flow_spec_xxx
1571 * struct ib_flow_spec_yyy
1572 */
1573 };
1574
1575 struct ib_flow {
1576 struct ib_qp *qp;
1577 struct ib_uobject *uobject;
1578 };
1579
1580 struct ib_mad_hdr;
1581 struct ib_grh;
1582
1583 enum ib_process_mad_flags {
1584 IB_MAD_IGNORE_MKEY = 1,
1585 IB_MAD_IGNORE_BKEY = 2,
1586 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1587 };
1588
1589 enum ib_mad_result {
1590 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1591 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1592 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1593 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1594 };
1595
1596 #define IB_DEVICE_NAME_MAX 64
1597
1598 struct ib_cache {
1599 rwlock_t lock;
1600 struct ib_event_handler event_handler;
1601 struct ib_pkey_cache **pkey_cache;
1602 struct ib_gid_table **gid_cache;
1603 u8 *lmc_cache;
1604 };
1605
1606 struct ib_dma_mapping_ops {
1607 int (*mapping_error)(struct ib_device *dev,
1608 u64 dma_addr);
1609 u64 (*map_single)(struct ib_device *dev,
1610 void *ptr, size_t size,
1611 enum dma_data_direction direction);
1612 void (*unmap_single)(struct ib_device *dev,
1613 u64 addr, size_t size,
1614 enum dma_data_direction direction);
1615 u64 (*map_page)(struct ib_device *dev,
1616 struct page *page, unsigned long offset,
1617 size_t size,
1618 enum dma_data_direction direction);
1619 void (*unmap_page)(struct ib_device *dev,
1620 u64 addr, size_t size,
1621 enum dma_data_direction direction);
1622 int (*map_sg)(struct ib_device *dev,
1623 struct scatterlist *sg, int nents,
1624 enum dma_data_direction direction);
1625 void (*unmap_sg)(struct ib_device *dev,
1626 struct scatterlist *sg, int nents,
1627 enum dma_data_direction direction);
1628 void (*sync_single_for_cpu)(struct ib_device *dev,
1629 u64 dma_handle,
1630 size_t size,
1631 enum dma_data_direction dir);
1632 void (*sync_single_for_device)(struct ib_device *dev,
1633 u64 dma_handle,
1634 size_t size,
1635 enum dma_data_direction dir);
1636 void *(*alloc_coherent)(struct ib_device *dev,
1637 size_t size,
1638 u64 *dma_handle,
1639 gfp_t flag);
1640 void (*free_coherent)(struct ib_device *dev,
1641 size_t size, void *cpu_addr,
1642 u64 dma_handle);
1643 };
1644
1645 struct iw_cm_verbs;
1646
1647 struct ib_port_immutable {
1648 int pkey_tbl_len;
1649 int gid_tbl_len;
1650 u32 core_cap_flags;
1651 u32 max_mad_size;
1652 };
1653
1654 struct ib_device {
1655 struct device *dma_device;
1656
1657 char name[IB_DEVICE_NAME_MAX];
1658
1659 struct list_head event_handler_list;
1660 spinlock_t event_handler_lock;
1661
1662 spinlock_t client_data_lock;
1663 struct list_head core_list;
1664 /* Access to the client_data_list is protected by the client_data_lock
1665 * spinlock and the lists_rwsem read-write semaphore */
1666 struct list_head client_data_list;
1667
1668 struct ib_cache cache;
1669 /**
1670 * port_immutable is indexed by port number
1671 */
1672 struct ib_port_immutable *port_immutable;
1673
1674 int num_comp_vectors;
1675
1676 struct iw_cm_verbs *iwcm;
1677
1678 int (*get_protocol_stats)(struct ib_device *device,
1679 union rdma_protocol_stats *stats);
1680 int (*query_device)(struct ib_device *device,
1681 struct ib_device_attr *device_attr,
1682 struct ib_udata *udata);
1683 int (*query_port)(struct ib_device *device,
1684 u8 port_num,
1685 struct ib_port_attr *port_attr);
1686 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1687 u8 port_num);
1688 /* When calling get_netdev, the HW vendor's driver should return the
1689 * net device of device @device at port @port_num or NULL if such
1690 * a net device doesn't exist. The vendor driver should call dev_hold
1691 * on this net device. The HW vendor's device driver must guarantee
1692 * that this function returns NULL before the net device reaches
1693 * NETDEV_UNREGISTER_FINAL state.
1694 */
1695 struct net_device *(*get_netdev)(struct ib_device *device,
1696 u8 port_num);
1697 int (*query_gid)(struct ib_device *device,
1698 u8 port_num, int index,
1699 union ib_gid *gid);
1700 /* When calling add_gid, the HW vendor's driver should
1701 * add the gid of device @device at gid index @index of
1702 * port @port_num to be @gid. Meta-info of that gid (for example,
1703 * the network device related to this gid is available
1704 * at @attr. @context allows the HW vendor driver to store extra
1705 * information together with a GID entry. The HW vendor may allocate
1706 * memory to contain this information and store it in @context when a
1707 * new GID entry is written to. Params are consistent until the next
1708 * call of add_gid or delete_gid. The function should return 0 on
1709 * success or error otherwise. The function could be called
1710 * concurrently for different ports. This function is only called
1711 * when roce_gid_table is used.
1712 */
1713 int (*add_gid)(struct ib_device *device,
1714 u8 port_num,
1715 unsigned int index,
1716 const union ib_gid *gid,
1717 const struct ib_gid_attr *attr,
1718 void **context);
1719 /* When calling del_gid, the HW vendor's driver should delete the
1720 * gid of device @device at gid index @index of port @port_num.
1721 * Upon the deletion of a GID entry, the HW vendor must free any
1722 * allocated memory. The caller will clear @context afterwards.
1723 * This function is only called when roce_gid_table is used.
