]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/rdma/ib_verbs.h
Merge branch 'for-upstream/hdlcd' of git://linux-arm.org/linux-ld into drm-fixes
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66
67 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
69 extern struct workqueue_struct *ib_wq;
70 extern struct workqueue_struct *ib_comp_wq;
71
72 union ib_gid {
73 u8 raw[16];
74 struct {
75 __be64 subnet_prefix;
76 __be64 interface_id;
77 } global;
78 };
79
80 extern union ib_gid zgid;
81
82 enum ib_gid_type {
83 /* If link layer is Ethernet, this is RoCE V1 */
84 IB_GID_TYPE_IB = 0,
85 IB_GID_TYPE_ROCE = 0,
86 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
87 IB_GID_TYPE_SIZE
88 };
89
90 #define ROCE_V2_UDP_DPORT 4791
91 struct ib_gid_attr {
92 enum ib_gid_type gid_type;
93 struct net_device *ndev;
94 };
95
96 enum rdma_node_type {
97 /* IB values map to NodeInfo:NodeType. */
98 RDMA_NODE_IB_CA = 1,
99 RDMA_NODE_IB_SWITCH,
100 RDMA_NODE_IB_ROUTER,
101 RDMA_NODE_RNIC,
102 RDMA_NODE_USNIC,
103 RDMA_NODE_USNIC_UDP,
104 };
105
106 enum {
107 /* set the local administered indication */
108 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
109 };
110
111 enum rdma_transport_type {
112 RDMA_TRANSPORT_IB,
113 RDMA_TRANSPORT_IWARP,
114 RDMA_TRANSPORT_USNIC,
115 RDMA_TRANSPORT_USNIC_UDP
116 };
117
118 enum rdma_protocol_type {
119 RDMA_PROTOCOL_IB,
120 RDMA_PROTOCOL_IBOE,
121 RDMA_PROTOCOL_IWARP,
122 RDMA_PROTOCOL_USNIC_UDP
123 };
124
125 __attribute_const__ enum rdma_transport_type
126 rdma_node_get_transport(enum rdma_node_type node_type);
127
128 enum rdma_network_type {
129 RDMA_NETWORK_IB,
130 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
131 RDMA_NETWORK_IPV4,
132 RDMA_NETWORK_IPV6
133 };
134
135 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
136 {
137 if (network_type == RDMA_NETWORK_IPV4 ||
138 network_type == RDMA_NETWORK_IPV6)
139 return IB_GID_TYPE_ROCE_UDP_ENCAP;
140
141 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
142 return IB_GID_TYPE_IB;
143 }
144
145 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
146 union ib_gid *gid)
147 {
148 if (gid_type == IB_GID_TYPE_IB)
149 return RDMA_NETWORK_IB;
150
151 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
152 return RDMA_NETWORK_IPV4;
153 else
154 return RDMA_NETWORK_IPV6;
155 }
156
157 enum rdma_link_layer {
158 IB_LINK_LAYER_UNSPECIFIED,
159 IB_LINK_LAYER_INFINIBAND,
160 IB_LINK_LAYER_ETHERNET,
161 };
162
163 enum ib_device_cap_flags {
164 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
165 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
166 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
167 IB_DEVICE_RAW_MULTI = (1 << 3),
168 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
169 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
170 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
171 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
172 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
173 /* Not in use, former INIT_TYPE = (1 << 9),*/
174 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
175 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
176 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
177 IB_DEVICE_SRQ_RESIZE = (1 << 13),
178 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
179
180 /*
181 * This device supports a per-device lkey or stag that can be
182 * used without performing a memory registration for the local
183 * memory. Note that ULPs should never check this flag, but
184 * instead of use the local_dma_lkey flag in the ib_pd structure,
185 * which will always contain a usable lkey.
186 */
187 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
188 /* Reserved, old SEND_W_INV = (1 << 16),*/
189 IB_DEVICE_MEM_WINDOW = (1 << 17),
190 /*
191 * Devices should set IB_DEVICE_UD_IP_SUM if they support
192 * insertion of UDP and TCP checksum on outgoing UD IPoIB
193 * messages and can verify the validity of checksum for
194 * incoming messages. Setting this flag implies that the
195 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
196 */
197 IB_DEVICE_UD_IP_CSUM = (1 << 18),
198 IB_DEVICE_UD_TSO = (1 << 19),
199 IB_DEVICE_XRC = (1 << 20),
200
201 /*
202 * This device supports the IB "base memory management extension",
203 * which includes support for fast registrations (IB_WR_REG_MR,
204 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
205 * also be set by any iWarp device which must support FRs to comply
206 * to the iWarp verbs spec. iWarp devices also support the
207 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
208 * stag.
