]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/rdma/ib_verbs.h
Merge tag 'hsi-for-3.16-fixes1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <uapi/linux/if_ether.h>
52
53 #include <linux/atomic.h>
54 #include <asm/uaccess.h>
55
56 extern struct workqueue_struct *ib_wq;
57
58 union ib_gid {
59 u8 raw[16];
60 struct {
61 __be64 subnet_prefix;
62 __be64 interface_id;
63 } global;
64 };
65
66 enum rdma_node_type {
67 /* IB values map to NodeInfo:NodeType. */
68 RDMA_NODE_IB_CA = 1,
69 RDMA_NODE_IB_SWITCH,
70 RDMA_NODE_IB_ROUTER,
71 RDMA_NODE_RNIC,
72 RDMA_NODE_USNIC,
73 RDMA_NODE_USNIC_UDP,
74 };
75
76 enum rdma_transport_type {
77 RDMA_TRANSPORT_IB,
78 RDMA_TRANSPORT_IWARP,
79 RDMA_TRANSPORT_USNIC,
80 RDMA_TRANSPORT_USNIC_UDP
81 };
82
83 __attribute_const__ enum rdma_transport_type
84 rdma_node_get_transport(enum rdma_node_type node_type);
85
86 enum rdma_link_layer {
87 IB_LINK_LAYER_UNSPECIFIED,
88 IB_LINK_LAYER_INFINIBAND,
89 IB_LINK_LAYER_ETHERNET,
90 };
91
92 enum ib_device_cap_flags {
93 IB_DEVICE_RESIZE_MAX_WR = 1,
94 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
95 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
96 IB_DEVICE_RAW_MULTI = (1<<3),
97 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
98 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
99 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
100 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
101 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
102 IB_DEVICE_INIT_TYPE = (1<<9),
103 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
104 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
105 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
106 IB_DEVICE_SRQ_RESIZE = (1<<13),
107 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
108 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
109 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
110 IB_DEVICE_MEM_WINDOW = (1<<17),
111 /*
112 * Devices should set IB_DEVICE_UD_IP_SUM if they support
113 * insertion of UDP and TCP checksum on outgoing UD IPoIB
114 * messages and can verify the validity of checksum for
115 * incoming messages. Setting this flag implies that the
116 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
117 */
118 IB_DEVICE_UD_IP_CSUM = (1<<18),
119 IB_DEVICE_UD_TSO = (1<<19),
120 IB_DEVICE_XRC = (1<<20),
121 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
122 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
123 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
124 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
125 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
126 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30)
127 };
128
129 enum ib_signature_prot_cap {
130 IB_PROT_T10DIF_TYPE_1 = 1,
131 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
132 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
133 };
134
135 enum ib_signature_guard_cap {
136 IB_GUARD_T10DIF_CRC = 1,
137 IB_GUARD_T10DIF_CSUM = 1 << 1,
138 };
139
140 enum ib_atomic_cap {
141 IB_ATOMIC_NONE,
142 IB_ATOMIC_HCA,
143 IB_ATOMIC_GLOB
144 };
145
146 struct ib_device_attr {
147 u64 fw_ver;
148 __be64 sys_image_guid;
149 u64 max_mr_size;
150 u64 page_size_cap;
151 u32 vendor_id;
152 u32 vendor_part_id;
153 u32 hw_ver;
154 int max_qp;
155 int max_qp_wr;
156 int device_cap_flags;
157 int max_sge;
158 int max_sge_rd;
159 int max_cq;
160 int max_cqe;
161 int max_mr;
162 int max_pd;
163 int max_qp_rd_atom;
164 int max_ee_rd_atom;
165 int max_res_rd_atom;
166 int max_qp_init_rd_atom;
167 int max_ee_init_rd_atom;
168 enum ib_atomic_cap atomic_cap;
169 enum ib_atomic_cap masked_atomic_cap;
170 int max_ee;
171 int max_rdd;
172 int max_mw;
173 int max_raw_ipv6_qp;
174 int max_raw_ethy_qp;
175 int max_mcast_grp;
176 int max_mcast_qp_attach;
177 int max_total_mcast_qp_attach;
178 int max_ah;
179 int max_fmr;
180 int max_map_per_fmr;
181 int max_srq;
182 int max_srq_wr;
183 int max_srq_sge;
184 unsigned int max_fast_reg_page_list_len;
185 u16 max_pkeys;
186 u8 local_ca_ack_delay;
187 int sig_prot_cap;
188 int sig_guard_cap;
189 };
190
191 enum ib_mtu {
192 IB_MTU_256 = 1,
193 IB_MTU_512 = 2,
194 IB_MTU_1024 = 3,
195 IB_MTU_2048 = 4,
196 IB_MTU_4096 = 5
197 };
198
199 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
200 {
201 switch (mtu) {
202 case IB_MTU_256: return 256;
203 case IB_MTU_512: return 512;
204 case IB_MTU_1024: return 1024;
205 case IB_MTU_2048: return 2048;
206 case IB_MTU_4096: return 4096;
207 default: return -1;
208 }
209 }
210
211 enum ib_port_state {
212 IB_PORT_NOP = 0,
213 IB_PORT_DOWN = 1,
214 IB_PORT_INIT = 2,
215 IB_PORT_ARMED = 3,
216 IB_PORT_ACTIVE = 4,
217 IB_PORT_ACTIVE_DEFER = 5
218 };
219
220 enum ib_port_cap_flags {
221 IB_PORT_SM = 1 << 1,
222 IB_PORT_NOTICE_SUP = 1 << 2,
223 IB_PORT_TRAP_SUP = 1 << 3,
224 IB_PORT_OPT_IPD_SUP = 1 << 4,
225 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
226 IB_PORT_SL_MAP_SUP = 1 << 6,
227 IB_PORT_MKEY_NVRAM = 1 << 7,
228 IB_PORT_PKEY_NVRAM = 1 << 8,
229 IB_PORT_LED_INFO_SUP = 1 << 9,
230 IB_PORT_SM_DISABLED = 1 << 10,
231 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
232 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
233 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
234 IB_PORT_CM_SUP = 1 << 16,
235 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
236 IB_PORT_REINIT_SUP = 1 << 18,
237 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
238 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
239 IB_PORT_DR_NOTICE_SUP = 1 << 21,
240 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
241 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
242 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
243 IB_PORT_CLIENT_REG_SUP = 1 << 25,
244 IB_PORT_IP_BASED_GIDS = 1 << 26
245 };
246
247 enum ib_port_width {
248 IB_WIDTH_1X = 1,
249 IB_WIDTH_4X = 2,
250 IB_WIDTH_8X = 4,
251 IB_WIDTH_12X = 8
252 };
253
254 static inline int ib_width_enum_to_int(enum ib_port_width width)
255 {
256 switch (width) {
257 case IB_WIDTH_1X: return 1;
258 case IB_WIDTH_4X: return 4;
259 case IB_WIDTH_8X: return 8;
260 case IB_WIDTH_12X: return 12;
261 default: return -1;
262 }
263 }
264
265 enum ib_port_speed {
266 IB_SPEED_SDR = 1,
267 IB_SPEED_DDR = 2,
268 IB_SPEED_QDR = 4,
269 IB_SPEED_FDR10 = 8,
270 IB_SPEED_FDR = 16,
271 IB_SPEED_EDR = 32
272 };
273
274 struct ib_protocol_stats {
275 /* TBD... */
276 };
277
278 struct iw_protocol_stats {
279 u64 ipInReceives;
280 u64 ipInHdrErrors;
281 u64 ipInTooBigErrors;
282 u64 ipInNoRoutes;
283 u64 ipInAddrErrors;
284 u64 ipInUnknownProtos;
285 u64 ipInTruncatedPkts;
286 u64 ipInDiscards;
287 u64 ipInDelivers;
288 u64 ipOutForwDatagrams;
289 u64 ipOutRequests;
290 u64 ipOutDiscards;
291 u64 ipOutNoRoutes;
292 u64 ipReasmTimeout;
293 u64 ipReasmReqds;
294 u64 ipReasmOKs;
295 u64 ipReasmFails;
296 u64 ipFragOKs;
297 u64 ipFragFails;
298 u64 ipFragCreates;
299 u64 ipInMcastPkts;
300 u64 ipOutMcastPkts;
301 u64 ipInBcastPkts;
302 u64 ipOutBcastPkts;
303
304 u64 tcpRtoAlgorithm;
305 u64 tcpRtoMin;
306 u64 tcpRtoMax;
307 u64 tcpMaxConn;
308 u64 tcpActiveOpens;
309 u64 tcpPassiveOpens;
310 u64 tcpAttemptFails;
311 u64 tcpEstabResets;
312 u64 tcpCurrEstab;
313 u64 tcpInSegs;
314 u64 tcpOutSegs;
315 u64 tcpRetransSegs;
316 u64 tcpInErrs;
317 u64 tcpOutRsts;
318 };
319
320 union rdma_protocol_stats {
321 struct ib_protocol_stats ib;
322 struct iw_protocol_stats iw;
323 };
324
325 struct ib_port_attr {
326 enum ib_port_state state;
327 enum ib_mtu max_mtu;
328 enum ib_mtu active_mtu;
329 int gid_tbl_len;
330 u32 port_cap_flags;
331 u32 max_msg_sz;
332 u32 bad_pkey_cntr;
333 u32 qkey_viol_cntr;
334 u16 pkey_tbl_len;
335 u16 lid;
336 u16 sm_lid;
337 u8 lmc;
338 u8 max_vl_num;
339 u8 sm_sl;
340 u8 subnet_timeout;
341 u8 init_type_reply;
342 u8 active_width;
343 u8 active_speed;
344 u8 phys_state;
345 };
346
347 enum ib_device_modify_flags {
348 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
349 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
350 };
351
352 struct ib_device_modify {
353 u64 sys_image_guid;
354 char node_desc[64];
355 };
356
357 enum ib_port_modify_flags {
358 IB_PORT_SHUTDOWN = 1,
359 IB_PORT_INIT_TYPE = (1<<2),
360 IB_PORT_RESET_QKEY_CNTR = (1<<3)
361 };
362
363 struct ib_port_modify {
364 u32 set_port_cap_mask;
365 u32 clr_port_cap_mask;
366 u8 init_type;
367 };
368
369 enum ib_event_type {
370 IB_EVENT_CQ_ERR,
371 IB_EVENT_QP_FATAL,
372 IB_EVENT_QP_REQ_ERR,
373 IB_EVENT_QP_ACCESS_ERR,
374 IB_EVENT_COMM_EST,
375 IB_EVENT_SQ_DRAINED,
376 IB_EVENT_PATH_MIG,
377 IB_EVENT_PATH_MIG_ERR,
378 IB_EVENT_DEVICE_FATAL,
379 IB_EVENT_PORT_ACTIVE,
380 IB_EVENT_PORT_ERR,
381 IB_EVENT_LID_CHANGE,
382 IB_EVENT_PKEY_CHANGE,
383 IB_EVENT_SM_CHANGE,
384 IB_EVENT_SRQ_ERR,
385 IB_EVENT_SRQ_LIMIT_REACHED,
386 IB_EVENT_QP_LAST_WQE_REACHED,
387 IB_EVENT_CLIENT_REREGISTER,
388 IB_EVENT_GID_CHANGE,
389 };
390
391 struct ib_event {
392 struct ib_device *device;
393 union {
394 struct ib_cq *cq;
395 struct ib_qp *qp;
396 struct ib_srq *srq;
397 u8 port_num;
398 } element;
399 enum ib_event_type event;
400 };
401
402 struct ib_event_handler {
403 struct ib_device *device;
404 void (*handler)(struct ib_event_handler *, struct ib_event *);
405 struct list_head list;
406 };
407
408 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
409 do { \
410 (_ptr)->device = _device; \
411 (_ptr)->handler = _handler; \
412 INIT_LIST_HEAD(&(_ptr)->list); \
413 } while (0)
414
415 struct ib_global_route {
416 union ib_gid dgid;
417 u32 flow_label;
418 u8 sgid_index;
419 u8 hop_limit;
420 u8 traffic_class;
421 };
422
423 struct ib_grh {
424 __be32 version_tclass_flow;
425 __be16 paylen;
426 u8 next_hdr;
427 u8 hop_limit;
428 union ib_gid sgid;
429 union ib_gid dgid;
430 };
431
432 enum {
433 IB_MULTICAST_QPN = 0xffffff
434 };
435
436 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
437
438 enum ib_ah_flags {
439 IB_AH_GRH = 1
440 };
441
442 enum ib_rate {
443 IB_RATE_PORT_CURRENT = 0,
444 IB_RATE_2_5_GBPS = 2,
445 IB_RATE_5_GBPS = 5,
446 IB_RATE_10_GBPS = 3,
447 IB_RATE_20_GBPS = 6,
448 IB_RATE_30_GBPS = 4,
449 IB_RATE_40_GBPS = 7,
450 IB_RATE_60_GBPS = 8,
451 IB_RATE_80_GBPS = 9,
452 IB_RATE_120_GBPS = 10,
453 IB_RATE_14_GBPS = 11,
454 IB_RATE_56_GBPS = 12,
455 IB_RATE_112_GBPS = 13,
456 IB_RATE_168_GBPS = 14,
457 IB_RATE_25_GBPS = 15,
458 IB_RATE_100_GBPS = 16,
459 IB_RATE_200_GBPS = 17,
460 IB_RATE_300_GBPS = 18
461 };
462
463 /**
464 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
465 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
466 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
467 * @rate: rate to convert.
