]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/rdma/ib_verbs.h
Merge tag 'perf-urgent-for-mingo-4.10-20170104' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-zesty-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/uaccess.h>
63
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
66
67 union ib_gid {
68 u8 raw[16];
69 struct {
70 __be64 subnet_prefix;
71 __be64 interface_id;
72 } global;
73 };
74
75 extern union ib_gid zgid;
76
77 enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
82 IB_GID_TYPE_SIZE
83 };
84
85 #define ROCE_V2_UDP_DPORT 4791
86 struct ib_gid_attr {
87 enum ib_gid_type gid_type;
88 struct net_device *ndev;
89 };
90
91 enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
98 RDMA_NODE_USNIC_UDP,
99 };
100
101 enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104 };
105
106 enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
108 RDMA_TRANSPORT_IWARP,
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
111 };
112
113 enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118 };
119
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
122
123 enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128 };
129
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131 {
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138 }
139
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142 {
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150 }
151
152 enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156 };
157
158 enum ib_device_cap_flags {
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
211 /*
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
216 */
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
224 };
225
226 enum ib_signature_prot_cap {
227 IB_PROT_T10DIF_TYPE_1 = 1,
228 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
230 };
231
232 enum ib_signature_guard_cap {
233 IB_GUARD_T10DIF_CRC = 1,
234 IB_GUARD_T10DIF_CSUM = 1 << 1,
235 };
236
237 enum ib_atomic_cap {
238 IB_ATOMIC_NONE,
239 IB_ATOMIC_HCA,
240 IB_ATOMIC_GLOB
241 };
242
243 enum ib_odp_general_cap_bits {
244 IB_ODP_SUPPORT = 1 << 0,
245 };
246
247 enum ib_odp_transport_cap_bits {
248 IB_ODP_SUPPORT_SEND = 1 << 0,
249 IB_ODP_SUPPORT_RECV = 1 << 1,
250 IB_ODP_SUPPORT_WRITE = 1 << 2,
251 IB_ODP_SUPPORT_READ = 1 << 3,
252 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
253 };
254
255 struct ib_odp_caps {
256 uint64_t general_caps;
257 struct {
258 uint32_t rc_odp_caps;
259 uint32_t uc_odp_caps;
260 uint32_t ud_odp_caps;
261 } per_transport_caps;
262 };
263
264 struct ib_rss_caps {
265 /* Corresponding bit will be set if qp type from
266 * 'enum ib_qp_type' is supported, e.g.
267 * supported_qpts |= 1 << IB_QPT_UD
268 */
269 u32 supported_qpts;
270 u32 max_rwq_indirection_tables;
271 u32 max_rwq_indirection_table_size;
272 };
273
274 enum ib_cq_creation_flags {
275 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
276 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
277 };
278
279 struct ib_cq_init_attr {
280 unsigned int cqe;
281 int comp_vector;
282 u32 flags;
283 };
284
285 struct ib_device_attr {
286 u64 fw_ver;
287 __be64 sys_image_guid;
288 u64 max_mr_size;
289 u64 page_size_cap;
290 u32 vendor_id;
291 u32 vendor_part_id;
292 u32 hw_ver;
293 int max_qp;
294 int max_qp_wr;
295 u64 device_cap_flags;
296 int max_sge;
297 int max_sge_rd;
298 int max_cq;
299 int max_cqe;
300 int max_mr;
301 int max_pd;
302 int max_qp_rd_atom;
303 int max_ee_rd_atom;
304 int max_res_rd_atom;
305 int max_qp_init_rd_atom;
306 int max_ee_init_rd_atom;
307 enum ib_atomic_cap atomic_cap;
308 enum ib_atomic_cap masked_atomic_cap;
309 int max_ee;
310 int max_rdd;
311 int max_mw;
312 int max_raw_ipv6_qp;
313 int max_raw_ethy_qp;
314 int max_mcast_grp;
315 int max_mcast_qp_attach;
316 int max_total_mcast_qp_attach;
317 int max_ah;
318 int max_fmr;
319 int max_map_per_fmr;
320 int max_srq;
321 int max_srq_wr;
322 int max_srq_sge;
323 unsigned int max_fast_reg_page_list_len;
324 u16 max_pkeys;
325 u8 local_ca_ack_delay;
326 int sig_prot_cap;
327 int sig_guard_cap;
328 struct ib_odp_caps odp_caps;
329 uint64_t timestamp_mask;
330 uint64_t hca_core_clock; /* in KHZ */
331 struct ib_rss_caps rss_caps;
332 u32 max_wq_type_rq;
333 };
334
335 enum ib_mtu {
336 IB_MTU_256 = 1,
337 IB_MTU_512 = 2,
338 IB_MTU_1024 = 3,
339 IB_MTU_2048 = 4,
340 IB_MTU_4096 = 5
341 };
342
343 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
344 {
345 switch (mtu) {
346 case IB_MTU_256: return 256;
347 case IB_MTU_512: return 512;
348 case IB_MTU_1024: return 1024;
349 case IB_MTU_2048: return 2048;
350 case IB_MTU_4096: return 4096;
351 default: return -1;
352 }
353 }
354
355 enum ib_port_state {
356 IB_PORT_NOP = 0,
357 IB_PORT_DOWN = 1,
358 IB_PORT_INIT = 2,
359 IB_PORT_ARMED = 3,
360 IB_PORT_ACTIVE = 4,
361 IB_PORT_ACTIVE_DEFER = 5
362 };
363
364 enum ib_port_cap_flags {
365 IB_PORT_SM = 1 << 1,
366 IB_PORT_NOTICE_SUP = 1 << 2,
367 IB_PORT_TRAP_SUP = 1 << 3,
368 IB_PORT_OPT_IPD_SUP = 1 << 4,
369 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
370 IB_PORT_SL_MAP_SUP = 1 << 6,
371 IB_PORT_MKEY_NVRAM = 1 << 7,
372 IB_PORT_PKEY_NVRAM = 1 << 8,
373 IB_PORT_LED_INFO_SUP = 1 << 9,
374 IB_PORT_SM_DISABLED = 1 << 10,
375 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
376 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
377 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
378 IB_PORT_CM_SUP = 1 << 16,
379 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
380 IB_PORT_REINIT_SUP = 1 << 18,
381 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
382 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
383 IB_PORT_DR_NOTICE_SUP = 1 << 21,
384 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
385 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
386 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
387 IB_PORT_CLIENT_REG_SUP = 1 << 25,
388 IB_PORT_IP_BASED_GIDS = 1 << 26,
389 };
390
391 enum ib_port_width {
392 IB_WIDTH_1X = 1,
393 IB_WIDTH_4X = 2,
394 IB_WIDTH_8X = 4,
395 IB_WIDTH_12X = 8
396 };
397
398 static inline int ib_width_enum_to_int(enum ib_port_width width)
399 {
400 switch (width) {
401 case IB_WIDTH_1X: return 1;
402 case IB_WIDTH_4X: return 4;
403 case IB_WIDTH_8X: return 8;
404 case IB_WIDTH_12X: return 12;
405 default: return -1;
406 }
407 }
408
409 enum ib_port_speed {
410 IB_SPEED_SDR = 1,
411 IB_SPEED_DDR = 2,
412 IB_SPEED_QDR = 4,
413 IB_SPEED_FDR10 = 8,
414 IB_SPEED_FDR = 16,
415 IB_SPEED_EDR = 32
416 };
417
418 /**
419 * struct rdma_hw_stats
420 * @timestamp - Used by the core code to track when the last update was
421 * @lifespan - Used by the core code to determine how old the counters
422 * should be before being updated again. Stored in jiffies, defaults
423 * to 10 milliseconds, drivers can override the default be specifying
424 * their own value during their allocation routine.
425 * @name - Array of pointers to static names used for the counters in
426 * directory.
427 * @num_counters - How many hardware counters there are. If name is
428 * shorter than this number, a kernel oops will result. Driver authors
429 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
430 * in their code to prevent this.
431 * @value - Array of u64 counters that are accessed by the sysfs code and
432 * filled in by the drivers get_stats routine
433 */
434 struct rdma_hw_stats {
435 unsigned long timestamp;
436 unsigned long lifespan;
437 const char * const *names;
438 int num_counters;
439 u64 value[];
440 };
441
442 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
443 /**
444 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
445 * for drivers.
446 * @names - Array of static const char *
447 * @num_counters - How many elements in array
448 * @lifespan - How many milliseconds between updates
449 */
450 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
451 const char * const *names, int num_counters,
452 unsigned long lifespan)
453 {
454 struct rdma_hw_stats *stats;
455
456 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
457 GFP_KERNEL);
458 if (!stats)
459 return NULL;
460 stats->names = names;
461 stats->num_counters = num_counters;
462 stats->lifespan = msecs_to_jiffies(lifespan);
463
464 return stats;
465 }
466
467
468 /* Define bits for the various functionality this port needs to be supported by
469 * the core.
470 */
471 /* Management 0x00000FFF */
472 #define RDMA_CORE_CAP_IB_MAD 0x00000001
473 #define RDMA_CORE_CAP_IB_SMI 0x00000002
474 #define RDMA_CORE_CAP_IB_CM 0x00000004
475 #define RDMA_CORE_CAP_IW_CM 0x00000008
476 #define RDMA_CORE_CAP_IB_SA 0x00000010
477 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
478
479 /* Address format 0x000FF000 */
480 #define RDMA_CORE_CAP_AF_IB 0x00001000
481 #define RDMA_CORE_CAP_ETH_AH 0x00002000
482
483 /* Protocol 0xFFF00000 */
484 #define RDMA_CORE_CAP_PROT_IB 0x00100000
485 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
486 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
487 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
488
489 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
490 | RDMA_CORE_CAP_IB_MAD \
491 | RDMA_CORE_CAP_IB_SMI \
492 | RDMA_CORE_CAP_IB_CM \
493 | RDMA_CORE_CAP_IB_SA \
494 | RDMA_CORE_CAP_AF_IB)
495 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
496 | RDMA_CORE_CAP_IB_MAD \
497 | RDMA_CORE_CAP_IB_CM \
498 | RDMA_CORE_CAP_AF_IB \
499 | RDMA_CORE_CAP_ETH_AH)
500 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
501 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
502 | RDMA_CORE_CAP_IB_MAD \
503 | RDMA_CORE_CAP_IB_CM \
504 | RDMA_CORE_CAP_AF_IB \
505 | RDMA_CORE_CAP_ETH_AH)
506 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
507 | RDMA_CORE_CAP_IW_CM)
508 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
509 | RDMA_CORE_CAP_OPA_MAD)
510
511 struct ib_port_attr {
512 u64 subnet_prefix;
513 enum ib_port_state state;
514 enum ib_mtu max_mtu;
515 enum ib_mtu active_mtu;
516 int gid_tbl_len;
517 u32 port_cap_flags;
518 u32 max_msg_sz;
519 u32 bad_pkey_cntr;
520 u32 qkey_viol_cntr;
521 u16 pkey_tbl_len;
522 u16 lid;
523 u16 sm_lid;
524 u8 lmc;
525 u8 max_vl_num;
526 u8 sm_sl;
527 u8 subnet_timeout;
528 u8 init_type_reply;
529 u8 active_width;
530 u8 active_speed;
531 u8 phys_state;
532 bool grh_required;
533 };
534
535 enum ib_device_modify_flags {
536 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
537 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
538 };
539
540 #define IB_DEVICE_NODE_DESC_MAX 64
541
542 struct ib_device_modify {
543 u64 sys_image_guid;
544 char node_desc[IB_DEVICE_NODE_DESC_MAX];
545 };
546
547 enum ib_port_modify_flags {
548 IB_PORT_SHUTDOWN = 1,
549 IB_PORT_INIT_TYPE = (1<<2),
550 IB_PORT_RESET_QKEY_CNTR = (1<<3)
551 };
552
553 struct ib_port_modify {
554 u32 set_port_cap_mask;
555 u32 clr_port_cap_mask;
556 u8 init_type;
557 };
558
559 enum ib_event_type {
560 IB_EVENT_CQ_ERR,
561 IB_EVENT_QP_FATAL,
562 IB_EVENT_QP_REQ_ERR,
563 IB_EVENT_QP_ACCESS_ERR,
564 IB_EVENT_COMM_EST,
565 IB_EVENT_SQ_DRAINED,
566 IB_EVENT_PATH_MIG,
567 IB_EVENT_PATH_MIG_ERR,
568 IB_EVENT_DEVICE_FATAL,
569 IB_EVENT_PORT_ACTIVE,
570 IB_EVENT_PORT_ERR,
571 IB_EVENT_LID_CHANGE,
572 IB_EVENT_PKEY_CHANGE,
573 IB_EVENT_SM_CHANGE,
574 IB_EVENT_SRQ_ERR,
575 IB_EVENT_SRQ_LIMIT_REACHED,
576 IB_EVENT_QP_LAST_WQE_REACHED,
577 IB_EVENT_CLIENT_REREGISTER,
578 IB_EVENT_GID_CHANGE,
579 IB_EVENT_WQ_FATAL,
580 };
581
582 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
583
584 struct ib_event {
585 struct ib_device *device;
586 union {
587 struct ib_cq *cq;
588 struct ib_qp *qp;
589 struct ib_srq *srq;
590 struct ib_wq *wq;
591 u8 port_num;
592 } element;
593 enum ib_event_type event;
594 };
595
596 struct ib_event_handler {
597 struct ib_device *device;
598 void (*handler)(struct ib_event_handler *, struct ib_event *);
599 struct list_head list;
600 };
601
602 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
603 do { \
604 (_ptr)->device = _device; \
605 (_ptr)->handler = _handler; \
606 INIT_LIST_HEAD(&(_ptr)->list); \
607 } while (0)
608
609 struct ib_global_route {
610 union ib_gid dgid;
611 u32 flow_label;
612 u8 sgid_index;
613 u8 hop_limit;
614 u8 traffic_class;
615 };
616
617 struct ib_grh {
618 __be32 version_tclass_flow;
619 __be16 paylen;
620 u8 next_hdr;
621 u8 hop_limit;
622 union ib_gid sgid;
623 union ib_gid dgid;
624 };
625
626 union rdma_network_hdr {
627 struct ib_grh ibgrh;
628 struct {
629 /* The IB spec states that if it's IPv4, the header
630 * is located in the last 20 bytes of the header.