209 */
210 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
211 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
212 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
213 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
214 IB_DEVICE_RC_IP_CSUM = (1 << 25),
215 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
216 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
217 /*
218 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
219 * support execution of WQEs that involve synchronization
220 * of I/O operations with single completion queue managed
221 * by hardware.
222 */
223 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
224 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
225 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
226 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
227 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
228 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
229 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
231 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
232 /* The device supports padding incoming writes to cacheline. */
233 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
234 };
235
236 enum ib_signature_prot_cap {
237 IB_PROT_T10DIF_TYPE_1 = 1,
238 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
239 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
240 };
241
242 enum ib_signature_guard_cap {
243 IB_GUARD_T10DIF_CRC = 1,
244 IB_GUARD_T10DIF_CSUM = 1 << 1,
245 };
246
247 enum ib_atomic_cap {
248 IB_ATOMIC_NONE,
249 IB_ATOMIC_HCA,
250 IB_ATOMIC_GLOB
251 };
252
253 enum ib_odp_general_cap_bits {
254 IB_ODP_SUPPORT = 1 << 0,
255 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
256 };
257
258 enum ib_odp_transport_cap_bits {
259 IB_ODP_SUPPORT_SEND = 1 << 0,
260 IB_ODP_SUPPORT_RECV = 1 << 1,
261 IB_ODP_SUPPORT_WRITE = 1 << 2,
262 IB_ODP_SUPPORT_READ = 1 << 3,
263 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
264 };
265
266 struct ib_odp_caps {
267 uint64_t general_caps;
268 struct {
269 uint32_t rc_odp_caps;
270 uint32_t uc_odp_caps;
271 uint32_t ud_odp_caps;
272 } per_transport_caps;
273 };
274
275 struct ib_rss_caps {
276 /* Corresponding bit will be set if qp type from
277 * 'enum ib_qp_type' is supported, e.g.
278 * supported_qpts |= 1 << IB_QPT_UD
279 */
280 u32 supported_qpts;
281 u32 max_rwq_indirection_tables;
282 u32 max_rwq_indirection_table_size;
283 };
284
285 enum ib_tm_cap_flags {
286 /* Support tag matching on RC transport */
287 IB_TM_CAP_RC = 1 << 0,
288 };
289
290 struct ib_tm_caps {
291 /* Max size of RNDV header */
292 u32 max_rndv_hdr_size;
293 /* Max number of entries in tag matching list */
294 u32 max_num_tags;
295 /* From enum ib_tm_cap_flags */
296 u32 flags;
297 /* Max number of outstanding list operations */
298 u32 max_ops;
299 /* Max number of SGE in tag matching entry */
300 u32 max_sge;
301 };
302
303 enum ib_cq_creation_flags {
304 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
305 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
306 };
307
308 struct ib_cq_init_attr {
309 unsigned int cqe;
310 int comp_vector;
311 u32 flags;
312 };
313
314 enum ib_cq_attr_mask {
315 IB_CQ_MODERATE = 1 << 0,
316 };
317
318 struct ib_cq_caps {
319 u16 max_cq_moderation_count;
320 u16 max_cq_moderation_period;
321 };
322
323 struct ib_device_attr {
324 u64 fw_ver;
325 __be64 sys_image_guid;
326 u64 max_mr_size;
327 u64 page_size_cap;
328 u32 vendor_id;
329 u32 vendor_part_id;
330 u32 hw_ver;
331 int max_qp;
332 int max_qp_wr;
333 u64 device_cap_flags;
334 int max_sge;
335 int max_sge_rd;
336 int max_cq;
337 int max_cqe;
338 int max_mr;
339 int max_pd;
340 int max_qp_rd_atom;
341 int max_ee_rd_atom;
342 int max_res_rd_atom;
343 int max_qp_init_rd_atom;
344 int max_ee_init_rd_atom;
345 enum ib_atomic_cap atomic_cap;
346 enum ib_atomic_cap masked_atomic_cap;
347 int max_ee;
348 int max_rdd;
349 int max_mw;
350 int max_raw_ipv6_qp;
351 int max_raw_ethy_qp;
352 int max_mcast_grp;
353 int max_mcast_qp_attach;
354 int max_total_mcast_qp_attach;
355 int max_ah;
356 int max_fmr;
357 int max_map_per_fmr;
358 int max_srq;
359 int max_srq_wr;