468 */
469 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
470
471 /**
472 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
473 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
474 * @rate: rate to convert.
475 */
476 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
477
478 enum ib_mr_create_flags {
479 IB_MR_SIGNATURE_EN = 1,
480 };
481
482 /**
483 * ib_mr_init_attr - Memory region init attributes passed to routine
484 * ib_create_mr.
485 * @max_reg_descriptors: max number of registration descriptors that
486 * may be used with registration work requests.
487 * @flags: MR creation flags bit mask.
488 */
489 struct ib_mr_init_attr {
490 int max_reg_descriptors;
491 u32 flags;
492 };
493
494 enum ib_signature_type {
495 IB_SIG_TYPE_T10_DIF,
496 };
497
498 /**
499 * T10-DIF Signature types
500 * T10-DIF types are defined by SCSI
501 * specifications.
502 */
503 enum ib_t10_dif_type {
504 IB_T10DIF_NONE,
505 IB_T10DIF_TYPE1,
506 IB_T10DIF_TYPE2,
507 IB_T10DIF_TYPE3
508 };
509
510 /**
511 * Signature T10-DIF block-guard types
512 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
513 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
514 */
515 enum ib_t10_dif_bg_type {
516 IB_T10DIF_CRC,
517 IB_T10DIF_CSUM
518 };
519
520 /**
521 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
522 * domain.
523 * @type: T10-DIF type (0|1|2|3)
524 * @bg_type: T10-DIF block guard type (CRC|CSUM)
525 * @pi_interval: protection information interval.
526 * @bg: seed of guard computation.
527 * @app_tag: application tag of guard block
528 * @ref_tag: initial guard block reference tag.
529 * @type3_inc_reftag: T10-DIF type 3 does not state
530 * about the reference tag, it is the user
531 * choice to increment it or not.
532 */
533 struct ib_t10_dif_domain {
534 enum ib_t10_dif_type type;
535 enum ib_t10_dif_bg_type bg_type;
536 u16 pi_interval;
537 u16 bg;
538 u16 app_tag;
539 u32 ref_tag;
540 bool type3_inc_reftag;
541 };
542
543 /**
544 * struct ib_sig_domain - Parameters for signature domain
545 * @sig_type: specific signauture type
546 * @sig: union of all signature domain attributes that may
547 * be used to set domain layout.
548 */
549 struct ib_sig_domain {
550 enum ib_signature_type sig_type;
551 union {
552 struct ib_t10_dif_domain dif;
553 } sig;
554 };
555
556 /**
557 * struct ib_sig_attrs - Parameters for signature handover operation
558 * @check_mask: bitmask for signature byte check (8 bytes)
559 * @mem: memory domain layout desciptor.
560 * @wire: wire domain layout desciptor.
561 */
562 struct ib_sig_attrs {
563 u8 check_mask;
564 struct ib_sig_domain mem;
565 struct ib_sig_domain wire;
566 };
567
568 enum ib_sig_err_type {
569 IB_SIG_BAD_GUARD,
570 IB_SIG_BAD_REFTAG,
571 IB_SIG_BAD_APPTAG,
572 };
573
574 /**
575 * struct ib_sig_err - signature error descriptor
576 */
577 struct ib_sig_err {
578 enum ib_sig_err_type err_type;
579 u32 expected;
580 u32 actual;
581 u64 sig_err_offset;
582 u32 key;
583 };
584
585 enum ib_mr_status_check {
586 IB_MR_CHECK_SIG_STATUS = 1,
587 };
588
589 /**
590 * struct ib_mr_status - Memory region status container
591 *
592 * @fail_status: Bitmask of MR checks status. For each
593 * failed check a corresponding status bit is set.
594 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
595 * failure.
596 */
597 struct ib_mr_status {
598 u32 fail_status;
599 struct ib_sig_err sig_err;
600 };
601
602 /**
603 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
604 * enum.
605 * @mult: multiple to convert.
606 */
607 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
608
609 struct ib_ah_attr {
610 struct ib_global_route grh;
611 u16 dlid;
612 u8 sl;
613 u8 src_path_bits;
614 u8 static_rate;
615 u8 ah_flags;
616 u8 port_num;
617 u8 dmac[ETH_ALEN];
618 u16 vlan_id;
619 };
620
621 enum ib_wc_status {
622 IB_WC_SUCCESS,
623 IB_WC_LOC_LEN_ERR,
624 IB_WC_LOC_QP_OP_ERR,
625 IB_WC_LOC_EEC_OP_ERR,
626 IB_WC_LOC_PROT_ERR,
627 IB_WC_WR_FLUSH_ERR,
628 IB_WC_MW_BIND_ERR,
629 IB_WC_BAD_RESP_ERR,
630 IB_WC_LOC_ACCESS_ERR,
631 IB_WC_REM_INV_REQ_ERR,
632 IB_WC_REM_ACCESS_ERR,
633 IB_WC_REM_OP_ERR,
634 IB_WC_RETRY_EXC_ERR,
635 IB_WC_RNR_RETRY_EXC_ERR,
636 IB_WC_LOC_RDD_VIOL_ERR,
637 IB_WC_REM_INV_RD_REQ_ERR,
638 IB_WC_REM_ABORT_ERR,
639 IB_WC_INV_EECN_ERR,
640 IB_WC_INV_EEC_STATE_ERR,
641 IB_WC_FATAL_ERR,
642 IB_WC_RESP_TIMEOUT_ERR,
643 IB_WC_GENERAL_ERR
644 };
645
646 enum ib_wc_opcode {
647 IB_WC_SEND,
648 IB_WC_RDMA_WRITE,
649 IB_WC_RDMA_READ,
650 IB_WC_COMP_SWAP,
651 IB_WC_FETCH_ADD,
652 IB_WC_BIND_MW,
653 IB_WC_LSO,
654 IB_WC_LOCAL_INV,
655 IB_WC_FAST_REG_MR,
656 IB_WC_MASKED_COMP_SWAP,
657 IB_WC_MASKED_FETCH_ADD,
658 /*
659 * Set value of IB_WC_RECV so consumers can test if a completion is a
660 * receive by testing (opcode & IB_WC_RECV).
661 */
662 IB_WC_RECV = 1 << 7,
663 IB_WC_RECV_RDMA_WITH_IMM
664 };
665
666 enum ib_wc_flags {
667 IB_WC_GRH = 1,
668 IB_WC_WITH_IMM = (1<<1),
669 IB_WC_WITH_INVALIDATE = (1<<2),
670 IB_WC_IP_CSUM_OK = (1<<3),
671 IB_WC_WITH_SMAC = (1<<4),
672 IB_WC_WITH_VLAN = (1<<5),
673 };
674
675 struct ib_wc {
676 u64 wr_id;
677 enum ib_wc_status status;
678 enum ib_wc_opcode opcode;
679 u32 vendor_err;
680 u32 byte_len;
681 struct ib_qp *qp;
682 union {
683 __be32 imm_data;
684 u32 invalidate_rkey;
685 } ex;
686 u32 src_qp;
687 int wc_flags;
688 u16 pkey_index;
689 u16 slid;
690 u8 sl;
691 u8 dlid_path_bits;
692 u8 port_num; /* valid only for DR SMPs on switches */
693 u8 smac[ETH_ALEN];
694 u16 vlan_id;
695 };
696
697 enum ib_cq_notify_flags {
698 IB_CQ_SOLICITED = 1 << 0,
699 IB_CQ_NEXT_COMP = 1 << 1,
700 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
701 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
702 };
703
704 enum ib_srq_type {
705 IB_SRQT_BASIC,
706 IB_SRQT_XRC
707 };
708
709 enum ib_srq_attr_mask {
710 IB_SRQ_MAX_WR = 1 << 0,
711 IB_SRQ_LIMIT = 1 << 1,
712 };
713
714 struct ib_srq_attr {
715 u32 max_wr;
716 u32 max_sge;
717 u32 srq_limit;
718 };
719
720 struct ib_srq_init_attr {
721 void (*event_handler)(struct ib_event *, void *);
722 void *srq_context;
723 struct ib_srq_attr attr;
724 enum ib_srq_type srq_type;
725
726 union {
727 struct {
728 struct ib_xrcd *xrcd;
729 struct ib_cq *cq;
730 } xrc;
731 } ext;
732 };
733
734 struct ib_qp_cap {
735 u32 max_send_wr;
736 u32 max_recv_wr;
737 u32 max_send_sge;
738 u32 max_recv_sge;
739 u32 max_inline_data;
740 };
741
742 enum ib_sig_type {
743 IB_SIGNAL_ALL_WR,
744 IB_SIGNAL_REQ_WR
745 };
746
747 enum ib_qp_type {
748 /*
749 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
750 * here (and in that order) since the MAD layer uses them as
751 * indices into a 2-entry table.
