]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/rdma/ib_verbs.h
IB/core: Rename ib_modify_ah to rdma_modify_ah
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65
66 extern struct workqueue_struct *ib_wq;
67 extern struct workqueue_struct *ib_comp_wq;
68
69 union ib_gid {
70 u8 raw[16];
71 struct {
72 __be64 subnet_prefix;
73 __be64 interface_id;
74 } global;
75 };
76
77 extern union ib_gid zgid;
78
79 enum ib_gid_type {
80 /* If link layer is Ethernet, this is RoCE V1 */
81 IB_GID_TYPE_IB = 0,
82 IB_GID_TYPE_ROCE = 0,
83 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
84 IB_GID_TYPE_SIZE
85 };
86
87 #define ROCE_V2_UDP_DPORT 4791
88 struct ib_gid_attr {
89 enum ib_gid_type gid_type;
90 struct net_device *ndev;
91 };
92
93 enum rdma_node_type {
94 /* IB values map to NodeInfo:NodeType. */
95 RDMA_NODE_IB_CA = 1,
96 RDMA_NODE_IB_SWITCH,
97 RDMA_NODE_IB_ROUTER,
98 RDMA_NODE_RNIC,
99 RDMA_NODE_USNIC,
100 RDMA_NODE_USNIC_UDP,
101 };
102
103 enum {
104 /* set the local administered indication */
105 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
106 };
107
108 enum rdma_transport_type {
109 RDMA_TRANSPORT_IB,
110 RDMA_TRANSPORT_IWARP,
111 RDMA_TRANSPORT_USNIC,
112 RDMA_TRANSPORT_USNIC_UDP
113 };
114
115 enum rdma_protocol_type {
116 RDMA_PROTOCOL_IB,
117 RDMA_PROTOCOL_IBOE,
118 RDMA_PROTOCOL_IWARP,
119 RDMA_PROTOCOL_USNIC_UDP
120 };
121
122 __attribute_const__ enum rdma_transport_type
123 rdma_node_get_transport(enum rdma_node_type node_type);
124
125 enum rdma_network_type {
126 RDMA_NETWORK_IB,
127 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
128 RDMA_NETWORK_IPV4,
129 RDMA_NETWORK_IPV6
130 };
131
132 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
133 {
134 if (network_type == RDMA_NETWORK_IPV4 ||
135 network_type == RDMA_NETWORK_IPV6)
136 return IB_GID_TYPE_ROCE_UDP_ENCAP;
137
138 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
139 return IB_GID_TYPE_IB;
140 }
141
142 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
143 union ib_gid *gid)
144 {
145 if (gid_type == IB_GID_TYPE_IB)
146 return RDMA_NETWORK_IB;
147
148 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
149 return RDMA_NETWORK_IPV4;
150 else
151 return RDMA_NETWORK_IPV6;
152 }
153
154 enum rdma_link_layer {
155 IB_LINK_LAYER_UNSPECIFIED,
156 IB_LINK_LAYER_INFINIBAND,
157 IB_LINK_LAYER_ETHERNET,
158 };
159
160 enum ib_device_cap_flags {
161 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
162 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
163 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
164 IB_DEVICE_RAW_MULTI = (1 << 3),
165 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
166 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
167 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
168 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
169 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
170 IB_DEVICE_INIT_TYPE = (1 << 9),
171 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
172 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
173 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
174 IB_DEVICE_SRQ_RESIZE = (1 << 13),
175 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
176
177 /*
178 * This device supports a per-device lkey or stag that can be
179 * used without performing a memory registration for the local
180 * memory. Note that ULPs should never check this flag, but
181 * instead of use the local_dma_lkey flag in the ib_pd structure,
182 * which will always contain a usable lkey.
183 */
184 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
185 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
186 IB_DEVICE_MEM_WINDOW = (1 << 17),
187 /*
188 * Devices should set IB_DEVICE_UD_IP_SUM if they support
189 * insertion of UDP and TCP checksum on outgoing UD IPoIB
190 * messages and can verify the validity of checksum for
191 * incoming messages. Setting this flag implies that the
192 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
193 */
194 IB_DEVICE_UD_IP_CSUM = (1 << 18),
195 IB_DEVICE_UD_TSO = (1 << 19),
196 IB_DEVICE_XRC = (1 << 20),
197
198 /*
199 * This device supports the IB "base memory management extension",
200 * which includes support for fast registrations (IB_WR_REG_MR,
201 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
202 * also be set by any iWarp device which must support FRs to comply
203 * to the iWarp verbs spec. iWarp devices also support the
204 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
205 * stag.
206 */
207 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
208 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
209 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
210 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
211 IB_DEVICE_RC_IP_CSUM = (1 << 25),
212 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
213 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
214 /*
215 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
216 * support execution of WQEs that involve synchronization
217 * of I/O operations with single completion queue managed
218 * by hardware.
219 */
220 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
221 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
222 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
223 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
224 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
225 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
226 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
227 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
228 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
229 };
230
231 enum ib_signature_prot_cap {
232 IB_PROT_T10DIF_TYPE_1 = 1,
233 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
234 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
235 };
236
237 enum ib_signature_guard_cap {
238 IB_GUARD_T10DIF_CRC = 1,
239 IB_GUARD_T10DIF_CSUM = 1 << 1,
240 };
241
242 enum ib_atomic_cap {
243 IB_ATOMIC_NONE,
244 IB_ATOMIC_HCA,
245 IB_ATOMIC_GLOB
246 };
247
248 enum ib_odp_general_cap_bits {
249 IB_ODP_SUPPORT = 1 << 0,
250 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
251 };
252
253 enum ib_odp_transport_cap_bits {
254 IB_ODP_SUPPORT_SEND = 1 << 0,
255 IB_ODP_SUPPORT_RECV = 1 << 1,
256 IB_ODP_SUPPORT_WRITE = 1 << 2,
257 IB_ODP_SUPPORT_READ = 1 << 3,
258 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
259 };
260
261 struct ib_odp_caps {
262 uint64_t general_caps;
263 struct {
264 uint32_t rc_odp_caps;
265 uint32_t uc_odp_caps;
266 uint32_t ud_odp_caps;
267 } per_transport_caps;
268 };
269
270 struct ib_rss_caps {
271 /* Corresponding bit will be set if qp type from
272 * 'enum ib_qp_type' is supported, e.g.
273 * supported_qpts |= 1 << IB_QPT_UD
274 */
275 u32 supported_qpts;
276 u32 max_rwq_indirection_tables;
277 u32 max_rwq_indirection_table_size;
278 };
279
280 enum ib_cq_creation_flags {
281 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
282 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
283 };
284
285 struct ib_cq_init_attr {
286 unsigned int cqe;
287 int comp_vector;
288 u32 flags;
289 };
290
291 struct ib_device_attr {
292 u64 fw_ver;
293 __be64 sys_image_guid;
294 u64 max_mr_size;
295 u64 page_size_cap;
296 u32 vendor_id;
297 u32 vendor_part_id;
298 u32 hw_ver;
299 int max_qp;
300 int max_qp_wr;
301 u64 device_cap_flags;
302 int max_sge;
303 int max_sge_rd;
304 int max_cq;
305 int max_cqe;
306 int max_mr;
307 int max_pd;
308 int max_qp_rd_atom;
309 int max_ee_rd_atom;
310 int max_res_rd_atom;
311 int max_qp_init_rd_atom;
312 int max_ee_init_rd_atom;
313 enum ib_atomic_cap atomic_cap;
314 enum ib_atomic_cap masked_atomic_cap;
315 int max_ee;
316 int max_rdd;
317 int max_mw;
318 int max_raw_ipv6_qp;
319 int max_raw_ethy_qp;
320 int max_mcast_grp;
321 int max_mcast_qp_attach;
322 int max_total_mcast_qp_attach;
323 int max_ah;
324 int max_fmr;
325 int max_map_per_fmr;
326 int max_srq;
327 int max_srq_wr;
328 int max_srq_sge;
329 unsigned int max_fast_reg_page_list_len;
330 u16 max_pkeys;
331 u8 local_ca_ack_delay;
332 int sig_prot_cap;
333 int sig_guard_cap;
334 struct ib_odp_caps odp_caps;
335 uint64_t timestamp_mask;
336 uint64_t hca_core_clock; /* in KHZ */
337 struct ib_rss_caps rss_caps;
338 u32 max_wq_type_rq;
339 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
340 };
341
342 enum ib_mtu {
343 IB_MTU_256 = 1,
344 IB_MTU_512 = 2,
345 IB_MTU_1024 = 3,
346 IB_MTU_2048 = 4,
347 IB_MTU_4096 = 5
348 };
349
350 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
351 {
352 switch (mtu) {
353 case IB_MTU_256: return 256;
354 case IB_MTU_512: return 512;
355 case IB_MTU_1024: return 1024;
356 case IB_MTU_2048: return 2048;
357 case IB_MTU_4096: return 4096;
358 default: return -1;
359 }
360 }
361
362 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
363 {
364 if (mtu >= 4096)
365 return IB_MTU_4096;
366 else if (mtu >= 2048)
367 return IB_MTU_2048;
368 else if (mtu >= 1024)
369 return IB_MTU_1024;
370 else if (mtu >= 512)
371 return IB_MTU_512;
372 else
373 return IB_MTU_256;
374 }
375
376 enum ib_port_state {
377 IB_PORT_NOP = 0,
378 IB_PORT_DOWN = 1,
379 IB_PORT_INIT = 2,
380 IB_PORT_ARMED = 3,
381 IB_PORT_ACTIVE = 4,
382 IB_PORT_ACTIVE_DEFER = 5
383 };
384
385 enum ib_port_cap_flags {
386 IB_PORT_SM = 1 << 1,
387 IB_PORT_NOTICE_SUP = 1 << 2,
388 IB_PORT_TRAP_SUP = 1 << 3,
389 IB_PORT_OPT_IPD_SUP = 1 << 4,
390 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
391 IB_PORT_SL_MAP_SUP = 1 << 6,
392 IB_PORT_MKEY_NVRAM = 1 << 7,
393 IB_PORT_PKEY_NVRAM = 1 << 8,
394 IB_PORT_LED_INFO_SUP = 1 << 9,
395 IB_PORT_SM_DISABLED = 1 << 10,
396 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
397 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
398 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
399 IB_PORT_CM_SUP = 1 << 16,
400 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
401 IB_PORT_REINIT_SUP = 1 << 18,
402 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
403 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
404 IB_PORT_DR_NOTICE_SUP = 1 << 21,
405 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
406 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
407 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
408 IB_PORT_CLIENT_REG_SUP = 1 << 25,
409 IB_PORT_IP_BASED_GIDS = 1 << 26,
410 };
411
412 enum ib_port_width {
413 IB_WIDTH_1X = 1,
414 IB_WIDTH_4X = 2,
415 IB_WIDTH_8X = 4,
416 IB_WIDTH_12X = 8
417 };
418
419 static inline int ib_width_enum_to_int(enum ib_port_width width)
420 {
421 switch (width) {
422 case IB_WIDTH_1X: return 1;
423 case IB_WIDTH_4X: return 4;
424 case IB_WIDTH_8X: return 8;
425 case IB_WIDTH_12X: return 12;
426 default: return -1;
427 }
428 }
429
430 enum ib_port_speed {
431 IB_SPEED_SDR = 1,
432 IB_SPEED_DDR = 2,
433 IB_SPEED_QDR = 4,
434 IB_SPEED_FDR10 = 8,
435 IB_SPEED_FDR = 16,
436 IB_SPEED_EDR = 32,
437 IB_SPEED_HDR = 64
438 };
439
440 /**
441 * struct rdma_hw_stats
442 * @timestamp - Used by the core code to track when the last update was
443 * @lifespan - Used by the core code to determine how old the counters
444 * should be before being updated again. Stored in jiffies, defaults
445 * to 10 milliseconds, drivers can override the default be specifying
446 * their own value during their allocation routine.
447 * @name - Array of pointers to static names used for the counters in
448 * directory.
449 * @num_counters - How many hardware counters there are. If name is
450 * shorter than this number, a kernel oops will result. Driver authors
451 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
452 * in their code to prevent this.
453 * @value - Array of u64 counters that are accessed by the sysfs code and
454 * filled in by the drivers get_stats routine
455 */
456 struct rdma_hw_stats {
457 unsigned long timestamp;
458 unsigned long lifespan;
459 const char * const *names;
460 int num_counters;
461 u64 value[];
462 };
463
464 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
465 /**
466 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
467 * for drivers.
468 * @names - Array of static const char *
469 * @num_counters - How many elements in array
470 * @lifespan - How many milliseconds between updates
471 */
472 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
473 const char * const *names, int num_counters,
474 unsigned long lifespan)
475 {
476 struct rdma_hw_stats *stats;
477
478 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
479 GFP_KERNEL);
480 if (!stats)
481 return NULL;
482 stats->names = names;
483 stats->num_counters = num_counters;
484 stats->lifespan = msecs_to_jiffies(lifespan);
485
486 return stats;
487 }
488
489
490 /* Define bits for the various functionality this port needs to be supported by
491 * the core.