360 int max_srq_sge;
361 unsigned int max_fast_reg_page_list_len;
362 u16 max_pkeys;
363 u8 local_ca_ack_delay;
364 int sig_prot_cap;
365 int sig_guard_cap;
366 struct ib_odp_caps odp_caps;
367 uint64_t timestamp_mask;
368 uint64_t hca_core_clock; /* in KHZ */
369 struct ib_rss_caps rss_caps;
370 u32 max_wq_type_rq;
371 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
372 struct ib_tm_caps tm_caps;
373 struct ib_cq_caps cq_caps;
374 };
375
376 enum ib_mtu {
377 IB_MTU_256 = 1,
378 IB_MTU_512 = 2,
379 IB_MTU_1024 = 3,
380 IB_MTU_2048 = 4,
381 IB_MTU_4096 = 5
382 };
383
384 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
385 {
386 switch (mtu) {
387 case IB_MTU_256: return 256;
388 case IB_MTU_512: return 512;
389 case IB_MTU_1024: return 1024;
390 case IB_MTU_2048: return 2048;
391 case IB_MTU_4096: return 4096;
392 default: return -1;
393 }
394 }
395
396 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
397 {
398 if (mtu >= 4096)
399 return IB_MTU_4096;
400 else if (mtu >= 2048)
401 return IB_MTU_2048;
402 else if (mtu >= 1024)
403 return IB_MTU_1024;
404 else if (mtu >= 512)
405 return IB_MTU_512;
406 else
407 return IB_MTU_256;
408 }
409
410 enum ib_port_state {
411 IB_PORT_NOP = 0,
412 IB_PORT_DOWN = 1,
413 IB_PORT_INIT = 2,
414 IB_PORT_ARMED = 3,
415 IB_PORT_ACTIVE = 4,
416 IB_PORT_ACTIVE_DEFER = 5
417 };
418
419 enum ib_port_cap_flags {
420 IB_PORT_SM = 1 << 1,
421 IB_PORT_NOTICE_SUP = 1 << 2,
422 IB_PORT_TRAP_SUP = 1 << 3,
423 IB_PORT_OPT_IPD_SUP = 1 << 4,
424 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
425 IB_PORT_SL_MAP_SUP = 1 << 6,
426 IB_PORT_MKEY_NVRAM = 1 << 7,
427 IB_PORT_PKEY_NVRAM = 1 << 8,
428 IB_PORT_LED_INFO_SUP = 1 << 9,
429 IB_PORT_SM_DISABLED = 1 << 10,
430 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
431 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
432 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
433 IB_PORT_CM_SUP = 1 << 16,
434 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
435 IB_PORT_REINIT_SUP = 1 << 18,
436 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
437 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
438 IB_PORT_DR_NOTICE_SUP = 1 << 21,
439 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
440 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
441 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
442 IB_PORT_CLIENT_REG_SUP = 1 << 25,
443 IB_PORT_IP_BASED_GIDS = 1 << 26,
444 };
445
446 enum ib_port_width {
447 IB_WIDTH_1X = 1,
448 IB_WIDTH_4X = 2,
449 IB_WIDTH_8X = 4,
450 IB_WIDTH_12X = 8
451 };
452
453 static inline int ib_width_enum_to_int(enum ib_port_width width)
454 {
455 switch (width) {
456 case IB_WIDTH_1X: return 1;
457 case IB_WIDTH_4X: return 4;
458 case IB_WIDTH_8X: return 8;
459 case IB_WIDTH_12X: return 12;
460 default: return -1;
461 }
462 }
463
464 enum ib_port_speed {
465 IB_SPEED_SDR = 1,
466 IB_SPEED_DDR = 2,
467 IB_SPEED_QDR = 4,
468 IB_SPEED_FDR10 = 8,
469 IB_SPEED_FDR = 16,
470 IB_SPEED_EDR = 32,
471 IB_SPEED_HDR = 64
472 };
473
474 /**
475 * struct rdma_hw_stats
476 * @timestamp - Used by the core code to track when the last update was
477 * @lifespan - Used by the core code to determine how old the counters
478 * should be before being updated again. Stored in jiffies, defaults
479 * to 10 milliseconds, drivers can override the default be specifying
480 * their own value during their allocation routine.
481 * @name - Array of pointers to static names used for the counters in
482 * directory.
483 * @num_counters - How many hardware counters there are. If name is
484 * shorter than this number, a kernel oops will result. Driver authors
485 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
486 * in their code to prevent this.
487 * @value - Array of u64 counters that are accessed by the sysfs code and
488 * filled in by the drivers get_stats routine
489 */
490 struct rdma_hw_stats {
491 unsigned long timestamp;
492 unsigned long lifespan;
493 const char * const *names;
494 int num_counters;
495 u64 value[];
496 };
497
498 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
499 /**
500 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
501 * for drivers.