631 */
632 u8 reserved[20];
633 struct iphdr roce4grh;
634 };
635 };
636
637 enum {
638 IB_MULTICAST_QPN = 0xffffff
639 };
640
641 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
642 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
643
644 enum ib_ah_flags {
645 IB_AH_GRH = 1
646 };
647
648 enum ib_rate {
649 IB_RATE_PORT_CURRENT = 0,
650 IB_RATE_2_5_GBPS = 2,
651 IB_RATE_5_GBPS = 5,
652 IB_RATE_10_GBPS = 3,
653 IB_RATE_20_GBPS = 6,
654 IB_RATE_30_GBPS = 4,
655 IB_RATE_40_GBPS = 7,
656 IB_RATE_60_GBPS = 8,
657 IB_RATE_80_GBPS = 9,
658 IB_RATE_120_GBPS = 10,
659 IB_RATE_14_GBPS = 11,
660 IB_RATE_56_GBPS = 12,
661 IB_RATE_112_GBPS = 13,
662 IB_RATE_168_GBPS = 14,
663 IB_RATE_25_GBPS = 15,
664 IB_RATE_100_GBPS = 16,
665 IB_RATE_200_GBPS = 17,
666 IB_RATE_300_GBPS = 18
667 };
668
669 /**
670 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
671 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
672 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
673 * @rate: rate to convert.
674 */
675 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
676
677 /**
678 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
679 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
680 * @rate: rate to convert.
681 */
682 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
683
684
685 /**
686 * enum ib_mr_type - memory region type
687 * @IB_MR_TYPE_MEM_REG: memory region that is used for
688 * normal registration
689 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
690 * signature operations (data-integrity
691 * capable regions)
692 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
693 * register any arbitrary sg lists (without
694 * the normal mr constraints - see
695 * ib_map_mr_sg)
696 */
697 enum ib_mr_type {
698 IB_MR_TYPE_MEM_REG,
699 IB_MR_TYPE_SIGNATURE,
700 IB_MR_TYPE_SG_GAPS,
701 };
702
703 /**
704 * Signature types
705 * IB_SIG_TYPE_NONE: Unprotected.
706 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
707 */
708 enum ib_signature_type {
709 IB_SIG_TYPE_NONE,
710 IB_SIG_TYPE_T10_DIF,
711 };
712
713 /**
714 * Signature T10-DIF block-guard types
715 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
716 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
717 */
718 enum ib_t10_dif_bg_type {
719 IB_T10DIF_CRC,
720 IB_T10DIF_CSUM
721 };
722
723 /**
724 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
725 * domain.
726 * @bg_type: T10-DIF block guard type (CRC|CSUM)
727 * @pi_interval: protection information interval.
728 * @bg: seed of guard computation.
729 * @app_tag: application tag of guard block
730 * @ref_tag: initial guard block reference tag.
731 * @ref_remap: Indicate wethear the reftag increments each block
732 * @app_escape: Indicate to skip block check if apptag=0xffff
733 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
734 * @apptag_check_mask: check bitmask of application tag.
735 */
736 struct ib_t10_dif_domain {
737 enum ib_t10_dif_bg_type bg_type;
738 u16 pi_interval;
739 u16 bg;
740 u16 app_tag;
741 u32 ref_tag;
742 bool ref_remap;
743 bool app_escape;
744 bool ref_escape;
745 u16 apptag_check_mask;
746 };
747
748 /**
749 * struct ib_sig_domain - Parameters for signature domain
750 * @sig_type: specific signauture type
751 * @sig: union of all signature domain attributes that may
752 * be used to set domain layout.
753 */
754 struct ib_sig_domain {
755 enum ib_signature_type sig_type;
756 union {
757 struct ib_t10_dif_domain dif;
758 } sig;
759 };
760
761 /**
762 * struct ib_sig_attrs - Parameters for signature handover operation
763 * @check_mask: bitmask for signature byte check (8 bytes)
764 * @mem: memory domain layout desciptor.
765 * @wire: wire domain layout desciptor.
766 */
767 struct ib_sig_attrs {
768 u8 check_mask;
769 struct ib_sig_domain mem;
770 struct ib_sig_domain wire;
771 };
772
773 enum ib_sig_err_type {
774 IB_SIG_BAD_GUARD,
775 IB_SIG_BAD_REFTAG,
776 IB_SIG_BAD_APPTAG,
777 };
778
779 /**
780 * struct ib_sig_err - signature error descriptor
781 */
782 struct ib_sig_err {
783 enum ib_sig_err_type err_type;
784 u32 expected;
785 u32 actual;
786 u64 sig_err_offset;
787 u32 key;
788 };
789
790 enum ib_mr_status_check {
791 IB_MR_CHECK_SIG_STATUS = 1,
792 };
793
794 /**
795 * struct ib_mr_status - Memory region status container
796 *
797 * @fail_status: Bitmask of MR checks status. For each
798 * failed check a corresponding status bit is set.
799 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
800 * failure.
801 */
802 struct ib_mr_status {
803 u32 fail_status;
804 struct ib_sig_err sig_err;
805 };
806
807 /**
808 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
809 * enum.
810 * @mult: multiple to convert.
811 */
812 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
813
814 struct ib_ah_attr {
815 struct ib_global_route grh;
816 u16 dlid;
817 u8 sl;
818 u8 src_path_bits;
819 u8 static_rate;
820 u8 ah_flags;
821 u8 port_num;
822 u8 dmac[ETH_ALEN];
823 };
824
825 enum ib_wc_status {
826 IB_WC_SUCCESS,
827 IB_WC_LOC_LEN_ERR,
828 IB_WC_LOC_QP_OP_ERR,
829 IB_WC_LOC_EEC_OP_ERR,
830 IB_WC_LOC_PROT_ERR,
831 IB_WC_WR_FLUSH_ERR,
832 IB_WC_MW_BIND_ERR,
833 IB_WC_BAD_RESP_ERR,
834 IB_WC_LOC_ACCESS_ERR,
835 IB_WC_REM_INV_REQ_ERR,
836 IB_WC_REM_ACCESS_ERR,
837 IB_WC_REM_OP_ERR,
838 IB_WC_RETRY_EXC_ERR,
839 IB_WC_RNR_RETRY_EXC_ERR,
840 IB_WC_LOC_RDD_VIOL_ERR,
841 IB_WC_REM_INV_RD_REQ_ERR,
842 IB_WC_REM_ABORT_ERR,
843 IB_WC_INV_EECN_ERR,
844 IB_WC_INV_EEC_STATE_ERR,
845 IB_WC_FATAL_ERR,
846 IB_WC_RESP_TIMEOUT_ERR,
847 IB_WC_GENERAL_ERR
848 };
849
850 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
851
852 enum ib_wc_opcode {
853 IB_WC_SEND,
854 IB_WC_RDMA_WRITE,
855 IB_WC_RDMA_READ,
856 IB_WC_COMP_SWAP,
857 IB_WC_FETCH_ADD,
858 IB_WC_LSO,
859 IB_WC_LOCAL_INV,
860 IB_WC_REG_MR,
861 IB_WC_MASKED_COMP_SWAP,
862 IB_WC_MASKED_FETCH_ADD,
863 /*
864 * Set value of IB_WC_RECV so consumers can test if a completion is a
865 * receive by testing (opcode & IB_WC_RECV).
866 */
867 IB_WC_RECV = 1 << 7,
868 IB_WC_RECV_RDMA_WITH_IMM
869 };
870
871 enum ib_wc_flags {
872 IB_WC_GRH = 1,
873 IB_WC_WITH_IMM = (1<<1),
874 IB_WC_WITH_INVALIDATE = (1<<2),
875 IB_WC_IP_CSUM_OK = (1<<3),
876 IB_WC_WITH_SMAC = (1<<4),
877 IB_WC_WITH_VLAN = (1<<5),
878 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
879 };
880
881 struct ib_wc {
882 union {
883 u64 wr_id;
884 struct ib_cqe *wr_cqe;
885 };
886 enum ib_wc_status status;
887 enum ib_wc_opcode opcode;
888 u32 vendor_err;
889 u32 byte_len;
890 struct ib_qp *qp;
891 union {
892 __be32 imm_data;
893 u32 invalidate_rkey;
894 } ex;
895 u32 src_qp;
896 int wc_flags;
897 u16 pkey_index;
898 u16 slid;
899 u8 sl;
900 u8 dlid_path_bits;
901 u8 port_num; /* valid only for DR SMPs on switches */
902 u8 smac[ETH_ALEN];
903 u16 vlan_id;
904 u8 network_hdr_type;
905 };
906
907 enum ib_cq_notify_flags {
908 IB_CQ_SOLICITED = 1 << 0,
909 IB_CQ_NEXT_COMP = 1 << 1,
910 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
911 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
912 };
913
914 enum ib_srq_type {
915 IB_SRQT_BASIC,
916 IB_SRQT_XRC
917 };
918
919 enum ib_srq_attr_mask {
920 IB_SRQ_MAX_WR = 1 << 0,
921 IB_SRQ_LIMIT = 1 << 1,
922 };
923
924 struct ib_srq_attr {
925 u32 max_wr;
926 u32 max_sge;
927 u32 srq_limit;
928 };
929
930 struct ib_srq_init_attr {
931 void (*event_handler)(struct ib_event *, void *);
932 void *srq_context;
933 struct ib_srq_attr attr;
934 enum ib_srq_type srq_type;
935
936 union {
937 struct {
938 struct ib_xrcd *xrcd;
939 struct ib_cq *cq;
940 } xrc;
941 } ext;
942 };
943
944 struct ib_qp_cap {
945 u32 max_send_wr;
946 u32 max_recv_wr;
947 u32 max_send_sge;
948 u32 max_recv_sge;
949 u32 max_inline_data;
950
951 /*
952 * Maximum number of rdma_rw_ctx structures in flight at a time.
953 * ib_create_qp() will calculate the right amount of neededed WRs
954 * and MRs based on this.
955 */
956 u32 max_rdma_ctxs;
957 };
958
959 enum ib_sig_type {
960 IB_SIGNAL_ALL_WR,
961 IB_SIGNAL_REQ_WR
962 };
963
964 enum ib_qp_type {
965 /*
966 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
967 * here (and in that order) since the MAD layer uses them as
968 * indices into a 2-entry table.
969 */
970 IB_QPT_SMI,
971 IB_QPT_GSI,
972
973 IB_QPT_RC,
974 IB_QPT_UC,
975 IB_QPT_UD,
976 IB_QPT_RAW_IPV6,
977 IB_QPT_RAW_ETHERTYPE,
978 IB_QPT_RAW_PACKET = 8,
979 IB_QPT_XRC_INI = 9,
980 IB_QPT_XRC_TGT,
981 IB_QPT_MAX,
982 /* Reserve a range for qp types internal to the low level driver.
983 * These qp types will not be visible at the IB core layer, so the
984 * IB_QPT_MAX usages should not be affected in the core layer
985 */
986 IB_QPT_RESERVED1 = 0x1000,
987 IB_QPT_RESERVED2,
988 IB_QPT_RESERVED3,
989 IB_QPT_RESERVED4,
990 IB_QPT_RESERVED5,
991 IB_QPT_RESERVED6,
992 IB_QPT_RESERVED7,
993 IB_QPT_RESERVED8,
994 IB_QPT_RESERVED9,
995 IB_QPT_RESERVED10,
996 };
997
998 enum ib_qp_create_flags {
999 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1000 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1001 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1002 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1003 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1004 IB_QP_CREATE_NETIF_QP = 1 << 5,
1005 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1006 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
1007 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1008 /* reserve bits 26-31 for low level drivers' internal use */
1009 IB_QP_CREATE_RESERVED_START = 1 << 26,
1010 IB_QP_CREATE_RESERVED_END = 1 << 31,
1011 };
1012
1013 /*
1014 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1015 * callback to destroy the passed in QP.