492 */
493 /* Management 0x00000FFF */
494 #define RDMA_CORE_CAP_IB_MAD 0x00000001
495 #define RDMA_CORE_CAP_IB_SMI 0x00000002
496 #define RDMA_CORE_CAP_IB_CM 0x00000004
497 #define RDMA_CORE_CAP_IW_CM 0x00000008
498 #define RDMA_CORE_CAP_IB_SA 0x00000010
499 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
500
501 /* Address format 0x000FF000 */
502 #define RDMA_CORE_CAP_AF_IB 0x00001000
503 #define RDMA_CORE_CAP_ETH_AH 0x00002000
504 #define RDMA_CORE_CAP_OPA_AH 0x00004000
505
506 /* Protocol 0xFFF00000 */
507 #define RDMA_CORE_CAP_PROT_IB 0x00100000
508 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
509 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
510 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
511 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
512 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
513
514 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
515 | RDMA_CORE_CAP_IB_MAD \
516 | RDMA_CORE_CAP_IB_SMI \
517 | RDMA_CORE_CAP_IB_CM \
518 | RDMA_CORE_CAP_IB_SA \
519 | RDMA_CORE_CAP_AF_IB)
520 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
521 | RDMA_CORE_CAP_IB_MAD \
522 | RDMA_CORE_CAP_IB_CM \
523 | RDMA_CORE_CAP_AF_IB \
524 | RDMA_CORE_CAP_ETH_AH)
525 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
526 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
527 | RDMA_CORE_CAP_IB_MAD \
528 | RDMA_CORE_CAP_IB_CM \
529 | RDMA_CORE_CAP_AF_IB \
530 | RDMA_CORE_CAP_ETH_AH)
531 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
532 | RDMA_CORE_CAP_IW_CM)
533 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
534 | RDMA_CORE_CAP_OPA_MAD)
535
536 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
537
538 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
539
540 struct ib_port_attr {
541 u64 subnet_prefix;
542 enum ib_port_state state;
543 enum ib_mtu max_mtu;
544 enum ib_mtu active_mtu;
545 int gid_tbl_len;
546 u32 port_cap_flags;
547 u32 max_msg_sz;
548 u32 bad_pkey_cntr;
549 u32 qkey_viol_cntr;
550 u16 pkey_tbl_len;
551 u16 lid;
552 u16 sm_lid;
553 u8 lmc;
554 u8 max_vl_num;
555 u8 sm_sl;
556 u8 subnet_timeout;
557 u8 init_type_reply;
558 u8 active_width;
559 u8 active_speed;
560 u8 phys_state;
561 bool grh_required;
562 };
563
564 enum ib_device_modify_flags {
565 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
566 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
567 };
568
569 #define IB_DEVICE_NODE_DESC_MAX 64
570
571 struct ib_device_modify {
572 u64 sys_image_guid;
573 char node_desc[IB_DEVICE_NODE_DESC_MAX];
574 };
575
576 enum ib_port_modify_flags {
577 IB_PORT_SHUTDOWN = 1,
578 IB_PORT_INIT_TYPE = (1<<2),
579 IB_PORT_RESET_QKEY_CNTR = (1<<3)
580 };
581
582 struct ib_port_modify {
583 u32 set_port_cap_mask;
584 u32 clr_port_cap_mask;
585 u8 init_type;
586 };
587
588 enum ib_event_type {
589 IB_EVENT_CQ_ERR,
590 IB_EVENT_QP_FATAL,
591 IB_EVENT_QP_REQ_ERR,
592 IB_EVENT_QP_ACCESS_ERR,
593 IB_EVENT_COMM_EST,
594 IB_EVENT_SQ_DRAINED,
595 IB_EVENT_PATH_MIG,
596 IB_EVENT_PATH_MIG_ERR,
597 IB_EVENT_DEVICE_FATAL,
598 IB_EVENT_PORT_ACTIVE,
599 IB_EVENT_PORT_ERR,
600 IB_EVENT_LID_CHANGE,
601 IB_EVENT_PKEY_CHANGE,
602 IB_EVENT_SM_CHANGE,
603 IB_EVENT_SRQ_ERR,
604 IB_EVENT_SRQ_LIMIT_REACHED,
605 IB_EVENT_QP_LAST_WQE_REACHED,
606 IB_EVENT_CLIENT_REREGISTER,
607 IB_EVENT_GID_CHANGE,
608 IB_EVENT_WQ_FATAL,
609 };
610
611 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
612
613 struct ib_event {
614 struct ib_device *device;
615 union {
616 struct ib_cq *cq;
617 struct ib_qp *qp;
618 struct ib_srq *srq;
619 struct ib_wq *wq;
620 u8 port_num;
621 } element;
622 enum ib_event_type event;
623 };
624
625 struct ib_event_handler {
626 struct ib_device *device;
627 void (*handler)(struct ib_event_handler *, struct ib_event *);
628 struct list_head list;
629 };
630
631 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
632 do { \
633 (_ptr)->device = _device; \
634 (_ptr)->handler = _handler; \
635 INIT_LIST_HEAD(&(_ptr)->list); \
636 } while (0)
637
638 struct ib_global_route {
639 union ib_gid dgid;
640 u32 flow_label;
641 u8 sgid_index;
642 u8 hop_limit;
643 u8 traffic_class;
644 };
645
646 struct ib_grh {
647 __be32 version_tclass_flow;
648 __be16 paylen;
649 u8 next_hdr;
650 u8 hop_limit;
651 union ib_gid sgid;
652 union ib_gid dgid;
653 };
654
655 union rdma_network_hdr {
656 struct ib_grh ibgrh;
657 struct {
658 /* The IB spec states that if it's IPv4, the header
659 * is located in the last 20 bytes of the header.
660 */
661 u8 reserved[20];
662 struct iphdr roce4grh;
663 };
664 };
665
666 enum {
667 IB_MULTICAST_QPN = 0xffffff
668 };
669
670 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
671 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
672
673 enum ib_ah_flags {
674 IB_AH_GRH = 1
675 };
676
677 enum ib_rate {
678 IB_RATE_PORT_CURRENT = 0,
679 IB_RATE_2_5_GBPS = 2,
680 IB_RATE_5_GBPS = 5,
681 IB_RATE_10_GBPS = 3,
682 IB_RATE_20_GBPS = 6,
683 IB_RATE_30_GBPS = 4,
684 IB_RATE_40_GBPS = 7,
685 IB_RATE_60_GBPS = 8,
686 IB_RATE_80_GBPS = 9,
687 IB_RATE_120_GBPS = 10,
688 IB_RATE_14_GBPS = 11,
689 IB_RATE_56_GBPS = 12,
690 IB_RATE_112_GBPS = 13,
691 IB_RATE_168_GBPS = 14,
692 IB_RATE_25_GBPS = 15,
693 IB_RATE_100_GBPS = 16,
694 IB_RATE_200_GBPS = 17,
695 IB_RATE_300_GBPS = 18
696 };
697
698 /**
699 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
700 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
701 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
702 * @rate: rate to convert.
703 */
704 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
705
706 /**
707 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
708 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
709 * @rate: rate to convert.
710 */
711 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
712
713
714 /**
715 * enum ib_mr_type - memory region type
716 * @IB_MR_TYPE_MEM_REG: memory region that is used for
717 * normal registration
718 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
719 * signature operations (data-integrity
720 * capable regions)
721 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
722 * register any arbitrary sg lists (without
723 * the normal mr constraints - see
724 * ib_map_mr_sg)
725 */
726 enum ib_mr_type {
727 IB_MR_TYPE_MEM_REG,
728 IB_MR_TYPE_SIGNATURE,
729 IB_MR_TYPE_SG_GAPS,
730 };
731
732 /**
733 * Signature types
734 * IB_SIG_TYPE_NONE: Unprotected.
735 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
736 */
737 enum ib_signature_type {
738 IB_SIG_TYPE_NONE,
739 IB_SIG_TYPE_T10_DIF,
740 };
741
742 /**
743 * Signature T10-DIF block-guard types
744 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
745 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
746 */
747 enum ib_t10_dif_bg_type {
748 IB_T10DIF_CRC,
749 IB_T10DIF_CSUM
750 };
751
752 /**
753 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
754 * domain.
755 * @bg_type: T10-DIF block guard type (CRC|CSUM)
756 * @pi_interval: protection information interval.
757 * @bg: seed of guard computation.
758 * @app_tag: application tag of guard block
759 * @ref_tag: initial guard block reference tag.
760 * @ref_remap: Indicate wethear the reftag increments each block
761 * @app_escape: Indicate to skip block check if apptag=0xffff
762 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
763 * @apptag_check_mask: check bitmask of application tag.
764 */
765 struct ib_t10_dif_domain {
766 enum ib_t10_dif_bg_type bg_type;
767 u16 pi_interval;
768 u16 bg;
769 u16 app_tag;
770 u32 ref_tag;
771 bool ref_remap;
772 bool app_escape;
773 bool ref_escape;
774 u16 apptag_check_mask;
775 };
776
777 /**
778 * struct ib_sig_domain - Parameters for signature domain
779 * @sig_type: specific signauture type
780 * @sig: union of all signature domain attributes that may
781 * be used to set domain layout.
782 */
783 struct ib_sig_domain {
784 enum ib_signature_type sig_type;
785 union {
786 struct ib_t10_dif_domain dif;
787 } sig;
788 };
789
790 /**
791 * struct ib_sig_attrs - Parameters for signature handover operation
792 * @check_mask: bitmask for signature byte check (8 bytes)
793 * @mem: memory domain layout desciptor.
794 * @wire: wire domain layout desciptor.
795 */
796 struct ib_sig_attrs {
797 u8 check_mask;
798 struct ib_sig_domain mem;
799 struct ib_sig_domain wire;
800 };
801
802 enum ib_sig_err_type {
803 IB_SIG_BAD_GUARD,
804 IB_SIG_BAD_REFTAG,
805 IB_SIG_BAD_APPTAG,
806 };
807
808 /**
809 * struct ib_sig_err - signature error descriptor
810 */
811 struct ib_sig_err {
812 enum ib_sig_err_type err_type;
813 u32 expected;
814 u32 actual;
815 u64 sig_err_offset;
816 u32 key;
817 };
818
819 enum ib_mr_status_check {
820 IB_MR_CHECK_SIG_STATUS = 1,
821 };
822
823 /**
824 * struct ib_mr_status - Memory region status container
825 *
826 * @fail_status: Bitmask of MR checks status. For each
827 * failed check a corresponding status bit is set.
828 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
829 * failure.
830 */
831 struct ib_mr_status {
832 u32 fail_status;
833 struct ib_sig_err sig_err;
834 };
835
836 /**
837 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
838 * enum.
839 * @mult: multiple to convert.
840 */
841 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
842
843 struct rdma_ah_attr {
844 struct ib_global_route grh;
845 u16 dlid;
846 u8 sl;
847 u8 src_path_bits;
848 u8 static_rate;
849 u8 ah_flags;
850 u8 port_num;
851 u8 dmac[ETH_ALEN];
852 };
853
854 enum ib_wc_status {
855 IB_WC_SUCCESS,
856 IB_WC_LOC_LEN_ERR,
857 IB_WC_LOC_QP_OP_ERR,
858 IB_WC_LOC_EEC_OP_ERR,
859 IB_WC_LOC_PROT_ERR,
860 IB_WC_WR_FLUSH_ERR,
861 IB_WC_MW_BIND_ERR,
862 IB_WC_BAD_RESP_ERR,
863 IB_WC_LOC_ACCESS_ERR,
864 IB_WC_REM_INV_REQ_ERR,
865 IB_WC_REM_ACCESS_ERR,
866 IB_WC_REM_OP_ERR,
867 IB_WC_RETRY_EXC_ERR,
868 IB_WC_RNR_RETRY_EXC_ERR,
869 IB_WC_LOC_RDD_VIOL_ERR,
870 IB_WC_REM_INV_RD_REQ_ERR,
871 IB_WC_REM_ABORT_ERR,
872 IB_WC_INV_EECN_ERR,
873 IB_WC_INV_EEC_STATE_ERR,
874 IB_WC_FATAL_ERR,
875 IB_WC_RESP_TIMEOUT_ERR,
876 IB_WC_GENERAL_ERR
877 };
878
879 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
880
881 enum ib_wc_opcode {
882 IB_WC_SEND,
883 IB_WC_RDMA_WRITE,
884 IB_WC_RDMA_READ,
885 IB_WC_COMP_SWAP,
886 IB_WC_FETCH_ADD,
887 IB_WC_LSO,
888 IB_WC_LOCAL_INV,
889 IB_WC_REG_MR,
890 IB_WC_MASKED_COMP_SWAP,
891 IB_WC_MASKED_FETCH_ADD,
892 /*
893 * Set value of IB_WC_RECV so consumers can test if a completion is a
894 * receive by testing (opcode & IB_WC_RECV).
895 */
896 IB_WC_RECV = 1 << 7,
897 IB_WC_RECV_RDMA_WITH_IMM
898 };
899
900 enum ib_wc_flags {
901 IB_WC_GRH = 1,
902 IB_WC_WITH_IMM = (1<<1),
903 IB_WC_WITH_INVALIDATE = (1<<2),
904 IB_WC_IP_CSUM_OK = (1<<3),
905 IB_WC_WITH_SMAC = (1<<4),
906 IB_WC_WITH_VLAN = (1<<5),
907 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
908 };
909
910 struct ib_wc {
911 union {
912 u64 wr_id;
913 struct ib_cqe *wr_cqe;
914 };
915 enum ib_wc_status status;
916 enum ib_wc_opcode opcode;
917 u32 vendor_err;
918 u32 byte_len;
919 struct ib_qp *qp;
920 union {
921 __be32 imm_data;
922 u32 invalidate_rkey;
923 } ex;
924 u32 src_qp;
925 int wc_flags;
926 u16 pkey_index;
927 u16 slid;
928 u8 sl;
929 u8 dlid_path_bits;
930 u8 port_num; /* valid only for DR SMPs on switches */
931 u8 smac[ETH_ALEN];
932 u16 vlan_id;
933 u8 network_hdr_type;
934 };
935
936 enum ib_cq_notify_flags {
937 IB_CQ_SOLICITED = 1 << 0,
938 IB_CQ_NEXT_COMP = 1 << 1,
939 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
940 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
941 };
942
943 enum ib_srq_type {
944 IB_SRQT_BASIC,
945 IB_SRQT_XRC
946 };
947
948 enum ib_srq_attr_mask {
949 IB_SRQ_MAX_WR = 1 << 0,
950 IB_SRQ_LIMIT = 1 << 1,
951 };
952
953 struct ib_srq_attr {
954 u32 max_wr;
955 u32 max_sge;
956 u32 srq_limit;
957 };
958
959 struct ib_srq_init_attr {
960 void (*event_handler)(struct ib_event *, void *);
961 void *srq_context;
962 struct ib_srq_attr attr;
963 enum ib_srq_type srq_type;
964
965 union {
966 struct {
967 struct ib_xrcd *xrcd;
968 struct ib_cq *cq;
969 } xrc;
970 } ext;
971 };
972
973 struct ib_qp_cap {
974 u32 max_send_wr;
975 u32 max_recv_wr;
976 u32 max_send_sge;
977 u32 max_recv_sge;
978 u32 max_inline_data;
979
980 /*
981 * Maximum number of rdma_rw_ctx structures in flight at a time.