752 */
753 IB_QPT_SMI,
754 IB_QPT_GSI,
755
756 IB_QPT_RC,
757 IB_QPT_UC,
758 IB_QPT_UD,
759 IB_QPT_RAW_IPV6,
760 IB_QPT_RAW_ETHERTYPE,
761 IB_QPT_RAW_PACKET = 8,
762 IB_QPT_XRC_INI = 9,
763 IB_QPT_XRC_TGT,
764 IB_QPT_MAX,
765 /* Reserve a range for qp types internal to the low level driver.
766 * These qp types will not be visible at the IB core layer, so the
767 * IB_QPT_MAX usages should not be affected in the core layer
768 */
769 IB_QPT_RESERVED1 = 0x1000,
770 IB_QPT_RESERVED2,
771 IB_QPT_RESERVED3,
772 IB_QPT_RESERVED4,
773 IB_QPT_RESERVED5,
774 IB_QPT_RESERVED6,
775 IB_QPT_RESERVED7,
776 IB_QPT_RESERVED8,
777 IB_QPT_RESERVED9,
778 IB_QPT_RESERVED10,
779 };
780
781 enum ib_qp_create_flags {
782 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
783 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
784 IB_QP_CREATE_NETIF_QP = 1 << 5,
785 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
786 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
787 /* reserve bits 26-31 for low level drivers' internal use */
788 IB_QP_CREATE_RESERVED_START = 1 << 26,
789 IB_QP_CREATE_RESERVED_END = 1 << 31,
790 };
791
792
793 /*
794 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
795 * callback to destroy the passed in QP.
796 */
797
798 struct ib_qp_init_attr {
799 void (*event_handler)(struct ib_event *, void *);
800 void *qp_context;
801 struct ib_cq *send_cq;
802 struct ib_cq *recv_cq;
803 struct ib_srq *srq;
804 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
805 struct ib_qp_cap cap;
806 enum ib_sig_type sq_sig_type;
807 enum ib_qp_type qp_type;
808 enum ib_qp_create_flags create_flags;
809 u8 port_num; /* special QP types only */
810 };
811
812 struct ib_qp_open_attr {
813 void (*event_handler)(struct ib_event *, void *);
814 void *qp_context;
815 u32 qp_num;
816 enum ib_qp_type qp_type;
817 };
818
819 enum ib_rnr_timeout {
820 IB_RNR_TIMER_655_36 = 0,
821 IB_RNR_TIMER_000_01 = 1,
822 IB_RNR_TIMER_000_02 = 2,
823 IB_RNR_TIMER_000_03 = 3,
824 IB_RNR_TIMER_000_04 = 4,
825 IB_RNR_TIMER_000_06 = 5,
826 IB_RNR_TIMER_000_08 = 6,
827 IB_RNR_TIMER_000_12 = 7,
828 IB_RNR_TIMER_000_16 = 8,
829 IB_RNR_TIMER_000_24 = 9,
830 IB_RNR_TIMER_000_32 = 10,
831 IB_RNR_TIMER_000_48 = 11,
832 IB_RNR_TIMER_000_64 = 12,
833 IB_RNR_TIMER_000_96 = 13,
834 IB_RNR_TIMER_001_28 = 14,
835 IB_RNR_TIMER_001_92 = 15,
836 IB_RNR_TIMER_002_56 = 16,
837 IB_RNR_TIMER_003_84 = 17,
838 IB_RNR_TIMER_005_12 = 18,
839 IB_RNR_TIMER_007_68 = 19,
840 IB_RNR_TIMER_010_24 = 20,
841 IB_RNR_TIMER_015_36 = 21,
842 IB_RNR_TIMER_020_48 = 22,
843 IB_RNR_TIMER_030_72 = 23,
844 IB_RNR_TIMER_040_96 = 24,
845 IB_RNR_TIMER_061_44 = 25,
846 IB_RNR_TIMER_081_92 = 26,
847 IB_RNR_TIMER_122_88 = 27,
848 IB_RNR_TIMER_163_84 = 28,
849 IB_RNR_TIMER_245_76 = 29,
850 IB_RNR_TIMER_327_68 = 30,
851 IB_RNR_TIMER_491_52 = 31
852 };
853
854 enum ib_qp_attr_mask {
855 IB_QP_STATE = 1,
856 IB_QP_CUR_STATE = (1<<1),
857 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
858 IB_QP_ACCESS_FLAGS = (1<<3),
859 IB_QP_PKEY_INDEX = (1<<4),
860 IB_QP_PORT = (1<<5),
861 IB_QP_QKEY = (1<<6),
862 IB_QP_AV = (1<<7),
863 IB_QP_PATH_MTU = (1<<8),
864 IB_QP_TIMEOUT = (1<<9),
865 IB_QP_RETRY_CNT = (1<<10),
866 IB_QP_RNR_RETRY = (1<<11),
867 IB_QP_RQ_PSN = (1<<12),
868 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
869 IB_QP_ALT_PATH = (1<<14),
870 IB_QP_MIN_RNR_TIMER = (1<<15),
871 IB_QP_SQ_PSN = (1<<16),
872 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
873 IB_QP_PATH_MIG_STATE = (1<<18),
874 IB_QP_CAP = (1<<19),
875 IB_QP_DEST_QPN = (1<<20),
876 IB_QP_SMAC = (1<<21),
877 IB_QP_ALT_SMAC = (1<<22),
878 IB_QP_VID = (1<<23),
879 IB_QP_ALT_VID = (1<<24),
880 };
881
882 enum ib_qp_state {
883 IB_QPS_RESET,
884 IB_QPS_INIT,
885 IB_QPS_RTR,
886 IB_QPS_RTS,
887 IB_QPS_SQD,
888 IB_QPS_SQE,
889 IB_QPS_ERR
890 };
891
892 enum ib_mig_state {
893 IB_MIG_MIGRATED,
894 IB_MIG_REARM,
895 IB_MIG_ARMED
896 };
897
898 enum ib_mw_type {
899 IB_MW_TYPE_1 = 1,
900 IB_MW_TYPE_2 = 2
901 };
902
903 struct ib_qp_attr {
904 enum ib_qp_state qp_state;
905 enum ib_qp_state cur_qp_state;
906 enum ib_mtu path_mtu;
907 enum ib_mig_state path_mig_state;
908 u32 qkey;
909 u32 rq_psn;
910 u32 sq_psn;
911 u32 dest_qp_num;
912 int qp_access_flags;
913 struct ib_qp_cap cap;
914 struct ib_ah_attr ah_attr;
915 struct ib_ah_attr alt_ah_attr;
916 u16 pkey_index;
917 u16 alt_pkey_index;
918 u8 en_sqd_async_notify;
919 u8 sq_draining;
920 u8 max_rd_atomic;
921 u8 max_dest_rd_atomic;
922 u8 min_rnr_timer;
923 u8 port_num;
924 u8 timeout;
925 u8 retry_cnt;
926 u8 rnr_retry;
927 u8 alt_port_num;
928 u8 alt_timeout;
929 u8 smac[ETH_ALEN];
930 u8 alt_smac[ETH_ALEN];
931 u16 vlan_id;
932 u16 alt_vlan_id;
933 };
934
935 enum ib_wr_opcode {
936 IB_WR_RDMA_WRITE,
937 IB_WR_RDMA_WRITE_WITH_IMM,
938 IB_WR_SEND,
939 IB_WR_SEND_WITH_IMM,
940 IB_WR_RDMA_READ,
941 IB_WR_ATOMIC_CMP_AND_SWP,
942 IB_WR_ATOMIC_FETCH_AND_ADD,
943 IB_WR_LSO,
944 IB_WR_SEND_WITH_INV,
945 IB_WR_RDMA_READ_WITH_INV,
946 IB_WR_LOCAL_INV,
947 IB_WR_FAST_REG_MR,
948 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
949 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
950 IB_WR_BIND_MW,
951 IB_WR_REG_SIG_MR,
952 /* reserve values for low level drivers' internal use.
953 * These values will not be used at all in the ib core layer.
954 */
955 IB_WR_RESERVED1 = 0xf0,
956 IB_WR_RESERVED2,
957 IB_WR_RESERVED3,
958 IB_WR_RESERVED4,
959 IB_WR_RESERVED5,
960 IB_WR_RESERVED6,
961 IB_WR_RESERVED7,
962 IB_WR_RESERVED8,
963 IB_WR_RESERVED9,
964 IB_WR_RESERVED10,
965 };
966
967 enum ib_send_flags {
968 IB_SEND_FENCE = 1,
969 IB_SEND_SIGNALED = (1<<1),
970 IB_SEND_SOLICITED = (1<<2),
971 IB_SEND_INLINE = (1<<3),
972 IB_SEND_IP_CSUM = (1<<4),
973
974 /* reserve bits 26-31 for low level drivers' internal use */
975 IB_SEND_RESERVED_START = (1 << 26),
976 IB_SEND_RESERVED_END = (1 << 31),
977 };
978
979 struct ib_sge {
980 u64 addr;
981 u32 length;
982 u32 lkey;
983 };
984
985 struct ib_fast_reg_page_list {
986 struct ib_device *device;
987 u64 *page_list;
988 unsigned int max_page_list_len;
989 };
990
991 /**
992 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
993 * @mr: A memory region to bind the memory window to.
994 * @addr: The address where the memory window should begin.
995 * @length: The length of the memory window, in bytes.
996 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
997 *
998 * This struct contains the shared parameters for type 1 and type 2
999 * memory window bind operations.