1724 */
1725 int (*del_gid)(struct ib_device *device,
1726 u8 port_num,
1727 unsigned int index,
1728 void **context);
1729 int (*query_pkey)(struct ib_device *device,
1730 u8 port_num, u16 index, u16 *pkey);
1731 int (*modify_device)(struct ib_device *device,
1732 int device_modify_mask,
1733 struct ib_device_modify *device_modify);
1734 int (*modify_port)(struct ib_device *device,
1735 u8 port_num, int port_modify_mask,
1736 struct ib_port_modify *port_modify);
1737 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1738 struct ib_udata *udata);
1739 int (*dealloc_ucontext)(struct ib_ucontext *context);
1740 int (*mmap)(struct ib_ucontext *context,
1741 struct vm_area_struct *vma);
1742 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1743 struct ib_ucontext *context,
1744 struct ib_udata *udata);
1745 int (*dealloc_pd)(struct ib_pd *pd);
1746 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1747 struct ib_ah_attr *ah_attr);
1748 int (*modify_ah)(struct ib_ah *ah,
1749 struct ib_ah_attr *ah_attr);
1750 int (*query_ah)(struct ib_ah *ah,
1751 struct ib_ah_attr *ah_attr);
1752 int (*destroy_ah)(struct ib_ah *ah);
1753 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1754 struct ib_srq_init_attr *srq_init_attr,
1755 struct ib_udata *udata);
1756 int (*modify_srq)(struct ib_srq *srq,
1757 struct ib_srq_attr *srq_attr,
1758 enum ib_srq_attr_mask srq_attr_mask,
1759 struct ib_udata *udata);
1760 int (*query_srq)(struct ib_srq *srq,
1761 struct ib_srq_attr *srq_attr);
1762 int (*destroy_srq)(struct ib_srq *srq);
1763 int (*post_srq_recv)(struct ib_srq *srq,
1764 struct ib_recv_wr *recv_wr,
1765 struct ib_recv_wr **bad_recv_wr);
1766 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1767 struct ib_qp_init_attr *qp_init_attr,
1768 struct ib_udata *udata);
1769 int (*modify_qp)(struct ib_qp *qp,
1770 struct ib_qp_attr *qp_attr,
1771 int qp_attr_mask,
1772 struct ib_udata *udata);
1773 int (*query_qp)(struct ib_qp *qp,
1774 struct ib_qp_attr *qp_attr,
1775 int qp_attr_mask,
1776 struct ib_qp_init_attr *qp_init_attr);
1777 int (*destroy_qp)(struct ib_qp *qp);
1778 int (*post_send)(struct ib_qp *qp,
1779 struct ib_send_wr *send_wr,
1780 struct ib_send_wr **bad_send_wr);
1781 int (*post_recv)(struct ib_qp *qp,
1782 struct ib_recv_wr *recv_wr,
1783 struct ib_recv_wr **bad_recv_wr);
1784 struct ib_cq * (*create_cq)(struct ib_device *device,
1785 const struct ib_cq_init_attr *attr,
1786 struct ib_ucontext *context,
1787 struct ib_udata *udata);
1788 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1789 u16 cq_period);
1790 int (*destroy_cq)(struct ib_cq *cq);
1791 int (*resize_cq)(struct ib_cq *cq, int cqe,
1792 struct ib_udata *udata);
1793 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1794 struct ib_wc *wc);
1795 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1796 int (*req_notify_cq)(struct ib_cq *cq,
1797 enum ib_cq_notify_flags flags);
1798 int (*req_ncomp_notif)(struct ib_cq *cq,
1799 int wc_cnt);
1800 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1801 int mr_access_flags);
1802 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1803 u64 start, u64 length,
1804 u64 virt_addr,
1805 int mr_access_flags,
1806 struct ib_udata *udata);
1807 int (*rereg_user_mr)(struct ib_mr *mr,
1808 int flags,
1809 u64 start, u64 length,
1810 u64 virt_addr,
1811 int mr_access_flags,
1812 struct ib_pd *pd,
1813 struct ib_udata *udata);
1814 int (*dereg_mr)(struct ib_mr *mr);
1815 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1816 enum ib_mr_type mr_type,
1817 u32 max_num_sg);
1818 int (*map_mr_sg)(struct ib_mr *mr,
1819 struct scatterlist *sg,
1820 int sg_nents);
1821 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1822 enum ib_mw_type type,
1823 struct ib_udata *udata);
1824 int (*dealloc_mw)(struct ib_mw *mw);
1825 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1826 int mr_access_flags,
1827 struct ib_fmr_attr *fmr_attr);
1828 int (*map_phys_fmr)(struct ib_fmr *fmr,
1829 u64 *page_list, int list_len,
1830 u64 iova);
1831 int (*unmap_fmr)(struct list_head *fmr_list);
1832 int (*dealloc_fmr)(struct ib_fmr *fmr);
1833 int (*attach_mcast)(struct ib_qp *qp,
1834 union ib_gid *gid,
1835 u16 lid);
1836 int (*detach_mcast)(struct ib_qp *qp,
1837 union ib_gid *gid,
1838 u16 lid);
1839 int (*process_mad)(struct ib_device *device,
1840 int process_mad_flags,
1841 u8 port_num,
1842 const struct ib_wc *in_wc,
1843 const struct ib_grh *in_grh,
1844 const struct ib_mad_hdr *in_mad,
1845 size_t in_mad_size,
1846 struct ib_mad_hdr *out_mad,
1847 size_t *out_mad_size,
1848 u16 *out_mad_pkey_index);
1849 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1850 struct ib_ucontext *ucontext,
1851 struct ib_udata *udata);
1852 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1853 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1854 struct ib_flow_attr
1855 *flow_attr,
1856 int domain);
1857 int (*destroy_flow)(struct ib_flow *flow_id);
1858 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1859 struct ib_mr_status *mr_status);
1860 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1861 void (*drain_rq)(struct ib_qp *qp);
1862 void (*drain_sq)(struct ib_qp *qp);
1863
1864 struct ib_dma_mapping_ops *dma_ops;
1865
1866 struct module *owner;
1867 struct device dev;
1868 struct kobject *ports_parent;
1869 struct list_head port_list;
1870
1871 enum {
1872 IB_DEV_UNINITIALIZED,
1873 IB_DEV_REGISTERED,
1874 IB_DEV_UNREGISTERED
1875 } reg_state;
1876
1877 int uverbs_abi_ver;
1878 u64 uverbs_cmd_mask;
1879 u64 uverbs_ex_cmd_mask;
1880
1881 char node_desc[64];
1882 __be64 node_guid;
1883 u32 local_dma_lkey;
1884 u16 is_switch:1;
1885 u8 node_type;
1886 u8 phys_port_cnt;
1887 struct ib_device_attr attrs;
1888
1889 /**
1890 * The following mandatory functions are used only at device
1891 * registration. Keep functions such as these at the end of this
1892 * structure to avoid cache line misses when accessing struct ib_device
1893 * in fast paths.