1016 */
1017
1018 struct ib_qp_init_attr {
1019 void (*event_handler)(struct ib_event *, void *);
1020 void *qp_context;
1021 struct ib_cq *send_cq;
1022 struct ib_cq *recv_cq;
1023 struct ib_srq *srq;
1024 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1025 struct ib_qp_cap cap;
1026 enum ib_sig_type sq_sig_type;
1027 enum ib_qp_type qp_type;
1028 enum ib_qp_create_flags create_flags;
1029
1030 /*
1031 * Only needed for special QP types, or when using the RW API.
1032 */
1033 u8 port_num;
1034 struct ib_rwq_ind_table *rwq_ind_tbl;
1035 };
1036
1037 struct ib_qp_open_attr {
1038 void (*event_handler)(struct ib_event *, void *);
1039 void *qp_context;
1040 u32 qp_num;
1041 enum ib_qp_type qp_type;
1042 };
1043
1044 enum ib_rnr_timeout {
1045 IB_RNR_TIMER_655_36 = 0,
1046 IB_RNR_TIMER_000_01 = 1,
1047 IB_RNR_TIMER_000_02 = 2,
1048 IB_RNR_TIMER_000_03 = 3,
1049 IB_RNR_TIMER_000_04 = 4,
1050 IB_RNR_TIMER_000_06 = 5,
1051 IB_RNR_TIMER_000_08 = 6,
1052 IB_RNR_TIMER_000_12 = 7,
1053 IB_RNR_TIMER_000_16 = 8,
1054 IB_RNR_TIMER_000_24 = 9,
1055 IB_RNR_TIMER_000_32 = 10,
1056 IB_RNR_TIMER_000_48 = 11,
1057 IB_RNR_TIMER_000_64 = 12,
1058 IB_RNR_TIMER_000_96 = 13,
1059 IB_RNR_TIMER_001_28 = 14,
1060 IB_RNR_TIMER_001_92 = 15,
1061 IB_RNR_TIMER_002_56 = 16,
1062 IB_RNR_TIMER_003_84 = 17,
1063 IB_RNR_TIMER_005_12 = 18,
1064 IB_RNR_TIMER_007_68 = 19,
1065 IB_RNR_TIMER_010_24 = 20,
1066 IB_RNR_TIMER_015_36 = 21,
1067 IB_RNR_TIMER_020_48 = 22,
1068 IB_RNR_TIMER_030_72 = 23,
1069 IB_RNR_TIMER_040_96 = 24,
1070 IB_RNR_TIMER_061_44 = 25,
1071 IB_RNR_TIMER_081_92 = 26,
1072 IB_RNR_TIMER_122_88 = 27,
1073 IB_RNR_TIMER_163_84 = 28,
1074 IB_RNR_TIMER_245_76 = 29,
1075 IB_RNR_TIMER_327_68 = 30,
1076 IB_RNR_TIMER_491_52 = 31
1077 };
1078
1079 enum ib_qp_attr_mask {
1080 IB_QP_STATE = 1,
1081 IB_QP_CUR_STATE = (1<<1),
1082 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1083 IB_QP_ACCESS_FLAGS = (1<<3),
1084 IB_QP_PKEY_INDEX = (1<<4),
1085 IB_QP_PORT = (1<<5),
1086 IB_QP_QKEY = (1<<6),
1087 IB_QP_AV = (1<<7),
1088 IB_QP_PATH_MTU = (1<<8),
1089 IB_QP_TIMEOUT = (1<<9),
1090 IB_QP_RETRY_CNT = (1<<10),
1091 IB_QP_RNR_RETRY = (1<<11),
1092 IB_QP_RQ_PSN = (1<<12),
1093 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1094 IB_QP_ALT_PATH = (1<<14),
1095 IB_QP_MIN_RNR_TIMER = (1<<15),
1096 IB_QP_SQ_PSN = (1<<16),
1097 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1098 IB_QP_PATH_MIG_STATE = (1<<18),
1099 IB_QP_CAP = (1<<19),
1100 IB_QP_DEST_QPN = (1<<20),
1101 IB_QP_RESERVED1 = (1<<21),
1102 IB_QP_RESERVED2 = (1<<22),
1103 IB_QP_RESERVED3 = (1<<23),
1104 IB_QP_RESERVED4 = (1<<24),
1105 IB_QP_RATE_LIMIT = (1<<25),
1106 };
1107
1108 enum ib_qp_state {
1109 IB_QPS_RESET,
1110 IB_QPS_INIT,
1111 IB_QPS_RTR,
1112 IB_QPS_RTS,
1113 IB_QPS_SQD,
1114 IB_QPS_SQE,
1115 IB_QPS_ERR
1116 };
1117
1118 enum ib_mig_state {
1119 IB_MIG_MIGRATED,
1120 IB_MIG_REARM,
1121 IB_MIG_ARMED
1122 };
1123
1124 enum ib_mw_type {
1125 IB_MW_TYPE_1 = 1,
1126 IB_MW_TYPE_2 = 2
1127 };
1128
1129 struct ib_qp_attr {
1130 enum ib_qp_state qp_state;
1131 enum ib_qp_state cur_qp_state;
1132 enum ib_mtu path_mtu;
1133 enum ib_mig_state path_mig_state;
1134 u32 qkey;
1135 u32 rq_psn;
1136 u32 sq_psn;
1137 u32 dest_qp_num;
1138 int qp_access_flags;
1139 struct ib_qp_cap cap;
1140 struct ib_ah_attr ah_attr;
1141 struct ib_ah_attr alt_ah_attr;
1142 u16 pkey_index;
1143 u16 alt_pkey_index;
1144 u8 en_sqd_async_notify;
1145 u8 sq_draining;
1146 u8 max_rd_atomic;
1147 u8 max_dest_rd_atomic;
1148 u8 min_rnr_timer;
1149 u8 port_num;
1150 u8 timeout;
1151 u8 retry_cnt;
1152 u8 rnr_retry;
1153 u8 alt_port_num;
1154 u8 alt_timeout;
1155 u32 rate_limit;
1156 };
1157
1158 enum ib_wr_opcode {
1159 IB_WR_RDMA_WRITE,
1160 IB_WR_RDMA_WRITE_WITH_IMM,
1161 IB_WR_SEND,
1162 IB_WR_SEND_WITH_IMM,
1163 IB_WR_RDMA_READ,
1164 IB_WR_ATOMIC_CMP_AND_SWP,
1165 IB_WR_ATOMIC_FETCH_AND_ADD,
1166 IB_WR_LSO,
1167 IB_WR_SEND_WITH_INV,
1168 IB_WR_RDMA_READ_WITH_INV,
1169 IB_WR_LOCAL_INV,
1170 IB_WR_REG_MR,
1171 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1172 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1173 IB_WR_REG_SIG_MR,
1174 /* reserve values for low level drivers' internal use.
1175 * These values will not be used at all in the ib core layer.
1176 */
1177 IB_WR_RESERVED1 = 0xf0,
1178 IB_WR_RESERVED2,
1179 IB_WR_RESERVED3,
1180 IB_WR_RESERVED4,
1181 IB_WR_RESERVED5,
1182 IB_WR_RESERVED6,
1183 IB_WR_RESERVED7,
1184 IB_WR_RESERVED8,
1185 IB_WR_RESERVED9,
1186 IB_WR_RESERVED10,
1187 };
1188
1189 enum ib_send_flags {
1190 IB_SEND_FENCE = 1,
1191 IB_SEND_SIGNALED = (1<<1),
1192 IB_SEND_SOLICITED = (1<<2),
1193 IB_SEND_INLINE = (1<<3),
1194 IB_SEND_IP_CSUM = (1<<4),
1195
1196 /* reserve bits 26-31 for low level drivers' internal use */
1197 IB_SEND_RESERVED_START = (1 << 26),
1198 IB_SEND_RESERVED_END = (1 << 31),
1199 };
1200
1201 struct ib_sge {
1202 u64 addr;
1203 u32 length;
1204 u32 lkey;
1205 };
1206
1207 struct ib_cqe {
1208 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1209 };
1210
1211 struct ib_send_wr {
1212 struct ib_send_wr *next;
1213 union {
1214 u64 wr_id;
1215 struct ib_cqe *wr_cqe;
1216 };
1217 struct ib_sge *sg_list;
1218 int num_sge;
1219 enum ib_wr_opcode opcode;
1220 int send_flags;
1221 union {
1222 __be32 imm_data;
1223 u32 invalidate_rkey;
1224 } ex;
1225 };
1226
1227 struct ib_rdma_wr {
1228 struct ib_send_wr wr;
1229 u64 remote_addr;
1230 u32 rkey;
1231 };
1232
1233 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1234 {
1235 return container_of(wr, struct ib_rdma_wr, wr);
1236 }
1237
1238 struct ib_atomic_wr {
1239 struct ib_send_wr wr;
1240 u64 remote_addr;
1241 u64 compare_add;
1242 u64 swap;
1243 u64 compare_add_mask;
1244 u64 swap_mask;
1245 u32 rkey;
1246 };
1247
1248 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1249 {
1250 return container_of(wr, struct ib_atomic_wr, wr);
1251 }
1252
1253 struct ib_ud_wr {
1254 struct ib_send_wr wr;
1255 struct ib_ah *ah;
1256 void *header;
1257 int hlen;
1258 int mss;
1259 u32 remote_qpn;
1260 u32 remote_qkey;
1261 u16 pkey_index; /* valid for GSI only */
1262 u8 port_num; /* valid for DR SMPs on switch only */
1263 };
1264
1265 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1266 {
1267 return container_of(wr, struct ib_ud_wr, wr);
1268 }
1269
1270 struct ib_reg_wr {
1271 struct ib_send_wr wr;
1272 struct ib_mr *mr;
1273 u32 key;
1274 int access;
1275 };
1276
1277 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1278 {
1279 return container_of(wr, struct ib_reg_wr, wr);
1280 }
1281
1282 struct ib_sig_handover_wr {
1283 struct ib_send_wr wr;
1284 struct ib_sig_attrs *sig_attrs;
1285 struct ib_mr *sig_mr;
1286 int access_flags;
1287 struct ib_sge *prot;
1288 };
1289
1290 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1291 {
1292 return container_of(wr, struct ib_sig_handover_wr, wr);
1293 }
1294
1295 struct ib_recv_wr {
1296 struct ib_recv_wr *next;
1297 union {
1298 u64 wr_id;
1299 struct ib_cqe *wr_cqe;
1300 };
1301 struct ib_sge *sg_list;
1302 int num_sge;
1303 };
1304
1305 enum ib_access_flags {
1306 IB_ACCESS_LOCAL_WRITE = 1,
1307 IB_ACCESS_REMOTE_WRITE = (1<<1),
1308 IB_ACCESS_REMOTE_READ = (1<<2),
1309 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1310 IB_ACCESS_MW_BIND = (1<<4),
1311 IB_ZERO_BASED = (1<<5),
1312 IB_ACCESS_ON_DEMAND = (1<<6),
1313 };
1314
1315 /*
1316 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1317 * are hidden here instead of a uapi header!
1318 */
1319 enum ib_mr_rereg_flags {
1320 IB_MR_REREG_TRANS = 1,
1321 IB_MR_REREG_PD = (1<<1),
1322 IB_MR_REREG_ACCESS = (1<<2),
1323 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1324 };
1325
1326 struct ib_fmr_attr {
1327 int max_pages;
1328 int max_maps;
1329 u8 page_shift;
1330 };
1331
1332 struct ib_umem;
1333
1334 struct ib_ucontext {
1335 struct ib_device *device;
1336 struct list_head pd_list;
1337 struct list_head mr_list;
1338 struct list_head mw_list;
1339 struct list_head cq_list;
1340 struct list_head qp_list;
1341 struct list_head srq_list;
1342 struct list_head ah_list;
1343 struct list_head xrcd_list;
1344 struct list_head rule_list;
1345 struct list_head wq_list;
1346 struct list_head rwq_ind_tbl_list;
1347 int closing;
1348
1349 struct pid *tgid;
1350 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1351 struct rb_root umem_tree;
1352 /*
1353 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1354 * mmu notifiers registration.