982 * ib_create_qp() will calculate the right amount of neededed WRs
983 * and MRs based on this.
984 */
985 u32 max_rdma_ctxs;
986 };
987
988 enum ib_sig_type {
989 IB_SIGNAL_ALL_WR,
990 IB_SIGNAL_REQ_WR
991 };
992
993 enum ib_qp_type {
994 /*
995 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
996 * here (and in that order) since the MAD layer uses them as
997 * indices into a 2-entry table.
998 */
999 IB_QPT_SMI,
1000 IB_QPT_GSI,
1001
1002 IB_QPT_RC,
1003 IB_QPT_UC,
1004 IB_QPT_UD,
1005 IB_QPT_RAW_IPV6,
1006 IB_QPT_RAW_ETHERTYPE,
1007 IB_QPT_RAW_PACKET = 8,
1008 IB_QPT_XRC_INI = 9,
1009 IB_QPT_XRC_TGT,
1010 IB_QPT_MAX,
1011 /* Reserve a range for qp types internal to the low level driver.
1012 * These qp types will not be visible at the IB core layer, so the
1013 * IB_QPT_MAX usages should not be affected in the core layer
1014 */
1015 IB_QPT_RESERVED1 = 0x1000,
1016 IB_QPT_RESERVED2,
1017 IB_QPT_RESERVED3,
1018 IB_QPT_RESERVED4,
1019 IB_QPT_RESERVED5,
1020 IB_QPT_RESERVED6,
1021 IB_QPT_RESERVED7,
1022 IB_QPT_RESERVED8,
1023 IB_QPT_RESERVED9,
1024 IB_QPT_RESERVED10,
1025 };
1026
1027 enum ib_qp_create_flags {
1028 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1029 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1030 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1031 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1032 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1033 IB_QP_CREATE_NETIF_QP = 1 << 5,
1034 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1035 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
1036 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1037 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1038 /* reserve bits 26-31 for low level drivers' internal use */
1039 IB_QP_CREATE_RESERVED_START = 1 << 26,
1040 IB_QP_CREATE_RESERVED_END = 1 << 31,
1041 };
1042
1043 /*
1044 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1045 * callback to destroy the passed in QP.
1046 */
1047
1048 struct ib_qp_init_attr {
1049 void (*event_handler)(struct ib_event *, void *);
1050 void *qp_context;
1051 struct ib_cq *send_cq;
1052 struct ib_cq *recv_cq;
1053 struct ib_srq *srq;
1054 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1055 struct ib_qp_cap cap;
1056 enum ib_sig_type sq_sig_type;
1057 enum ib_qp_type qp_type;
1058 enum ib_qp_create_flags create_flags;
1059
1060 /*
1061 * Only needed for special QP types, or when using the RW API.
1062 */
1063 u8 port_num;
1064 struct ib_rwq_ind_table *rwq_ind_tbl;
1065 };
1066
1067 struct ib_qp_open_attr {
1068 void (*event_handler)(struct ib_event *, void *);
1069 void *qp_context;
1070 u32 qp_num;
1071 enum ib_qp_type qp_type;
1072 };
1073
1074 enum ib_rnr_timeout {
1075 IB_RNR_TIMER_655_36 = 0,
1076 IB_RNR_TIMER_000_01 = 1,
1077 IB_RNR_TIMER_000_02 = 2,
1078 IB_RNR_TIMER_000_03 = 3,
1079 IB_RNR_TIMER_000_04 = 4,
1080 IB_RNR_TIMER_000_06 = 5,
1081 IB_RNR_TIMER_000_08 = 6,
1082 IB_RNR_TIMER_000_12 = 7,
1083 IB_RNR_TIMER_000_16 = 8,
1084 IB_RNR_TIMER_000_24 = 9,
1085 IB_RNR_TIMER_000_32 = 10,
1086 IB_RNR_TIMER_000_48 = 11,
1087 IB_RNR_TIMER_000_64 = 12,
1088 IB_RNR_TIMER_000_96 = 13,
1089 IB_RNR_TIMER_001_28 = 14,
1090 IB_RNR_TIMER_001_92 = 15,
1091 IB_RNR_TIMER_002_56 = 16,
1092 IB_RNR_TIMER_003_84 = 17,
1093 IB_RNR_TIMER_005_12 = 18,
1094 IB_RNR_TIMER_007_68 = 19,
1095 IB_RNR_TIMER_010_24 = 20,
1096 IB_RNR_TIMER_015_36 = 21,
1097 IB_RNR_TIMER_020_48 = 22,
1098 IB_RNR_TIMER_030_72 = 23,
1099 IB_RNR_TIMER_040_96 = 24,
1100 IB_RNR_TIMER_061_44 = 25,
1101 IB_RNR_TIMER_081_92 = 26,
1102 IB_RNR_TIMER_122_88 = 27,
1103 IB_RNR_TIMER_163_84 = 28,
1104 IB_RNR_TIMER_245_76 = 29,
1105 IB_RNR_TIMER_327_68 = 30,
1106 IB_RNR_TIMER_491_52 = 31
1107 };
1108
1109 enum ib_qp_attr_mask {
1110 IB_QP_STATE = 1,
1111 IB_QP_CUR_STATE = (1<<1),
1112 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1113 IB_QP_ACCESS_FLAGS = (1<<3),
1114 IB_QP_PKEY_INDEX = (1<<4),
1115 IB_QP_PORT = (1<<5),
1116 IB_QP_QKEY = (1<<6),
1117 IB_QP_AV = (1<<7),
1118 IB_QP_PATH_MTU = (1<<8),
1119 IB_QP_TIMEOUT = (1<<9),
1120 IB_QP_RETRY_CNT = (1<<10),
1121 IB_QP_RNR_RETRY = (1<<11),
1122 IB_QP_RQ_PSN = (1<<12),
1123 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1124 IB_QP_ALT_PATH = (1<<14),
1125 IB_QP_MIN_RNR_TIMER = (1<<15),
1126 IB_QP_SQ_PSN = (1<<16),
1127 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1128 IB_QP_PATH_MIG_STATE = (1<<18),
1129 IB_QP_CAP = (1<<19),
1130 IB_QP_DEST_QPN = (1<<20),
1131 IB_QP_RESERVED1 = (1<<21),
1132 IB_QP_RESERVED2 = (1<<22),
1133 IB_QP_RESERVED3 = (1<<23),
1134 IB_QP_RESERVED4 = (1<<24),
1135 IB_QP_RATE_LIMIT = (1<<25),
1136 };
1137
1138 enum ib_qp_state {
1139 IB_QPS_RESET,
1140 IB_QPS_INIT,
1141 IB_QPS_RTR,
1142 IB_QPS_RTS,
1143 IB_QPS_SQD,
1144 IB_QPS_SQE,
1145 IB_QPS_ERR
1146 };
1147
1148 enum ib_mig_state {
1149 IB_MIG_MIGRATED,
1150 IB_MIG_REARM,
1151 IB_MIG_ARMED
1152 };
1153
1154 enum ib_mw_type {
1155 IB_MW_TYPE_1 = 1,
1156 IB_MW_TYPE_2 = 2
1157 };
1158
1159 struct ib_qp_attr {
1160 enum ib_qp_state qp_state;
1161 enum ib_qp_state cur_qp_state;
1162 enum ib_mtu path_mtu;
1163 enum ib_mig_state path_mig_state;
1164 u32 qkey;
1165 u32 rq_psn;
1166 u32 sq_psn;
1167 u32 dest_qp_num;
1168 int qp_access_flags;
1169 struct ib_qp_cap cap;
1170 struct rdma_ah_attr ah_attr;
1171 struct rdma_ah_attr alt_ah_attr;
1172 u16 pkey_index;
1173 u16 alt_pkey_index;
1174 u8 en_sqd_async_notify;
1175 u8 sq_draining;
1176 u8 max_rd_atomic;
1177 u8 max_dest_rd_atomic;
1178 u8 min_rnr_timer;
1179 u8 port_num;
1180 u8 timeout;
1181 u8 retry_cnt;
1182 u8 rnr_retry;
1183 u8 alt_port_num;
1184 u8 alt_timeout;
1185 u32 rate_limit;
1186 };
1187
1188 enum ib_wr_opcode {
1189 IB_WR_RDMA_WRITE,
1190 IB_WR_RDMA_WRITE_WITH_IMM,
1191 IB_WR_SEND,
1192 IB_WR_SEND_WITH_IMM,
1193 IB_WR_RDMA_READ,
1194 IB_WR_ATOMIC_CMP_AND_SWP,
1195 IB_WR_ATOMIC_FETCH_AND_ADD,
1196 IB_WR_LSO,
1197 IB_WR_SEND_WITH_INV,
1198 IB_WR_RDMA_READ_WITH_INV,
1199 IB_WR_LOCAL_INV,
1200 IB_WR_REG_MR,
1201 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1202 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1203 IB_WR_REG_SIG_MR,
1204 /* reserve values for low level drivers' internal use.
1205 * These values will not be used at all in the ib core layer.
1206 */
1207 IB_WR_RESERVED1 = 0xf0,
1208 IB_WR_RESERVED2,
1209 IB_WR_RESERVED3,
1210 IB_WR_RESERVED4,
1211 IB_WR_RESERVED5,
1212 IB_WR_RESERVED6,
1213 IB_WR_RESERVED7,
1214 IB_WR_RESERVED8,
1215 IB_WR_RESERVED9,
1216 IB_WR_RESERVED10,
1217 };
1218
1219 enum ib_send_flags {
1220 IB_SEND_FENCE = 1,
1221 IB_SEND_SIGNALED = (1<<1),
1222 IB_SEND_SOLICITED = (1<<2),
1223 IB_SEND_INLINE = (1<<3),
1224 IB_SEND_IP_CSUM = (1<<4),
1225
1226 /* reserve bits 26-31 for low level drivers' internal use */
1227 IB_SEND_RESERVED_START = (1 << 26),
1228 IB_SEND_RESERVED_END = (1 << 31),
1229 };
1230
1231 struct ib_sge {
1232 u64 addr;
1233 u32 length;
1234 u32 lkey;
1235 };
1236
1237 struct ib_cqe {
1238 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1239 };
1240
1241 struct ib_send_wr {
1242 struct ib_send_wr *next;
1243 union {
1244 u64 wr_id;
1245 struct ib_cqe *wr_cqe;
1246 };
1247 struct ib_sge *sg_list;
1248 int num_sge;
1249 enum ib_wr_opcode opcode;
1250 int send_flags;
1251 union {
1252 __be32 imm_data;
1253 u32 invalidate_rkey;
1254 } ex;
1255 };
1256
1257 struct ib_rdma_wr {
1258 struct ib_send_wr wr;
1259 u64 remote_addr;
1260 u32 rkey;
1261 };
1262
1263 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1264 {
1265 return container_of(wr, struct ib_rdma_wr, wr);
1266 }
1267
1268 struct ib_atomic_wr {
1269 struct ib_send_wr wr;
1270 u64 remote_addr;
1271 u64 compare_add;
1272 u64 swap;
1273 u64 compare_add_mask;
1274 u64 swap_mask;
1275 u32 rkey;
1276 };
1277
1278 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1279 {
1280 return container_of(wr, struct ib_atomic_wr, wr);
1281 }
1282
1283 struct ib_ud_wr {
1284 struct ib_send_wr wr;
1285 struct ib_ah *ah;
1286 void *header;
1287 int hlen;
1288 int mss;
1289 u32 remote_qpn;
1290 u32 remote_qkey;
1291 u16 pkey_index; /* valid for GSI only */
1292 u8 port_num; /* valid for DR SMPs on switch only */
1293 };
1294
1295 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1296 {
1297 return container_of(wr, struct ib_ud_wr, wr);
1298 }
1299
1300 struct ib_reg_wr {
1301 struct ib_send_wr wr;
1302 struct ib_mr *mr;
1303 u32 key;
1304 int access;
1305 };
1306
1307 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1308 {
1309 return container_of(wr, struct ib_reg_wr, wr);
1310 }
1311
1312 struct ib_sig_handover_wr {
1313 struct ib_send_wr wr;
1314 struct ib_sig_attrs *sig_attrs;
1315 struct ib_mr *sig_mr;
1316 int access_flags;
1317 struct ib_sge *prot;
1318 };
1319
1320 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1321 {
1322 return container_of(wr, struct ib_sig_handover_wr, wr);
1323 }
1324
1325 struct ib_recv_wr {
1326 struct ib_recv_wr *next;
1327 union {
1328 u64 wr_id;
1329 struct ib_cqe *wr_cqe;
1330 };
1331 struct ib_sge *sg_list;
1332 int num_sge;
1333 };
1334
1335 enum ib_access_flags {
1336 IB_ACCESS_LOCAL_WRITE = 1,
1337 IB_ACCESS_REMOTE_WRITE = (1<<1),
1338 IB_ACCESS_REMOTE_READ = (1<<2),
1339 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1340 IB_ACCESS_MW_BIND = (1<<4),
1341 IB_ZERO_BASED = (1<<5),
1342 IB_ACCESS_ON_DEMAND = (1<<6),
1343 IB_ACCESS_HUGETLB = (1<<7),
1344 };
1345
1346 /*
1347 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1348 * are hidden here instead of a uapi header!