1894 */
1895 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1896 };
1897
1898 struct ib_client {
1899 char *name;
1900 void (*add) (struct ib_device *);
1901 void (*remove)(struct ib_device *, void *client_data);
1902
1903 /* Returns the net_dev belonging to this ib_client and matching the
1904 * given parameters.
1905 * @dev: An RDMA device that the net_dev use for communication.
1906 * @port: A physical port number on the RDMA device.
1907 * @pkey: P_Key that the net_dev uses if applicable.
1908 * @gid: A GID that the net_dev uses to communicate.
1909 * @addr: An IP address the net_dev is configured with.
1910 * @client_data: The device's client data set by ib_set_client_data().
1911 *
1912 * An ib_client that implements a net_dev on top of RDMA devices
1913 * (such as IP over IB) should implement this callback, allowing the
1914 * rdma_cm module to find the right net_dev for a given request.
1915 *
1916 * The caller is responsible for calling dev_put on the returned
1917 * netdev. */
1918 struct net_device *(*get_net_dev_by_params)(
1919 struct ib_device *dev,
1920 u8 port,
1921 u16 pkey,
1922 const union ib_gid *gid,
1923 const struct sockaddr *addr,
1924 void *client_data);
1925 struct list_head list;
1926 };
1927
1928 struct ib_device *ib_alloc_device(size_t size);
1929 void ib_dealloc_device(struct ib_device *device);
1930
1931 int ib_register_device(struct ib_device *device,
1932 int (*port_callback)(struct ib_device *,
1933 u8, struct kobject *));
1934 void ib_unregister_device(struct ib_device *device);
1935
1936 int ib_register_client (struct ib_client *client);
1937 void ib_unregister_client(struct ib_client *client);
1938
1939 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1940 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1941 void *data);
1942
1943 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1944 {
1945 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1946 }
1947
1948 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1949 {
1950 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1951 }
1952
1953 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
1954 size_t offset,
1955 size_t len)
1956 {
1957 const void __user *p = udata->inbuf + offset;
1958 bool ret = false;
1959 u8 *buf;
1960
1961 if (len > USHRT_MAX)
1962 return false;
1963
1964 buf = kmalloc(len, GFP_KERNEL);
1965 if (!buf)
1966 return false;
1967
1968 if (copy_from_user(buf, p, len))
1969 goto free;
1970
1971 ret = !memchr_inv(buf, 0, len);
1972
1973 free:
1974 kfree(buf);
1975 return ret;
1976 }
1977
1978 /**
1979 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1980 * contains all required attributes and no attributes not allowed for
1981 * the given QP state transition.
1982 * @cur_state: Current QP state
1983 * @next_state: Next QP state
1984 * @type: QP type
1985 * @mask: Mask of supplied QP attributes
1986 * @ll : link layer of port
1987 *
1988 * This function is a helper function that a low-level driver's
1989 * modify_qp method can use to validate the consumer's input. It
1990 * checks that cur_state and next_state are valid QP states, that a
1991 * transition from cur_state to next_state is allowed by the IB spec,
1992 * and that the attribute mask supplied is allowed for the transition.
1993 */
1994 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1995 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1996 enum rdma_link_layer ll);
1997
1998 int ib_register_event_handler (struct ib_event_handler *event_handler);
1999 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2000 void ib_dispatch_event(struct ib_event *event);
2001
2002 int ib_query_port(struct ib_device *device,
2003 u8 port_num, struct ib_port_attr *port_attr);
2004
2005 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2006 u8 port_num);
2007
2008 /**
2009 * rdma_cap_ib_switch - Check if the device is IB switch
2010 * @device: Device to check
2011 *
2012 * Device driver is responsible for setting is_switch bit on
2013 * in ib_device structure at init time.
2014 *
2015 * Return: true if the device is IB switch.
2016 */
2017 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2018 {
2019 return device->is_switch;
2020 }
2021
2022 /**
2023 * rdma_start_port - Return the first valid port number for the device
2024 * specified
2025 *
2026 * @device: Device to be checked
2027 *
2028 * Return start port number
2029 */
2030 static inline u8 rdma_start_port(const struct ib_device *device)
2031 {
2032 return rdma_cap_ib_switch(device) ? 0 : 1;
2033 }
2034
2035 /**
2036 * rdma_end_port - Return the last valid port number for the device
2037 * specified
2038 *
2039 * @device: Device to be checked
2040 *
2041 * Return last port number
2042 */
2043 static inline u8 rdma_end_port(const struct ib_device *device)
2044 {
2045 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2046 }
2047
2048 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2049 {
2050 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2051 }
2052
2053 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2054 {
2055 return device->port_immutable[port_num].core_cap_flags &
2056 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2057 }
2058
2059 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2060 {
2061 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2062 }
2063
2064 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2065 {
2066 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2067 }
2068
2069 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2070 {
2071 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2072 }
2073
2074 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2075 {
2076 return rdma_protocol_ib(device, port_num) ||
2077 rdma_protocol_roce(device, port_num);
2078 }
2079
2080 /**
2081 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2082 * Management Datagrams.
2083 * @device: Device to check
2084 * @port_num: Port number to check
2085 *
2086 * Management Datagrams (MAD) are a required part of the InfiniBand
2087 * specification and are supported on all InfiniBand devices. A slightly
2088 * extended version are also supported on OPA interfaces.
2089 *
2090 * Return: true if the port supports sending/receiving of MAD packets.
2091 */
2092 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2093 {
2094 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2095 }
2096
2097 /**
2098 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2099 * Management Datagrams.
2100 * @device: Device to check
2101 * @port_num: Port number to check
2102 *
2103 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2104 * datagrams with their own versions. These OPA MADs share many but not all of
2105 * the characteristics of InfiniBand MADs.
2106 *
2107 * OPA MADs differ in the following ways:
2108 *
2109 * 1) MADs are variable size up to 2K
2110 * IBTA defined MADs remain fixed at 256 bytes
2111 * 2) OPA SMPs must carry valid PKeys
2112 * 3) OPA SMP packets are a different format
2113 *
2114 * Return: true if the port supports OPA MAD packet formats.