1355 */
1356 struct rw_semaphore umem_rwsem;
1357 void (*invalidate_range)(struct ib_umem *umem,
1358 unsigned long start, unsigned long end);
1359
1360 struct mmu_notifier mn;
1361 atomic_t notifier_count;
1362 /* A list of umems that don't have private mmu notifier counters yet. */
1363 struct list_head no_private_counters;
1364 int odp_mrs_count;
1365 #endif
1366 };
1367
1368 struct ib_uobject {
1369 u64 user_handle; /* handle given to us by userspace */
1370 struct ib_ucontext *context; /* associated user context */
1371 void *object; /* containing object */
1372 struct list_head list; /* link to context's list */
1373 int id; /* index into kernel idr */
1374 struct kref ref;
1375 struct rw_semaphore mutex; /* protects .live */
1376 struct rcu_head rcu; /* kfree_rcu() overhead */
1377 int live;
1378 };
1379
1380 struct ib_udata {
1381 const void __user *inbuf;
1382 void __user *outbuf;
1383 size_t inlen;
1384 size_t outlen;
1385 };
1386
1387 struct ib_pd {
1388 u32 local_dma_lkey;
1389 u32 flags;
1390 struct ib_device *device;
1391 struct ib_uobject *uobject;
1392 atomic_t usecnt; /* count all resources */
1393
1394 u32 unsafe_global_rkey;
1395
1396 /*
1397 * Implementation details of the RDMA core, don't use in drivers:
1398 */
1399 struct ib_mr *__internal_mr;
1400 };
1401
1402 struct ib_xrcd {
1403 struct ib_device *device;
1404 atomic_t usecnt; /* count all exposed resources */
1405 struct inode *inode;
1406
1407 struct mutex tgt_qp_mutex;
1408 struct list_head tgt_qp_list;
1409 };
1410
1411 struct ib_ah {
1412 struct ib_device *device;
1413 struct ib_pd *pd;
1414 struct ib_uobject *uobject;
1415 };
1416
1417 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1418
1419 enum ib_poll_context {
1420 IB_POLL_DIRECT, /* caller context, no hw completions */
1421 IB_POLL_SOFTIRQ, /* poll from softirq context */
1422 IB_POLL_WORKQUEUE, /* poll from workqueue */
1423 };
1424
1425 struct ib_cq {
1426 struct ib_device *device;
1427 struct ib_uobject *uobject;
1428 ib_comp_handler comp_handler;
1429 void (*event_handler)(struct ib_event *, void *);
1430 void *cq_context;
1431 int cqe;
1432 atomic_t usecnt; /* count number of work queues */
1433 enum ib_poll_context poll_ctx;
1434 struct ib_wc *wc;
1435 union {
1436 struct irq_poll iop;
1437 struct work_struct work;
1438 };
1439 };
1440
1441 struct ib_srq {
1442 struct ib_device *device;
1443 struct ib_pd *pd;
1444 struct ib_uobject *uobject;
1445 void (*event_handler)(struct ib_event *, void *);
1446 void *srq_context;
1447 enum ib_srq_type srq_type;
1448 atomic_t usecnt;
1449
1450 union {
1451 struct {
1452 struct ib_xrcd *xrcd;
1453 struct ib_cq *cq;
1454 u32 srq_num;
1455 } xrc;
1456 } ext;
1457 };
1458
1459 enum ib_wq_type {
1460 IB_WQT_RQ
1461 };
1462
1463 enum ib_wq_state {
1464 IB_WQS_RESET,
1465 IB_WQS_RDY,
1466 IB_WQS_ERR
1467 };
1468
1469 struct ib_wq {
1470 struct ib_device *device;
1471 struct ib_uobject *uobject;
1472 void *wq_context;
1473 void (*event_handler)(struct ib_event *, void *);
1474 struct ib_pd *pd;
1475 struct ib_cq *cq;
1476 u32 wq_num;
1477 enum ib_wq_state state;
1478 enum ib_wq_type wq_type;
1479 atomic_t usecnt;
1480 };
1481
1482 struct ib_wq_init_attr {
1483 void *wq_context;
1484 enum ib_wq_type wq_type;
1485 u32 max_wr;
1486 u32 max_sge;
1487 struct ib_cq *cq;
1488 void (*event_handler)(struct ib_event *, void *);
1489 };
1490
1491 enum ib_wq_attr_mask {
1492 IB_WQ_STATE = 1 << 0,
1493 IB_WQ_CUR_STATE = 1 << 1,
1494 };
1495
1496 struct ib_wq_attr {
1497 enum ib_wq_state wq_state;
1498 enum ib_wq_state curr_wq_state;
1499 };
1500
1501 struct ib_rwq_ind_table {
1502 struct ib_device *device;
1503 struct ib_uobject *uobject;
1504 atomic_t usecnt;
1505 u32 ind_tbl_num;
1506 u32 log_ind_tbl_size;
1507 struct ib_wq **ind_tbl;
1508 };
1509
1510 struct ib_rwq_ind_table_init_attr {
1511 u32 log_ind_tbl_size;
1512 /* Each entry is a pointer to Receive Work Queue */
1513 struct ib_wq **ind_tbl;
1514 };
1515
1516 /*
1517 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1518 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1519 */
1520 struct ib_qp {
1521 struct ib_device *device;
1522 struct ib_pd *pd;
1523 struct ib_cq *send_cq;
1524 struct ib_cq *recv_cq;
1525 spinlock_t mr_lock;
1526 int mrs_used;
1527 struct list_head rdma_mrs;
1528 struct list_head sig_mrs;
1529 struct ib_srq *srq;
1530 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1531 struct list_head xrcd_list;
1532
1533 /* count times opened, mcast attaches, flow attaches */
1534 atomic_t usecnt;
1535 struct list_head open_list;
1536 struct ib_qp *real_qp;
1537 struct ib_uobject *uobject;
1538 void (*event_handler)(struct ib_event *, void *);
1539 void *qp_context;
1540 u32 qp_num;
1541 u32 max_write_sge;
1542 u32 max_read_sge;
1543 enum ib_qp_type qp_type;
1544 struct ib_rwq_ind_table *rwq_ind_tbl;
1545 };
1546
1547 struct ib_mr {
1548 struct ib_device *device;
1549 struct ib_pd *pd;
1550 u32 lkey;
1551 u32 rkey;
1552 u64 iova;
1553 u32 length;
1554 unsigned int page_size;
1555 bool need_inval;
1556 union {
1557 struct ib_uobject *uobject; /* user */
1558 struct list_head qp_entry; /* FR */
1559 };
1560 };
1561
1562 struct ib_mw {
1563 struct ib_device *device;
1564 struct ib_pd *pd;
1565 struct ib_uobject *uobject;
1566 u32 rkey;
1567 enum ib_mw_type type;
1568 };
1569
1570 struct ib_fmr {
1571 struct ib_device *device;
1572 struct ib_pd *pd;
1573 struct list_head list;
1574 u32 lkey;
1575 u32 rkey;
1576 };
1577
1578 /* Supported steering options */
1579 enum ib_flow_attr_type {
1580 /* steering according to rule specifications */
1581 IB_FLOW_ATTR_NORMAL = 0x0,
1582 /* default unicast and multicast rule -
1583 * receive all Eth traffic which isn't steered to any QP
1584 */
1585 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1586 /* default multicast rule -
1587 * receive all Eth multicast traffic which isn't steered to any QP
1588 */
1589 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1590 /* sniffer rule - receive all port traffic */
1591 IB_FLOW_ATTR_SNIFFER = 0x3
1592 };
1593
1594 /* Supported steering header types */
1595 enum ib_flow_spec_type {
1596 /* L2 headers*/
1597 IB_FLOW_SPEC_ETH = 0x20,
1598 IB_FLOW_SPEC_IB = 0x22,
1599 /* L3 header*/
1600 IB_FLOW_SPEC_IPV4 = 0x30,
1601 IB_FLOW_SPEC_IPV6 = 0x31,
1602 /* L4 headers*/
1603 IB_FLOW_SPEC_TCP = 0x40,
1604 IB_FLOW_SPEC_UDP = 0x41,
1605 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1606 IB_FLOW_SPEC_INNER = 0x100,
1607 };
1608 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1609 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1610
1611 /* Flow steering rule priority is set according to it's domain.
1612 * Lower domain value means higher priority.
1613 */
1614 enum ib_flow_domain {
1615 IB_FLOW_DOMAIN_USER,
1616 IB_FLOW_DOMAIN_ETHTOOL,
1617 IB_FLOW_DOMAIN_RFS,
1618 IB_FLOW_DOMAIN_NIC,
1619 IB_FLOW_DOMAIN_NUM /* Must be last */
1620 };
1621
1622 enum ib_flow_flags {
1623 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1624 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1625 };
1626
1627 struct ib_flow_eth_filter {
1628 u8 dst_mac[6];
1629 u8 src_mac[6];
1630 __be16 ether_type;
1631 __be16 vlan_tag;
1632 /* Must be last */
1633 u8 real_sz[0];
1634 };
1635
1636 struct ib_flow_spec_eth {
1637 u32 type;
1638 u16 size;
1639 struct ib_flow_eth_filter val;
1640 struct ib_flow_eth_filter mask;
1641 };
1642
1643 struct ib_flow_ib_filter {
1644 __be16 dlid;
1645 __u8 sl;
1646 /* Must be last */
1647 u8 real_sz[0];
1648 };
1649
1650 struct ib_flow_spec_ib {
1651 u32 type;
1652 u16 size;
1653 struct ib_flow_ib_filter val;
1654 struct ib_flow_ib_filter mask;
1655 };
1656
1657 /* IPv4 header flags */
1658 enum ib_ipv4_flags {
1659 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1660 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1661 last have this flag set */
1662 };
1663
1664 struct ib_flow_ipv4_filter {
1665 __be32 src_ip;
1666 __be32 dst_ip;
1667 u8 proto;
1668 u8 tos;
1669 u8 ttl;
1670 u8 flags;
1671 /* Must be last */
1672 u8 real_sz[0];
1673 };
1674
1675 struct ib_flow_spec_ipv4 {
1676 u32 type;
1677 u16 size;
1678 struct ib_flow_ipv4_filter val;
1679 struct ib_flow_ipv4_filter mask;
1680 };
1681
1682 struct ib_flow_ipv6_filter {
1683 u8 src_ip[16];
1684 u8 dst_ip[16];
1685 __be32 flow_label;
1686 u8 next_hdr;
1687 u8 traffic_class;
1688 u8 hop_limit;
1689 /* Must be last */
1690 u8 real_sz[0];
1691 };
1692
1693 struct ib_flow_spec_ipv6 {
1694 u32 type;
1695 u16 size;
1696 struct ib_flow_ipv6_filter val;
1697 struct ib_flow_ipv6_filter mask;
1698 };
1699
1700 struct ib_flow_tcp_udp_filter {
1701 __be16 dst_port;
1702 __be16 src_port;
1703 /* Must be last */
1704 u8 real_sz[0];
1705 };
1706
1707 struct ib_flow_spec_tcp_udp {
1708 u32 type;
1709 u16 size;
1710 struct ib_flow_tcp_udp_filter val;
1711 struct ib_flow_tcp_udp_filter mask;
1712 };
1713
1714 struct ib_flow_tunnel_filter {
1715 __be32 tunnel_id;
1716 u8 real_sz[0];
1717 };
1718
1719 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1720 * the tunnel_id from val has the vni value
1721 */
1722 struct ib_flow_spec_tunnel {
1723 u32 type;
1724 u16 size;
1725 struct ib_flow_tunnel_filter val;
1726 struct ib_flow_tunnel_filter mask;
1727 };
1728
1729 union ib_flow_spec {
1730 struct {
1731 u32 type;
1732 u16 size;
1733 };
1734 struct ib_flow_spec_eth eth;
1735 struct ib_flow_spec_ib ib;
1736 struct ib_flow_spec_ipv4 ipv4;
1737 struct ib_flow_spec_tcp_udp tcp_udp;
1738 struct ib_flow_spec_ipv6 ipv6;
1739 struct ib_flow_spec_tunnel tunnel;
1740 };
1741
1742 struct ib_flow_attr {
1743 enum ib_flow_attr_type type;
1744 u16 size;
1745 u16 priority;
1746 u32 flags;
1747 u8 num_of_specs;
1748 u8 port;
1749 /* Following are the optional layers according to user request
1750 * struct ib_flow_spec_xxx
1751 * struct ib_flow_spec_yyy
1752 */
1753 };
1754
1755 struct ib_flow {
1756 struct ib_qp *qp;
1757 struct ib_uobject *uobject;
1758 };
1759
1760 struct ib_mad_hdr;
1761 struct ib_grh;
1762
1763 enum ib_process_mad_flags {
1764 IB_MAD_IGNORE_MKEY = 1,
1765 IB_MAD_IGNORE_BKEY = 2,
1766 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1767 };
1768
1769 enum ib_mad_result {
1770 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1771 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1772 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1773 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1774 };
1775
1776 #define IB_DEVICE_NAME_MAX 64
1777
1778 struct ib_cache {
1779 rwlock_t lock;
1780 struct ib_event_handler event_handler;
1781 struct ib_pkey_cache **pkey_cache;
1782 struct ib_gid_table **gid_cache;
1783 u8 *lmc_cache;
1784 };
1785
1786 struct ib_dma_mapping_ops {
1787 int (*mapping_error)(struct ib_device *dev,
1788 u64 dma_addr);
1789 u64 (*map_single)(struct ib_device *dev,
1790 void *ptr, size_t size,
1791 enum dma_data_direction direction);
1792 void (*unmap_single)(struct ib_device *dev,
1793 u64 addr, size_t size,
1794 enum dma_data_direction direction);
1795 u64 (*map_page)(struct ib_device *dev,
1796 struct page *page, unsigned long offset,
1797 size_t size,
1798 enum dma_data_direction direction);
1799 void (*unmap_page)(struct ib_device *dev,
1800 u64 addr, size_t size,
1801 enum dma_data_direction direction);
1802 int (*map_sg)(struct ib_device *dev,
1803 struct scatterlist *sg, int nents,
1804 enum dma_data_direction direction);
1805 void (*unmap_sg)(struct ib_device *dev,
1806 struct scatterlist *sg, int nents,
1807 enum dma_data_direction direction);
1808 int (*map_sg_attrs)(struct ib_device *dev,
1809 struct scatterlist *sg, int nents,
1810 enum dma_data_direction direction,
1811 unsigned long attrs);
1812 void (*unmap_sg_attrs)(struct ib_device *dev,
1813 struct scatterlist *sg, int nents,
1814 enum dma_data_direction direction,
1815 unsigned long attrs);
1816 void (*sync_single_for_cpu)(struct ib_device *dev,
1817 u64 dma_handle,
1818 size_t size,
1819 enum dma_data_direction dir);
1820 void (*sync_single_for_device)(struct ib_device *dev,
1821 u64 dma_handle,
1822 size_t size,
1823 enum dma_data_direction dir);
1824 void *(*alloc_coherent)(struct ib_device *dev,
1825 size_t size,
1826 u64 *dma_handle,
1827 gfp_t flag);
1828 void (*free_coherent)(struct ib_device *dev,
1829 size_t size, void *cpu_addr,
1830 u64 dma_handle);
1831 };
1832
1833 struct iw_cm_verbs;
1834
1835 struct ib_port_immutable {
1836 int pkey_tbl_len;
1837 int gid_tbl_len;
1838 u32 core_cap_flags;
1839 u32 max_mad_size;
1840 };
1841
1842 struct ib_device {
1843 struct device *dma_device;
1844
1845 char name[IB_DEVICE_NAME_MAX];
1846
1847 struct list_head event_handler_list;
1848 spinlock_t event_handler_lock;
1849
1850 spinlock_t client_data_lock;
1851 struct list_head core_list;
1852 /* Access to the client_data_list is protected by the client_data_lock
1853 * spinlock and the lists_rwsem read-write semaphore */
1854 struct list_head client_data_list;
1855
1856 struct ib_cache cache;
1857 /**
1858 * port_immutable is indexed by port number
1859 */
1860 struct ib_port_immutable *port_immutable;
1861
1862 int num_comp_vectors;
1863
1864 struct iw_cm_verbs *iwcm;
1865
1866 /**
1867 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1868 * driver initialized data. The struct is kfree()'ed by the sysfs
1869 * core when the device is removed. A lifespan of -1 in the return
1870 * struct tells the core to set a default lifespan.