1349 */
1350 enum ib_mr_rereg_flags {
1351 IB_MR_REREG_TRANS = 1,
1352 IB_MR_REREG_PD = (1<<1),
1353 IB_MR_REREG_ACCESS = (1<<2),
1354 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1355 };
1356
1357 struct ib_fmr_attr {
1358 int max_pages;
1359 int max_maps;
1360 u8 page_shift;
1361 };
1362
1363 struct ib_umem;
1364
1365 enum rdma_remove_reason {
1366 /* Userspace requested uobject deletion. Call could fail */
1367 RDMA_REMOVE_DESTROY,
1368 /* Context deletion. This call should delete the actual object itself */
1369 RDMA_REMOVE_CLOSE,
1370 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1371 RDMA_REMOVE_DRIVER_REMOVE,
1372 /* Context is being cleaned-up, but commit was just completed */
1373 RDMA_REMOVE_DURING_CLEANUP,
1374 };
1375
1376 struct ib_rdmacg_object {
1377 #ifdef CONFIG_CGROUP_RDMA
1378 struct rdma_cgroup *cg; /* owner rdma cgroup */
1379 #endif
1380 };
1381
1382 struct ib_ucontext {
1383 struct ib_device *device;
1384 struct ib_uverbs_file *ufile;
1385 int closing;
1386
1387 /* locking the uobjects_list */
1388 struct mutex uobjects_lock;
1389 struct list_head uobjects;
1390 /* protects cleanup process from other actions */
1391 struct rw_semaphore cleanup_rwsem;
1392 enum rdma_remove_reason cleanup_reason;
1393
1394 struct pid *tgid;
1395 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1396 struct rb_root umem_tree;
1397 /*
1398 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1399 * mmu notifiers registration.
1400 */
1401 struct rw_semaphore umem_rwsem;
1402 void (*invalidate_range)(struct ib_umem *umem,
1403 unsigned long start, unsigned long end);
1404
1405 struct mmu_notifier mn;
1406 atomic_t notifier_count;
1407 /* A list of umems that don't have private mmu notifier counters yet. */
1408 struct list_head no_private_counters;
1409 int odp_mrs_count;
1410 #endif
1411
1412 struct ib_rdmacg_object cg_obj;
1413 };
1414
1415 struct ib_uobject {
1416 u64 user_handle; /* handle given to us by userspace */
1417 struct ib_ucontext *context; /* associated user context */
1418 void *object; /* containing object */
1419 struct list_head list; /* link to context's list */
1420 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1421 int id; /* index into kernel idr */
1422 struct kref ref;
1423 atomic_t usecnt; /* protects exclusive access */
1424 struct rcu_head rcu; /* kfree_rcu() overhead */
1425
1426 const struct uverbs_obj_type *type;
1427 };
1428
1429 struct ib_uobject_file {
1430 struct ib_uobject uobj;
1431 /* ufile contains the lock between context release and file close */
1432 struct ib_uverbs_file *ufile;
1433 };
1434
1435 struct ib_udata {
1436 const void __user *inbuf;
1437 void __user *outbuf;
1438 size_t inlen;
1439 size_t outlen;
1440 };
1441
1442 struct ib_pd {
1443 u32 local_dma_lkey;
1444 u32 flags;
1445 struct ib_device *device;
1446 struct ib_uobject *uobject;
1447 atomic_t usecnt; /* count all resources */
1448
1449 u32 unsafe_global_rkey;
1450
1451 /*
1452 * Implementation details of the RDMA core, don't use in drivers:
1453 */
1454 struct ib_mr *__internal_mr;
1455 };
1456
1457 struct ib_xrcd {
1458 struct ib_device *device;
1459 atomic_t usecnt; /* count all exposed resources */
1460 struct inode *inode;
1461
1462 struct mutex tgt_qp_mutex;
1463 struct list_head tgt_qp_list;
1464 };
1465
1466 struct ib_ah {
1467 struct ib_device *device;
1468 struct ib_pd *pd;
1469 struct ib_uobject *uobject;
1470 };
1471
1472 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1473
1474 enum ib_poll_context {
1475 IB_POLL_DIRECT, /* caller context, no hw completions */
1476 IB_POLL_SOFTIRQ, /* poll from softirq context */
1477 IB_POLL_WORKQUEUE, /* poll from workqueue */
1478 };
1479
1480 struct ib_cq {
1481 struct ib_device *device;
1482 struct ib_uobject *uobject;
1483 ib_comp_handler comp_handler;
1484 void (*event_handler)(struct ib_event *, void *);
1485 void *cq_context;
1486 int cqe;
1487 atomic_t usecnt; /* count number of work queues */
1488 enum ib_poll_context poll_ctx;
1489 struct ib_wc *wc;
1490 union {
1491 struct irq_poll iop;
1492 struct work_struct work;
1493 };
1494 };
1495
1496 struct ib_srq {
1497 struct ib_device *device;
1498 struct ib_pd *pd;
1499 struct ib_uobject *uobject;
1500 void (*event_handler)(struct ib_event *, void *);
1501 void *srq_context;
1502 enum ib_srq_type srq_type;
1503 atomic_t usecnt;
1504
1505 union {
1506 struct {
1507 struct ib_xrcd *xrcd;
1508 struct ib_cq *cq;
1509 u32 srq_num;
1510 } xrc;
1511 } ext;
1512 };
1513
1514 enum ib_raw_packet_caps {
1515 /* Strip cvlan from incoming packet and report it in the matching work
1516 * completion is supported.
1517 */
1518 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1519 /* Scatter FCS field of an incoming packet to host memory is supported.
1520 */
1521 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1522 /* Checksum offloads are supported (for both send and receive). */
1523 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1524 };
1525
1526 enum ib_wq_type {
1527 IB_WQT_RQ
1528 };
1529
1530 enum ib_wq_state {
1531 IB_WQS_RESET,
1532 IB_WQS_RDY,
1533 IB_WQS_ERR
1534 };
1535
1536 struct ib_wq {
1537 struct ib_device *device;
1538 struct ib_uobject *uobject;
1539 void *wq_context;
1540 void (*event_handler)(struct ib_event *, void *);
1541 struct ib_pd *pd;
1542 struct ib_cq *cq;
1543 u32 wq_num;
1544 enum ib_wq_state state;
1545 enum ib_wq_type wq_type;
1546 atomic_t usecnt;
1547 };
1548
1549 enum ib_wq_flags {
1550 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1551 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1552 };
1553
1554 struct ib_wq_init_attr {
1555 void *wq_context;
1556 enum ib_wq_type wq_type;
1557 u32 max_wr;
1558 u32 max_sge;
1559 struct ib_cq *cq;
1560 void (*event_handler)(struct ib_event *, void *);
1561 u32 create_flags; /* Use enum ib_wq_flags */
1562 };
1563
1564 enum ib_wq_attr_mask {
1565 IB_WQ_STATE = 1 << 0,
1566 IB_WQ_CUR_STATE = 1 << 1,
1567 IB_WQ_FLAGS = 1 << 2,
1568 };
1569
1570 struct ib_wq_attr {
1571 enum ib_wq_state wq_state;
1572 enum ib_wq_state curr_wq_state;
1573 u32 flags; /* Use enum ib_wq_flags */
1574 u32 flags_mask; /* Use enum ib_wq_flags */
1575 };
1576
1577 struct ib_rwq_ind_table {
1578 struct ib_device *device;
1579 struct ib_uobject *uobject;
1580 atomic_t usecnt;
1581 u32 ind_tbl_num;
1582 u32 log_ind_tbl_size;
1583 struct ib_wq **ind_tbl;
1584 };
1585
1586 struct ib_rwq_ind_table_init_attr {
1587 u32 log_ind_tbl_size;
1588 /* Each entry is a pointer to Receive Work Queue */
1589 struct ib_wq **ind_tbl;
1590 };
1591
1592 /*
1593 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1594 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1595 */
1596 struct ib_qp {
1597 struct ib_device *device;
1598 struct ib_pd *pd;
1599 struct ib_cq *send_cq;
1600 struct ib_cq *recv_cq;
1601 spinlock_t mr_lock;
1602 int mrs_used;
1603 struct list_head rdma_mrs;
1604 struct list_head sig_mrs;
1605 struct ib_srq *srq;
1606 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1607 struct list_head xrcd_list;
1608
1609 /* count times opened, mcast attaches, flow attaches */
1610 atomic_t usecnt;
1611 struct list_head open_list;
1612 struct ib_qp *real_qp;
1613 struct ib_uobject *uobject;
1614 void (*event_handler)(struct ib_event *, void *);
1615 void *qp_context;
1616 u32 qp_num;
1617 u32 max_write_sge;
1618 u32 max_read_sge;
1619 enum ib_qp_type qp_type;
1620 struct ib_rwq_ind_table *rwq_ind_tbl;
1621 };
1622
1623 struct ib_mr {
1624 struct ib_device *device;
1625 struct ib_pd *pd;
1626 u32 lkey;
1627 u32 rkey;
1628 u64 iova;
1629 u32 length;
1630 unsigned int page_size;
1631 bool need_inval;
1632 union {
1633 struct ib_uobject *uobject; /* user */
1634 struct list_head qp_entry; /* FR */
1635 };
1636 };
1637
1638 struct ib_mw {
1639 struct ib_device *device;
1640 struct ib_pd *pd;
1641 struct ib_uobject *uobject;
1642 u32 rkey;
1643 enum ib_mw_type type;
1644 };
1645
1646 struct ib_fmr {
1647 struct ib_device *device;
1648 struct ib_pd *pd;
1649 struct list_head list;
1650 u32 lkey;
1651 u32 rkey;
1652 };
1653
1654 /* Supported steering options */
1655 enum ib_flow_attr_type {
1656 /* steering according to rule specifications */
1657 IB_FLOW_ATTR_NORMAL = 0x0,
1658 /* default unicast and multicast rule -
1659 * receive all Eth traffic which isn't steered to any QP
1660 */
1661 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1662 /* default multicast rule -
1663 * receive all Eth multicast traffic which isn't steered to any QP
1664 */
1665 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1666 /* sniffer rule - receive all port traffic */
1667 IB_FLOW_ATTR_SNIFFER = 0x3
1668 };
1669
1670 /* Supported steering header types */
1671 enum ib_flow_spec_type {
1672 /* L2 headers*/
1673 IB_FLOW_SPEC_ETH = 0x20,
1674 IB_FLOW_SPEC_IB = 0x22,
1675 /* L3 header*/
1676 IB_FLOW_SPEC_IPV4 = 0x30,
1677 IB_FLOW_SPEC_IPV6 = 0x31,
1678 /* L4 headers*/
1679 IB_FLOW_SPEC_TCP = 0x40,
1680 IB_FLOW_SPEC_UDP = 0x41,
1681 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1682 IB_FLOW_SPEC_INNER = 0x100,
1683 /* Actions */
1684 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1685 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1686 };
1687 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1688 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1689
1690 /* Flow steering rule priority is set according to it's domain.
1691 * Lower domain value means higher priority.