502 * @names - Array of static const char *
503 * @num_counters - How many elements in array
504 * @lifespan - How many milliseconds between updates
505 */
506 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
507 const char * const *names, int num_counters,
508 unsigned long lifespan)
509 {
510 struct rdma_hw_stats *stats;
511
512 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
513 GFP_KERNEL);
514 if (!stats)
515 return NULL;
516 stats->names = names;
517 stats->num_counters = num_counters;
518 stats->lifespan = msecs_to_jiffies(lifespan);
519
520 return stats;
521 }
522
523
524 /* Define bits for the various functionality this port needs to be supported by
525 * the core.
526 */
527 /* Management 0x00000FFF */
528 #define RDMA_CORE_CAP_IB_MAD 0x00000001
529 #define RDMA_CORE_CAP_IB_SMI 0x00000002
530 #define RDMA_CORE_CAP_IB_CM 0x00000004
531 #define RDMA_CORE_CAP_IW_CM 0x00000008
532 #define RDMA_CORE_CAP_IB_SA 0x00000010
533 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
534
535 /* Address format 0x000FF000 */
536 #define RDMA_CORE_CAP_AF_IB 0x00001000
537 #define RDMA_CORE_CAP_ETH_AH 0x00002000
538 #define RDMA_CORE_CAP_OPA_AH 0x00004000
539
540 /* Protocol 0xFFF00000 */
541 #define RDMA_CORE_CAP_PROT_IB 0x00100000
542 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
543 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
544 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
545 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
546 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
547
548 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
549 | RDMA_CORE_CAP_IB_MAD \
550 | RDMA_CORE_CAP_IB_SMI \
551 | RDMA_CORE_CAP_IB_CM \
552 | RDMA_CORE_CAP_IB_SA \
553 | RDMA_CORE_CAP_AF_IB)
554 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
555 | RDMA_CORE_CAP_IB_MAD \
556 | RDMA_CORE_CAP_IB_CM \
557 | RDMA_CORE_CAP_AF_IB \
558 | RDMA_CORE_CAP_ETH_AH)
559 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
560 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
561 | RDMA_CORE_CAP_IB_MAD \
562 | RDMA_CORE_CAP_IB_CM \
563 | RDMA_CORE_CAP_AF_IB \
564 | RDMA_CORE_CAP_ETH_AH)
565 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
566 | RDMA_CORE_CAP_IW_CM)
567 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
568 | RDMA_CORE_CAP_OPA_MAD)
569
570 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
571
572 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
573
574 struct ib_port_attr {
575 u64 subnet_prefix;
576 enum ib_port_state state;
577 enum ib_mtu max_mtu;
578 enum ib_mtu active_mtu;
579 int gid_tbl_len;
580 u32 port_cap_flags;
581 u32 max_msg_sz;
582 u32 bad_pkey_cntr;
583 u32 qkey_viol_cntr;
584 u16 pkey_tbl_len;
585 u32 sm_lid;
586 u32 lid;
587 u8 lmc;
588 u8 max_vl_num;
589 u8 sm_sl;
590 u8 subnet_timeout;
591 u8 init_type_reply;
592 u8 active_width;
593 u8 active_speed;
594 u8 phys_state;
595 bool grh_required;
596 };
597
598 enum ib_device_modify_flags {
599 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
600 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
601 };
602
603 #define IB_DEVICE_NODE_DESC_MAX 64
604
605 struct ib_device_modify {
606 u64 sys_image_guid;
607 char node_desc[IB_DEVICE_NODE_DESC_MAX];
608 };
609
610 enum ib_port_modify_flags {
611 IB_PORT_SHUTDOWN = 1,
612 IB_PORT_INIT_TYPE = (1<<2),
613 IB_PORT_RESET_QKEY_CNTR = (1<<3),
614 IB_PORT_OPA_MASK_CHG = (1<<4)
615 };
616
617 struct ib_port_modify {
618 u32 set_port_cap_mask;
619 u32 clr_port_cap_mask;
620 u8 init_type;
621 };
622
623 enum ib_event_type {
624 IB_EVENT_CQ_ERR,
625 IB_EVENT_QP_FATAL,
626 IB_EVENT_QP_REQ_ERR,
627 IB_EVENT_QP_ACCESS_ERR,
628 IB_EVENT_COMM_EST,
629 IB_EVENT_SQ_DRAINED,
630 IB_EVENT_PATH_MIG,
631 IB_EVENT_PATH_MIG_ERR,
632 IB_EVENT_DEVICE_FATAL,
633 IB_EVENT_PORT_ACTIVE,
634 IB_EVENT_PORT_ERR,