1871 */
1872 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1873 u8 port_num);
1874 /**
1875 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1876 * @index - The index in the value array we wish to have updated, or
1877 * num_counters if we want all stats updated
1878 * Return codes -
1879 * < 0 - Error, no counters updated
1880 * index - Updated the single counter pointed to by index
1881 * num_counters - Updated all counters (will reset the timestamp
1882 * and prevent further calls for lifespan milliseconds)
1883 * Drivers are allowed to update all counters in leiu of just the
1884 * one given in index at their option
1885 */
1886 int (*get_hw_stats)(struct ib_device *device,
1887 struct rdma_hw_stats *stats,
1888 u8 port, int index);
1889 int (*query_device)(struct ib_device *device,
1890 struct ib_device_attr *device_attr,
1891 struct ib_udata *udata);
1892 int (*query_port)(struct ib_device *device,
1893 u8 port_num,
1894 struct ib_port_attr *port_attr);
1895 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1896 u8 port_num);
1897 /* When calling get_netdev, the HW vendor's driver should return the
1898 * net device of device @device at port @port_num or NULL if such
1899 * a net device doesn't exist. The vendor driver should call dev_hold
1900 * on this net device. The HW vendor's device driver must guarantee
1901 * that this function returns NULL before the net device reaches
1902 * NETDEV_UNREGISTER_FINAL state.
1903 */
1904 struct net_device *(*get_netdev)(struct ib_device *device,
1905 u8 port_num);
1906 int (*query_gid)(struct ib_device *device,
1907 u8 port_num, int index,
1908 union ib_gid *gid);
1909 /* When calling add_gid, the HW vendor's driver should
1910 * add the gid of device @device at gid index @index of
1911 * port @port_num to be @gid. Meta-info of that gid (for example,
1912 * the network device related to this gid is available
1913 * at @attr. @context allows the HW vendor driver to store extra
1914 * information together with a GID entry. The HW vendor may allocate
1915 * memory to contain this information and store it in @context when a
1916 * new GID entry is written to. Params are consistent until the next
1917 * call of add_gid or delete_gid. The function should return 0 on
1918 * success or error otherwise. The function could be called
1919 * concurrently for different ports. This function is only called
1920 * when roce_gid_table is used.
1921 */
1922 int (*add_gid)(struct ib_device *device,
1923 u8 port_num,
1924 unsigned int index,
1925 const union ib_gid *gid,
1926 const struct ib_gid_attr *attr,
1927 void **context);
1928 /* When calling del_gid, the HW vendor's driver should delete the
1929 * gid of device @device at gid index @index of port @port_num.
1930 * Upon the deletion of a GID entry, the HW vendor must free any
1931 * allocated memory. The caller will clear @context afterwards.
1932 * This function is only called when roce_gid_table is used.
1933 */
1934 int (*del_gid)(struct ib_device *device,
1935 u8 port_num,
1936 unsigned int index,
1937 void **context);
1938 int (*query_pkey)(struct ib_device *device,
1939 u8 port_num, u16 index, u16 *pkey);
1940 int (*modify_device)(struct ib_device *device,
1941 int device_modify_mask,
1942 struct ib_device_modify *device_modify);
1943 int (*modify_port)(struct ib_device *device,
1944 u8 port_num, int port_modify_mask,
1945 struct ib_port_modify *port_modify);
1946 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1947 struct ib_udata *udata);
1948 int (*dealloc_ucontext)(struct ib_ucontext *context);
1949 int (*mmap)(struct ib_ucontext *context,
1950 struct vm_area_struct *vma);
1951 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1952 struct ib_ucontext *context,
1953 struct ib_udata *udata);
1954 int (*dealloc_pd)(struct ib_pd *pd);
1955 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1956 struct ib_ah_attr *ah_attr,
1957 struct ib_udata *udata);
1958 int (*modify_ah)(struct ib_ah *ah,
1959 struct ib_ah_attr *ah_attr);
1960 int (*query_ah)(struct ib_ah *ah,
1961 struct ib_ah_attr *ah_attr);
1962 int (*destroy_ah)(struct ib_ah *ah);
1963 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1964 struct ib_srq_init_attr *srq_init_attr,
1965 struct ib_udata *udata);
1966 int (*modify_srq)(struct ib_srq *srq,
1967 struct ib_srq_attr *srq_attr,
1968 enum ib_srq_attr_mask srq_attr_mask,
1969 struct ib_udata *udata);
1970 int (*query_srq)(struct ib_srq *srq,
1971 struct ib_srq_attr *srq_attr);
1972 int (*destroy_srq)(struct ib_srq *srq);
1973 int (*post_srq_recv)(struct ib_srq *srq,
1974 struct ib_recv_wr *recv_wr,
1975 struct ib_recv_wr **bad_recv_wr);
1976 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1977 struct ib_qp_init_attr *qp_init_attr,
1978 struct ib_udata *udata);
1979 int (*modify_qp)(struct ib_qp *qp,
1980 struct ib_qp_attr *qp_attr,
1981 int qp_attr_mask,
1982 struct ib_udata *udata);
1983 int (*query_qp)(struct ib_qp *qp,
1984 struct ib_qp_attr *qp_attr,
1985 int qp_attr_mask,
1986 struct ib_qp_init_attr *qp_init_attr);
1987 int (*destroy_qp)(struct ib_qp *qp);
1988 int (*post_send)(struct ib_qp *qp,
1989 struct ib_send_wr *send_wr,
1990 struct ib_send_wr **bad_send_wr);
1991 int (*post_recv)(struct ib_qp *qp,
1992 struct ib_recv_wr *recv_wr,
1993 struct ib_recv_wr **bad_recv_wr);
1994 struct ib_cq * (*create_cq)(struct ib_device *device,
1995 const struct ib_cq_init_attr *attr,
1996 struct ib_ucontext *context,
1997 struct ib_udata *udata);
1998 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1999 u16 cq_period);
2000 int (*destroy_cq)(struct ib_cq *cq);
2001 int (*resize_cq)(struct ib_cq *cq, int cqe,
2002 struct ib_udata *udata);
2003 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2004 struct ib_wc *wc);
2005 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2006 int (*req_notify_cq)(struct ib_cq *cq,
2007 enum ib_cq_notify_flags flags);
2008 int (*req_ncomp_notif)(struct ib_cq *cq,
2009 int wc_cnt);
2010 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2011 int mr_access_flags);
2012 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2013 u64 start, u64 length,
2014 u64 virt_addr,
2015 int mr_access_flags,
2016 struct ib_udata *udata);
2017 int (*rereg_user_mr)(struct ib_mr *mr,
2018 int flags,
2019 u64 start, u64 length,
2020 u64 virt_addr,
2021 int mr_access_flags,
2022 struct ib_pd *pd,
2023 struct ib_udata *udata);
2024 int (*dereg_mr)(struct ib_mr *mr);
2025 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2026 enum ib_mr_type mr_type,
2027 u32 max_num_sg);
2028 int (*map_mr_sg)(struct ib_mr *mr,
2029 struct scatterlist *sg,
2030 int sg_nents,
2031 unsigned int *sg_offset);
2032 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2033 enum ib_mw_type type,
2034 struct ib_udata *udata);
2035 int (*dealloc_mw)(struct ib_mw *mw);
2036 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2037 int mr_access_flags,
2038 struct ib_fmr_attr *fmr_attr);
2039 int (*map_phys_fmr)(struct ib_fmr *fmr,
2040 u64 *page_list, int list_len,
2041 u64 iova);
2042 int (*unmap_fmr)(struct list_head *fmr_list);
2043 int (*dealloc_fmr)(struct ib_fmr *fmr);
2044 int (*attach_mcast)(struct ib_qp *qp,
2045 union ib_gid *gid,
2046 u16 lid);
2047 int (*detach_mcast)(struct ib_qp *qp,
2048 union ib_gid *gid,
2049 u16 lid);
2050 int (*process_mad)(struct ib_device *device,
2051 int process_mad_flags,
2052 u8 port_num,
2053 const struct ib_wc *in_wc,
2054 const struct ib_grh *in_grh,
2055 const struct ib_mad_hdr *in_mad,
2056 size_t in_mad_size,
2057 struct ib_mad_hdr *out_mad,
2058 size_t *out_mad_size,
2059 u16 *out_mad_pkey_index);
2060 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2061 struct ib_ucontext *ucontext,
2062 struct ib_udata *udata);
2063 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2064 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2065 struct ib_flow_attr
2066 *flow_attr,
2067 int domain);
2068 int (*destroy_flow)(struct ib_flow *flow_id);
2069 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2070 struct ib_mr_status *mr_status);
2071 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2072 void (*drain_rq)(struct ib_qp *qp);
2073 void (*drain_sq)(struct ib_qp *qp);
2074 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2075 int state);
2076 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2077 struct ifla_vf_info *ivf);
2078 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2079 struct ifla_vf_stats *stats);
2080 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2081 int type);
2082 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2083 struct ib_wq_init_attr *init_attr,
2084 struct ib_udata *udata);
2085 int (*destroy_wq)(struct ib_wq *wq);
2086 int (*modify_wq)(struct ib_wq *wq,
2087 struct ib_wq_attr *attr,
2088 u32 wq_attr_mask,
2089 struct ib_udata *udata);
2090 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2091 struct ib_rwq_ind_table_init_attr *init_attr,
2092 struct ib_udata *udata);
2093 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2094 struct ib_dma_mapping_ops *dma_ops;
2095
2096 struct module *owner;
2097 struct device dev;
2098 struct kobject *ports_parent;
2099 struct list_head port_list;
2100
2101 enum {
2102 IB_DEV_UNINITIALIZED,
2103 IB_DEV_REGISTERED,
2104 IB_DEV_UNREGISTERED
2105 } reg_state;
2106
2107 int uverbs_abi_ver;
2108 u64 uverbs_cmd_mask;
2109 u64 uverbs_ex_cmd_mask;
2110
2111 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2112 __be64 node_guid;
2113 u32 local_dma_lkey;
2114 u16 is_switch:1;
2115 u8 node_type;
2116 u8 phys_port_cnt;
2117 struct ib_device_attr attrs;
2118 struct attribute_group *hw_stats_ag;
2119 struct rdma_hw_stats *hw_stats;
2120
2121 /**
2122 * The following mandatory functions are used only at device
2123 * registration. Keep functions such as these at the end of this
2124 * structure to avoid cache line misses when accessing struct ib_device
2125 * in fast paths.