1000 */
1001 struct ib_mw_bind_info {
1002 struct ib_mr *mr;
1003 u64 addr;
1004 u64 length;
1005 int mw_access_flags;
1006 };
1007
1008 struct ib_send_wr {
1009 struct ib_send_wr *next;
1010 u64 wr_id;
1011 struct ib_sge *sg_list;
1012 int num_sge;
1013 enum ib_wr_opcode opcode;
1014 int send_flags;
1015 union {
1016 __be32 imm_data;
1017 u32 invalidate_rkey;
1018 } ex;
1019 union {
1020 struct {
1021 u64 remote_addr;
1022 u32 rkey;
1023 } rdma;
1024 struct {
1025 u64 remote_addr;
1026 u64 compare_add;
1027 u64 swap;
1028 u64 compare_add_mask;
1029 u64 swap_mask;
1030 u32 rkey;
1031 } atomic;
1032 struct {
1033 struct ib_ah *ah;
1034 void *header;
1035 int hlen;
1036 int mss;
1037 u32 remote_qpn;
1038 u32 remote_qkey;
1039 u16 pkey_index; /* valid for GSI only */
1040 u8 port_num; /* valid for DR SMPs on switch only */
1041 } ud;
1042 struct {
1043 u64 iova_start;
1044 struct ib_fast_reg_page_list *page_list;
1045 unsigned int page_shift;
1046 unsigned int page_list_len;
1047 u32 length;
1048 int access_flags;
1049 u32 rkey;
1050 } fast_reg;
1051 struct {
1052 struct ib_mw *mw;
1053 /* The new rkey for the memory window. */
1054 u32 rkey;
1055 struct ib_mw_bind_info bind_info;
1056 } bind_mw;
1057 struct {
1058 struct ib_sig_attrs *sig_attrs;
1059 struct ib_mr *sig_mr;
1060 int access_flags;
1061 struct ib_sge *prot;
1062 } sig_handover;
1063 } wr;
1064 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1065 };
1066
1067 struct ib_recv_wr {
1068 struct ib_recv_wr *next;
1069 u64 wr_id;
1070 struct ib_sge *sg_list;
1071 int num_sge;
1072 };
1073
1074 enum ib_access_flags {
1075 IB_ACCESS_LOCAL_WRITE = 1,
1076 IB_ACCESS_REMOTE_WRITE = (1<<1),
1077 IB_ACCESS_REMOTE_READ = (1<<2),
1078 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1079 IB_ACCESS_MW_BIND = (1<<4),
1080 IB_ZERO_BASED = (1<<5)
1081 };
1082
1083 struct ib_phys_buf {
1084 u64 addr;
1085 u64 size;
1086 };
1087
1088 struct ib_mr_attr {
1089 struct ib_pd *pd;
1090 u64 device_virt_addr;
1091 u64 size;
1092 int mr_access_flags;
1093 u32 lkey;
1094 u32 rkey;
1095 };
1096
1097 enum ib_mr_rereg_flags {
1098 IB_MR_REREG_TRANS = 1,
1099 IB_MR_REREG_PD = (1<<1),
1100 IB_MR_REREG_ACCESS = (1<<2)
1101 };
1102
1103 /**
1104 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1105 * @wr_id: Work request id.
1106 * @send_flags: Flags from ib_send_flags enum.
1107 * @bind_info: More parameters of the bind operation.
1108 */
1109 struct ib_mw_bind {
1110 u64 wr_id;
1111 int send_flags;
1112 struct ib_mw_bind_info bind_info;
1113 };
1114
1115 struct ib_fmr_attr {
1116 int max_pages;
1117 int max_maps;
1118 u8 page_shift;
1119 };
1120
1121 struct ib_ucontext {
1122 struct ib_device *device;
1123 struct list_head pd_list;
1124 struct list_head mr_list;
1125 struct list_head mw_list;
1126 struct list_head cq_list;
1127 struct list_head qp_list;
1128 struct list_head srq_list;
1129 struct list_head ah_list;
1130 struct list_head xrcd_list;
1131 struct list_head rule_list;
1132 int closing;
1133 };
1134
1135 struct ib_uobject {
1136 u64 user_handle; /* handle given to us by userspace */
1137 struct ib_ucontext *context; /* associated user context */
1138 void *object; /* containing object */
1139 struct list_head list; /* link to context's list */
1140 int id; /* index into kernel idr */
1141 struct kref ref;
1142 struct rw_semaphore mutex; /* protects .live */
1143 int live;
1144 };
1145
1146 struct ib_udata {
1147 const void __user *inbuf;
1148 void __user *outbuf;
1149 size_t inlen;
1150 size_t outlen;
1151 };
1152
1153 struct ib_pd {
1154 struct ib_device *device;
1155 struct ib_uobject *uobject;
1156 atomic_t usecnt; /* count all resources */
1157 };
1158
1159 struct ib_xrcd {
1160 struct ib_device *device;
1161 atomic_t usecnt; /* count all exposed resources */
1162 struct inode *inode;
1163
1164 struct mutex tgt_qp_mutex;
1165 struct list_head tgt_qp_list;
1166 };
1167
1168 struct ib_ah {
1169 struct ib_device *device;
1170 struct ib_pd *pd;
1171 struct ib_uobject *uobject;
1172 };
1173
1174 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1175
1176 struct ib_cq {
1177 struct ib_device *device;
1178 struct ib_uobject *uobject;
1179 ib_comp_handler comp_handler;
1180 void (*event_handler)(struct ib_event *, void *);
1181 void *cq_context;
1182 int cqe;
1183 atomic_t usecnt; /* count number of work queues */
1184 };
1185
1186 struct ib_srq {
1187 struct ib_device *device;
1188 struct ib_pd *pd;
1189 struct ib_uobject *uobject;
1190 void (*event_handler)(struct ib_event *, void *);
1191 void *srq_context;
1192 enum ib_srq_type srq_type;
1193 atomic_t usecnt;
1194
1195 union {
1196 struct {
1197 struct ib_xrcd *xrcd;
1198 struct ib_cq *cq;
1199 u32 srq_num;
1200 } xrc;
1201 } ext;
1202 };
1203
1204 struct ib_qp {
1205 struct ib_device *device;
1206 struct ib_pd *pd;
1207 struct ib_cq *send_cq;
1208 struct ib_cq *recv_cq;
1209 struct ib_srq *srq;
1210 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1211 struct list_head xrcd_list;
1212 /* count times opened, mcast attaches, flow attaches */
1213 atomic_t usecnt;
1214 struct list_head open_list;
1215 struct ib_qp *real_qp;
1216 struct ib_uobject *uobject;
1217 void (*event_handler)(struct ib_event *, void *);
1218 void *qp_context;
1219 u32 qp_num;
1220 enum ib_qp_type qp_type;
1221 };
1222
1223 struct ib_mr {
1224 struct ib_device *device;
1225 struct ib_pd *pd;
1226 struct ib_uobject *uobject;
1227 u32 lkey;
1228 u32 rkey;
1229 atomic_t usecnt; /* count number of MWs */
1230 };
1231
1232 struct ib_mw {
1233 struct ib_device *device;
1234 struct ib_pd *pd;
1235 struct ib_uobject *uobject;
1236 u32 rkey;
1237 enum ib_mw_type type;
1238 };
1239
1240 struct ib_fmr {
1241 struct ib_device *device;
1242 struct ib_pd *pd;
1243 struct list_head list;
1244 u32 lkey;
1245 u32 rkey;
1246 };
1247
1248 /* Supported steering options */
1249 enum ib_flow_attr_type {
1250 /* steering according to rule specifications */
1251 IB_FLOW_ATTR_NORMAL = 0x0,
1252 /* default unicast and multicast rule -
1253 * receive all Eth traffic which isn't steered to any QP
1254 */
1255 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1256 /* default multicast rule -
1257 * receive all Eth multicast traffic which isn't steered to any QP
1258 */
1259 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1260 /* sniffer rule - receive all port traffic */
1261 IB_FLOW_ATTR_SNIFFER = 0x3
1262 };
1263
1264 /* Supported steering header types */
1265 enum ib_flow_spec_type {
1266 /* L2 headers*/
1267 IB_FLOW_SPEC_ETH = 0x20,
1268 IB_FLOW_SPEC_IB = 0x22,
1269 /* L3 header*/
1270 IB_FLOW_SPEC_IPV4 = 0x30,
1271 /* L4 headers*/
1272 IB_FLOW_SPEC_TCP = 0x40,
1273 IB_FLOW_SPEC_UDP = 0x41
1274 };
1275 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1276 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1277
1278 /* Flow steering rule priority is set according to it's domain.
1279 * Lower domain value means higher priority.