635 IB_EVENT_LID_CHANGE,
636 IB_EVENT_PKEY_CHANGE,
637 IB_EVENT_SM_CHANGE,
638 IB_EVENT_SRQ_ERR,
639 IB_EVENT_SRQ_LIMIT_REACHED,
640 IB_EVENT_QP_LAST_WQE_REACHED,
641 IB_EVENT_CLIENT_REREGISTER,
642 IB_EVENT_GID_CHANGE,
643 IB_EVENT_WQ_FATAL,
644 };
645
646 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
647
648 struct ib_event {
649 struct ib_device *device;
650 union {
651 struct ib_cq *cq;
652 struct ib_qp *qp;
653 struct ib_srq *srq;
654 struct ib_wq *wq;
655 u8 port_num;
656 } element;
657 enum ib_event_type event;
658 };
659
660 struct ib_event_handler {
661 struct ib_device *device;
662 void (*handler)(struct ib_event_handler *, struct ib_event *);
663 struct list_head list;
664 };
665
666 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
667 do { \
668 (_ptr)->device = _device; \
669 (_ptr)->handler = _handler; \
670 INIT_LIST_HEAD(&(_ptr)->list); \
671 } while (0)
672
673 struct ib_global_route {
674 union ib_gid dgid;
675 u32 flow_label;
676 u8 sgid_index;
677 u8 hop_limit;
678 u8 traffic_class;
679 };
680
681 struct ib_grh {
682 __be32 version_tclass_flow;
683 __be16 paylen;
684 u8 next_hdr;
685 u8 hop_limit;
686 union ib_gid sgid;
687 union ib_gid dgid;
688 };
689
690 union rdma_network_hdr {
691 struct ib_grh ibgrh;
692 struct {
693 /* The IB spec states that if it's IPv4, the header
694 * is located in the last 20 bytes of the header.
695 */
696 u8 reserved[20];
697 struct iphdr roce4grh;
698 };
699 };
700
701 #define IB_QPN_MASK 0xFFFFFF
702
703 enum {
704 IB_MULTICAST_QPN = 0xffffff
705 };
706
707 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
708 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
709
710 enum ib_ah_flags {
711 IB_AH_GRH = 1
712 };
713
714 enum ib_rate {
715 IB_RATE_PORT_CURRENT = 0,
716 IB_RATE_2_5_GBPS = 2,
717 IB_RATE_5_GBPS = 5,
718 IB_RATE_10_GBPS = 3,
719 IB_RATE_20_GBPS = 6,
720 IB_RATE_30_GBPS = 4,
721 IB_RATE_40_GBPS = 7,
722 IB_RATE_60_GBPS = 8,
723 IB_RATE_80_GBPS = 9,
724 IB_RATE_120_GBPS = 10,
725 IB_RATE_14_GBPS = 11,
726 IB_RATE_56_GBPS = 12,
727 IB_RATE_112_GBPS = 13,
728 IB_RATE_168_GBPS = 14,
729 IB_RATE_25_GBPS = 15,
730 IB_RATE_100_GBPS = 16,
731 IB_RATE_200_GBPS = 17,
732 IB_RATE_300_GBPS = 18
733 };
734
735 /**
736 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
737 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
738 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
739 * @rate: rate to convert.
740 */
741 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
742
743 /**
744 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
745 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
746 * @rate: rate to convert.
747 */
748 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
749
750
751 /**
752 * enum ib_mr_type - memory region type
753 * @IB_MR_TYPE_MEM_REG: memory region that is used for
754 * normal registration
755 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
756 * signature operations (data-integrity
757 * capable regions)
758 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
759 * register any arbitrary sg lists (without
760 * the normal mr constraints - see
761 * ib_map_mr_sg)
762 */
763 enum ib_mr_type {
764 IB_MR_TYPE_MEM_REG,
765 IB_MR_TYPE_SIGNATURE,
766 IB_MR_TYPE_SG_GAPS,
767 };
768
769 /**
770 * Signature types
771 * IB_SIG_TYPE_NONE: Unprotected.
772 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
773 */
774 enum ib_signature_type {
775 IB_SIG_TYPE_NONE,
776 IB_SIG_TYPE_T10_DIF,
777 };
778
779 /**
780 * Signature T10-DIF block-guard types
781 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
782 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
783 */
784 enum ib_t10_dif_bg_type {
785 IB_T10DIF_CRC,
786 IB_T10DIF_CSUM
787 };
788
789 /**
790 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
791 * domain.