2115 */
2116 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2117 {
2118 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2119 == RDMA_CORE_CAP_OPA_MAD;
2120 }
2121
2122 /**
2123 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2124 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2125 * @device: Device to check
2126 * @port_num: Port number to check
2127 *
2128 * Each InfiniBand node is required to provide a Subnet Management Agent
2129 * that the subnet manager can access. Prior to the fabric being fully
2130 * configured by the subnet manager, the SMA is accessed via a well known
2131 * interface called the Subnet Management Interface (SMI). This interface
2132 * uses directed route packets to communicate with the SM to get around the
2133 * chicken and egg problem of the SM needing to know what's on the fabric
2134 * in order to configure the fabric, and needing to configure the fabric in
2135 * order to send packets to the devices on the fabric. These directed
2136 * route packets do not need the fabric fully configured in order to reach
2137 * their destination. The SMI is the only method allowed to send
2138 * directed route packets on an InfiniBand fabric.
2139 *
2140 * Return: true if the port provides an SMI.
2141 */
2142 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2143 {
2144 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2145 }
2146
2147 /**
2148 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2149 * Communication Manager.
2150 * @device: Device to check
2151 * @port_num: Port number to check
2152 *
2153 * The InfiniBand Communication Manager is one of many pre-defined General
2154 * Service Agents (GSA) that are accessed via the General Service
2155 * Interface (GSI). It's role is to facilitate establishment of connections
2156 * between nodes as well as other management related tasks for established
2157 * connections.
2158 *
2159 * Return: true if the port supports an IB CM (this does not guarantee that
2160 * a CM is actually running however).
2161 */
2162 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2163 {
2164 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2165 }
2166
2167 /**
2168 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2169 * Communication Manager.
2170 * @device: Device to check
2171 * @port_num: Port number to check
2172 *
2173 * Similar to above, but specific to iWARP connections which have a different
2174 * managment protocol than InfiniBand.
2175 *
2176 * Return: true if the port supports an iWARP CM (this does not guarantee that
2177 * a CM is actually running however).
2178 */
2179 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2180 {
2181 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2182 }
2183
2184 /**
2185 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2186 * Subnet Administration.
2187 * @device: Device to check
2188 * @port_num: Port number to check
2189 *
2190 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2191 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2192 * fabrics, devices should resolve routes to other hosts by contacting the
2193 * SA to query the proper route.
2194 *
2195 * Return: true if the port should act as a client to the fabric Subnet
2196 * Administration interface. This does not imply that the SA service is
2197 * running locally.
2198 */
2199 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2200 {
2201 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2202 }
2203
2204 /**
2205 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2206 * Multicast.
2207 * @device: Device to check
2208 * @port_num: Port number to check
2209 *
2210 * InfiniBand multicast registration is more complex than normal IPv4 or
2211 * IPv6 multicast registration. Each Host Channel Adapter must register
2212 * with the Subnet Manager when it wishes to join a multicast group. It
2213 * should do so only once regardless of how many queue pairs it subscribes
2214 * to this group. And it should leave the group only after all queue pairs
2215 * attached to the group have been detached.
2216 *
2217 * Return: true if the port must undertake the additional adminstrative
2218 * overhead of registering/unregistering with the SM and tracking of the
2219 * total number of queue pairs attached to the multicast group.
2220 */
2221 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2222 {
2223 return rdma_cap_ib_sa(device, port_num);
2224 }
2225
2226 /**
2227 * rdma_cap_af_ib - Check if the port of device has the capability
2228 * Native Infiniband Address.
2229 * @device: Device to check
2230 * @port_num: Port number to check
2231 *
2232 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2233 * GID. RoCE uses a different mechanism, but still generates a GID via
2234 * a prescribed mechanism and port specific data.
2235 *
2236 * Return: true if the port uses a GID address to identify devices on the
2237 * network.
2238 */
2239 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2240 {
2241 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2242 }
2243
2244 /**
2245 * rdma_cap_eth_ah - Check if the port of device has the capability
2246 * Ethernet Address Handle.
2247 * @device: Device to check
2248 * @port_num: Port number to check
2249 *
2250 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2251 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2252 * port. Normally, packet headers are generated by the sending host
2253 * adapter, but when sending connectionless datagrams, we must manually
2254 * inject the proper headers for the fabric we are communicating over.
2255 *
2256 * Return: true if we are running as a RoCE port and must force the
2257 * addition of a Global Route Header built from our Ethernet Address
2258 * Handle into our header list for connectionless packets.
2259 */
2260 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2261 {
2262 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2263 }
2264
2265 /**
2266 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2267 *
2268 * @device: Device
2269 * @port_num: Port number
2270 *
2271 * This MAD size includes the MAD headers and MAD payload. No other headers
2272 * are included.
2273 *
2274 * Return the max MAD size required by the Port. Will return 0 if the port
2275 * does not support MADs
2276 */
2277 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2278 {
2279 return device->port_immutable[port_num].max_mad_size;
2280 }
2281
2282 /**
2283 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2284 * @device: Device to check
2285 * @port_num: Port number to check
2286 *
2287 * RoCE GID table mechanism manages the various GIDs for a device.
2288 *
2289 * NOTE: if allocating the port's GID table has failed, this call will still
2290 * return true, but any RoCE GID table API will fail.
2291 *
2292 * Return: true if the port uses RoCE GID table mechanism in order to manage
2293 * its GIDs.
2294 */
2295 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2296 u8 port_num)
2297 {
2298 return rdma_protocol_roce(device, port_num) &&
2299 device->add_gid && device->del_gid;
2300 }
2301
2302 int ib_query_gid(struct ib_device *device,
2303 u8 port_num, int index, union ib_gid *gid,
2304 struct ib_gid_attr *attr);
2305
2306 int ib_query_pkey(struct ib_device *device,
2307 u8 port_num, u16 index, u16 *pkey);
2308
2309 int ib_modify_device(struct ib_device *device,
2310 int device_modify_mask,
2311 struct ib_device_modify *device_modify);
2312
2313 int ib_modify_port(struct ib_device *device,
2314 u8 port_num, int port_modify_mask,
2315 struct ib_port_modify *port_modify);
2316
2317 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2318 enum ib_gid_type gid_type, struct net_device *ndev,
2319 u8 *port_num, u16 *index);
2320
2321 int ib_find_pkey(struct ib_device *device,
2322 u8 port_num, u16 pkey, u16 *index);
2323
2324 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2325
2326 void ib_dealloc_pd(struct ib_pd *pd);
2327
2328 /**
2329 * ib_create_ah - Creates an address handle for the given address vector.
2330 * @pd: The protection domain associated with the address handle.