1280 */
1281 enum ib_flow_domain {
1282 IB_FLOW_DOMAIN_USER,
1283 IB_FLOW_DOMAIN_ETHTOOL,
1284 IB_FLOW_DOMAIN_RFS,
1285 IB_FLOW_DOMAIN_NIC,
1286 IB_FLOW_DOMAIN_NUM /* Must be last */
1287 };
1288
1289 struct ib_flow_eth_filter {
1290 u8 dst_mac[6];
1291 u8 src_mac[6];
1292 __be16 ether_type;
1293 __be16 vlan_tag;
1294 };
1295
1296 struct ib_flow_spec_eth {
1297 enum ib_flow_spec_type type;
1298 u16 size;
1299 struct ib_flow_eth_filter val;
1300 struct ib_flow_eth_filter mask;
1301 };
1302
1303 struct ib_flow_ib_filter {
1304 __be16 dlid;
1305 __u8 sl;
1306 };
1307
1308 struct ib_flow_spec_ib {
1309 enum ib_flow_spec_type type;
1310 u16 size;
1311 struct ib_flow_ib_filter val;
1312 struct ib_flow_ib_filter mask;
1313 };
1314
1315 struct ib_flow_ipv4_filter {
1316 __be32 src_ip;
1317 __be32 dst_ip;
1318 };
1319
1320 struct ib_flow_spec_ipv4 {
1321 enum ib_flow_spec_type type;
1322 u16 size;
1323 struct ib_flow_ipv4_filter val;
1324 struct ib_flow_ipv4_filter mask;
1325 };
1326
1327 struct ib_flow_tcp_udp_filter {
1328 __be16 dst_port;
1329 __be16 src_port;
1330 };
1331
1332 struct ib_flow_spec_tcp_udp {
1333 enum ib_flow_spec_type type;
1334 u16 size;
1335 struct ib_flow_tcp_udp_filter val;
1336 struct ib_flow_tcp_udp_filter mask;
1337 };
1338
1339 union ib_flow_spec {
1340 struct {
1341 enum ib_flow_spec_type type;
1342 u16 size;
1343 };
1344 struct ib_flow_spec_eth eth;
1345 struct ib_flow_spec_ib ib;
1346 struct ib_flow_spec_ipv4 ipv4;
1347 struct ib_flow_spec_tcp_udp tcp_udp;
1348 };
1349
1350 struct ib_flow_attr {
1351 enum ib_flow_attr_type type;
1352 u16 size;
1353 u16 priority;
1354 u32 flags;
1355 u8 num_of_specs;
1356 u8 port;
1357 /* Following are the optional layers according to user request
1358 * struct ib_flow_spec_xxx
1359 * struct ib_flow_spec_yyy
1360 */
1361 };
1362
1363 struct ib_flow {
1364 struct ib_qp *qp;
1365 struct ib_uobject *uobject;
1366 };
1367
1368 struct ib_mad;
1369 struct ib_grh;
1370
1371 enum ib_process_mad_flags {
1372 IB_MAD_IGNORE_MKEY = 1,
1373 IB_MAD_IGNORE_BKEY = 2,
1374 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1375 };
1376
1377 enum ib_mad_result {
1378 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1379 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1380 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1381 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1382 };
1383
1384 #define IB_DEVICE_NAME_MAX 64
1385
1386 struct ib_cache {
1387 rwlock_t lock;
1388 struct ib_event_handler event_handler;
1389 struct ib_pkey_cache **pkey_cache;
1390 struct ib_gid_cache **gid_cache;
1391 u8 *lmc_cache;
1392 };
1393
1394 struct ib_dma_mapping_ops {
1395 int (*mapping_error)(struct ib_device *dev,
1396 u64 dma_addr);
1397 u64 (*map_single)(struct ib_device *dev,
1398 void *ptr, size_t size,
1399 enum dma_data_direction direction);
1400 void (*unmap_single)(struct ib_device *dev,
1401 u64 addr, size_t size,
1402 enum dma_data_direction direction);
1403 u64 (*map_page)(struct ib_device *dev,
1404 struct page *page, unsigned long offset,
1405 size_t size,
1406 enum dma_data_direction direction);
1407 void (*unmap_page)(struct ib_device *dev,
1408 u64 addr, size_t size,
1409 enum dma_data_direction direction);
1410 int (*map_sg)(struct ib_device *dev,
1411 struct scatterlist *sg, int nents,
1412 enum dma_data_direction direction);
1413 void (*unmap_sg)(struct ib_device *dev,
1414 struct scatterlist *sg, int nents,
1415 enum dma_data_direction direction);
1416 void (*sync_single_for_cpu)(struct ib_device *dev,
1417 u64 dma_handle,
1418 size_t size,
1419 enum dma_data_direction dir);
1420 void (*sync_single_for_device)(struct ib_device *dev,
1421 u64 dma_handle,
1422 size_t size,
1423 enum dma_data_direction dir);
1424 void *(*alloc_coherent)(struct ib_device *dev,
1425 size_t size,
1426 u64 *dma_handle,
1427 gfp_t flag);
1428 void (*free_coherent)(struct ib_device *dev,
1429 size_t size, void *cpu_addr,
1430 u64 dma_handle);
1431 };
1432
1433 struct iw_cm_verbs;
1434
1435 struct ib_device {
1436 struct device *dma_device;
1437
1438 char name[IB_DEVICE_NAME_MAX];
1439
1440 struct list_head event_handler_list;
1441 spinlock_t event_handler_lock;
1442
1443 spinlock_t client_data_lock;
1444 struct list_head core_list;
1445 struct list_head client_data_list;
1446
1447 struct ib_cache cache;
1448 int *pkey_tbl_len;
1449 int *gid_tbl_len;
1450
1451 int num_comp_vectors;
1452
1453 struct iw_cm_verbs *iwcm;
1454
1455 int (*get_protocol_stats)(struct ib_device *device,
1456 union rdma_protocol_stats *stats);
1457 int (*query_device)(struct ib_device *device,
1458 struct ib_device_attr *device_attr);
1459 int (*query_port)(struct ib_device *device,
1460 u8 port_num,
1461 struct ib_port_attr *port_attr);
1462 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1463 u8 port_num);
1464 int (*query_gid)(struct ib_device *device,
1465 u8 port_num, int index,
1466 union ib_gid *gid);
1467 int (*query_pkey)(struct ib_device *device,
1468 u8 port_num, u16 index, u16 *pkey);
1469 int (*modify_device)(struct ib_device *device,
1470 int device_modify_mask,
1471 struct ib_device_modify *device_modify);
1472 int (*modify_port)(struct ib_device *device,
1473 u8 port_num, int port_modify_mask,
1474 struct ib_port_modify *port_modify);
1475 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1476 struct ib_udata *udata);
1477 int (*dealloc_ucontext)(struct ib_ucontext *context);
1478 int (*mmap)(struct ib_ucontext *context,
1479 struct vm_area_struct *vma);
1480 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1481 struct ib_ucontext *context,
1482 struct ib_udata *udata);
1483 int (*dealloc_pd)(struct ib_pd *pd);
1484 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1485 struct ib_ah_attr *ah_attr);
1486 int (*modify_ah)(struct ib_ah *ah,
1487 struct ib_ah_attr *ah_attr);
1488 int (*query_ah)(struct ib_ah *ah,
1489 struct ib_ah_attr *ah_attr);
1490 int (*destroy_ah)(struct ib_ah *ah);
1491 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1492 struct ib_srq_init_attr *srq_init_attr,
1493 struct ib_udata *udata);
1494 int (*modify_srq)(struct ib_srq *srq,
1495 struct ib_srq_attr *srq_attr,
1496 enum ib_srq_attr_mask srq_attr_mask,
1497 struct ib_udata *udata);
1498 int (*query_srq)(struct ib_srq *srq,
1499 struct ib_srq_attr *srq_attr);
1500 int (*destroy_srq)(struct ib_srq *srq);
1501 int (*post_srq_recv)(struct ib_srq *srq,
1502 struct ib_recv_wr *recv_wr,
1503 struct ib_recv_wr **bad_recv_wr);
1504 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1505 struct ib_qp_init_attr *qp_init_attr,
1506 struct ib_udata *udata);
1507 int (*modify_qp)(struct ib_qp *qp,
1508 struct ib_qp_attr *qp_attr,
1509 int qp_attr_mask,
1510 struct ib_udata *udata);
1511 int (*query_qp)(struct ib_qp *qp,
1512 struct ib_qp_attr *qp_attr,
1513 int qp_attr_mask,
1514 struct ib_qp_init_attr *qp_init_attr);
1515 int (*destroy_qp)(struct ib_qp *qp);
1516 int (*post_send)(struct ib_qp *qp,
1517 struct ib_send_wr *send_wr,
1518 struct ib_send_wr **bad_send_wr);
1519 int (*post_recv)(struct ib_qp *qp,
1520 struct ib_recv_wr *recv_wr,
1521 struct ib_recv_wr **bad_recv_wr);
1522 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1523 int comp_vector,
1524 struct ib_ucontext *context,
1525 struct ib_udata *udata);
1526 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1527 u16 cq_period);
1528 int (*destroy_cq)(struct ib_cq *cq);
1529 int (*resize_cq)(struct ib_cq *cq, int cqe,
1530 struct ib_udata *udata);
1531 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1532 struct ib_wc *wc);
1533 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1534 int (*req_notify_cq)(struct ib_cq *cq,
1535 enum ib_cq_notify_flags flags);
1536 int (*req_ncomp_notif)(struct ib_cq *cq,
1537 int wc_cnt);
1538 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1539 int mr_access_flags);
1540 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1541 struct ib_phys_buf *phys_buf_array,
1542 int num_phys_buf,
1543 int mr_access_flags,
1544 u64 *iova_start);
1545 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1546 u64 start, u64 length,
1547 u64 virt_addr,
1548 int mr_access_flags,
1549 struct ib_udata *udata);
1550 int (*query_mr)(struct ib_mr *mr,
1551 struct ib_mr_attr *mr_attr);
1552 int (*dereg_mr)(struct ib_mr *mr);
1553 int (*destroy_mr)(struct ib_mr *mr);
1554 struct ib_mr * (*create_mr)(struct ib_pd *pd,
1555 struct ib_mr_init_attr *mr_init_attr);
1556 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1557 int max_page_list_len);
1558 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1559 int page_list_len);
1560 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1561 int (*rereg_phys_mr)(struct ib_mr *mr,
1562 int mr_rereg_mask,
1563 struct ib_pd *pd,
1564 struct ib_phys_buf *phys_buf_array,
1565 int num_phys_buf,
1566 int mr_access_flags,
1567 u64 *iova_start);
1568 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1569 enum ib_mw_type type);
1570 int (*bind_mw)(struct ib_qp *qp,
1571 struct ib_mw *mw,
1572 struct ib_mw_bind *mw_bind);
1573 int (*dealloc_mw)(struct ib_mw *mw);
1574 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1575 int mr_access_flags,
1576 struct ib_fmr_attr *fmr_attr);
1577 int (*map_phys_fmr)(struct ib_fmr *fmr,
1578 u64 *page_list, int list_len,
1579 u64 iova);
1580 int (*unmap_fmr)(struct list_head *fmr_list);
1581 int (*dealloc_fmr)(struct ib_fmr *fmr);
1582 int (*attach_mcast)(struct ib_qp *qp,
1583 union ib_gid *gid,
1584 u16 lid);
1585 int (*detach_mcast)(struct ib_qp *qp,
1586 union ib_gid *gid,
1587 u16 lid);
1588 int (*process_mad)(struct ib_device *device,
1589 int process_mad_flags,
1590 u8 port_num,
1591 struct ib_wc *in_wc,
1592 struct ib_grh *in_grh,
1593 struct ib_mad *in_mad,
1594 struct ib_mad *out_mad);
1595 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1596 struct ib_ucontext *ucontext,
1597 struct ib_udata *udata);
1598 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1599 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1600 struct ib_flow_attr
1601 *flow_attr,
1602 int domain);
1603 int (*destroy_flow)(struct ib_flow *flow_id);
1604 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1605 struct ib_mr_status *mr_status);
1606
1607 struct ib_dma_mapping_ops *dma_ops;
1608
1609 struct module *owner;
1610 struct device dev;
1611 struct kobject *ports_parent;
1612 struct list_head port_list;
1613
1614 enum {
1615 IB_DEV_UNINITIALIZED,
1616 IB_DEV_REGISTERED,
1617 IB_DEV_UNREGISTERED
1618 } reg_state;
1619
1620 int uverbs_abi_ver;
1621 u64 uverbs_cmd_mask;
1622 u64 uverbs_ex_cmd_mask;
1623
1624 char node_desc[64];
1625 __be64 node_guid;
1626 u32 local_dma_lkey;
1627 u8 node_type;
1628 u8 phys_port_cnt;
1629 };
1630
1631 struct ib_client {
1632 char *name;
1633 void (*add) (struct ib_device *);
1634 void (*remove)(struct ib_device *);
1635
1636 struct list_head list;
1637 };
1638
1639 struct ib_device *ib_alloc_device(size_t size);
1640 void ib_dealloc_device(struct ib_device *device);
1641
1642 int ib_register_device(struct ib_device *device,
1643 int (*port_callback)(struct ib_device *,
1644 u8, struct kobject *));
1645 void ib_unregister_device(struct ib_device *device);
1646
1647 int ib_register_client (struct ib_client *client);
1648 void ib_unregister_client(struct ib_client *client);
1649
1650 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1651 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1652 void *data);
1653
1654 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1655 {
1656 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1657 }
1658
1659 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1660 {
1661 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1662 }
1663
1664 /**
1665 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1666 * contains all required attributes and no attributes not allowed for
1667 * the given QP state transition.