792 * @bg_type: T10-DIF block guard type (CRC|CSUM)
793 * @pi_interval: protection information interval.
794 * @bg: seed of guard computation.
795 * @app_tag: application tag of guard block
796 * @ref_tag: initial guard block reference tag.
797 * @ref_remap: Indicate wethear the reftag increments each block
798 * @app_escape: Indicate to skip block check if apptag=0xffff
799 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
800 * @apptag_check_mask: check bitmask of application tag.
801 */
802 struct ib_t10_dif_domain {
803 enum ib_t10_dif_bg_type bg_type;
804 u16 pi_interval;
805 u16 bg;
806 u16 app_tag;
807 u32 ref_tag;
808 bool ref_remap;
809 bool app_escape;
810 bool ref_escape;
811 u16 apptag_check_mask;
812 };
813
814 /**
815 * struct ib_sig_domain - Parameters for signature domain
816 * @sig_type: specific signauture type
817 * @sig: union of all signature domain attributes that may
818 * be used to set domain layout.
819 */
820 struct ib_sig_domain {
821 enum ib_signature_type sig_type;
822 union {
823 struct ib_t10_dif_domain dif;
824 } sig;
825 };
826
827 /**
828 * struct ib_sig_attrs - Parameters for signature handover operation
829 * @check_mask: bitmask for signature byte check (8 bytes)
830 * @mem: memory domain layout desciptor.
831 * @wire: wire domain layout desciptor.
832 */
833 struct ib_sig_attrs {
834 u8 check_mask;
835 struct ib_sig_domain mem;
836 struct ib_sig_domain wire;
837 };
838
839 enum ib_sig_err_type {
840 IB_SIG_BAD_GUARD,
841 IB_SIG_BAD_REFTAG,
842 IB_SIG_BAD_APPTAG,
843 };
844
845 /**
846 * struct ib_sig_err - signature error descriptor
847 */
848 struct ib_sig_err {
849 enum ib_sig_err_type err_type;
850 u32 expected;
851 u32 actual;
852 u64 sig_err_offset;
853 u32 key;
854 };
855
856 enum ib_mr_status_check {
857 IB_MR_CHECK_SIG_STATUS = 1,
858 };
859
860 /**
861 * struct ib_mr_status - Memory region status container
862 *
863 * @fail_status: Bitmask of MR checks status. For each
864 * failed check a corresponding status bit is set.
865 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
866 * failure.
867 */
868 struct ib_mr_status {
869 u32 fail_status;
870 struct ib_sig_err sig_err;
871 };
872
873 /**
874 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
875 * enum.
876 * @mult: multiple to convert.
877 */
878 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
879
880 enum rdma_ah_attr_type {
881 RDMA_AH_ATTR_TYPE_IB,
882 RDMA_AH_ATTR_TYPE_ROCE,
883 RDMA_AH_ATTR_TYPE_OPA,
884 };
885
886 struct ib_ah_attr {
887 u16 dlid;
888 u8 src_path_bits;
889 };
890
891 struct roce_ah_attr {
892 u8 dmac[ETH_ALEN];
893 };
894
895 struct opa_ah_attr {
896 u32 dlid;
897 u8 src_path_bits;
898 bool make_grd;
899 };
900
901 struct rdma_ah_attr {
902 struct ib_global_route grh;
903 u8 sl;
904 u8 static_rate;
905 u8 port_num;
906 u8 ah_flags;
907 enum rdma_ah_attr_type type;
908 union {
909 struct ib_ah_attr ib;
910 struct roce_ah_attr roce;
911 struct opa_ah_attr opa;
912 };
913 };
914
915 enum ib_wc_status {
916 IB_WC_SUCCESS,
917 IB_WC_LOC_LEN_ERR,
918 IB_WC_LOC_QP_OP_ERR,
919 IB_WC_LOC_EEC_OP_ERR,
920 IB_WC_LOC_PROT_ERR,
921 IB_WC_WR_FLUSH_ERR,
922 IB_WC_MW_BIND_ERR,
923 IB_WC_BAD_RESP_ERR,
924 IB_WC_LOC_ACCESS_ERR,
925 IB_WC_REM_INV_REQ_ERR,
926 IB_WC_REM_ACCESS_ERR,
927 IB_WC_REM_OP_ERR,
928 IB_WC_RETRY_EXC_ERR,
929 IB_WC_RNR_RETRY_EXC_ERR,
930 IB_WC_LOC_RDD_VIOL_ERR,
931 IB_WC_REM_INV_RD_REQ_ERR,
932 IB_WC_REM_ABORT_ERR,
933 IB_WC_INV_EECN_ERR,
934 IB_WC_INV_EEC_STATE_ERR,
935 IB_WC_FATAL_ERR,
936 IB_WC_RESP_TIMEOUT_ERR,
937 IB_WC_GENERAL_ERR
938 };
939
940 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
941
942 enum ib_wc_opcode {
943 IB_WC_SEND,
944 IB_WC_RDMA_WRITE,
945 IB_WC_RDMA_READ,
946 IB_WC_COMP_SWAP,
947 IB_WC_FETCH_ADD,
948 IB_WC_LSO,
949 IB_WC_LOCAL_INV,
950 IB_WC_REG_MR,
951 IB_WC_MASKED_COMP_SWAP,
952 IB_WC_MASKED_FETCH_ADD,
953 /*
954 * Set value of IB_WC_RECV so consumers can test if a completion is a
955 * receive by testing (opcode & IB_WC_RECV).