2126 */
2127 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2128 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2129 };
2130
2131 struct ib_client {
2132 char *name;
2133 void (*add) (struct ib_device *);
2134 void (*remove)(struct ib_device *, void *client_data);
2135
2136 /* Returns the net_dev belonging to this ib_client and matching the
2137 * given parameters.
2138 * @dev: An RDMA device that the net_dev use for communication.
2139 * @port: A physical port number on the RDMA device.
2140 * @pkey: P_Key that the net_dev uses if applicable.
2141 * @gid: A GID that the net_dev uses to communicate.
2142 * @addr: An IP address the net_dev is configured with.
2143 * @client_data: The device's client data set by ib_set_client_data().
2144 *
2145 * An ib_client that implements a net_dev on top of RDMA devices
2146 * (such as IP over IB) should implement this callback, allowing the
2147 * rdma_cm module to find the right net_dev for a given request.
2148 *
2149 * The caller is responsible for calling dev_put on the returned
2150 * netdev. */
2151 struct net_device *(*get_net_dev_by_params)(
2152 struct ib_device *dev,
2153 u8 port,
2154 u16 pkey,
2155 const union ib_gid *gid,
2156 const struct sockaddr *addr,
2157 void *client_data);
2158 struct list_head list;
2159 };
2160
2161 struct ib_device *ib_alloc_device(size_t size);
2162 void ib_dealloc_device(struct ib_device *device);
2163
2164 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2165
2166 int ib_register_device(struct ib_device *device,
2167 int (*port_callback)(struct ib_device *,
2168 u8, struct kobject *));
2169 void ib_unregister_device(struct ib_device *device);
2170
2171 int ib_register_client (struct ib_client *client);
2172 void ib_unregister_client(struct ib_client *client);
2173
2174 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2175 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2176 void *data);
2177
2178 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2179 {
2180 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2181 }
2182
2183 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2184 {
2185 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2186 }
2187
2188 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2189 size_t offset,
2190 size_t len)
2191 {
2192 const void __user *p = udata->inbuf + offset;
2193 bool ret;
2194 u8 *buf;
2195
2196 if (len > USHRT_MAX)
2197 return false;
2198
2199 buf = memdup_user(p, len);
2200 if (IS_ERR(buf))
2201 return false;
2202
2203 ret = !memchr_inv(buf, 0, len);
2204 kfree(buf);
2205 return ret;
2206 }
2207
2208 /**
2209 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2210 * contains all required attributes and no attributes not allowed for
2211 * the given QP state transition.
2212 * @cur_state: Current QP state
2213 * @next_state: Next QP state
2214 * @type: QP type
2215 * @mask: Mask of supplied QP attributes
2216 * @ll : link layer of port
2217 *
2218 * This function is a helper function that a low-level driver's
2219 * modify_qp method can use to validate the consumer's input. It
2220 * checks that cur_state and next_state are valid QP states, that a
2221 * transition from cur_state to next_state is allowed by the IB spec,
2222 * and that the attribute mask supplied is allowed for the transition.
2223 */
2224 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2225 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2226 enum rdma_link_layer ll);
2227
2228 int ib_register_event_handler (struct ib_event_handler *event_handler);
2229 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2230 void ib_dispatch_event(struct ib_event *event);
2231
2232 int ib_query_port(struct ib_device *device,
2233 u8 port_num, struct ib_port_attr *port_attr);
2234
2235 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2236 u8 port_num);
2237
2238 /**
2239 * rdma_cap_ib_switch - Check if the device is IB switch
2240 * @device: Device to check
2241 *
2242 * Device driver is responsible for setting is_switch bit on
2243 * in ib_device structure at init time.
2244 *
2245 * Return: true if the device is IB switch.
2246 */
2247 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2248 {
2249 return device->is_switch;
2250 }
2251
2252 /**
2253 * rdma_start_port - Return the first valid port number for the device
2254 * specified
2255 *
2256 * @device: Device to be checked
2257 *
2258 * Return start port number
2259 */
2260 static inline u8 rdma_start_port(const struct ib_device *device)
2261 {
2262 return rdma_cap_ib_switch(device) ? 0 : 1;
2263 }
2264
2265 /**
2266 * rdma_end_port - Return the last valid port number for the device
2267 * specified
2268 *
2269 * @device: Device to be checked
2270 *
2271 * Return last port number
2272 */
2273 static inline u8 rdma_end_port(const struct ib_device *device)
2274 {
2275 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2276 }
2277
2278 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2279 {
2280 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2281 }
2282
2283 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2284 {
2285 return device->port_immutable[port_num].core_cap_flags &
2286 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2287 }
2288
2289 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2290 {
2291 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2292 }
2293
2294 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2295 {
2296 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2297 }
2298
2299 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2300 {
2301 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2302 }
2303
2304 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2305 {
2306 return rdma_protocol_ib(device, port_num) ||
2307 rdma_protocol_roce(device, port_num);
2308 }
2309
2310 /**
2311 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2312 * Management Datagrams.
2313 * @device: Device to check
2314 * @port_num: Port number to check
2315 *
2316 * Management Datagrams (MAD) are a required part of the InfiniBand
2317 * specification and are supported on all InfiniBand devices. A slightly
2318 * extended version are also supported on OPA interfaces.
2319 *
2320 * Return: true if the port supports sending/receiving of MAD packets.
2321 */
2322 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2323 {
2324 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2325 }
2326
2327 /**
2328 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2329 * Management Datagrams.
2330 * @device: Device to check
2331 * @port_num: Port number to check
2332 *
2333 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2334 * datagrams with their own versions. These OPA MADs share many but not all of
2335 * the characteristics of InfiniBand MADs.
2336 *
2337 * OPA MADs differ in the following ways:
2338 *
2339 * 1) MADs are variable size up to 2K
2340 * IBTA defined MADs remain fixed at 256 bytes
2341 * 2) OPA SMPs must carry valid PKeys
2342 * 3) OPA SMP packets are a different format
2343 *
2344 * Return: true if the port supports OPA MAD packet formats.
2345 */
2346 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2347 {
2348 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2349 == RDMA_CORE_CAP_OPA_MAD;
2350 }
2351
2352 /**
2353 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2354 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2355 * @device: Device to check
2356 * @port_num: Port number to check
2357 *
2358 * Each InfiniBand node is required to provide a Subnet Management Agent
2359 * that the subnet manager can access. Prior to the fabric being fully
2360 * configured by the subnet manager, the SMA is accessed via a well known
2361 * interface called the Subnet Management Interface (SMI). This interface
2362 * uses directed route packets to communicate with the SM to get around the
2363 * chicken and egg problem of the SM needing to know what's on the fabric
2364 * in order to configure the fabric, and needing to configure the fabric in
2365 * order to send packets to the devices on the fabric. These directed
2366 * route packets do not need the fabric fully configured in order to reach
2367 * their destination. The SMI is the only method allowed to send
2368 * directed route packets on an InfiniBand fabric.
2369 *
2370 * Return: true if the port provides an SMI.
2371 */
2372 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2373 {
2374 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2375 }
2376
2377 /**
2378 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2379 * Communication Manager.
2380 * @device: Device to check
2381 * @port_num: Port number to check
2382 *
2383 * The InfiniBand Communication Manager is one of many pre-defined General
2384 * Service Agents (GSA) that are accessed via the General Service
2385 * Interface (GSI). It's role is to facilitate establishment of connections
2386 * between nodes as well as other management related tasks for established
2387 * connections.
2388 *
2389 * Return: true if the port supports an IB CM (this does not guarantee that
2390 * a CM is actually running however).
2391 */
2392 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2393 {
2394 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2395 }
2396
2397 /**
2398 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2399 * Communication Manager.
2400 * @device: Device to check
2401 * @port_num: Port number to check
2402 *
2403 * Similar to above, but specific to iWARP connections which have a different
2404 * managment protocol than InfiniBand.
2405 *
2406 * Return: true if the port supports an iWARP CM (this does not guarantee that
2407 * a CM is actually running however).
2408 */
2409 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2410 {
2411 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2412 }
2413
2414 /**
2415 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2416 * Subnet Administration.
2417 * @device: Device to check
2418 * @port_num: Port number to check
2419 *
2420 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2421 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2422 * fabrics, devices should resolve routes to other hosts by contacting the
2423 * SA to query the proper route.
2424 *
2425 * Return: true if the port should act as a client to the fabric Subnet
2426 * Administration interface. This does not imply that the SA service is
2427 * running locally.
2428 */
2429 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2430 {
2431 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2432 }
2433
2434 /**
2435 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2436 * Multicast.
2437 * @device: Device to check
2438 * @port_num: Port number to check
2439 *
2440 * InfiniBand multicast registration is more complex than normal IPv4 or
2441 * IPv6 multicast registration. Each Host Channel Adapter must register
2442 * with the Subnet Manager when it wishes to join a multicast group. It
2443 * should do so only once regardless of how many queue pairs it subscribes
2444 * to this group. And it should leave the group only after all queue pairs
2445 * attached to the group have been detached.
2446 *
2447 * Return: true if the port must undertake the additional adminstrative
2448 * overhead of registering/unregistering with the SM and tracking of the
2449 * total number of queue pairs attached to the multicast group.
2450 */
2451 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2452 {
2453 return rdma_cap_ib_sa(device, port_num);
2454 }
2455
2456 /**
2457 * rdma_cap_af_ib - Check if the port of device has the capability
2458 * Native Infiniband Address.
2459 * @device: Device to check
2460 * @port_num: Port number to check
2461 *
2462 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2463 * GID. RoCE uses a different mechanism, but still generates a GID via
2464 * a prescribed mechanism and port specific data.
2465 *
2466 * Return: true if the port uses a GID address to identify devices on the
2467 * network.
2468 */
2469 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2470 {
2471 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2472 }
2473
2474 /**
2475 * rdma_cap_eth_ah - Check if the port of device has the capability
2476 * Ethernet Address Handle.
2477 * @device: Device to check
2478 * @port_num: Port number to check
2479 *
2480 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2481 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2482 * port. Normally, packet headers are generated by the sending host
2483 * adapter, but when sending connectionless datagrams, we must manually
2484 * inject the proper headers for the fabric we are communicating over.
2485 *
2486 * Return: true if we are running as a RoCE port and must force the
2487 * addition of a Global Route Header built from our Ethernet Address
2488 * Handle into our header list for connectionless packets.
2489 */
2490 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2491 {
2492 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2493 }
2494
2495 /**
2496 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2497 *
2498 * @device: Device
2499 * @port_num: Port number
2500 *
2501 * This MAD size includes the MAD headers and MAD payload. No other headers
2502 * are included.
2503 *
2504 * Return the max MAD size required by the Port. Will return 0 if the port
2505 * does not support MADs
2506 */
2507 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2508 {
2509 return device->port_immutable[port_num].max_mad_size;
2510 }
2511
2512 /**
2513 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2514 * @device: Device to check
2515 * @port_num: Port number to check
2516 *
2517 * RoCE GID table mechanism manages the various GIDs for a device.
2518 *
2519 * NOTE: if allocating the port's GID table has failed, this call will still
2520 * return true, but any RoCE GID table API will fail.
2521 *
2522 * Return: true if the port uses RoCE GID table mechanism in order to manage
2523 * its GIDs.
2524 */
2525 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2526 u8 port_num)
2527 {
2528 return rdma_protocol_roce(device, port_num) &&
2529 device->add_gid && device->del_gid;
2530 }
2531
2532 /*
2533 * Check if the device supports READ W/ INVALIDATE.
2534 */
2535 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2536 {
2537 /*
2538 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2539 * has support for it yet.
2540 */
2541 return rdma_protocol_iwarp(dev, port_num);
2542 }
2543
2544 int ib_query_gid(struct ib_device *device,
2545 u8 port_num, int index, union ib_gid *gid,
2546 struct ib_gid_attr *attr);
2547
2548 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2549 int state);
2550 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2551 struct ifla_vf_info *info);
2552 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2553 struct ifla_vf_stats *stats);
2554 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2555 int type);
2556
2557 int ib_query_pkey(struct ib_device *device,
2558 u8 port_num, u16 index, u16 *pkey);
2559
2560 int ib_modify_device(struct ib_device *device,
2561 int device_modify_mask,
2562 struct ib_device_modify *device_modify);
2563
2564 int ib_modify_port(struct ib_device *device,
2565 u8 port_num, int port_modify_mask,
2566 struct ib_port_modify *port_modify);
2567
2568 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2569 enum ib_gid_type gid_type, struct net_device *ndev,
2570 u8 *port_num, u16 *index);
2571
2572 int ib_find_pkey(struct ib_device *device,
2573 u8 port_num, u16 pkey, u16 *index);
2574
2575 enum ib_pd_flags {
2576 /*
2577 * Create a memory registration for all memory in the system and place
2578 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2579 * ULPs to avoid the overhead of dynamic MRs.
2580 *
2581 * This flag is generally considered unsafe and must only be used in
2582 * extremly trusted environments. Every use of it will log a warning
2583 * in the kernel log.