1692 */
1693 enum ib_flow_domain {
1694 IB_FLOW_DOMAIN_USER,
1695 IB_FLOW_DOMAIN_ETHTOOL,
1696 IB_FLOW_DOMAIN_RFS,
1697 IB_FLOW_DOMAIN_NIC,
1698 IB_FLOW_DOMAIN_NUM /* Must be last */
1699 };
1700
1701 enum ib_flow_flags {
1702 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1703 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1704 };
1705
1706 struct ib_flow_eth_filter {
1707 u8 dst_mac[6];
1708 u8 src_mac[6];
1709 __be16 ether_type;
1710 __be16 vlan_tag;
1711 /* Must be last */
1712 u8 real_sz[0];
1713 };
1714
1715 struct ib_flow_spec_eth {
1716 u32 type;
1717 u16 size;
1718 struct ib_flow_eth_filter val;
1719 struct ib_flow_eth_filter mask;
1720 };
1721
1722 struct ib_flow_ib_filter {
1723 __be16 dlid;
1724 __u8 sl;
1725 /* Must be last */
1726 u8 real_sz[0];
1727 };
1728
1729 struct ib_flow_spec_ib {
1730 u32 type;
1731 u16 size;
1732 struct ib_flow_ib_filter val;
1733 struct ib_flow_ib_filter mask;
1734 };
1735
1736 /* IPv4 header flags */
1737 enum ib_ipv4_flags {
1738 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1739 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1740 last have this flag set */
1741 };
1742
1743 struct ib_flow_ipv4_filter {
1744 __be32 src_ip;
1745 __be32 dst_ip;
1746 u8 proto;
1747 u8 tos;
1748 u8 ttl;
1749 u8 flags;
1750 /* Must be last */
1751 u8 real_sz[0];
1752 };
1753
1754 struct ib_flow_spec_ipv4 {
1755 u32 type;
1756 u16 size;
1757 struct ib_flow_ipv4_filter val;
1758 struct ib_flow_ipv4_filter mask;
1759 };
1760
1761 struct ib_flow_ipv6_filter {
1762 u8 src_ip[16];
1763 u8 dst_ip[16];
1764 __be32 flow_label;
1765 u8 next_hdr;
1766 u8 traffic_class;
1767 u8 hop_limit;
1768 /* Must be last */
1769 u8 real_sz[0];
1770 };
1771
1772 struct ib_flow_spec_ipv6 {
1773 u32 type;
1774 u16 size;
1775 struct ib_flow_ipv6_filter val;
1776 struct ib_flow_ipv6_filter mask;
1777 };
1778
1779 struct ib_flow_tcp_udp_filter {
1780 __be16 dst_port;
1781 __be16 src_port;
1782 /* Must be last */
1783 u8 real_sz[0];
1784 };
1785
1786 struct ib_flow_spec_tcp_udp {
1787 u32 type;
1788 u16 size;
1789 struct ib_flow_tcp_udp_filter val;
1790 struct ib_flow_tcp_udp_filter mask;
1791 };
1792
1793 struct ib_flow_tunnel_filter {
1794 __be32 tunnel_id;
1795 u8 real_sz[0];
1796 };
1797
1798 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1799 * the tunnel_id from val has the vni value
1800 */
1801 struct ib_flow_spec_tunnel {
1802 u32 type;
1803 u16 size;
1804 struct ib_flow_tunnel_filter val;
1805 struct ib_flow_tunnel_filter mask;
1806 };
1807
1808 struct ib_flow_spec_action_tag {
1809 enum ib_flow_spec_type type;
1810 u16 size;
1811 u32 tag_id;
1812 };
1813
1814 struct ib_flow_spec_action_drop {
1815 enum ib_flow_spec_type type;
1816 u16 size;
1817 };
1818
1819 union ib_flow_spec {
1820 struct {
1821 u32 type;
1822 u16 size;
1823 };
1824 struct ib_flow_spec_eth eth;
1825 struct ib_flow_spec_ib ib;
1826 struct ib_flow_spec_ipv4 ipv4;
1827 struct ib_flow_spec_tcp_udp tcp_udp;
1828 struct ib_flow_spec_ipv6 ipv6;
1829 struct ib_flow_spec_tunnel tunnel;
1830 struct ib_flow_spec_action_tag flow_tag;
1831 struct ib_flow_spec_action_drop drop;
1832 };
1833
1834 struct ib_flow_attr {
1835 enum ib_flow_attr_type type;
1836 u16 size;
1837 u16 priority;
1838 u32 flags;
1839 u8 num_of_specs;
1840 u8 port;
1841 /* Following are the optional layers according to user request
1842 * struct ib_flow_spec_xxx
1843 * struct ib_flow_spec_yyy
1844 */
1845 };
1846
1847 struct ib_flow {
1848 struct ib_qp *qp;
1849 struct ib_uobject *uobject;
1850 };
1851
1852 struct ib_mad_hdr;
1853 struct ib_grh;
1854
1855 enum ib_process_mad_flags {
1856 IB_MAD_IGNORE_MKEY = 1,
1857 IB_MAD_IGNORE_BKEY = 2,
1858 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1859 };
1860
1861 enum ib_mad_result {
1862 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1863 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1864 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1865 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1866 };
1867
1868 #define IB_DEVICE_NAME_MAX 64
1869
1870 struct ib_port_cache {
1871 struct ib_pkey_cache *pkey;
1872 struct ib_gid_table *gid;
1873 u8 lmc;
1874 enum ib_port_state port_state;
1875 };
1876
1877 struct ib_cache {
1878 rwlock_t lock;
1879 struct ib_event_handler event_handler;
1880 struct ib_port_cache *ports;
1881 };
1882
1883 struct iw_cm_verbs;
1884
1885 struct ib_port_immutable {
1886 int pkey_tbl_len;
1887 int gid_tbl_len;
1888 u32 core_cap_flags;
1889 u32 max_mad_size;
1890 };
1891
1892 /* rdma netdev type - specifies protocol type */
1893 enum rdma_netdev_t {
1894 RDMA_NETDEV_OPA_VNIC,
1895 RDMA_NETDEV_IPOIB,
1896 };
1897
1898 /**
1899 * struct rdma_netdev - rdma netdev
1900 * For cases where netstack interfacing is required.
1901 */
1902 struct rdma_netdev {
1903 void *clnt_priv;
1904 struct ib_device *hca;
1905 u8 port_num;
1906
1907 /* control functions */
1908 void (*set_id)(struct net_device *netdev, int id);
1909 /* send packet */
1910 int (*send)(struct net_device *dev, struct sk_buff *skb,
1911 struct ib_ah *address, u32 dqpn);
1912 /* multicast */
1913 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
1914 union ib_gid *gid, u16 mlid,
1915 int set_qkey, u32 qkey);
1916 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
1917 union ib_gid *gid, u16 mlid);
1918 };
1919
1920 struct ib_device {
1921 /* Do not access @dma_device directly from ULP nor from HW drivers. */
1922 struct device *dma_device;
1923
1924 char name[IB_DEVICE_NAME_MAX];
1925
1926 struct list_head event_handler_list;
1927 spinlock_t event_handler_lock;
1928
1929 spinlock_t client_data_lock;
1930 struct list_head core_list;
1931 /* Access to the client_data_list is protected by the client_data_lock
1932 * spinlock and the lists_rwsem read-write semaphore */
1933 struct list_head client_data_list;
1934
1935 struct ib_cache cache;
1936 /**
1937 * port_immutable is indexed by port number
1938 */
1939 struct ib_port_immutable *port_immutable;
1940
1941 int num_comp_vectors;
1942
1943 struct iw_cm_verbs *iwcm;
1944
1945 /**
1946 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1947 * driver initialized data. The struct is kfree()'ed by the sysfs
1948 * core when the device is removed. A lifespan of -1 in the return
1949 * struct tells the core to set a default lifespan.
1950 */
1951 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1952 u8 port_num);
1953 /**
1954 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1955 * @index - The index in the value array we wish to have updated, or
1956 * num_counters if we want all stats updated
1957 * Return codes -
1958 * < 0 - Error, no counters updated
1959 * index - Updated the single counter pointed to by index
1960 * num_counters - Updated all counters (will reset the timestamp
1961 * and prevent further calls for lifespan milliseconds)
1962 * Drivers are allowed to update all counters in leiu of just the
1963 * one given in index at their option
1964 */
1965 int (*get_hw_stats)(struct ib_device *device,
1966 struct rdma_hw_stats *stats,
1967 u8 port, int index);
1968 int (*query_device)(struct ib_device *device,
1969 struct ib_device_attr *device_attr,
1970 struct ib_udata *udata);
1971 int (*query_port)(struct ib_device *device,
1972 u8 port_num,
1973 struct ib_port_attr *port_attr);
1974 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1975 u8 port_num);
1976 /* When calling get_netdev, the HW vendor's driver should return the
1977 * net device of device @device at port @port_num or NULL if such
1978 * a net device doesn't exist. The vendor driver should call dev_hold
1979 * on this net device. The HW vendor's device driver must guarantee
1980 * that this function returns NULL before the net device reaches
1981 * NETDEV_UNREGISTER_FINAL state.
1982 */
1983 struct net_device *(*get_netdev)(struct ib_device *device,
1984 u8 port_num);
1985 int (*query_gid)(struct ib_device *device,
1986 u8 port_num, int index,
1987 union ib_gid *gid);
1988 /* When calling add_gid, the HW vendor's driver should
1989 * add the gid of device @device at gid index @index of
1990 * port @port_num to be @gid. Meta-info of that gid (for example,
1991 * the network device related to this gid is available
1992 * at @attr. @context allows the HW vendor driver to store extra
1993 * information together with a GID entry. The HW vendor may allocate
1994 * memory to contain this information and store it in @context when a
1995 * new GID entry is written to. Params are consistent until the next
1996 * call of add_gid or delete_gid. The function should return 0 on
1997 * success or error otherwise. The function could be called
1998 * concurrently for different ports. This function is only called
1999 * when roce_gid_table is used.
2000 */
2001 int (*add_gid)(struct ib_device *device,
2002 u8 port_num,
2003 unsigned int index,
2004 const union ib_gid *gid,
2005 const struct ib_gid_attr *attr,
2006 void **context);
2007 /* When calling del_gid, the HW vendor's driver should delete the
2008 * gid of device @device at gid index @index of port @port_num.
2009 * Upon the deletion of a GID entry, the HW vendor must free any
2010 * allocated memory. The caller will clear @context afterwards.
2011 * This function is only called when roce_gid_table is used.
2012 */
2013 int (*del_gid)(struct ib_device *device,
2014 u8 port_num,
2015 unsigned int index,
2016 void **context);
2017 int (*query_pkey)(struct ib_device *device,
2018 u8 port_num, u16 index, u16 *pkey);
2019 int (*modify_device)(struct ib_device *device,
2020 int device_modify_mask,
2021 struct ib_device_modify *device_modify);
2022 int (*modify_port)(struct ib_device *device,
2023 u8 port_num, int port_modify_mask,
2024 struct ib_port_modify *port_modify);
2025 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2026 struct ib_udata *udata);
2027 int (*dealloc_ucontext)(struct ib_ucontext *context);
2028 int (*mmap)(struct ib_ucontext *context,
2029 struct vm_area_struct *vma);
2030 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2031 struct ib_ucontext *context,
2032 struct ib_udata *udata);
2033 int (*dealloc_pd)(struct ib_pd *pd);
2034 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2035 struct rdma_ah_attr *ah_attr,
2036 struct ib_udata *udata);
2037 int (*modify_ah)(struct ib_ah *ah,
2038 struct rdma_ah_attr *ah_attr);
2039 int (*query_ah)(struct ib_ah *ah,
2040 struct rdma_ah_attr *ah_attr);
2041 int (*destroy_ah)(struct ib_ah *ah);
2042 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2043 struct ib_srq_init_attr *srq_init_attr,
2044 struct ib_udata *udata);
2045 int (*modify_srq)(struct ib_srq *srq,
2046 struct ib_srq_attr *srq_attr,
2047 enum ib_srq_attr_mask srq_attr_mask,
2048 struct ib_udata *udata);
2049 int (*query_srq)(struct ib_srq *srq,
2050 struct ib_srq_attr *srq_attr);
2051 int (*destroy_srq)(struct ib_srq *srq);
2052 int (*post_srq_recv)(struct ib_srq *srq,
2053 struct ib_recv_wr *recv_wr,
2054 struct ib_recv_wr **bad_recv_wr);
2055 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2056 struct ib_qp_init_attr *qp_init_attr,
2057 struct ib_udata *udata);
2058 int (*modify_qp)(struct ib_qp *qp,
2059 struct ib_qp_attr *qp_attr,
2060 int qp_attr_mask,
2061 struct ib_udata *udata);
2062 int (*query_qp)(struct ib_qp *qp,
2063 struct ib_qp_attr *qp_attr,
2064 int qp_attr_mask,
2065 struct ib_qp_init_attr *qp_init_attr);
2066 int (*destroy_qp)(struct ib_qp *qp);
2067 int (*post_send)(struct ib_qp *qp,
2068 struct ib_send_wr *send_wr,
2069 struct ib_send_wr **bad_send_wr);
2070 int (*post_recv)(struct ib_qp *qp,
2071 struct ib_recv_wr *recv_wr,
2072 struct ib_recv_wr **bad_recv_wr);
2073 struct ib_cq * (*create_cq)(struct ib_device *device,
2074 const struct ib_cq_init_attr *attr,
2075 struct ib_ucontext *context,
2076 struct ib_udata *udata);
2077 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2078 u16 cq_period);
2079 int (*destroy_cq)(struct ib_cq *cq);
2080 int (*resize_cq)(struct ib_cq *cq, int cqe,
2081 struct ib_udata *udata);
2082 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2083 struct ib_wc *wc);
2084 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2085 int (*req_notify_cq)(struct ib_cq *cq,
2086 enum ib_cq_notify_flags flags);
2087 int (*req_ncomp_notif)(struct ib_cq *cq,
2088 int wc_cnt);
2089 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2090 int mr_access_flags);
2091 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2092 u64 start, u64 length,
2093 u64 virt_addr,
2094 int mr_access_flags,
2095 struct ib_udata *udata);
2096 int (*rereg_user_mr)(struct ib_mr *mr,
2097 int flags,
2098 u64 start, u64 length,
2099 u64 virt_addr,
2100 int mr_access_flags,
2101 struct ib_pd *pd,
2102 struct ib_udata *udata);
2103 int (*dereg_mr)(struct ib_mr *mr);
2104 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2105 enum ib_mr_type mr_type,
2106 u32 max_num_sg);
2107 int (*map_mr_sg)(struct ib_mr *mr,
2108 struct scatterlist *sg,
2109 int sg_nents,
2110 unsigned int *sg_offset);
2111 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2112 enum ib_mw_type type,
2113 struct ib_udata *udata);
2114 int (*dealloc_mw)(struct ib_mw *mw);
2115 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2116 int mr_access_flags,
2117 struct ib_fmr_attr *fmr_attr);
2118 int (*map_phys_fmr)(struct ib_fmr *fmr,
2119 u64 *page_list, int list_len,
2120 u64 iova);
2121 int (*unmap_fmr)(struct list_head *fmr_list);
2122 int (*dealloc_fmr)(struct ib_fmr *fmr);
2123 int (*attach_mcast)(struct ib_qp *qp,
2124 union ib_gid *gid,
2125 u16 lid);
2126 int (*detach_mcast)(struct ib_qp *qp,
2127 union ib_gid *gid,
2128 u16 lid);
2129 int (*process_mad)(struct ib_device *device,
2130 int process_mad_flags,
2131 u8 port_num,
2132 const struct ib_wc *in_wc,
2133 const struct ib_grh *in_grh,
2134 const struct ib_mad_hdr *in_mad,
2135 size_t in_mad_size,
2136 struct ib_mad_hdr *out_mad,
2137 size_t *out_mad_size,
2138 u16 *out_mad_pkey_index);
2139 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2140 struct ib_ucontext *ucontext,
2141 struct ib_udata *udata);
2142 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2143 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2144 struct ib_flow_attr
2145 *flow_attr,
2146 int domain);
2147 int (*destroy_flow)(struct ib_flow *flow_id);
2148 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2149 struct ib_mr_status *mr_status);
2150 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2151 void (*drain_rq)(struct ib_qp *qp);
2152 void (*drain_sq)(struct ib_qp *qp);
2153 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2154 int state);
2155 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2156 struct ifla_vf_info *ivf);
2157 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2158 struct ifla_vf_stats *stats);
2159 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2160 int type);
2161 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2162 struct ib_wq_init_attr *init_attr,
2163 struct ib_udata *udata);
2164 int (*destroy_wq)(struct ib_wq *wq);
2165 int (*modify_wq)(struct ib_wq *wq,
2166 struct ib_wq_attr *attr,
2167 u32 wq_attr_mask,
2168 struct ib_udata *udata);
2169 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2170 struct ib_rwq_ind_table_init_attr *init_attr,
2171 struct ib_udata *udata);
2172 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2173 /**
2174 * rdma netdev operations
2175 *
2176 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2177 * doesn't support the specified rdma netdev type.