1668 * @cur_state: Current QP state
1669 * @next_state: Next QP state
1670 * @type: QP type
1671 * @mask: Mask of supplied QP attributes
1672 * @ll : link layer of port
1673 *
1674 * This function is a helper function that a low-level driver's
1675 * modify_qp method can use to validate the consumer's input. It
1676 * checks that cur_state and next_state are valid QP states, that a
1677 * transition from cur_state to next_state is allowed by the IB spec,
1678 * and that the attribute mask supplied is allowed for the transition.
1679 */
1680 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1681 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1682 enum rdma_link_layer ll);
1683
1684 int ib_register_event_handler (struct ib_event_handler *event_handler);
1685 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1686 void ib_dispatch_event(struct ib_event *event);
1687
1688 int ib_query_device(struct ib_device *device,
1689 struct ib_device_attr *device_attr);
1690
1691 int ib_query_port(struct ib_device *device,
1692 u8 port_num, struct ib_port_attr *port_attr);
1693
1694 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1695 u8 port_num);
1696
1697 int ib_query_gid(struct ib_device *device,
1698 u8 port_num, int index, union ib_gid *gid);
1699
1700 int ib_query_pkey(struct ib_device *device,
1701 u8 port_num, u16 index, u16 *pkey);
1702
1703 int ib_modify_device(struct ib_device *device,
1704 int device_modify_mask,
1705 struct ib_device_modify *device_modify);
1706
1707 int ib_modify_port(struct ib_device *device,
1708 u8 port_num, int port_modify_mask,
1709 struct ib_port_modify *port_modify);
1710
1711 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1712 u8 *port_num, u16 *index);
1713
1714 int ib_find_pkey(struct ib_device *device,
1715 u8 port_num, u16 pkey, u16 *index);
1716
1717 /**
1718 * ib_alloc_pd - Allocates an unused protection domain.
1719 * @device: The device on which to allocate the protection domain.
1720 *
1721 * A protection domain object provides an association between QPs, shared
1722 * receive queues, address handles, memory regions, and memory windows.
1723 */
1724 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1725
1726 /**
1727 * ib_dealloc_pd - Deallocates a protection domain.
1728 * @pd: The protection domain to deallocate.
1729 */
1730 int ib_dealloc_pd(struct ib_pd *pd);
1731
1732 /**
1733 * ib_create_ah - Creates an address handle for the given address vector.
1734 * @pd: The protection domain associated with the address handle.
1735 * @ah_attr: The attributes of the address vector.
1736 *
1737 * The address handle is used to reference a local or global destination
1738 * in all UD QP post sends.
1739 */
1740 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1741
1742 /**
1743 * ib_init_ah_from_wc - Initializes address handle attributes from a
1744 * work completion.
1745 * @device: Device on which the received message arrived.
1746 * @port_num: Port on which the received message arrived.
1747 * @wc: Work completion associated with the received message.
1748 * @grh: References the received global route header. This parameter is
1749 * ignored unless the work completion indicates that the GRH is valid.
1750 * @ah_attr: Returned attributes that can be used when creating an address
1751 * handle for replying to the message.
1752 */
1753 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1754 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1755
1756 /**
1757 * ib_create_ah_from_wc - Creates an address handle associated with the
1758 * sender of the specified work completion.
1759 * @pd: The protection domain associated with the address handle.
1760 * @wc: Work completion information associated with a received message.
1761 * @grh: References the received global route header. This parameter is
1762 * ignored unless the work completion indicates that the GRH is valid.
1763 * @port_num: The outbound port number to associate with the address.
1764 *
1765 * The address handle is used to reference a local or global destination
1766 * in all UD QP post sends.
1767 */
1768 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1769 struct ib_grh *grh, u8 port_num);
1770
1771 /**
1772 * ib_modify_ah - Modifies the address vector associated with an address
1773 * handle.
1774 * @ah: The address handle to modify.
1775 * @ah_attr: The new address vector attributes to associate with the
1776 * address handle.
1777 */
1778 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1779
1780 /**
1781 * ib_query_ah - Queries the address vector associated with an address
1782 * handle.
1783 * @ah: The address handle to query.
1784 * @ah_attr: The address vector attributes associated with the address
1785 * handle.
1786 */
1787 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1788
1789 /**
1790 * ib_destroy_ah - Destroys an address handle.
1791 * @ah: The address handle to destroy.
1792 */
1793 int ib_destroy_ah(struct ib_ah *ah);
1794
1795 /**
1796 * ib_create_srq - Creates a SRQ associated with the specified protection
1797 * domain.
1798 * @pd: The protection domain associated with the SRQ.
1799 * @srq_init_attr: A list of initial attributes required to create the
1800 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1801 * the actual capabilities of the created SRQ.
1802 *
1803 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1804 * requested size of the SRQ, and set to the actual values allocated
1805 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1806 * will always be at least as large as the requested values.
1807 */
1808 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1809 struct ib_srq_init_attr *srq_init_attr);
1810
1811 /**
1812 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1813 * @srq: The SRQ to modify.
1814 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1815 * the current values of selected SRQ attributes are returned.
1816 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1817 * are being modified.
1818 *
1819 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1820 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1821 * the number of receives queued drops below the limit.
1822 */
1823 int ib_modify_srq(struct ib_srq *srq,
1824 struct ib_srq_attr *srq_attr,
1825 enum ib_srq_attr_mask srq_attr_mask);
1826
1827 /**
1828 * ib_query_srq - Returns the attribute list and current values for the
1829 * specified SRQ.
1830 * @srq: The SRQ to query.
1831 * @srq_attr: The attributes of the specified SRQ.
1832 */
1833 int ib_query_srq(struct ib_srq *srq,
1834 struct ib_srq_attr *srq_attr);
1835
1836 /**
1837 * ib_destroy_srq - Destroys the specified SRQ.
1838 * @srq: The SRQ to destroy.
1839 */
1840 int ib_destroy_srq(struct ib_srq *srq);
1841
1842 /**
1843 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1844 * @srq: The SRQ to post the work request on.
1845 * @recv_wr: A list of work requests to post on the receive queue.
1846 * @bad_recv_wr: On an immediate failure, this parameter will reference
1847 * the work request that failed to be posted on the QP.
1848 */
1849 static inline int ib_post_srq_recv(struct ib_srq *srq,
1850 struct ib_recv_wr *recv_wr,
1851 struct ib_recv_wr **bad_recv_wr)
1852 {
1853 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1854 }
1855
1856 /**
1857 * ib_create_qp - Creates a QP associated with the specified protection
1858 * domain.
1859 * @pd: The protection domain associated with the QP.
1860 * @qp_init_attr: A list of initial attributes required to create the
1861 * QP. If QP creation succeeds, then the attributes are updated to
1862 * the actual capabilities of the created QP.
1863 */
1864 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1865 struct ib_qp_init_attr *qp_init_attr);
1866
1867 /**
1868 * ib_modify_qp - Modifies the attributes for the specified QP and then
1869 * transitions the QP to the given state.
1870 * @qp: The QP to modify.
1871 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1872 * the current values of selected QP attributes are returned.
1873 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1874 * are being modified.
1875 */
1876 int ib_modify_qp(struct ib_qp *qp,
1877 struct ib_qp_attr *qp_attr,
1878 int qp_attr_mask);
1879
1880 /**
1881 * ib_query_qp - Returns the attribute list and current values for the
1882 * specified QP.
1883 * @qp: The QP to query.
1884 * @qp_attr: The attributes of the specified QP.
1885 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1886 * @qp_init_attr: Additional attributes of the selected QP.
1887 *
1888 * The qp_attr_mask may be used to limit the query to gathering only the
1889 * selected attributes.
1890 */
1891 int ib_query_qp(struct ib_qp *qp,
1892 struct ib_qp_attr *qp_attr,
1893 int qp_attr_mask,
1894 struct ib_qp_init_attr *qp_init_attr);
1895
1896 /**
1897 * ib_destroy_qp - Destroys the specified QP.
1898 * @qp: The QP to destroy.
1899 */
1900 int ib_destroy_qp(struct ib_qp *qp);
1901
1902 /**
1903 * ib_open_qp - Obtain a reference to an existing sharable QP.
1904 * @xrcd - XRC domain
1905 * @qp_open_attr: Attributes identifying the QP to open.
1906 *
1907 * Returns a reference to a sharable QP.
1908 */
1909 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1910 struct ib_qp_open_attr *qp_open_attr);
1911
1912 /**
1913 * ib_close_qp - Release an external reference to a QP.
1914 * @qp: The QP handle to release
1915 *
1916 * The opened QP handle is released by the caller. The underlying
1917 * shared QP is not destroyed until all internal references are released.
1918 */
1919 int ib_close_qp(struct ib_qp *qp);
1920
1921 /**
1922 * ib_post_send - Posts a list of work requests to the send queue of
1923 * the specified QP.
1924 * @qp: The QP to post the work request on.
1925 * @send_wr: A list of work requests to post on the send queue.
1926 * @bad_send_wr: On an immediate failure, this parameter will reference
1927 * the work request that failed to be posted on the QP.
1928 *
1929 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1930 * error is returned, the QP state shall not be affected,
1931 * ib_post_send() will return an immediate error after queueing any
1932 * earlier work requests in the list.
1933 */
1934 static inline int ib_post_send(struct ib_qp *qp,
1935 struct ib_send_wr *send_wr,
1936 struct ib_send_wr **bad_send_wr)
1937 {
1938 return qp->device->post_send(qp, send_wr, bad_send_wr);
1939 }
1940
1941 /**
1942 * ib_post_recv - Posts a list of work requests to the receive queue of
1943 * the specified QP.
1944 * @qp: The QP to post the work request on.
1945 * @recv_wr: A list of work requests to post on the receive queue.
1946 * @bad_recv_wr: On an immediate failure, this parameter will reference
1947 * the work request that failed to be posted on the QP.
1948 */
1949 static inline int ib_post_recv(struct ib_qp *qp,
1950 struct ib_recv_wr *recv_wr,
1951 struct ib_recv_wr **bad_recv_wr)
1952 {
1953 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1954 }
1955
1956 /**
1957 * ib_create_cq - Creates a CQ on the specified device.
1958 * @device: The device on which to create the CQ.