2584 */
2585 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2586 };
2587
2588 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2589 const char *caller);
2590 #define ib_alloc_pd(device, flags) \
2591 __ib_alloc_pd((device), (flags), __func__)
2592 void ib_dealloc_pd(struct ib_pd *pd);
2593
2594 /**
2595 * ib_create_ah - Creates an address handle for the given address vector.
2596 * @pd: The protection domain associated with the address handle.
2597 * @ah_attr: The attributes of the address vector.
2598 *
2599 * The address handle is used to reference a local or global destination
2600 * in all UD QP post sends.
2601 */
2602 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2603
2604 /**
2605 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2606 * work completion.
2607 * @hdr: the L3 header to parse
2608 * @net_type: type of header to parse
2609 * @sgid: place to store source gid
2610 * @dgid: place to store destination gid
2611 */
2612 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2613 enum rdma_network_type net_type,
2614 union ib_gid *sgid, union ib_gid *dgid);
2615
2616 /**
2617 * ib_get_rdma_header_version - Get the header version
2618 * @hdr: the L3 header to parse
2619 */
2620 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2621
2622 /**
2623 * ib_init_ah_from_wc - Initializes address handle attributes from a
2624 * work completion.
2625 * @device: Device on which the received message arrived.
2626 * @port_num: Port on which the received message arrived.
2627 * @wc: Work completion associated with the received message.
2628 * @grh: References the received global route header. This parameter is
2629 * ignored unless the work completion indicates that the GRH is valid.
2630 * @ah_attr: Returned attributes that can be used when creating an address
2631 * handle for replying to the message.
2632 */
2633 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2634 const struct ib_wc *wc, const struct ib_grh *grh,
2635 struct ib_ah_attr *ah_attr);
2636
2637 /**
2638 * ib_create_ah_from_wc - Creates an address handle associated with the
2639 * sender of the specified work completion.
2640 * @pd: The protection domain associated with the address handle.
2641 * @wc: Work completion information associated with a received message.
2642 * @grh: References the received global route header. This parameter is
2643 * ignored unless the work completion indicates that the GRH is valid.
2644 * @port_num: The outbound port number to associate with the address.
2645 *
2646 * The address handle is used to reference a local or global destination
2647 * in all UD QP post sends.
2648 */
2649 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2650 const struct ib_grh *grh, u8 port_num);
2651
2652 /**
2653 * ib_modify_ah - Modifies the address vector associated with an address
2654 * handle.
2655 * @ah: The address handle to modify.
2656 * @ah_attr: The new address vector attributes to associate with the
2657 * address handle.
2658 */
2659 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2660
2661 /**
2662 * ib_query_ah - Queries the address vector associated with an address
2663 * handle.
2664 * @ah: The address handle to query.
2665 * @ah_attr: The address vector attributes associated with the address
2666 * handle.
2667 */
2668 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2669
2670 /**
2671 * ib_destroy_ah - Destroys an address handle.
2672 * @ah: The address handle to destroy.
2673 */
2674 int ib_destroy_ah(struct ib_ah *ah);
2675
2676 /**
2677 * ib_create_srq - Creates a SRQ associated with the specified protection
2678 * domain.
2679 * @pd: The protection domain associated with the SRQ.
2680 * @srq_init_attr: A list of initial attributes required to create the
2681 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2682 * the actual capabilities of the created SRQ.
2683 *
2684 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2685 * requested size of the SRQ, and set to the actual values allocated
2686 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2687 * will always be at least as large as the requested values.
2688 */
2689 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2690 struct ib_srq_init_attr *srq_init_attr);
2691
2692 /**
2693 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2694 * @srq: The SRQ to modify.
2695 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2696 * the current values of selected SRQ attributes are returned.
2697 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2698 * are being modified.
2699 *
2700 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2701 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2702 * the number of receives queued drops below the limit.
2703 */
2704 int ib_modify_srq(struct ib_srq *srq,
2705 struct ib_srq_attr *srq_attr,
2706 enum ib_srq_attr_mask srq_attr_mask);
2707
2708 /**
2709 * ib_query_srq - Returns the attribute list and current values for the
2710 * specified SRQ.
2711 * @srq: The SRQ to query.
2712 * @srq_attr: The attributes of the specified SRQ.
2713 */
2714 int ib_query_srq(struct ib_srq *srq,
2715 struct ib_srq_attr *srq_attr);
2716
2717 /**
2718 * ib_destroy_srq - Destroys the specified SRQ.
2719 * @srq: The SRQ to destroy.
2720 */
2721 int ib_destroy_srq(struct ib_srq *srq);
2722
2723 /**
2724 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2725 * @srq: The SRQ to post the work request on.
2726 * @recv_wr: A list of work requests to post on the receive queue.
2727 * @bad_recv_wr: On an immediate failure, this parameter will reference
2728 * the work request that failed to be posted on the QP.
2729 */
2730 static inline int ib_post_srq_recv(struct ib_srq *srq,
2731 struct ib_recv_wr *recv_wr,
2732 struct ib_recv_wr **bad_recv_wr)
2733 {
2734 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2735 }
2736
2737 /**
2738 * ib_create_qp - Creates a QP associated with the specified protection
2739 * domain.
2740 * @pd: The protection domain associated with the QP.
2741 * @qp_init_attr: A list of initial attributes required to create the
2742 * QP. If QP creation succeeds, then the attributes are updated to
2743 * the actual capabilities of the created QP.
2744 */
2745 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2746 struct ib_qp_init_attr *qp_init_attr);
2747
2748 /**
2749 * ib_modify_qp - Modifies the attributes for the specified QP and then
2750 * transitions the QP to the given state.
2751 * @qp: The QP to modify.
2752 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2753 * the current values of selected QP attributes are returned.
2754 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2755 * are being modified.
2756 */
2757 int ib_modify_qp(struct ib_qp *qp,
2758 struct ib_qp_attr *qp_attr,
2759 int qp_attr_mask);
2760
2761 /**
2762 * ib_query_qp - Returns the attribute list and current values for the
2763 * specified QP.
2764 * @qp: The QP to query.
2765 * @qp_attr: The attributes of the specified QP.
2766 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2767 * @qp_init_attr: Additional attributes of the selected QP.
2768 *
2769 * The qp_attr_mask may be used to limit the query to gathering only the
2770 * selected attributes.
2771 */
2772 int ib_query_qp(struct ib_qp *qp,
2773 struct ib_qp_attr *qp_attr,
2774 int qp_attr_mask,
2775 struct ib_qp_init_attr *qp_init_attr);
2776
2777 /**
2778 * ib_destroy_qp - Destroys the specified QP.
2779 * @qp: The QP to destroy.
2780 */
2781 int ib_destroy_qp(struct ib_qp *qp);
2782
2783 /**
2784 * ib_open_qp - Obtain a reference to an existing sharable QP.
2785 * @xrcd - XRC domain
2786 * @qp_open_attr: Attributes identifying the QP to open.
2787 *
2788 * Returns a reference to a sharable QP.
2789 */
2790 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2791 struct ib_qp_open_attr *qp_open_attr);
2792
2793 /**
2794 * ib_close_qp - Release an external reference to a QP.
2795 * @qp: The QP handle to release
2796 *
2797 * The opened QP handle is released by the caller. The underlying
2798 * shared QP is not destroyed until all internal references are released.
2799 */
2800 int ib_close_qp(struct ib_qp *qp);
2801
2802 /**
2803 * ib_post_send - Posts a list of work requests to the send queue of
2804 * the specified QP.
2805 * @qp: The QP to post the work request on.
2806 * @send_wr: A list of work requests to post on the send queue.
2807 * @bad_send_wr: On an immediate failure, this parameter will reference
2808 * the work request that failed to be posted on the QP.
2809 *
2810 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2811 * error is returned, the QP state shall not be affected,
2812 * ib_post_send() will return an immediate error after queueing any
2813 * earlier work requests in the list.
2814 */
2815 static inline int ib_post_send(struct ib_qp *qp,
2816 struct ib_send_wr *send_wr,
2817 struct ib_send_wr **bad_send_wr)
2818 {
2819 return qp->device->post_send(qp, send_wr, bad_send_wr);
2820 }
2821
2822 /**
2823 * ib_post_recv - Posts a list of work requests to the receive queue of
2824 * the specified QP.
2825 * @qp: The QP to post the work request on.
2826 * @recv_wr: A list of work requests to post on the receive queue.
2827 * @bad_recv_wr: On an immediate failure, this parameter will reference
2828 * the work request that failed to be posted on the QP.
2829 */
2830 static inline int ib_post_recv(struct ib_qp *qp,
2831 struct ib_recv_wr *recv_wr,
2832 struct ib_recv_wr **bad_recv_wr)
2833 {
2834 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2835 }
2836
2837 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2838 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2839 void ib_free_cq(struct ib_cq *cq);
2840 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2841
2842 /**
2843 * ib_create_cq - Creates a CQ on the specified device.
2844 * @device: The device on which to create the CQ.
2845 * @comp_handler: A user-specified callback that is invoked when a
2846 * completion event occurs on the CQ.
2847 * @event_handler: A user-specified callback that is invoked when an
2848 * asynchronous event not associated with a completion occurs on the CQ.
2849 * @cq_context: Context associated with the CQ returned to the user via
2850 * the associated completion and event handlers.
2851 * @cq_attr: The attributes the CQ should be created upon.
2852 *
2853 * Users can examine the cq structure to determine the actual CQ size.
2854 */
2855 struct ib_cq *ib_create_cq(struct ib_device *device,
2856 ib_comp_handler comp_handler,
2857 void (*event_handler)(struct ib_event *, void *),
2858 void *cq_context,
2859 const struct ib_cq_init_attr *cq_attr);
2860
2861 /**
2862 * ib_resize_cq - Modifies the capacity of the CQ.
2863 * @cq: The CQ to resize.
2864 * @cqe: The minimum size of the CQ.
2865 *
2866 * Users can examine the cq structure to determine the actual CQ size.
2867 */
2868 int ib_resize_cq(struct ib_cq *cq, int cqe);
2869
2870 /**
2871 * ib_modify_cq - Modifies moderation params of the CQ
2872 * @cq: The CQ to modify.
2873 * @cq_count: number of CQEs that will trigger an event
2874 * @cq_period: max period of time in usec before triggering an event
2875 *
2876 */
2877 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2878
2879 /**
2880 * ib_destroy_cq - Destroys the specified CQ.
2881 * @cq: The CQ to destroy.
2882 */
2883 int ib_destroy_cq(struct ib_cq *cq);
2884
2885 /**
2886 * ib_poll_cq - poll a CQ for completion(s)
2887 * @cq:the CQ being polled
2888 * @num_entries:maximum number of completions to return
2889 * @wc:array of at least @num_entries &struct ib_wc where completions
2890 * will be returned
2891 *
2892 * Poll a CQ for (possibly multiple) completions. If the return value
2893 * is < 0, an error occurred. If the return value is >= 0, it is the
2894 * number of completions returned. If the return value is
2895 * non-negative and < num_entries, then the CQ was emptied.
2896 */
2897 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2898 struct ib_wc *wc)
2899 {
2900 return cq->device->poll_cq(cq, num_entries, wc);
2901 }
2902
2903 /**
2904 * ib_peek_cq - Returns the number of unreaped completions currently
2905 * on the specified CQ.
2906 * @cq: The CQ to peek.
2907 * @wc_cnt: A minimum number of unreaped completions to check for.
2908 *
2909 * If the number of unreaped completions is greater than or equal to wc_cnt,
2910 * this function returns wc_cnt, otherwise, it returns the actual number of
2911 * unreaped completions.
2912 */
2913 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2914
2915 /**
2916 * ib_req_notify_cq - Request completion notification on a CQ.
2917 * @cq: The CQ to generate an event for.
2918 * @flags:
2919 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2920 * to request an event on the next solicited event or next work
2921 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2922 * may also be |ed in to request a hint about missed events, as
2923 * described below.
2924 *
2925 * Return Value:
2926 * < 0 means an error occurred while requesting notification
2927 * == 0 means notification was requested successfully, and if
2928 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2929 * were missed and it is safe to wait for another event. In
2930 * this case is it guaranteed that any work completions added
2931 * to the CQ since the last CQ poll will trigger a completion
2932 * notification event.
2933 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2934 * in. It means that the consumer must poll the CQ again to
2935 * make sure it is empty to avoid missing an event because of a
2936 * race between requesting notification and an entry being
2937 * added to the CQ. This return value means it is possible
2938 * (but not guaranteed) that a work completion has been added
2939 * to the CQ since the last poll without triggering a
2940 * completion notification event.
2941 */
2942 static inline int ib_req_notify_cq(struct ib_cq *cq,
2943 enum ib_cq_notify_flags flags)
2944 {
2945 return cq->device->req_notify_cq(cq, flags);
2946 }
2947
2948 /**
2949 * ib_req_ncomp_notif - Request completion notification when there are
2950 * at least the specified number of unreaped completions on the CQ.
2951 * @cq: The CQ to generate an event for.
2952 * @wc_cnt: The number of unreaped completions that should be on the
2953 * CQ before an event is generated.