956 */
957 IB_WC_RECV = 1 << 7,
958 IB_WC_RECV_RDMA_WITH_IMM
959 };
960
961 enum ib_wc_flags {
962 IB_WC_GRH = 1,
963 IB_WC_WITH_IMM = (1<<1),
964 IB_WC_WITH_INVALIDATE = (1<<2),
965 IB_WC_IP_CSUM_OK = (1<<3),
966 IB_WC_WITH_SMAC = (1<<4),
967 IB_WC_WITH_VLAN = (1<<5),
968 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
969 };
970
971 struct ib_wc {
972 union {
973 u64 wr_id;
974 struct ib_cqe *wr_cqe;
975 };
976 enum ib_wc_status status;
977 enum ib_wc_opcode opcode;
978 u32 vendor_err;
979 u32 byte_len;
980 struct ib_qp *qp;
981 union {
982 __be32 imm_data;
983 u32 invalidate_rkey;
984 } ex;
985 u32 src_qp;
986 int wc_flags;
987 u16 pkey_index;
988 u32 slid;
989 u8 sl;
990 u8 dlid_path_bits;
991 u8 port_num; /* valid only for DR SMPs on switches */
992 u8 smac[ETH_ALEN];
993 u16 vlan_id;
994 u8 network_hdr_type;
995 };
996
997 enum ib_cq_notify_flags {
998 IB_CQ_SOLICITED = 1 << 0,
999 IB_CQ_NEXT_COMP = 1 << 1,
1000 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1001 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1002 };
1003
1004 enum ib_srq_type {
1005 IB_SRQT_BASIC,
1006 IB_SRQT_XRC,
1007 IB_SRQT_TM,
1008 };
1009
1010 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1011 {
1012 return srq_type == IB_SRQT_XRC ||
1013 srq_type == IB_SRQT_TM;
1014 }
1015
1016 enum ib_srq_attr_mask {
1017 IB_SRQ_MAX_WR = 1 << 0,
1018 IB_SRQ_LIMIT = 1 << 1,
1019 };
1020
1021 struct ib_srq_attr {
1022 u32 max_wr;
1023 u32 max_sge;
1024 u32 srq_limit;
1025 };
1026
1027 struct ib_srq_init_attr {
1028 void (*event_handler)(struct ib_event *, void *);
1029 void *srq_context;
1030 struct ib_srq_attr attr;
1031 enum ib_srq_type srq_type;
1032
1033 struct {
1034 struct ib_cq *cq;
1035 union {
1036 struct {
1037 struct ib_xrcd *xrcd;
1038 } xrc;
1039
1040 struct {
1041 u32 max_num_tags;
1042 } tag_matching;
1043 };
1044 } ext;
1045 };
1046
1047 struct ib_qp_cap {
1048 u32 max_send_wr;
1049 u32 max_recv_wr;
1050 u32 max_send_sge;
1051 u32 max_recv_sge;
1052 u32 max_inline_data;
1053
1054 /*
1055 * Maximum number of rdma_rw_ctx structures in flight at a time.
1056 * ib_create_qp() will calculate the right amount of neededed WRs
1057 * and MRs based on this.
1058 */
1059 u32 max_rdma_ctxs;
1060 };
1061
1062 enum ib_sig_type {
1063 IB_SIGNAL_ALL_WR,
1064 IB_SIGNAL_REQ_WR
1065 };
1066
1067 enum ib_qp_type {
1068 /*
1069 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1070 * here (and in that order) since the MAD layer uses them as
1071 * indices into a 2-entry table.