2331 * @ah_attr: The attributes of the address vector.
2332 *
2333 * The address handle is used to reference a local or global destination
2334 * in all UD QP post sends.
2335 */
2336 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2337
2338 /**
2339 * ib_init_ah_from_wc - Initializes address handle attributes from a
2340 * work completion.
2341 * @device: Device on which the received message arrived.
2342 * @port_num: Port on which the received message arrived.
2343 * @wc: Work completion associated with the received message.
2344 * @grh: References the received global route header. This parameter is
2345 * ignored unless the work completion indicates that the GRH is valid.
2346 * @ah_attr: Returned attributes that can be used when creating an address
2347 * handle for replying to the message.
2348 */
2349 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2350 const struct ib_wc *wc, const struct ib_grh *grh,
2351 struct ib_ah_attr *ah_attr);
2352
2353 /**
2354 * ib_create_ah_from_wc - Creates an address handle associated with the
2355 * sender of the specified work completion.
2356 * @pd: The protection domain associated with the address handle.
2357 * @wc: Work completion information associated with a received message.
2358 * @grh: References the received global route header. This parameter is
2359 * ignored unless the work completion indicates that the GRH is valid.
2360 * @port_num: The outbound port number to associate with the address.
2361 *
2362 * The address handle is used to reference a local or global destination
2363 * in all UD QP post sends.
2364 */
2365 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2366 const struct ib_grh *grh, u8 port_num);
2367
2368 /**
2369 * ib_modify_ah - Modifies the address vector associated with an address
2370 * handle.
2371 * @ah: The address handle to modify.
2372 * @ah_attr: The new address vector attributes to associate with the
2373 * address handle.
2374 */
2375 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2376
2377 /**
2378 * ib_query_ah - Queries the address vector associated with an address
2379 * handle.
2380 * @ah: The address handle to query.
2381 * @ah_attr: The address vector attributes associated with the address
2382 * handle.
2383 */
2384 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2385
2386 /**
2387 * ib_destroy_ah - Destroys an address handle.
2388 * @ah: The address handle to destroy.
2389 */
2390 int ib_destroy_ah(struct ib_ah *ah);
2391
2392 /**
2393 * ib_create_srq - Creates a SRQ associated with the specified protection
2394 * domain.
2395 * @pd: The protection domain associated with the SRQ.
2396 * @srq_init_attr: A list of initial attributes required to create the
2397 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2398 * the actual capabilities of the created SRQ.
2399 *
2400 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2401 * requested size of the SRQ, and set to the actual values allocated
2402 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2403 * will always be at least as large as the requested values.
2404 */
2405 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2406 struct ib_srq_init_attr *srq_init_attr);
2407
2408 /**
2409 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2410 * @srq: The SRQ to modify.
2411 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2412 * the current values of selected SRQ attributes are returned.
2413 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2414 * are being modified.
2415 *
2416 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2417 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2418 * the number of receives queued drops below the limit.
2419 */
2420 int ib_modify_srq(struct ib_srq *srq,
2421 struct ib_srq_attr *srq_attr,
2422 enum ib_srq_attr_mask srq_attr_mask);
2423
2424 /**
2425 * ib_query_srq - Returns the attribute list and current values for the
2426 * specified SRQ.
2427 * @srq: The SRQ to query.
2428 * @srq_attr: The attributes of the specified SRQ.
2429 */
2430 int ib_query_srq(struct ib_srq *srq,
2431 struct ib_srq_attr *srq_attr);
2432
2433 /**
2434 * ib_destroy_srq - Destroys the specified SRQ.
2435 * @srq: The SRQ to destroy.
2436 */
2437 int ib_destroy_srq(struct ib_srq *srq);
2438
2439 /**
2440 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2441 * @srq: The SRQ to post the work request on.
2442 * @recv_wr: A list of work requests to post on the receive queue.
2443 * @bad_recv_wr: On an immediate failure, this parameter will reference
2444 * the work request that failed to be posted on the QP.
2445 */
2446 static inline int ib_post_srq_recv(struct ib_srq *srq,
2447 struct ib_recv_wr *recv_wr,
2448 struct ib_recv_wr **bad_recv_wr)
2449 {
2450 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2451 }
2452
2453 /**
2454 * ib_create_qp - Creates a QP associated with the specified protection
2455 * domain.
2456 * @pd: The protection domain associated with the QP.
2457 * @qp_init_attr: A list of initial attributes required to create the
2458 * QP. If QP creation succeeds, then the attributes are updated to
2459 * the actual capabilities of the created QP.
2460 */
2461 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2462 struct ib_qp_init_attr *qp_init_attr);
2463
2464 /**
2465 * ib_modify_qp - Modifies the attributes for the specified QP and then
2466 * transitions the QP to the given state.
2467 * @qp: The QP to modify.
2468 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2469 * the current values of selected QP attributes are returned.
2470 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2471 * are being modified.
2472 */
2473 int ib_modify_qp(struct ib_qp *qp,
2474 struct ib_qp_attr *qp_attr,
2475 int qp_attr_mask);
2476
2477 /**
2478 * ib_query_qp - Returns the attribute list and current values for the
2479 * specified QP.
2480 * @qp: The QP to query.
2481 * @qp_attr: The attributes of the specified QP.
2482 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2483 * @qp_init_attr: Additional attributes of the selected QP.
2484 *
2485 * The qp_attr_mask may be used to limit the query to gathering only the
2486 * selected attributes.
2487 */
2488 int ib_query_qp(struct ib_qp *qp,
2489 struct ib_qp_attr *qp_attr,
2490 int qp_attr_mask,
2491 struct ib_qp_init_attr *qp_init_attr);
2492
2493 /**
2494 * ib_destroy_qp - Destroys the specified QP.
2495 * @qp: The QP to destroy.
2496 */
2497 int ib_destroy_qp(struct ib_qp *qp);
2498
2499 /**
2500 * ib_open_qp - Obtain a reference to an existing sharable QP.
2501 * @xrcd - XRC domain
2502 * @qp_open_attr: Attributes identifying the QP to open.
2503 *
2504 * Returns a reference to a sharable QP.
2505 */
2506 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2507 struct ib_qp_open_attr *qp_open_attr);
2508
2509 /**
2510 * ib_close_qp - Release an external reference to a QP.
2511 * @qp: The QP handle to release
2512 *
2513 * The opened QP handle is released by the caller. The underlying
2514 * shared QP is not destroyed until all internal references are released.