1959 * @comp_handler: A user-specified callback that is invoked when a
1960 * completion event occurs on the CQ.
1961 * @event_handler: A user-specified callback that is invoked when an
1962 * asynchronous event not associated with a completion occurs on the CQ.
1963 * @cq_context: Context associated with the CQ returned to the user via
1964 * the associated completion and event handlers.
1965 * @cqe: The minimum size of the CQ.
1966 * @comp_vector - Completion vector used to signal completion events.
1967 * Must be >= 0 and < context->num_comp_vectors.
1968 *
1969 * Users can examine the cq structure to determine the actual CQ size.
1970 */
1971 struct ib_cq *ib_create_cq(struct ib_device *device,
1972 ib_comp_handler comp_handler,
1973 void (*event_handler)(struct ib_event *, void *),
1974 void *cq_context, int cqe, int comp_vector);
1975
1976 /**
1977 * ib_resize_cq - Modifies the capacity of the CQ.
1978 * @cq: The CQ to resize.
1979 * @cqe: The minimum size of the CQ.
1980 *
1981 * Users can examine the cq structure to determine the actual CQ size.
1982 */
1983 int ib_resize_cq(struct ib_cq *cq, int cqe);
1984
1985 /**
1986 * ib_modify_cq - Modifies moderation params of the CQ
1987 * @cq: The CQ to modify.
1988 * @cq_count: number of CQEs that will trigger an event
1989 * @cq_period: max period of time in usec before triggering an event
1990 *
1991 */
1992 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1993
1994 /**
1995 * ib_destroy_cq - Destroys the specified CQ.
1996 * @cq: The CQ to destroy.
1997 */
1998 int ib_destroy_cq(struct ib_cq *cq);
1999
2000 /**
2001 * ib_poll_cq - poll a CQ for completion(s)
2002 * @cq:the CQ being polled
2003 * @num_entries:maximum number of completions to return
2004 * @wc:array of at least @num_entries &struct ib_wc where completions
2005 * will be returned
2006 *
2007 * Poll a CQ for (possibly multiple) completions. If the return value
2008 * is < 0, an error occurred. If the return value is >= 0, it is the
2009 * number of completions returned. If the return value is
2010 * non-negative and < num_entries, then the CQ was emptied.
2011 */
2012 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2013 struct ib_wc *wc)
2014 {
2015 return cq->device->poll_cq(cq, num_entries, wc);
2016 }
2017
2018 /**
2019 * ib_peek_cq - Returns the number of unreaped completions currently
2020 * on the specified CQ.
2021 * @cq: The CQ to peek.
2022 * @wc_cnt: A minimum number of unreaped completions to check for.
2023 *
2024 * If the number of unreaped completions is greater than or equal to wc_cnt,
2025 * this function returns wc_cnt, otherwise, it returns the actual number of
2026 * unreaped completions.
2027 */
2028 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2029
2030 /**
2031 * ib_req_notify_cq - Request completion notification on a CQ.
2032 * @cq: The CQ to generate an event for.
2033 * @flags:
2034 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2035 * to request an event on the next solicited event or next work
2036 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2037 * may also be |ed in to request a hint about missed events, as
2038 * described below.
2039 *
2040 * Return Value:
2041 * < 0 means an error occurred while requesting notification
2042 * == 0 means notification was requested successfully, and if
2043 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2044 * were missed and it is safe to wait for another event. In
2045 * this case is it guaranteed that any work completions added
2046 * to the CQ since the last CQ poll will trigger a completion
2047 * notification event.
2048 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2049 * in. It means that the consumer must poll the CQ again to
2050 * make sure it is empty to avoid missing an event because of a
2051 * race between requesting notification and an entry being
2052 * added to the CQ. This return value means it is possible
2053 * (but not guaranteed) that a work completion has been added
2054 * to the CQ since the last poll without triggering a
2055 * completion notification event.
2056 */
2057 static inline int ib_req_notify_cq(struct ib_cq *cq,
2058 enum ib_cq_notify_flags flags)
2059 {
2060 return cq->device->req_notify_cq(cq, flags);
2061 }
2062
2063 /**
2064 * ib_req_ncomp_notif - Request completion notification when there are
2065 * at least the specified number of unreaped completions on the CQ.
2066 * @cq: The CQ to generate an event for.
2067 * @wc_cnt: The number of unreaped completions that should be on the
2068 * CQ before an event is generated.
2069 */
2070 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2071 {
2072 return cq->device->req_ncomp_notif ?
2073 cq->device->req_ncomp_notif(cq, wc_cnt) :
2074 -ENOSYS;
2075 }
2076
2077 /**
2078 * ib_get_dma_mr - Returns a memory region for system memory that is
2079 * usable for DMA.
2080 * @pd: The protection domain associated with the memory region.
2081 * @mr_access_flags: Specifies the memory access rights.
2082 *
2083 * Note that the ib_dma_*() functions defined below must be used
2084 * to create/destroy addresses used with the Lkey or Rkey returned
2085 * by ib_get_dma_mr().
2086 */
2087 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2088
2089 /**
2090 * ib_dma_mapping_error - check a DMA addr for error
2091 * @dev: The device for which the dma_addr was created
2092 * @dma_addr: The DMA address to check
2093 */
2094 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2095 {
2096 if (dev->dma_ops)
2097 return dev->dma_ops->mapping_error(dev, dma_addr);
2098 return dma_mapping_error(dev->dma_device, dma_addr);
2099 }
2100
2101 /**
2102 * ib_dma_map_single - Map a kernel virtual address to DMA address
2103 * @dev: The device for which the dma_addr is to be created
2104 * @cpu_addr: The kernel virtual address
2105 * @size: The size of the region in bytes
2106 * @direction: The direction of the DMA
2107 */
2108 static inline u64 ib_dma_map_single(struct ib_device *dev,
2109 void *cpu_addr, size_t size,
2110 enum dma_data_direction direction)
2111 {
2112 if (dev->dma_ops)
2113 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2114 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2115 }
2116
2117 /**
2118 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2119 * @dev: The device for which the DMA address was created
2120 * @addr: The DMA address
2121 * @size: The size of the region in bytes
2122 * @direction: The direction of the DMA
2123 */
2124 static inline void ib_dma_unmap_single(struct ib_device *dev,
2125 u64 addr, size_t size,
2126 enum dma_data_direction direction)
2127 {
2128 if (dev->dma_ops)
2129 dev->dma_ops->unmap_single(dev, addr, size, direction);
2130 else
2131 dma_unmap_single(dev->dma_device, addr, size, direction);
2132 }
2133
2134 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2135 void *cpu_addr, size_t size,
2136 enum dma_data_direction direction,
2137 struct dma_attrs *attrs)
2138 {
2139 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2140 direction, attrs);
2141 }
2142
2143 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2144 u64 addr, size_t size,
2145 enum dma_data_direction direction,
2146 struct dma_attrs *attrs)
2147 {
2148 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2149 direction, attrs);
2150 }
2151
2152 /**
2153 * ib_dma_map_page - Map a physical page to DMA address
2154 * @dev: The device for which the dma_addr is to be created
2155 * @page: The page to be mapped
2156 * @offset: The offset within the page
2157 * @size: The size of the region in bytes
2158 * @direction: The direction of the DMA
2159 */
2160 static inline u64 ib_dma_map_page(struct ib_device *dev,
2161 struct page *page,
2162 unsigned long offset,
2163 size_t size,
2164 enum dma_data_direction direction)
2165 {
2166 if (dev->dma_ops)
2167 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2168 return dma_map_page(dev->dma_device, page, offset, size, direction);
2169 }
2170
2171 /**
2172 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2173 * @dev: The device for which the DMA address was created
2174 * @addr: The DMA address
2175 * @size: The size of the region in bytes
2176 * @direction: The direction of the DMA
2177 */
2178 static inline void ib_dma_unmap_page(struct ib_device *dev,
2179 u64 addr, size_t size,
2180 enum dma_data_direction direction)
2181 {
2182 if (dev->dma_ops)
2183 dev->dma_ops->unmap_page(dev, addr, size, direction);
2184 else
2185 dma_unmap_page(dev->dma_device, addr, size, direction);
2186 }
2187
2188 /**
2189 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2190 * @dev: The device for which the DMA addresses are to be created
2191 * @sg: The array of scatter/gather entries
2192 * @nents: The number of scatter/gather entries
2193 * @direction: The direction of the DMA
2194 */
2195 static inline int ib_dma_map_sg(struct ib_device *dev,
2196 struct scatterlist *sg, int nents,
2197 enum dma_data_direction direction)
2198 {
2199 if (dev->dma_ops)
2200 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2201 return dma_map_sg(dev->dma_device, sg, nents, direction);
2202 }
2203
2204 /**
2205 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2206 * @dev: The device for which the DMA addresses were created
2207 * @sg: The array of scatter/gather entries
2208 * @nents: The number of scatter/gather entries
2209 * @direction: The direction of the DMA
2210 */
2211 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2212 struct scatterlist *sg, int nents,
2213 enum dma_data_direction direction)
2214 {
2215 if (dev->dma_ops)
2216 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2217 else
2218 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2219 }
2220
2221 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2222 struct scatterlist *sg, int nents,
2223 enum dma_data_direction direction,
2224 struct dma_attrs *attrs)
2225 {
2226 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2227 }
2228
2229 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2230 struct scatterlist *sg, int nents,
2231 enum dma_data_direction direction,
2232 struct dma_attrs *attrs)
2233 {
2234 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2235 }
2236 /**
2237 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2238 * @dev: The device for which the DMA addresses were created
2239 * @sg: The scatter/gather entry
2240 *
2241 * Note: this function is obsolete. To do: change all occurrences of
2242 * ib_sg_dma_address() into sg_dma_address().
2243 */
2244 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2245 struct scatterlist *sg)
2246 {
2247 return sg_dma_address(sg);
2248 }
2249
2250 /**
2251 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2252 * @dev: The device for which the DMA addresses were created
2253 * @sg: The scatter/gather entry
2254 *
2255 * Note: this function is obsolete. To do: change all occurrences of
2256 * ib_sg_dma_len() into sg_dma_len().