2178 */
2179 struct net_device *(*alloc_rdma_netdev)(
2180 struct ib_device *device,
2181 u8 port_num,
2182 enum rdma_netdev_t type,
2183 const char *name,
2184 unsigned char name_assign_type,
2185 void (*setup)(struct net_device *));
2186 void (*free_rdma_netdev)(struct net_device *netdev);
2187
2188 struct module *owner;
2189 struct device dev;
2190 struct kobject *ports_parent;
2191 struct list_head port_list;
2192
2193 enum {
2194 IB_DEV_UNINITIALIZED,
2195 IB_DEV_REGISTERED,
2196 IB_DEV_UNREGISTERED
2197 } reg_state;
2198
2199 int uverbs_abi_ver;
2200 u64 uverbs_cmd_mask;
2201 u64 uverbs_ex_cmd_mask;
2202
2203 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2204 __be64 node_guid;
2205 u32 local_dma_lkey;
2206 u16 is_switch:1;
2207 u8 node_type;
2208 u8 phys_port_cnt;
2209 struct ib_device_attr attrs;
2210 struct attribute_group *hw_stats_ag;
2211 struct rdma_hw_stats *hw_stats;
2212
2213 #ifdef CONFIG_CGROUP_RDMA
2214 struct rdmacg_device cg_device;
2215 #endif
2216
2217 /**
2218 * The following mandatory functions are used only at device
2219 * registration. Keep functions such as these at the end of this
2220 * structure to avoid cache line misses when accessing struct ib_device
2221 * in fast paths.
2222 */
2223 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2224 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2225 };
2226
2227 struct ib_client {
2228 char *name;
2229 void (*add) (struct ib_device *);
2230 void (*remove)(struct ib_device *, void *client_data);
2231
2232 /* Returns the net_dev belonging to this ib_client and matching the
2233 * given parameters.
2234 * @dev: An RDMA device that the net_dev use for communication.
2235 * @port: A physical port number on the RDMA device.
2236 * @pkey: P_Key that the net_dev uses if applicable.
2237 * @gid: A GID that the net_dev uses to communicate.
2238 * @addr: An IP address the net_dev is configured with.
2239 * @client_data: The device's client data set by ib_set_client_data().
2240 *
2241 * An ib_client that implements a net_dev on top of RDMA devices
2242 * (such as IP over IB) should implement this callback, allowing the
2243 * rdma_cm module to find the right net_dev for a given request.
2244 *
2245 * The caller is responsible for calling dev_put on the returned
2246 * netdev. */
2247 struct net_device *(*get_net_dev_by_params)(
2248 struct ib_device *dev,
2249 u8 port,
2250 u16 pkey,
2251 const union ib_gid *gid,
2252 const struct sockaddr *addr,
2253 void *client_data);
2254 struct list_head list;
2255 };
2256
2257 struct ib_device *ib_alloc_device(size_t size);
2258 void ib_dealloc_device(struct ib_device *device);
2259
2260 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2261
2262 int ib_register_device(struct ib_device *device,
2263 int (*port_callback)(struct ib_device *,
2264 u8, struct kobject *));
2265 void ib_unregister_device(struct ib_device *device);
2266
2267 int ib_register_client (struct ib_client *client);
2268 void ib_unregister_client(struct ib_client *client);
2269
2270 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2271 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2272 void *data);
2273
2274 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2275 {
2276 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2277 }
2278
2279 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2280 {
2281 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2282 }
2283
2284 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2285 size_t offset,
2286 size_t len)
2287 {
2288 const void __user *p = udata->inbuf + offset;
2289 bool ret;
2290 u8 *buf;
2291
2292 if (len > USHRT_MAX)
2293 return false;
2294
2295 buf = memdup_user(p, len);
2296 if (IS_ERR(buf))
2297 return false;
2298
2299 ret = !memchr_inv(buf, 0, len);
2300 kfree(buf);
2301 return ret;
2302 }
2303
2304 /**
2305 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2306 * contains all required attributes and no attributes not allowed for
2307 * the given QP state transition.
2308 * @cur_state: Current QP state
2309 * @next_state: Next QP state
2310 * @type: QP type
2311 * @mask: Mask of supplied QP attributes
2312 * @ll : link layer of port
2313 *
2314 * This function is a helper function that a low-level driver's
2315 * modify_qp method can use to validate the consumer's input. It
2316 * checks that cur_state and next_state are valid QP states, that a
2317 * transition from cur_state to next_state is allowed by the IB spec,
2318 * and that the attribute mask supplied is allowed for the transition.
2319 */
2320 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2321 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2322 enum rdma_link_layer ll);
2323
2324 int ib_register_event_handler (struct ib_event_handler *event_handler);
2325 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2326 void ib_dispatch_event(struct ib_event *event);
2327
2328 int ib_query_port(struct ib_device *device,
2329 u8 port_num, struct ib_port_attr *port_attr);
2330
2331 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2332 u8 port_num);
2333
2334 /**
2335 * rdma_cap_ib_switch - Check if the device is IB switch
2336 * @device: Device to check
2337 *
2338 * Device driver is responsible for setting is_switch bit on
2339 * in ib_device structure at init time.
2340 *
2341 * Return: true if the device is IB switch.
2342 */
2343 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2344 {
2345 return device->is_switch;
2346 }
2347
2348 /**
2349 * rdma_start_port - Return the first valid port number for the device
2350 * specified
2351 *
2352 * @device: Device to be checked
2353 *
2354 * Return start port number
2355 */
2356 static inline u8 rdma_start_port(const struct ib_device *device)
2357 {
2358 return rdma_cap_ib_switch(device) ? 0 : 1;
2359 }
2360
2361 /**
2362 * rdma_end_port - Return the last valid port number for the device
2363 * specified
2364 *
2365 * @device: Device to be checked
2366 *
2367 * Return last port number
2368 */
2369 static inline u8 rdma_end_port(const struct ib_device *device)
2370 {
2371 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2372 }
2373
2374 static inline int rdma_is_port_valid(const struct ib_device *device,
2375 unsigned int port)
2376 {
2377 return (port >= rdma_start_port(device) &&
2378 port <= rdma_end_port(device));
2379 }
2380
2381 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2382 {
2383 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2384 }
2385
2386 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2387 {
2388 return device->port_immutable[port_num].core_cap_flags &
2389 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2390 }
2391
2392 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2393 {
2394 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2395 }
2396
2397 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2398 {
2399 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2400 }
2401
2402 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2403 {
2404 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2405 }
2406
2407 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2408 {
2409 return rdma_protocol_ib(device, port_num) ||
2410 rdma_protocol_roce(device, port_num);
2411 }
2412
2413 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2414 {
2415 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2416 }
2417
2418 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2419 {
2420 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2421 }
2422
2423 /**
2424 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2425 * Management Datagrams.
2426 * @device: Device to check
2427 * @port_num: Port number to check
2428 *
2429 * Management Datagrams (MAD) are a required part of the InfiniBand
2430 * specification and are supported on all InfiniBand devices. A slightly
2431 * extended version are also supported on OPA interfaces.
2432 *
2433 * Return: true if the port supports sending/receiving of MAD packets.
2434 */
2435 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2436 {
2437 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2438 }
2439
2440 /**
2441 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2442 * Management Datagrams.
2443 * @device: Device to check
2444 * @port_num: Port number to check
2445 *
2446 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2447 * datagrams with their own versions. These OPA MADs share many but not all of
2448 * the characteristics of InfiniBand MADs.
2449 *
2450 * OPA MADs differ in the following ways:
2451 *
2452 * 1) MADs are variable size up to 2K
2453 * IBTA defined MADs remain fixed at 256 bytes
2454 * 2) OPA SMPs must carry valid PKeys
2455 * 3) OPA SMP packets are a different format
2456 *
2457 * Return: true if the port supports OPA MAD packet formats.
2458 */
2459 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2460 {
2461 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2462 == RDMA_CORE_CAP_OPA_MAD;
2463 }
2464
2465 /**
2466 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2467 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2468 * @device: Device to check
2469 * @port_num: Port number to check
2470 *
2471 * Each InfiniBand node is required to provide a Subnet Management Agent
2472 * that the subnet manager can access. Prior to the fabric being fully
2473 * configured by the subnet manager, the SMA is accessed via a well known
2474 * interface called the Subnet Management Interface (SMI). This interface
2475 * uses directed route packets to communicate with the SM to get around the
2476 * chicken and egg problem of the SM needing to know what's on the fabric
2477 * in order to configure the fabric, and needing to configure the fabric in
2478 * order to send packets to the devices on the fabric. These directed
2479 * route packets do not need the fabric fully configured in order to reach
2480 * their destination. The SMI is the only method allowed to send
2481 * directed route packets on an InfiniBand fabric.
2482 *
2483 * Return: true if the port provides an SMI.
2484 */
2485 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2486 {
2487 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2488 }
2489
2490 /**
2491 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2492 * Communication Manager.
2493 * @device: Device to check
2494 * @port_num: Port number to check
2495 *
2496 * The InfiniBand Communication Manager is one of many pre-defined General
2497 * Service Agents (GSA) that are accessed via the General Service
2498 * Interface (GSI). It's role is to facilitate establishment of connections
2499 * between nodes as well as other management related tasks for established
2500 * connections.
2501 *
2502 * Return: true if the port supports an IB CM (this does not guarantee that
2503 * a CM is actually running however).
2504 */
2505 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2506 {
2507 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2508 }
2509
2510 /**
2511 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2512 * Communication Manager.
2513 * @device: Device to check
2514 * @port_num: Port number to check
2515 *
2516 * Similar to above, but specific to iWARP connections which have a different
2517 * managment protocol than InfiniBand.
2518 *
2519 * Return: true if the port supports an iWARP CM (this does not guarantee that
2520 * a CM is actually running however).
2521 */
2522 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2523 {
2524 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2525 }
2526
2527 /**
2528 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2529 * Subnet Administration.
2530 * @device: Device to check
2531 * @port_num: Port number to check
2532 *
2533 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2534 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2535 * fabrics, devices should resolve routes to other hosts by contacting the
2536 * SA to query the proper route.
2537 *
2538 * Return: true if the port should act as a client to the fabric Subnet
2539 * Administration interface. This does not imply that the SA service is
2540 * running locally.
2541 */
2542 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2543 {
2544 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2545 }
2546
2547 /**
2548 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2549 * Multicast.
2550 * @device: Device to check
2551 * @port_num: Port number to check
2552 *
2553 * InfiniBand multicast registration is more complex than normal IPv4 or
2554 * IPv6 multicast registration. Each Host Channel Adapter must register
2555 * with the Subnet Manager when it wishes to join a multicast group. It
2556 * should do so only once regardless of how many queue pairs it subscribes
2557 * to this group. And it should leave the group only after all queue pairs
2558 * attached to the group have been detached.
2559 *
2560 * Return: true if the port must undertake the additional adminstrative
2561 * overhead of registering/unregistering with the SM and tracking of the
2562 * total number of queue pairs attached to the multicast group.
2563 */
2564 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2565 {
2566 return rdma_cap_ib_sa(device, port_num);
2567 }
2568
2569 /**
2570 * rdma_cap_af_ib - Check if the port of device has the capability
2571 * Native Infiniband Address.
2572 * @device: Device to check
2573 * @port_num: Port number to check
2574 *
2575 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2576 * GID. RoCE uses a different mechanism, but still generates a GID via
2577 * a prescribed mechanism and port specific data.
2578 *
2579 * Return: true if the port uses a GID address to identify devices on the
2580 * network.
2581 */
2582 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2583 {
2584 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2585 }
2586
2587 /**
2588 * rdma_cap_eth_ah - Check if the port of device has the capability
2589 * Ethernet Address Handle.
2590 * @device: Device to check
2591 * @port_num: Port number to check
2592 *
2593 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2594 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2595 * port. Normally, packet headers are generated by the sending host
2596 * adapter, but when sending connectionless datagrams, we must manually
2597 * inject the proper headers for the fabric we are communicating over.
2598 *
2599 * Return: true if we are running as a RoCE port and must force the
2600 * addition of a Global Route Header built from our Ethernet Address
2601 * Handle into our header list for connectionless packets.