2515 */
2516 int ib_close_qp(struct ib_qp *qp);
2517
2518 /**
2519 * ib_post_send - Posts a list of work requests to the send queue of
2520 * the specified QP.
2521 * @qp: The QP to post the work request on.
2522 * @send_wr: A list of work requests to post on the send queue.
2523 * @bad_send_wr: On an immediate failure, this parameter will reference
2524 * the work request that failed to be posted on the QP.
2525 *
2526 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2527 * error is returned, the QP state shall not be affected,
2528 * ib_post_send() will return an immediate error after queueing any
2529 * earlier work requests in the list.
2530 */
2531 static inline int ib_post_send(struct ib_qp *qp,
2532 struct ib_send_wr *send_wr,
2533 struct ib_send_wr **bad_send_wr)
2534 {
2535 return qp->device->post_send(qp, send_wr, bad_send_wr);
2536 }
2537
2538 /**
2539 * ib_post_recv - Posts a list of work requests to the receive queue of
2540 * the specified QP.
2541 * @qp: The QP to post the work request on.
2542 * @recv_wr: A list of work requests to post on the receive queue.
2543 * @bad_recv_wr: On an immediate failure, this parameter will reference
2544 * the work request that failed to be posted on the QP.
2545 */
2546 static inline int ib_post_recv(struct ib_qp *qp,
2547 struct ib_recv_wr *recv_wr,
2548 struct ib_recv_wr **bad_recv_wr)
2549 {
2550 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2551 }
2552
2553 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2554 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2555 void ib_free_cq(struct ib_cq *cq);
2556 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2557
2558 /**
2559 * ib_create_cq - Creates a CQ on the specified device.
2560 * @device: The device on which to create the CQ.
2561 * @comp_handler: A user-specified callback that is invoked when a
2562 * completion event occurs on the CQ.
2563 * @event_handler: A user-specified callback that is invoked when an
2564 * asynchronous event not associated with a completion occurs on the CQ.
2565 * @cq_context: Context associated with the CQ returned to the user via
2566 * the associated completion and event handlers.
2567 * @cq_attr: The attributes the CQ should be created upon.
2568 *
2569 * Users can examine the cq structure to determine the actual CQ size.
2570 */
2571 struct ib_cq *ib_create_cq(struct ib_device *device,
2572 ib_comp_handler comp_handler,
2573 void (*event_handler)(struct ib_event *, void *),
2574 void *cq_context,
2575 const struct ib_cq_init_attr *cq_attr);
2576
2577 /**
2578 * ib_resize_cq - Modifies the capacity of the CQ.
2579 * @cq: The CQ to resize.
2580 * @cqe: The minimum size of the CQ.
2581 *
2582 * Users can examine the cq structure to determine the actual CQ size.
2583 */
2584 int ib_resize_cq(struct ib_cq *cq, int cqe);
2585
2586 /**
2587 * ib_modify_cq - Modifies moderation params of the CQ
2588 * @cq: The CQ to modify.
2589 * @cq_count: number of CQEs that will trigger an event
2590 * @cq_period: max period of time in usec before triggering an event
2591 *
2592 */
2593 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2594
2595 /**
2596 * ib_destroy_cq - Destroys the specified CQ.
2597 * @cq: The CQ to destroy.
2598 */
2599 int ib_destroy_cq(struct ib_cq *cq);
2600
2601 /**
2602 * ib_poll_cq - poll a CQ for completion(s)
2603 * @cq:the CQ being polled
2604 * @num_entries:maximum number of completions to return
2605 * @wc:array of at least @num_entries &struct ib_wc where completions
2606 * will be returned
2607 *
2608 * Poll a CQ for (possibly multiple) completions. If the return value
2609 * is < 0, an error occurred. If the return value is >= 0, it is the
2610 * number of completions returned. If the return value is
2611 * non-negative and < num_entries, then the CQ was emptied.
2612 */
2613 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2614 struct ib_wc *wc)
2615 {
2616 return cq->device->poll_cq(cq, num_entries, wc);
2617 }
2618
2619 /**
2620 * ib_peek_cq - Returns the number of unreaped completions currently
2621 * on the specified CQ.
2622 * @cq: The CQ to peek.
2623 * @wc_cnt: A minimum number of unreaped completions to check for.
2624 *
2625 * If the number of unreaped completions is greater than or equal to wc_cnt,
2626 * this function returns wc_cnt, otherwise, it returns the actual number of
2627 * unreaped completions.
2628 */
2629 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2630
2631 /**
2632 * ib_req_notify_cq - Request completion notification on a CQ.
2633 * @cq: The CQ to generate an event for.
2634 * @flags:
2635 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2636 * to request an event on the next solicited event or next work
2637 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2638 * may also be |ed in to request a hint about missed events, as
2639 * described below.
2640 *
2641 * Return Value:
2642 * < 0 means an error occurred while requesting notification
2643 * == 0 means notification was requested successfully, and if
2644 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2645 * were missed and it is safe to wait for another event. In
2646 * this case is it guaranteed that any work completions added
2647 * to the CQ since the last CQ poll will trigger a completion
2648 * notification event.
2649 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2650 * in. It means that the consumer must poll the CQ again to
2651 * make sure it is empty to avoid missing an event because of a
2652 * race between requesting notification and an entry being
2653 * added to the CQ. This return value means it is possible
2654 * (but not guaranteed) that a work completion has been added
2655 * to the CQ since the last poll without triggering a
2656 * completion notification event.
2657 */
2658 static inline int ib_req_notify_cq(struct ib_cq *cq,
2659 enum ib_cq_notify_flags flags)
2660 {
2661 return cq->device->req_notify_cq(cq, flags);
2662 }
2663
2664 /**
2665 * ib_req_ncomp_notif - Request completion notification when there are
2666 * at least the specified number of unreaped completions on the CQ.
2667 * @cq: The CQ to generate an event for.
2668 * @wc_cnt: The number of unreaped completions that should be on the
2669 * CQ before an event is generated.
2670 */
2671 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2672 {
2673 return cq->device->req_ncomp_notif ?
2674 cq->device->req_ncomp_notif(cq, wc_cnt) :
2675 -ENOSYS;
2676 }
2677
2678 /**
2679 * ib_get_dma_mr - Returns a memory region for system memory that is
2680 * usable for DMA.
2681 * @pd: The protection domain associated with the memory region.