2257 */
2258 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2259 struct scatterlist *sg)
2260 {
2261 return sg_dma_len(sg);
2262 }
2263
2264 /**
2265 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2266 * @dev: The device for which the DMA address was created
2267 * @addr: The DMA address
2268 * @size: The size of the region in bytes
2269 * @dir: The direction of the DMA
2270 */
2271 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2272 u64 addr,
2273 size_t size,
2274 enum dma_data_direction dir)
2275 {
2276 if (dev->dma_ops)
2277 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2278 else
2279 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2280 }
2281
2282 /**
2283 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2284 * @dev: The device for which the DMA address was created
2285 * @addr: The DMA address
2286 * @size: The size of the region in bytes
2287 * @dir: The direction of the DMA
2288 */
2289 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2290 u64 addr,
2291 size_t size,
2292 enum dma_data_direction dir)
2293 {
2294 if (dev->dma_ops)
2295 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2296 else
2297 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2298 }
2299
2300 /**
2301 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2302 * @dev: The device for which the DMA address is requested
2303 * @size: The size of the region to allocate in bytes
2304 * @dma_handle: A pointer for returning the DMA address of the region
2305 * @flag: memory allocator flags
2306 */
2307 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2308 size_t size,
2309 u64 *dma_handle,
2310 gfp_t flag)
2311 {
2312 if (dev->dma_ops)
2313 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2314 else {
2315 dma_addr_t handle;
2316 void *ret;
2317
2318 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2319 *dma_handle = handle;
2320 return ret;
2321 }
2322 }
2323
2324 /**
2325 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2326 * @dev: The device for which the DMA addresses were allocated
2327 * @size: The size of the region
2328 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2329 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2330 */
2331 static inline void ib_dma_free_coherent(struct ib_device *dev,
2332 size_t size, void *cpu_addr,
2333 u64 dma_handle)
2334 {
2335 if (dev->dma_ops)
2336 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2337 else
2338 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2339 }
2340
2341 /**
2342 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2343 * by an HCA.
2344 * @pd: The protection domain associated assigned to the registered region.
2345 * @phys_buf_array: Specifies a list of physical buffers to use in the
2346 * memory region.
2347 * @num_phys_buf: Specifies the size of the phys_buf_array.
2348 * @mr_access_flags: Specifies the memory access rights.
2349 * @iova_start: The offset of the region's starting I/O virtual address.
2350 */
2351 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2352 struct ib_phys_buf *phys_buf_array,
2353 int num_phys_buf,
2354 int mr_access_flags,
2355 u64 *iova_start);
2356
2357 /**
2358 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2359 * Conceptually, this call performs the functions deregister memory region
2360 * followed by register physical memory region. Where possible,
2361 * resources are reused instead of deallocated and reallocated.
2362 * @mr: The memory region to modify.
2363 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2364 * properties of the memory region are being modified.
2365 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2366 * the new protection domain to associated with the memory region,
2367 * otherwise, this parameter is ignored.
2368 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2369 * field specifies a list of physical buffers to use in the new
2370 * translation, otherwise, this parameter is ignored.
2371 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2372 * field specifies the size of the phys_buf_array, otherwise, this
2373 * parameter is ignored.
2374 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2375 * field specifies the new memory access rights, otherwise, this
2376 * parameter is ignored.
2377 * @iova_start: The offset of the region's starting I/O virtual address.
2378 */
2379 int ib_rereg_phys_mr(struct ib_mr *mr,
2380 int mr_rereg_mask,
2381 struct ib_pd *pd,
2382 struct ib_phys_buf *phys_buf_array,
2383 int num_phys_buf,
2384 int mr_access_flags,
2385 u64 *iova_start);
2386
2387 /**
2388 * ib_query_mr - Retrieves information about a specific memory region.
2389 * @mr: The memory region to retrieve information about.
2390 * @mr_attr: The attributes of the specified memory region.
2391 */
2392 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2393
2394 /**
2395 * ib_dereg_mr - Deregisters a memory region and removes it from the
2396 * HCA translation table.
2397 * @mr: The memory region to deregister.
2398 *
2399 * This function can fail, if the memory region has memory windows bound to it.
2400 */
2401 int ib_dereg_mr(struct ib_mr *mr);
2402
2403
2404 /**
2405 * ib_create_mr - Allocates a memory region that may be used for
2406 * signature handover operations.
2407 * @pd: The protection domain associated with the region.
2408 * @mr_init_attr: memory region init attributes.
2409 */
2410 struct ib_mr *ib_create_mr(struct ib_pd *pd,
2411 struct ib_mr_init_attr *mr_init_attr);
2412
2413 /**
2414 * ib_destroy_mr - Destroys a memory region that was created using
2415 * ib_create_mr and removes it from HW translation tables.
2416 * @mr: The memory region to destroy.
2417 *
2418 * This function can fail, if the memory region has memory windows bound to it.
2419 */
2420 int ib_destroy_mr(struct ib_mr *mr);
2421
2422 /**
2423 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2424 * IB_WR_FAST_REG_MR send work request.
2425 * @pd: The protection domain associated with the region.
2426 * @max_page_list_len: requested max physical buffer list length to be
2427 * used with fast register work requests for this MR.
2428 */
2429 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2430
2431 /**
2432 * ib_alloc_fast_reg_page_list - Allocates a page list array
2433 * @device - ib device pointer.
2434 * @page_list_len - size of the page list array to be allocated.
2435 *
2436 * This allocates and returns a struct ib_fast_reg_page_list * and a
2437 * page_list array that is at least page_list_len in size. The actual
2438 * size is returned in max_page_list_len. The caller is responsible
2439 * for initializing the contents of the page_list array before posting
2440 * a send work request with the IB_WC_FAST_REG_MR opcode.
2441 *
2442 * The page_list array entries must be translated using one of the
2443 * ib_dma_*() functions just like the addresses passed to
2444 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2445 * ib_fast_reg_page_list must not be modified by the caller until the
2446 * IB_WC_FAST_REG_MR work request completes.
2447 */
2448 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2449 struct ib_device *device, int page_list_len);
2450
2451 /**
2452 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2453 * page list array.
2454 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2455 */
2456 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2457
2458 /**
2459 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2460 * R_Key and L_Key.
2461 * @mr - struct ib_mr pointer to be updated.
2462 * @newkey - new key to be used.
2463 */
2464 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2465 {
2466 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2467 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2468 }
2469
2470 /**
2471 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2472 * for calculating a new rkey for type 2 memory windows.
2473 * @rkey - the rkey to increment.
2474 */
2475 static inline u32 ib_inc_rkey(u32 rkey)
2476 {
2477 const u32 mask = 0x000000ff;
2478 return ((rkey + 1) & mask) | (rkey & ~mask);
2479 }
2480
2481 /**
2482 * ib_alloc_mw - Allocates a memory window.
2483 * @pd: The protection domain associated with the memory window.
2484 * @type: The type of the memory window (1 or 2).
2485 */
2486 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2487
2488 /**
2489 * ib_bind_mw - Posts a work request to the send queue of the specified
2490 * QP, which binds the memory window to the given address range and
2491 * remote access attributes.
2492 * @qp: QP to post the bind work request on.
2493 * @mw: The memory window to bind.
2494 * @mw_bind: Specifies information about the memory window, including
2495 * its address range, remote access rights, and associated memory region.
2496 *
2497 * If there is no immediate error, the function will update the rkey member
2498 * of the mw parameter to its new value. The bind operation can still fail
2499 * asynchronously.
2500 */
2501 static inline int ib_bind_mw(struct ib_qp *qp,
2502 struct ib_mw *mw,
2503 struct ib_mw_bind *mw_bind)
2504 {
2505 /* XXX reference counting in corresponding MR? */
2506 return mw->device->bind_mw ?
2507 mw->device->bind_mw(qp, mw, mw_bind) :
2508 -ENOSYS;
2509 }
2510
2511 /**
2512 * ib_dealloc_mw - Deallocates a memory window.
2513 * @mw: The memory window to deallocate.
2514 */
2515 int ib_dealloc_mw(struct ib_mw *mw);
2516
2517 /**
2518 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2519 * @pd: The protection domain associated with the unmapped region.
2520 * @mr_access_flags: Specifies the memory access rights.
2521 * @fmr_attr: Attributes of the unmapped region.
2522 *
2523 * A fast memory region must be mapped before it can be used as part of
2524 * a work request.
2525 */
2526 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2527 int mr_access_flags,
2528 struct ib_fmr_attr *fmr_attr);
2529
2530 /**
2531 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2532 * @fmr: The fast memory region to associate with the pages.
2533 * @page_list: An array of physical pages to map to the fast memory region.
2534 * @list_len: The number of pages in page_list.
2535 * @iova: The I/O virtual address to use with the mapped region.
2536 */
2537 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2538 u64 *page_list, int list_len,
2539 u64 iova)
2540 {
2541 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2542 }
2543
2544 /**
2545 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2546 * @fmr_list: A linked list of fast memory regions to unmap.
2547 */
2548 int ib_unmap_fmr(struct list_head *fmr_list);
2549
2550 /**
2551 * ib_dealloc_fmr - Deallocates a fast memory region.
2552 * @fmr: The fast memory region to deallocate.
2553 */
2554 int ib_dealloc_fmr(struct ib_fmr *fmr);
2555
2556 /**
2557 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2558 * @qp: QP to attach to the multicast group. The QP must be type
2559 * IB_QPT_UD.
2560 * @gid: Multicast group GID.
2561 * @lid: Multicast group LID in host byte order.
2562 *
2563 * In order to send and receive multicast packets, subnet
2564 * administration must have created the multicast group and configured
2565 * the fabric appropriately. The port associated with the specified
2566 * QP must also be a member of the multicast group.
2567 */
2568 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2569
2570 /**
2571 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2572 * @qp: QP to detach from the multicast group.
2573 * @gid: Multicast group GID.
2574 * @lid: Multicast group LID in host byte order.
2575 */
2576 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2577
2578 /**
2579 * ib_alloc_xrcd - Allocates an XRC domain.
2580 * @device: The device on which to allocate the XRC domain.
2581 */
2582 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2583
2584 /**
2585 * ib_dealloc_xrcd - Deallocates an XRC domain.
2586 * @xrcd: The XRC domain to deallocate.
2587 */
2588 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2589
2590 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2591 struct ib_flow_attr *flow_attr, int domain);
2592 int ib_destroy_flow(struct ib_flow *flow_id);
2593
2594 static inline int ib_check_mr_access(int flags)
2595 {
2596 /*
2597 * Local write permission is required if remote write or
2598 * remote atomic permission is also requested.
2599 */
2600 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2601 !(flags & IB_ACCESS_LOCAL_WRITE))
2602 return -EINVAL;
2603
2604 return 0;
2605 }
2606
2607 /**
2608 * ib_check_mr_status: lightweight check of MR status.
2609 * This routine may provide status checks on a selected
2610 * ib_mr. first use is for signature status check.
2611 *
2612 * @mr: A memory region.
2613 * @check_mask: Bitmask of which checks to perform from
2614 * ib_mr_status_check enumeration.
2615 * @mr_status: The container of relevant status checks.
2616 * failed checks will be indicated in the status bitmask
2617 * and the relevant info shall be in the error item.
2618 */
2619 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2620 struct ib_mr_status *mr_status);
2621
2622 #endif /* IB_VERBS_H */