2602 */
2603 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2604 {
2605 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2606 }
2607
2608 /**
2609 * rdma_cap_opa_ah - Check if the port of device supports
2610 * OPA Address handles
2611 * @device: Device to check
2612 * @port_num: Port number to check
2613 *
2614 * Return: true if we are running on an OPA device which supports
2615 * the extended OPA addressing.
2616 */
2617 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2618 {
2619 return (device->port_immutable[port_num].core_cap_flags &
2620 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2621 }
2622
2623 /**
2624 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2625 *
2626 * @device: Device
2627 * @port_num: Port number
2628 *
2629 * This MAD size includes the MAD headers and MAD payload. No other headers
2630 * are included.
2631 *
2632 * Return the max MAD size required by the Port. Will return 0 if the port
2633 * does not support MADs
2634 */
2635 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2636 {
2637 return device->port_immutable[port_num].max_mad_size;
2638 }
2639
2640 /**
2641 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2642 * @device: Device to check
2643 * @port_num: Port number to check
2644 *
2645 * RoCE GID table mechanism manages the various GIDs for a device.
2646 *
2647 * NOTE: if allocating the port's GID table has failed, this call will still
2648 * return true, but any RoCE GID table API will fail.
2649 *
2650 * Return: true if the port uses RoCE GID table mechanism in order to manage
2651 * its GIDs.
2652 */
2653 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2654 u8 port_num)
2655 {
2656 return rdma_protocol_roce(device, port_num) &&
2657 device->add_gid && device->del_gid;
2658 }
2659
2660 /*
2661 * Check if the device supports READ W/ INVALIDATE.
2662 */
2663 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2664 {
2665 /*
2666 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2667 * has support for it yet.
2668 */
2669 return rdma_protocol_iwarp(dev, port_num);
2670 }
2671
2672 int ib_query_gid(struct ib_device *device,
2673 u8 port_num, int index, union ib_gid *gid,
2674 struct ib_gid_attr *attr);
2675
2676 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2677 int state);
2678 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2679 struct ifla_vf_info *info);
2680 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2681 struct ifla_vf_stats *stats);
2682 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2683 int type);
2684
2685 int ib_query_pkey(struct ib_device *device,
2686 u8 port_num, u16 index, u16 *pkey);
2687
2688 int ib_modify_device(struct ib_device *device,
2689 int device_modify_mask,
2690 struct ib_device_modify *device_modify);
2691
2692 int ib_modify_port(struct ib_device *device,
2693 u8 port_num, int port_modify_mask,
2694 struct ib_port_modify *port_modify);
2695
2696 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2697 enum ib_gid_type gid_type, struct net_device *ndev,
2698 u8 *port_num, u16 *index);
2699
2700 int ib_find_pkey(struct ib_device *device,
2701 u8 port_num, u16 pkey, u16 *index);
2702
2703 enum ib_pd_flags {
2704 /*
2705 * Create a memory registration for all memory in the system and place
2706 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2707 * ULPs to avoid the overhead of dynamic MRs.
2708 *
2709 * This flag is generally considered unsafe and must only be used in
2710 * extremly trusted environments. Every use of it will log a warning
2711 * in the kernel log.
2712 */
2713 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2714 };
2715
2716 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2717 const char *caller);
2718 #define ib_alloc_pd(device, flags) \
2719 __ib_alloc_pd((device), (flags), __func__)
2720 void ib_dealloc_pd(struct ib_pd *pd);
2721
2722 /**
2723 * rdma_create_ah - Creates an address handle for the given address vector.
2724 * @pd: The protection domain associated with the address handle.
2725 * @ah_attr: The attributes of the address vector.
2726 *
2727 * The address handle is used to reference a local or global destination
2728 * in all UD QP post sends.
2729 */
2730 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2731
2732 /**
2733 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2734 * work completion.
2735 * @hdr: the L3 header to parse
2736 * @net_type: type of header to parse
2737 * @sgid: place to store source gid
2738 * @dgid: place to store destination gid
2739 */
2740 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2741 enum rdma_network_type net_type,
2742 union ib_gid *sgid, union ib_gid *dgid);
2743
2744 /**
2745 * ib_get_rdma_header_version - Get the header version
2746 * @hdr: the L3 header to parse
2747 */
2748 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2749
2750 /**
2751 * ib_init_ah_from_wc - Initializes address handle attributes from a
2752 * work completion.
2753 * @device: Device on which the received message arrived.
2754 * @port_num: Port on which the received message arrived.
2755 * @wc: Work completion associated with the received message.
2756 * @grh: References the received global route header. This parameter is
2757 * ignored unless the work completion indicates that the GRH is valid.
2758 * @ah_attr: Returned attributes that can be used when creating an address
2759 * handle for replying to the message.
2760 */
2761 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2762 const struct ib_wc *wc, const struct ib_grh *grh,
2763 struct rdma_ah_attr *ah_attr);
2764
2765 /**
2766 * ib_create_ah_from_wc - Creates an address handle associated with the
2767 * sender of the specified work completion.
2768 * @pd: The protection domain associated with the address handle.
2769 * @wc: Work completion information associated with a received message.
2770 * @grh: References the received global route header. This parameter is
2771 * ignored unless the work completion indicates that the GRH is valid.
2772 * @port_num: The outbound port number to associate with the address.
2773 *
2774 * The address handle is used to reference a local or global destination
2775 * in all UD QP post sends.
2776 */
2777 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2778 const struct ib_grh *grh, u8 port_num);
2779
2780 /**
2781 * rdma_modify_ah - Modifies the address vector associated with an address
2782 * handle.
2783 * @ah: The address handle to modify.
2784 * @ah_attr: The new address vector attributes to associate with the
2785 * address handle.
2786 */
2787 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2788
2789 /**
2790 * ib_query_ah - Queries the address vector associated with an address
2791 * handle.
2792 * @ah: The address handle to query.
2793 * @ah_attr: The address vector attributes associated with the address
2794 * handle.
2795 */
2796 int ib_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2797
2798 /**
2799 * ib_destroy_ah - Destroys an address handle.
2800 * @ah: The address handle to destroy.
2801 */
2802 int ib_destroy_ah(struct ib_ah *ah);
2803
2804 /**
2805 * ib_create_srq - Creates a SRQ associated with the specified protection
2806 * domain.
2807 * @pd: The protection domain associated with the SRQ.
2808 * @srq_init_attr: A list of initial attributes required to create the
2809 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2810 * the actual capabilities of the created SRQ.
2811 *
2812 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2813 * requested size of the SRQ, and set to the actual values allocated
2814 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2815 * will always be at least as large as the requested values.
2816 */
2817 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2818 struct ib_srq_init_attr *srq_init_attr);
2819
2820 /**
2821 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2822 * @srq: The SRQ to modify.
2823 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2824 * the current values of selected SRQ attributes are returned.
2825 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2826 * are being modified.
2827 *
2828 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2829 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2830 * the number of receives queued drops below the limit.
2831 */
2832 int ib_modify_srq(struct ib_srq *srq,
2833 struct ib_srq_attr *srq_attr,
2834 enum ib_srq_attr_mask srq_attr_mask);
2835
2836 /**
2837 * ib_query_srq - Returns the attribute list and current values for the
2838 * specified SRQ.
2839 * @srq: The SRQ to query.
2840 * @srq_attr: The attributes of the specified SRQ.
2841 */
2842 int ib_query_srq(struct ib_srq *srq,
2843 struct ib_srq_attr *srq_attr);
2844
2845 /**
2846 * ib_destroy_srq - Destroys the specified SRQ.
2847 * @srq: The SRQ to destroy.
2848 */
2849 int ib_destroy_srq(struct ib_srq *srq);
2850
2851 /**
2852 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2853 * @srq: The SRQ to post the work request on.
2854 * @recv_wr: A list of work requests to post on the receive queue.
2855 * @bad_recv_wr: On an immediate failure, this parameter will reference
2856 * the work request that failed to be posted on the QP.
2857 */
2858 static inline int ib_post_srq_recv(struct ib_srq *srq,
2859 struct ib_recv_wr *recv_wr,
2860 struct ib_recv_wr **bad_recv_wr)
2861 {
2862 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2863 }
2864
2865 /**
2866 * ib_create_qp - Creates a QP associated with the specified protection
2867 * domain.
2868 * @pd: The protection domain associated with the QP.
2869 * @qp_init_attr: A list of initial attributes required to create the
2870 * QP. If QP creation succeeds, then the attributes are updated to
2871 * the actual capabilities of the created QP.
2872 */
2873 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2874 struct ib_qp_init_attr *qp_init_attr);
2875
2876 /**
2877 * ib_modify_qp - Modifies the attributes for the specified QP and then
2878 * transitions the QP to the given state.
2879 * @qp: The QP to modify.
2880 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2881 * the current values of selected QP attributes are returned.
2882 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2883 * are being modified.
2884 */
2885 int ib_modify_qp(struct ib_qp *qp,
2886 struct ib_qp_attr *qp_attr,
2887 int qp_attr_mask);
2888
2889 /**
2890 * ib_query_qp - Returns the attribute list and current values for the
2891 * specified QP.
2892 * @qp: The QP to query.
2893 * @qp_attr: The attributes of the specified QP.
2894 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2895 * @qp_init_attr: Additional attributes of the selected QP.
2896 *
2897 * The qp_attr_mask may be used to limit the query to gathering only the
2898 * selected attributes.
2899 */
2900 int ib_query_qp(struct ib_qp *qp,
2901 struct ib_qp_attr *qp_attr,
2902 int qp_attr_mask,
2903 struct ib_qp_init_attr *qp_init_attr);
2904
2905 /**
2906 * ib_destroy_qp - Destroys the specified QP.
2907 * @qp: The QP to destroy.
2908 */
2909 int ib_destroy_qp(struct ib_qp *qp);
2910
2911 /**
2912 * ib_open_qp - Obtain a reference to an existing sharable QP.
2913 * @xrcd - XRC domain
2914 * @qp_open_attr: Attributes identifying the QP to open.
2915 *
2916 * Returns a reference to a sharable QP.
2917 */
2918 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2919 struct ib_qp_open_attr *qp_open_attr);
2920
2921 /**
2922 * ib_close_qp - Release an external reference to a QP.
2923 * @qp: The QP handle to release
2924 *
2925 * The opened QP handle is released by the caller. The underlying
2926 * shared QP is not destroyed until all internal references are released.
2927 */
2928 int ib_close_qp(struct ib_qp *qp);
2929
2930 /**
2931 * ib_post_send - Posts a list of work requests to the send queue of
2932 * the specified QP.
2933 * @qp: The QP to post the work request on.
2934 * @send_wr: A list of work requests to post on the send queue.
2935 * @bad_send_wr: On an immediate failure, this parameter will reference
2936 * the work request that failed to be posted on the QP.
2937 *
2938 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2939 * error is returned, the QP state shall not be affected,
2940 * ib_post_send() will return an immediate error after queueing any
2941 * earlier work requests in the list.
2942 */
2943 static inline int ib_post_send(struct ib_qp *qp,
2944 struct ib_send_wr *send_wr,
2945 struct ib_send_wr **bad_send_wr)
2946 {
2947 return qp->device->post_send(qp, send_wr, bad_send_wr);
2948 }
2949
2950 /**
2951 * ib_post_recv - Posts a list of work requests to the receive queue of
2952 * the specified QP.
2953 * @qp: The QP to post the work request on.
2954 * @recv_wr: A list of work requests to post on the receive queue.
2955 * @bad_recv_wr: On an immediate failure, this parameter will reference
2956 * the work request that failed to be posted on the QP.
2957 */
2958 static inline int ib_post_recv(struct ib_qp *qp,
2959 struct ib_recv_wr *recv_wr,
2960 struct ib_recv_wr **bad_recv_wr)
2961 {
2962 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2963 }
2964
2965 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2966 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2967 void ib_free_cq(struct ib_cq *cq);
2968 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2969
2970 /**
2971 * ib_create_cq - Creates a CQ on the specified device.
2972 * @device: The device on which to create the CQ.
2973 * @comp_handler: A user-specified callback that is invoked when a
2974 * completion event occurs on the CQ.
2975 * @event_handler: A user-specified callback that is invoked when an
2976 * asynchronous event not associated with a completion occurs on the CQ.
2977 * @cq_context: Context associated with the CQ returned to the user via
2978 * the associated completion and event handlers.
2979 * @cq_attr: The attributes the CQ should be created upon.
2980 *
2981 * Users can examine the cq structure to determine the actual CQ size.
2982 */
2983 struct ib_cq *ib_create_cq(struct ib_device *device,
2984 ib_comp_handler comp_handler,
2985 void (*event_handler)(struct ib_event *, void *),
2986 void *cq_context,
2987 const struct ib_cq_init_attr *cq_attr);
2988
2989 /**
2990 * ib_resize_cq - Modifies the capacity of the CQ.
2991 * @cq: The CQ to resize.
2992 * @cqe: The minimum size of the CQ.
2993 *
2994 * Users can examine the cq structure to determine the actual CQ size.
2995 */
2996 int ib_resize_cq(struct ib_cq *cq, int cqe);
2997
2998 /**
2999 * ib_modify_cq - Modifies moderation params of the CQ
3000 * @cq: The CQ to modify.
3001 * @cq_count: number of CQEs that will trigger an event
3002 * @cq_period: max period of time in usec before triggering an event
3003 *
3004 */
3005 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3006
3007 /**
3008 * ib_destroy_cq - Destroys the specified CQ.
3009 * @cq: The CQ to destroy.
3010 */
3011 int ib_destroy_cq(struct ib_cq *cq);
3012
3013 /**
3014 * ib_poll_cq - poll a CQ for completion(s)
3015 * @cq:the CQ being polled
3016 * @num_entries:maximum number of completions to return
3017 * @wc:array of at least @num_entries &struct ib_wc where completions
3018 * will be returned
3019 *
3020 * Poll a CQ for (possibly multiple) completions. If the return value
3021 * is < 0, an error occurred. If the return value is >= 0, it is the
3022 * number of completions returned. If the return value is
3023 * non-negative and < num_entries, then the CQ was emptied.