2682 * @mr_access_flags: Specifies the memory access rights.
2683 *
2684 * Note that the ib_dma_*() functions defined below must be used
2685 * to create/destroy addresses used with the Lkey or Rkey returned
2686 * by ib_get_dma_mr().
2687 */
2688 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2689
2690 /**
2691 * ib_dma_mapping_error - check a DMA addr for error
2692 * @dev: The device for which the dma_addr was created
2693 * @dma_addr: The DMA address to check
2694 */
2695 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2696 {
2697 if (dev->dma_ops)
2698 return dev->dma_ops->mapping_error(dev, dma_addr);
2699 return dma_mapping_error(dev->dma_device, dma_addr);
2700 }
2701
2702 /**
2703 * ib_dma_map_single - Map a kernel virtual address to DMA address
2704 * @dev: The device for which the dma_addr is to be created
2705 * @cpu_addr: The kernel virtual address
2706 * @size: The size of the region in bytes
2707 * @direction: The direction of the DMA
2708 */
2709 static inline u64 ib_dma_map_single(struct ib_device *dev,
2710 void *cpu_addr, size_t size,
2711 enum dma_data_direction direction)
2712 {
2713 if (dev->dma_ops)
2714 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2715 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2716 }
2717
2718 /**
2719 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2720 * @dev: The device for which the DMA address was created
2721 * @addr: The DMA address
2722 * @size: The size of the region in bytes
2723 * @direction: The direction of the DMA
2724 */
2725 static inline void ib_dma_unmap_single(struct ib_device *dev,
2726 u64 addr, size_t size,
2727 enum dma_data_direction direction)
2728 {
2729 if (dev->dma_ops)
2730 dev->dma_ops->unmap_single(dev, addr, size, direction);
2731 else
2732 dma_unmap_single(dev->dma_device, addr, size, direction);
2733 }
2734
2735 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2736 void *cpu_addr, size_t size,
2737 enum dma_data_direction direction,
2738 struct dma_attrs *attrs)
2739 {
2740 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2741 direction, attrs);
2742 }
2743
2744 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2745 u64 addr, size_t size,
2746 enum dma_data_direction direction,
2747 struct dma_attrs *attrs)
2748 {
2749 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2750 direction, attrs);
2751 }
2752
2753 /**
2754 * ib_dma_map_page - Map a physical page to DMA address
2755 * @dev: The device for which the dma_addr is to be created
2756 * @page: The page to be mapped
2757 * @offset: The offset within the page
2758 * @size: The size of the region in bytes
2759 * @direction: The direction of the DMA
2760 */
2761 static inline u64 ib_dma_map_page(struct ib_device *dev,
2762 struct page *page,
2763 unsigned long offset,
2764 size_t size,
2765 enum dma_data_direction direction)
2766 {
2767 if (dev->dma_ops)
2768 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2769 return dma_map_page(dev->dma_device, page, offset, size, direction);
2770 }
2771
2772 /**
2773 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2774 * @dev: The device for which the DMA address was created
2775 * @addr: The DMA address
2776 * @size: The size of the region in bytes
2777 * @direction: The direction of the DMA
2778 */
2779 static inline void ib_dma_unmap_page(struct ib_device *dev,
2780 u64 addr, size_t size,
2781 enum dma_data_direction direction)
2782 {
2783 if (dev->dma_ops)
2784 dev->dma_ops->unmap_page(dev, addr, size, direction);
2785 else
2786 dma_unmap_page(dev->dma_device, addr, size, direction);
2787 }
2788
2789 /**
2790 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2791 * @dev: The device for which the DMA addresses are to be created
2792 * @sg: The array of scatter/gather entries
2793 * @nents: The number of scatter/gather entries
2794 * @direction: The direction of the DMA
2795 */
2796 static inline int ib_dma_map_sg(struct ib_device *dev,
2797 struct scatterlist *sg, int nents,
2798 enum dma_data_direction direction)
2799 {
2800 if (dev->dma_ops)
2801 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2802 return dma_map_sg(dev->dma_device, sg, nents, direction);
2803 }
2804
2805 /**
2806 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2807 * @dev: The device for which the DMA addresses were created
2808 * @sg: The array of scatter/gather entries
2809 * @nents: The number of scatter/gather entries
2810 * @direction: The direction of the DMA
2811 */
2812 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2813 struct scatterlist *sg, int nents,
2814 enum dma_data_direction direction)
2815 {
2816 if (dev->dma_ops)
2817 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2818 else
2819 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2820 }
2821
2822 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2823 struct scatterlist *sg, int nents,
2824 enum dma_data_direction direction,
2825 struct dma_attrs *attrs)
2826 {
2827 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2828 }
2829
2830 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2831 struct scatterlist *sg, int nents,
2832 enum dma_data_direction direction,
2833 struct dma_attrs *attrs)
2834 {
2835 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2836 }
2837 /**
2838 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2839 * @dev: The device for which the DMA addresses were created
2840 * @sg: The scatter/gather entry
2841 *
2842 * Note: this function is obsolete. To do: change all occurrences of
2843 * ib_sg_dma_address() into sg_dma_address().
2844 */
2845 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2846 struct scatterlist *sg)
2847 {
2848 return sg_dma_address(sg);
2849 }
2850
2851 /**
2852 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2853 * @dev: The device for which the DMA addresses were created
2854 * @sg: The scatter/gather entry
2855 *
2856 * Note: this function is obsolete. To do: change all occurrences of
2857 * ib_sg_dma_len() into sg_dma_len().