2954 */
2955 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2956 {
2957 return cq->device->req_ncomp_notif ?
2958 cq->device->req_ncomp_notif(cq, wc_cnt) :
2959 -ENOSYS;
2960 }
2961
2962 /**
2963 * ib_dma_mapping_error - check a DMA addr for error
2964 * @dev: The device for which the dma_addr was created
2965 * @dma_addr: The DMA address to check
2966 */
2967 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2968 {
2969 if (dev->dma_ops)
2970 return dev->dma_ops->mapping_error(dev, dma_addr);
2971 return dma_mapping_error(dev->dma_device, dma_addr);
2972 }
2973
2974 /**
2975 * ib_dma_map_single - Map a kernel virtual address to DMA address
2976 * @dev: The device for which the dma_addr is to be created
2977 * @cpu_addr: The kernel virtual address
2978 * @size: The size of the region in bytes
2979 * @direction: The direction of the DMA
2980 */
2981 static inline u64 ib_dma_map_single(struct ib_device *dev,
2982 void *cpu_addr, size_t size,
2983 enum dma_data_direction direction)
2984 {
2985 if (dev->dma_ops)
2986 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2987 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2988 }
2989
2990 /**
2991 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2992 * @dev: The device for which the DMA address was created
2993 * @addr: The DMA address
2994 * @size: The size of the region in bytes
2995 * @direction: The direction of the DMA
2996 */
2997 static inline void ib_dma_unmap_single(struct ib_device *dev,
2998 u64 addr, size_t size,
2999 enum dma_data_direction direction)
3000 {
3001 if (dev->dma_ops)
3002 dev->dma_ops->unmap_single(dev, addr, size, direction);
3003 else
3004 dma_unmap_single(dev->dma_device, addr, size, direction);
3005 }
3006
3007 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3008 void *cpu_addr, size_t size,
3009 enum dma_data_direction direction,
3010 unsigned long dma_attrs)
3011 {
3012 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
3013 direction, dma_attrs);
3014 }
3015
3016 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3017 u64 addr, size_t size,
3018 enum dma_data_direction direction,
3019 unsigned long dma_attrs)
3020 {
3021 return dma_unmap_single_attrs(dev->dma_device, addr, size,
3022 direction, dma_attrs);
3023 }
3024
3025 /**
3026 * ib_dma_map_page - Map a physical page to DMA address
3027 * @dev: The device for which the dma_addr is to be created
3028 * @page: The page to be mapped
3029 * @offset: The offset within the page
3030 * @size: The size of the region in bytes
3031 * @direction: The direction of the DMA
3032 */
3033 static inline u64 ib_dma_map_page(struct ib_device *dev,
3034 struct page *page,
3035 unsigned long offset,
3036 size_t size,
3037 enum dma_data_direction direction)
3038 {
3039 if (dev->dma_ops)
3040 return dev->dma_ops->map_page(dev, page, offset, size, direction);
3041 return dma_map_page(dev->dma_device, page, offset, size, direction);
3042 }
3043
3044 /**
3045 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3046 * @dev: The device for which the DMA address was created
3047 * @addr: The DMA address
3048 * @size: The size of the region in bytes
3049 * @direction: The direction of the DMA
3050 */
3051 static inline void ib_dma_unmap_page(struct ib_device *dev,
3052 u64 addr, size_t size,
3053 enum dma_data_direction direction)
3054 {
3055 if (dev->dma_ops)
3056 dev->dma_ops->unmap_page(dev, addr, size, direction);
3057 else
3058 dma_unmap_page(dev->dma_device, addr, size, direction);
3059 }
3060
3061 /**
3062 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3063 * @dev: The device for which the DMA addresses are to be created
3064 * @sg: The array of scatter/gather entries
3065 * @nents: The number of scatter/gather entries
3066 * @direction: The direction of the DMA
3067 */
3068 static inline int ib_dma_map_sg(struct ib_device *dev,
3069 struct scatterlist *sg, int nents,
3070 enum dma_data_direction direction)
3071 {
3072 if (dev->dma_ops)
3073 return dev->dma_ops->map_sg(dev, sg, nents, direction);
3074 return dma_map_sg(dev->dma_device, sg, nents, direction);
3075 }
3076
3077 /**
3078 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3079 * @dev: The device for which the DMA addresses were created
3080 * @sg: The array of scatter/gather entries
3081 * @nents: The number of scatter/gather entries
3082 * @direction: The direction of the DMA
3083 */
3084 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3085 struct scatterlist *sg, int nents,
3086 enum dma_data_direction direction)
3087 {
3088 if (dev->dma_ops)
3089 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3090 else
3091 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3092 }
3093
3094 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3095 struct scatterlist *sg, int nents,
3096 enum dma_data_direction direction,
3097 unsigned long dma_attrs)
3098 {
3099 if (dev->dma_ops)
3100 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3101 dma_attrs);
3102 else
3103 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3104 dma_attrs);
3105 }
3106
3107 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3108 struct scatterlist *sg, int nents,
3109 enum dma_data_direction direction,
3110 unsigned long dma_attrs)
3111 {
3112 if (dev->dma_ops)
3113 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3114 dma_attrs);
3115 else
3116 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3117 dma_attrs);
3118 }
3119 /**
3120 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3121 * @dev: The device for which the DMA addresses were created
3122 * @sg: The scatter/gather entry
3123 *
3124 * Note: this function is obsolete. To do: change all occurrences of
3125 * ib_sg_dma_address() into sg_dma_address().
3126 */
3127 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3128 struct scatterlist *sg)
3129 {
3130 return sg_dma_address(sg);
3131 }
3132
3133 /**
3134 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3135 * @dev: The device for which the DMA addresses were created
3136 * @sg: The scatter/gather entry
3137 *
3138 * Note: this function is obsolete. To do: change all occurrences of
3139 * ib_sg_dma_len() into sg_dma_len().
3140 */
3141 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3142 struct scatterlist *sg)
3143 {
3144 return sg_dma_len(sg);
3145 }
3146
3147 /**
3148 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3149 * @dev: The device for which the DMA address was created
3150 * @addr: The DMA address
3151 * @size: The size of the region in bytes
3152 * @dir: The direction of the DMA
3153 */
3154 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3155 u64 addr,
3156 size_t size,
3157 enum dma_data_direction dir)
3158 {
3159 if (dev->dma_ops)
3160 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3161 else
3162 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3163 }
3164
3165 /**
3166 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3167 * @dev: The device for which the DMA address was created
3168 * @addr: The DMA address
3169 * @size: The size of the region in bytes
3170 * @dir: The direction of the DMA
3171 */
3172 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3173 u64 addr,
3174 size_t size,
3175 enum dma_data_direction dir)
3176 {
3177 if (dev->dma_ops)
3178 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3179 else
3180 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3181 }
3182
3183 /**
3184 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3185 * @dev: The device for which the DMA address is requested
3186 * @size: The size of the region to allocate in bytes
3187 * @dma_handle: A pointer for returning the DMA address of the region
3188 * @flag: memory allocator flags
3189 */
3190 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3191 size_t size,
3192 u64 *dma_handle,
3193 gfp_t flag)
3194 {
3195 if (dev->dma_ops)
3196 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3197 else {
3198 dma_addr_t handle;
3199 void *ret;
3200
3201 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3202 *dma_handle = handle;
3203 return ret;
3204 }
3205 }
3206
3207 /**
3208 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3209 * @dev: The device for which the DMA addresses were allocated
3210 * @size: The size of the region
3211 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3212 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3213 */
3214 static inline void ib_dma_free_coherent(struct ib_device *dev,
3215 size_t size, void *cpu_addr,
3216 u64 dma_handle)
3217 {
3218 if (dev->dma_ops)
3219 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3220 else
3221 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3222 }
3223
3224 /**
3225 * ib_dereg_mr - Deregisters a memory region and removes it from the
3226 * HCA translation table.
3227 * @mr: The memory region to deregister.
3228 *
3229 * This function can fail, if the memory region has memory windows bound to it.
3230 */
3231 int ib_dereg_mr(struct ib_mr *mr);
3232
3233 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3234 enum ib_mr_type mr_type,
3235 u32 max_num_sg);
3236
3237 /**
3238 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3239 * R_Key and L_Key.
3240 * @mr - struct ib_mr pointer to be updated.
3241 * @newkey - new key to be used.
3242 */
3243 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3244 {
3245 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3246 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3247 }
3248
3249 /**
3250 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3251 * for calculating a new rkey for type 2 memory windows.
3252 * @rkey - the rkey to increment.
3253 */
3254 static inline u32 ib_inc_rkey(u32 rkey)
3255 {
3256 const u32 mask = 0x000000ff;
3257 return ((rkey + 1) & mask) | (rkey & ~mask);
3258 }
3259
3260 /**
3261 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3262 * @pd: The protection domain associated with the unmapped region.
3263 * @mr_access_flags: Specifies the memory access rights.
3264 * @fmr_attr: Attributes of the unmapped region.
3265 *
3266 * A fast memory region must be mapped before it can be used as part of
3267 * a work request.
3268 */
3269 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3270 int mr_access_flags,
3271 struct ib_fmr_attr *fmr_attr);
3272
3273 /**
3274 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3275 * @fmr: The fast memory region to associate with the pages.
3276 * @page_list: An array of physical pages to map to the fast memory region.
3277 * @list_len: The number of pages in page_list.
3278 * @iova: The I/O virtual address to use with the mapped region.
3279 */
3280 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3281 u64 *page_list, int list_len,
3282 u64 iova)
3283 {
3284 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3285 }
3286
3287 /**
3288 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3289 * @fmr_list: A linked list of fast memory regions to unmap.
3290 */
3291 int ib_unmap_fmr(struct list_head *fmr_list);
3292
3293 /**
3294 * ib_dealloc_fmr - Deallocates a fast memory region.
3295 * @fmr: The fast memory region to deallocate.
3296 */
3297 int ib_dealloc_fmr(struct ib_fmr *fmr);
3298
3299 /**
3300 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3301 * @qp: QP to attach to the multicast group. The QP must be type
3302 * IB_QPT_UD.
3303 * @gid: Multicast group GID.
3304 * @lid: Multicast group LID in host byte order.
3305 *
3306 * In order to send and receive multicast packets, subnet
3307 * administration must have created the multicast group and configured
3308 * the fabric appropriately. The port associated with the specified
3309 * QP must also be a member of the multicast group.
3310 */
3311 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3312
3313 /**
3314 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3315 * @qp: QP to detach from the multicast group.
3316 * @gid: Multicast group GID.
3317 * @lid: Multicast group LID in host byte order.
3318 */
3319 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3320
3321 /**
3322 * ib_alloc_xrcd - Allocates an XRC domain.
3323 * @device: The device on which to allocate the XRC domain.
3324 */
3325 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3326
3327 /**
3328 * ib_dealloc_xrcd - Deallocates an XRC domain.
3329 * @xrcd: The XRC domain to deallocate.
3330 */
3331 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3332
3333 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3334 struct ib_flow_attr *flow_attr, int domain);
3335 int ib_destroy_flow(struct ib_flow *flow_id);
3336
3337 static inline int ib_check_mr_access(int flags)
3338 {
3339 /*
3340 * Local write permission is required if remote write or
3341 * remote atomic permission is also requested.
3342 */
3343 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3344 !(flags & IB_ACCESS_LOCAL_WRITE))
3345 return -EINVAL;
3346
3347 return 0;
3348 }
3349
3350 /**
3351 * ib_check_mr_status: lightweight check of MR status.
3352 * This routine may provide status checks on a selected
3353 * ib_mr. first use is for signature status check.
3354 *
3355 * @mr: A memory region.
3356 * @check_mask: Bitmask of which checks to perform from
3357 * ib_mr_status_check enumeration.
3358 * @mr_status: The container of relevant status checks.
3359 * failed checks will be indicated in the status bitmask
3360 * and the relevant info shall be in the error item.
3361 */
3362 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3363 struct ib_mr_status *mr_status);
3364
3365 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3366 u16 pkey, const union ib_gid *gid,
3367 const struct sockaddr *addr);
3368 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3369 struct ib_wq_init_attr *init_attr);
3370 int ib_destroy_wq(struct ib_wq *wq);
3371 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3372 u32 wq_attr_mask);
3373 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3374 struct ib_rwq_ind_table_init_attr*
3375 wq_ind_table_init_attr);
3376 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3377
3378 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3379 unsigned int *sg_offset, unsigned int page_size);
3380
3381 static inline int
3382 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3383 unsigned int *sg_offset, unsigned int page_size)
3384 {
3385 int n;
3386
3387 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3388 mr->iova = 0;
3389
3390 return n;
3391 }
3392
3393 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3394 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3395
3396 void ib_drain_rq(struct ib_qp *qp);
3397 void ib_drain_sq(struct ib_qp *qp);
3398 void ib_drain_qp(struct ib_qp *qp);
3399
3400 int ib_resolve_eth_dmac(struct ib_device *device,
3401 struct ib_ah_attr *ah_attr);
3402 #endif /* IB_VERBS_H */