3024 */
3025 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3026 struct ib_wc *wc)
3027 {
3028 return cq->device->poll_cq(cq, num_entries, wc);
3029 }
3030
3031 /**
3032 * ib_peek_cq - Returns the number of unreaped completions currently
3033 * on the specified CQ.
3034 * @cq: The CQ to peek.
3035 * @wc_cnt: A minimum number of unreaped completions to check for.
3036 *
3037 * If the number of unreaped completions is greater than or equal to wc_cnt,
3038 * this function returns wc_cnt, otherwise, it returns the actual number of
3039 * unreaped completions.
3040 */
3041 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3042
3043 /**
3044 * ib_req_notify_cq - Request completion notification on a CQ.
3045 * @cq: The CQ to generate an event for.
3046 * @flags:
3047 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3048 * to request an event on the next solicited event or next work
3049 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3050 * may also be |ed in to request a hint about missed events, as
3051 * described below.
3052 *
3053 * Return Value:
3054 * < 0 means an error occurred while requesting notification
3055 * == 0 means notification was requested successfully, and if
3056 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3057 * were missed and it is safe to wait for another event. In
3058 * this case is it guaranteed that any work completions added
3059 * to the CQ since the last CQ poll will trigger a completion
3060 * notification event.
3061 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3062 * in. It means that the consumer must poll the CQ again to
3063 * make sure it is empty to avoid missing an event because of a
3064 * race between requesting notification and an entry being
3065 * added to the CQ. This return value means it is possible
3066 * (but not guaranteed) that a work completion has been added
3067 * to the CQ since the last poll without triggering a
3068 * completion notification event.
3069 */
3070 static inline int ib_req_notify_cq(struct ib_cq *cq,
3071 enum ib_cq_notify_flags flags)
3072 {
3073 return cq->device->req_notify_cq(cq, flags);
3074 }
3075
3076 /**
3077 * ib_req_ncomp_notif - Request completion notification when there are
3078 * at least the specified number of unreaped completions on the CQ.
3079 * @cq: The CQ to generate an event for.
3080 * @wc_cnt: The number of unreaped completions that should be on the
3081 * CQ before an event is generated.
3082 */
3083 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3084 {
3085 return cq->device->req_ncomp_notif ?
3086 cq->device->req_ncomp_notif(cq, wc_cnt) :
3087 -ENOSYS;
3088 }
3089
3090 /**
3091 * ib_dma_mapping_error - check a DMA addr for error
3092 * @dev: The device for which the dma_addr was created
3093 * @dma_addr: The DMA address to check
3094 */
3095 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3096 {
3097 return dma_mapping_error(dev->dma_device, dma_addr);
3098 }
3099
3100 /**
3101 * ib_dma_map_single - Map a kernel virtual address to DMA address
3102 * @dev: The device for which the dma_addr is to be created
3103 * @cpu_addr: The kernel virtual address
3104 * @size: The size of the region in bytes
3105 * @direction: The direction of the DMA
3106 */
3107 static inline u64 ib_dma_map_single(struct ib_device *dev,
3108 void *cpu_addr, size_t size,
3109 enum dma_data_direction direction)
3110 {
3111 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3112 }
3113
3114 /**
3115 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3116 * @dev: The device for which the DMA address was created
3117 * @addr: The DMA address
3118 * @size: The size of the region in bytes
3119 * @direction: The direction of the DMA
3120 */
3121 static inline void ib_dma_unmap_single(struct ib_device *dev,
3122 u64 addr, size_t size,
3123 enum dma_data_direction direction)
3124 {
3125 dma_unmap_single(dev->dma_device, addr, size, direction);
3126 }
3127
3128 /**
3129 * ib_dma_map_page - Map a physical page to DMA address
3130 * @dev: The device for which the dma_addr is to be created
3131 * @page: The page to be mapped
3132 * @offset: The offset within the page
3133 * @size: The size of the region in bytes
3134 * @direction: The direction of the DMA
3135 */
3136 static inline u64 ib_dma_map_page(struct ib_device *dev,
3137 struct page *page,
3138 unsigned long offset,
3139 size_t size,
3140 enum dma_data_direction direction)
3141 {
3142 return dma_map_page(dev->dma_device, page, offset, size, direction);
3143 }
3144
3145 /**
3146 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3147 * @dev: The device for which the DMA address was created
3148 * @addr: The DMA address
3149 * @size: The size of the region in bytes
3150 * @direction: The direction of the DMA
3151 */
3152 static inline void ib_dma_unmap_page(struct ib_device *dev,
3153 u64 addr, size_t size,
3154 enum dma_data_direction direction)
3155 {
3156 dma_unmap_page(dev->dma_device, addr, size, direction);
3157 }
3158
3159 /**
3160 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3161 * @dev: The device for which the DMA addresses are to be created
3162 * @sg: The array of scatter/gather entries
3163 * @nents: The number of scatter/gather entries
3164 * @direction: The direction of the DMA
3165 */
3166 static inline int ib_dma_map_sg(struct ib_device *dev,
3167 struct scatterlist *sg, int nents,
3168 enum dma_data_direction direction)
3169 {
3170 return dma_map_sg(dev->dma_device, sg, nents, direction);
3171 }
3172
3173 /**
3174 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3175 * @dev: The device for which the DMA addresses were created
3176 * @sg: The array of scatter/gather entries
3177 * @nents: The number of scatter/gather entries
3178 * @direction: The direction of the DMA
3179 */
3180 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3181 struct scatterlist *sg, int nents,
3182 enum dma_data_direction direction)
3183 {
3184 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3185 }
3186
3187 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3188 struct scatterlist *sg, int nents,
3189 enum dma_data_direction direction,
3190 unsigned long dma_attrs)
3191 {
3192 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3193 dma_attrs);
3194 }
3195
3196 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3197 struct scatterlist *sg, int nents,
3198 enum dma_data_direction direction,
3199 unsigned long dma_attrs)
3200 {
3201 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3202 }
3203 /**
3204 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3205 * @dev: The device for which the DMA addresses were created
3206 * @sg: The scatter/gather entry
3207 *
3208 * Note: this function is obsolete. To do: change all occurrences of
3209 * ib_sg_dma_address() into sg_dma_address().
3210 */
3211 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3212 struct scatterlist *sg)
3213 {
3214 return sg_dma_address(sg);
3215 }
3216
3217 /**
3218 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3219 * @dev: The device for which the DMA addresses were created
3220 * @sg: The scatter/gather entry
3221 *
3222 * Note: this function is obsolete. To do: change all occurrences of
3223 * ib_sg_dma_len() into sg_dma_len().
3224 */
3225 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3226 struct scatterlist *sg)
3227 {
3228 return sg_dma_len(sg);
3229 }
3230
3231 /**
3232 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3233 * @dev: The device for which the DMA address was created
3234 * @addr: The DMA address
3235 * @size: The size of the region in bytes
3236 * @dir: The direction of the DMA
3237 */
3238 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3239 u64 addr,
3240 size_t size,
3241 enum dma_data_direction dir)
3242 {
3243 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3244 }
3245
3246 /**
3247 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3248 * @dev: The device for which the DMA address was created
3249 * @addr: The DMA address
3250 * @size: The size of the region in bytes
3251 * @dir: The direction of the DMA
3252 */
3253 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3254 u64 addr,
3255 size_t size,
3256 enum dma_data_direction dir)
3257 {
3258 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3259 }
3260
3261 /**
3262 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3263 * @dev: The device for which the DMA address is requested
3264 * @size: The size of the region to allocate in bytes
3265 * @dma_handle: A pointer for returning the DMA address of the region
3266 * @flag: memory allocator flags
3267 */
3268 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3269 size_t size,
3270 dma_addr_t *dma_handle,
3271 gfp_t flag)
3272 {
3273 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3274 }
3275
3276 /**
3277 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3278 * @dev: The device for which the DMA addresses were allocated
3279 * @size: The size of the region
3280 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3281 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3282 */
3283 static inline void ib_dma_free_coherent(struct ib_device *dev,
3284 size_t size, void *cpu_addr,
3285 dma_addr_t dma_handle)
3286 {
3287 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3288 }
3289
3290 /**
3291 * ib_dereg_mr - Deregisters a memory region and removes it from the
3292 * HCA translation table.
3293 * @mr: The memory region to deregister.
3294 *
3295 * This function can fail, if the memory region has memory windows bound to it.
3296 */
3297 int ib_dereg_mr(struct ib_mr *mr);
3298
3299 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3300 enum ib_mr_type mr_type,
3301 u32 max_num_sg);
3302
3303 /**
3304 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3305 * R_Key and L_Key.
3306 * @mr - struct ib_mr pointer to be updated.
3307 * @newkey - new key to be used.
3308 */
3309 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3310 {
3311 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3312 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3313 }
3314
3315 /**
3316 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3317 * for calculating a new rkey for type 2 memory windows.
3318 * @rkey - the rkey to increment.
3319 */
3320 static inline u32 ib_inc_rkey(u32 rkey)
3321 {
3322 const u32 mask = 0x000000ff;
3323 return ((rkey + 1) & mask) | (rkey & ~mask);
3324 }
3325
3326 /**
3327 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3328 * @pd: The protection domain associated with the unmapped region.
3329 * @mr_access_flags: Specifies the memory access rights.
3330 * @fmr_attr: Attributes of the unmapped region.
3331 *
3332 * A fast memory region must be mapped before it can be used as part of
3333 * a work request.
3334 */
3335 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3336 int mr_access_flags,
3337 struct ib_fmr_attr *fmr_attr);
3338
3339 /**
3340 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3341 * @fmr: The fast memory region to associate with the pages.
3342 * @page_list: An array of physical pages to map to the fast memory region.
3343 * @list_len: The number of pages in page_list.
3344 * @iova: The I/O virtual address to use with the mapped region.
3345 */
3346 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3347 u64 *page_list, int list_len,
3348 u64 iova)
3349 {
3350 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3351 }
3352
3353 /**
3354 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3355 * @fmr_list: A linked list of fast memory regions to unmap.
3356 */
3357 int ib_unmap_fmr(struct list_head *fmr_list);
3358
3359 /**
3360 * ib_dealloc_fmr - Deallocates a fast memory region.
3361 * @fmr: The fast memory region to deallocate.
3362 */
3363 int ib_dealloc_fmr(struct ib_fmr *fmr);
3364
3365 /**
3366 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3367 * @qp: QP to attach to the multicast group. The QP must be type
3368 * IB_QPT_UD.
3369 * @gid: Multicast group GID.
3370 * @lid: Multicast group LID in host byte order.
3371 *
3372 * In order to send and receive multicast packets, subnet
3373 * administration must have created the multicast group and configured
3374 * the fabric appropriately. The port associated with the specified
3375 * QP must also be a member of the multicast group.
3376 */
3377 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3378
3379 /**
3380 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3381 * @qp: QP to detach from the multicast group.
3382 * @gid: Multicast group GID.
3383 * @lid: Multicast group LID in host byte order.
3384 */
3385 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3386
3387 /**
3388 * ib_alloc_xrcd - Allocates an XRC domain.
3389 * @device: The device on which to allocate the XRC domain.
3390 */
3391 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3392
3393 /**
3394 * ib_dealloc_xrcd - Deallocates an XRC domain.
3395 * @xrcd: The XRC domain to deallocate.
3396 */
3397 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3398
3399 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3400 struct ib_flow_attr *flow_attr, int domain);
3401 int ib_destroy_flow(struct ib_flow *flow_id);
3402
3403 static inline int ib_check_mr_access(int flags)
3404 {
3405 /*
3406 * Local write permission is required if remote write or
3407 * remote atomic permission is also requested.
3408 */
3409 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3410 !(flags & IB_ACCESS_LOCAL_WRITE))
3411 return -EINVAL;
3412
3413 return 0;
3414 }
3415
3416 /**
3417 * ib_check_mr_status: lightweight check of MR status.
3418 * This routine may provide status checks on a selected
3419 * ib_mr. first use is for signature status check.
3420 *
3421 * @mr: A memory region.
3422 * @check_mask: Bitmask of which checks to perform from
3423 * ib_mr_status_check enumeration.
3424 * @mr_status: The container of relevant status checks.
3425 * failed checks will be indicated in the status bitmask
3426 * and the relevant info shall be in the error item.
3427 */
3428 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3429 struct ib_mr_status *mr_status);
3430
3431 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3432 u16 pkey, const union ib_gid *gid,
3433 const struct sockaddr *addr);
3434 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3435 struct ib_wq_init_attr *init_attr);
3436 int ib_destroy_wq(struct ib_wq *wq);
3437 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3438 u32 wq_attr_mask);
3439 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3440 struct ib_rwq_ind_table_init_attr*
3441 wq_ind_table_init_attr);
3442 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3443
3444 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3445 unsigned int *sg_offset, unsigned int page_size);
3446
3447 static inline int
3448 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3449 unsigned int *sg_offset, unsigned int page_size)
3450 {
3451 int n;
3452
3453 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3454 mr->iova = 0;
3455
3456 return n;
3457 }
3458
3459 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3460 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3461
3462 void ib_drain_rq(struct ib_qp *qp);
3463 void ib_drain_sq(struct ib_qp *qp);
3464 void ib_drain_qp(struct ib_qp *qp);
3465
3466 int ib_resolve_eth_dmac(struct ib_device *device,
3467 struct rdma_ah_attr *ah_attr);
3468 #endif /* IB_VERBS_H */