2858 */
2859 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2860 struct scatterlist *sg)
2861 {
2862 return sg_dma_len(sg);
2863 }
2864
2865 /**
2866 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2867 * @dev: The device for which the DMA address was created
2868 * @addr: The DMA address
2869 * @size: The size of the region in bytes
2870 * @dir: The direction of the DMA
2871 */
2872 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2873 u64 addr,
2874 size_t size,
2875 enum dma_data_direction dir)
2876 {
2877 if (dev->dma_ops)
2878 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2879 else
2880 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2881 }
2882
2883 /**
2884 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2885 * @dev: The device for which the DMA address was created
2886 * @addr: The DMA address
2887 * @size: The size of the region in bytes
2888 * @dir: The direction of the DMA
2889 */
2890 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2891 u64 addr,
2892 size_t size,
2893 enum dma_data_direction dir)
2894 {
2895 if (dev->dma_ops)
2896 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2897 else
2898 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2899 }
2900
2901 /**
2902 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2903 * @dev: The device for which the DMA address is requested
2904 * @size: The size of the region to allocate in bytes
2905 * @dma_handle: A pointer for returning the DMA address of the region
2906 * @flag: memory allocator flags
2907 */
2908 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2909 size_t size,
2910 u64 *dma_handle,
2911 gfp_t flag)
2912 {
2913 if (dev->dma_ops)
2914 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2915 else {
2916 dma_addr_t handle;
2917 void *ret;
2918
2919 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2920 *dma_handle = handle;
2921 return ret;
2922 }
2923 }
2924
2925 /**
2926 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2927 * @dev: The device for which the DMA addresses were allocated
2928 * @size: The size of the region
2929 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2930 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2931 */
2932 static inline void ib_dma_free_coherent(struct ib_device *dev,
2933 size_t size, void *cpu_addr,
2934 u64 dma_handle)
2935 {
2936 if (dev->dma_ops)
2937 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2938 else
2939 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2940 }
2941
2942 /**
2943 * ib_dereg_mr - Deregisters a memory region and removes it from the
2944 * HCA translation table.
2945 * @mr: The memory region to deregister.
2946 *
2947 * This function can fail, if the memory region has memory windows bound to it.
2948 */
2949 int ib_dereg_mr(struct ib_mr *mr);
2950
2951 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2952 enum ib_mr_type mr_type,
2953 u32 max_num_sg);
2954
2955 /**
2956 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2957 * R_Key and L_Key.
2958 * @mr - struct ib_mr pointer to be updated.
2959 * @newkey - new key to be used.
2960 */
2961 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2962 {
2963 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2964 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2965 }
2966
2967 /**
2968 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2969 * for calculating a new rkey for type 2 memory windows.
2970 * @rkey - the rkey to increment.
2971 */
2972 static inline u32 ib_inc_rkey(u32 rkey)
2973 {
2974 const u32 mask = 0x000000ff;
2975 return ((rkey + 1) & mask) | (rkey & ~mask);
2976 }
2977
2978 /**
2979 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2980 * @pd: The protection domain associated with the unmapped region.
2981 * @mr_access_flags: Specifies the memory access rights.
2982 * @fmr_attr: Attributes of the unmapped region.
2983 *
2984 * A fast memory region must be mapped before it can be used as part of
2985 * a work request.
2986 */
2987 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2988 int mr_access_flags,
2989 struct ib_fmr_attr *fmr_attr);
2990
2991 /**
2992 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2993 * @fmr: The fast memory region to associate with the pages.
2994 * @page_list: An array of physical pages to map to the fast memory region.
2995 * @list_len: The number of pages in page_list.
2996 * @iova: The I/O virtual address to use with the mapped region.
2997 */
2998 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2999 u64 *page_list, int list_len,
3000 u64 iova)
3001 {
3002 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3003 }
3004
3005 /**
3006 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3007 * @fmr_list: A linked list of fast memory regions to unmap.
3008 */
3009 int ib_unmap_fmr(struct list_head *fmr_list);
3010
3011 /**
3012 * ib_dealloc_fmr - Deallocates a fast memory region.
3013 * @fmr: The fast memory region to deallocate.
3014 */
3015 int ib_dealloc_fmr(struct ib_fmr *fmr);
3016
3017 /**
3018 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3019 * @qp: QP to attach to the multicast group. The QP must be type
3020 * IB_QPT_UD.
3021 * @gid: Multicast group GID.
3022 * @lid: Multicast group LID in host byte order.
3023 *
3024 * In order to send and receive multicast packets, subnet
3025 * administration must have created the multicast group and configured
3026 * the fabric appropriately. The port associated with the specified
3027 * QP must also be a member of the multicast group.
3028 */
3029 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3030
3031 /**
3032 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3033 * @qp: QP to detach from the multicast group.
3034 * @gid: Multicast group GID.
3035 * @lid: Multicast group LID in host byte order.
3036 */
3037 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3038
3039 /**
3040 * ib_alloc_xrcd - Allocates an XRC domain.
3041 * @device: The device on which to allocate the XRC domain.
3042 */
3043 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3044
3045 /**
3046 * ib_dealloc_xrcd - Deallocates an XRC domain.
3047 * @xrcd: The XRC domain to deallocate.
3048 */
3049 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3050
3051 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3052 struct ib_flow_attr *flow_attr, int domain);
3053 int ib_destroy_flow(struct ib_flow *flow_id);
3054
3055 static inline int ib_check_mr_access(int flags)
3056 {
3057 /*
3058 * Local write permission is required if remote write or
3059 * remote atomic permission is also requested.
3060 */
3061 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3062 !(flags & IB_ACCESS_LOCAL_WRITE))
3063 return -EINVAL;
3064
3065 return 0;
3066 }
3067
3068 /**
3069 * ib_check_mr_status: lightweight check of MR status.
3070 * This routine may provide status checks on a selected
3071 * ib_mr. first use is for signature status check.
3072 *
3073 * @mr: A memory region.
3074 * @check_mask: Bitmask of which checks to perform from
3075 * ib_mr_status_check enumeration.
3076 * @mr_status: The container of relevant status checks.
3077 * failed checks will be indicated in the status bitmask
3078 * and the relevant info shall be in the error item.
3079 */
3080 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3081 struct ib_mr_status *mr_status);
3082
3083 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3084 u16 pkey, const union ib_gid *gid,
3085 const struct sockaddr *addr);
3086
3087 int ib_map_mr_sg(struct ib_mr *mr,
3088 struct scatterlist *sg,
3089 int sg_nents,
3090 unsigned int page_size);
3091
3092 static inline int
3093 ib_map_mr_sg_zbva(struct ib_mr *mr,
3094 struct scatterlist *sg,
3095 int sg_nents,
3096 unsigned int page_size)
3097 {
3098 int n;
3099
3100 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3101 mr->iova = 0;
3102
3103 return n;
3104 }
3105
3106 int ib_sg_to_pages(struct ib_mr *mr,
3107 struct scatterlist *sgl,
3108 int sg_nents,
3109 int (*set_page)(struct ib_mr *, u64));
3110
3111 void ib_drain_rq(struct ib_qp *qp);
3112 void ib_drain_sq(struct ib_qp *qp);
3113 void ib_drain_qp(struct ib_qp *qp);
3114 #endif /* IB_VERBS_H */