1072 */
1073 IB_QPT_SMI,
1074 IB_QPT_GSI,
1075
1076 IB_QPT_RC,
1077 IB_QPT_UC,
1078 IB_QPT_UD,
1079 IB_QPT_RAW_IPV6,
1080 IB_QPT_RAW_ETHERTYPE,
1081 IB_QPT_RAW_PACKET = 8,
1082 IB_QPT_XRC_INI = 9,
1083 IB_QPT_XRC_TGT,
1084 IB_QPT_MAX,
1085 /* Reserve a range for qp types internal to the low level driver.
1086 * These qp types will not be visible at the IB core layer, so the
1087 * IB_QPT_MAX usages should not be affected in the core layer
1088 */
1089 IB_QPT_RESERVED1 = 0x1000,
1090 IB_QPT_RESERVED2,
1091 IB_QPT_RESERVED3,
1092 IB_QPT_RESERVED4,
1093 IB_QPT_RESERVED5,
1094 IB_QPT_RESERVED6,
1095 IB_QPT_RESERVED7,
1096 IB_QPT_RESERVED8,
1097 IB_QPT_RESERVED9,
1098 IB_QPT_RESERVED10,
1099 };
1100
1101 enum ib_qp_create_flags {
1102 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1103 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1104 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1105 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1106 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1107 IB_QP_CREATE_NETIF_QP = 1 << 5,
1108 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1109 /* FREE = 1 << 7, */
1110 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1111 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1112 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1113 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1114 /* reserve bits 26-31 for low level drivers' internal use */
1115 IB_QP_CREATE_RESERVED_START = 1 << 26,
1116 IB_QP_CREATE_RESERVED_END = 1 << 31,
1117 };
1118
1119 /*
1120 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1121 * callback to destroy the passed in QP.
1122 */
1123
1124 struct ib_qp_init_attr {
1125 void (*event_handler)(struct ib_event *, void *);
1126 void *qp_context;
1127 struct ib_cq *send_cq;
1128 struct ib_cq *recv_cq;
1129 struct ib_srq *srq;
1130 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1131 struct ib_qp_cap cap;
1132 enum ib_sig_type sq_sig_type;
1133 enum ib_qp_type qp_type;
1134 enum ib_qp_create_flags create_flags;
1135
1136 /*
1137 * Only needed for special QP types, or when using the RW API.
1138 */
1139 u8 port_num;
1140 struct ib_rwq_ind_table *rwq_ind_tbl;
1141 u32 source_qpn;
1142 };
1143
1144 struct ib_qp_open_attr {
1145 void (*event_handler)(struct ib_event *, void *);
1146 void *qp_context;
1147 u32 qp_num;
1148 enum ib_qp_type qp_type;
1149 };
1150
1151 enum ib_rnr_timeout {
1152 IB_RNR_TIMER_655_36 = 0,
1153 IB_RNR_TIMER_000_01 = 1,
1154 IB_RNR_TIMER_000_02 = 2,
1155 IB_RNR_TIMER_000_03 = 3,
1156 IB_RNR_TIMER_000_04 = 4,
1157 IB_RNR_TIMER_000_06 = 5,
1158 IB_RNR_TIMER_000_08 = 6,
1159 IB_RNR_TIMER_000_12 = 7,
1160 IB_RNR_TIMER_000_16 = 8,
1161 IB_RNR_TIMER_000_24 = 9,
1162 IB_RNR_TIMER_000_32 = 10,
1163 IB_RNR_TIMER_000_48 = 11,
1164 IB_RNR_TIMER_000_64 = 12,
1165 IB_RNR_TIMER_000_96 = 13,
1166 IB_RNR_TIMER_001_28 = 14,
1167 IB_RNR_TIMER_001_92 = 15,
1168 IB_RNR_TIMER_002_56 = 16,
1169 IB_RNR_TIMER_003_84 = 17,
1170 IB_RNR_TIMER_005_12 = 18,
1171 IB_RNR_TIMER_007_68 = 19,
1172 IB_RNR_TIMER_010_24 = 20,
1173 IB_RNR_TIMER_015_36 = 21,
1174 IB_RNR_TIMER_020_48 = 22,
1175 IB_RNR_TIMER_030_72 = 23,
1176 IB_RNR_TIMER_040_96 = 24,
1177 IB_RNR_TIMER_061_44 = 25,
1178 IB_RNR_TIMER_081_92 = 26,
1179 IB_RNR_TIMER_122_88 = 27,
1180 IB_RNR_TIMER_163_84 = 28,
1181 IB_RNR_TIMER_245_76 = 29,
1182 IB_RNR_TIMER_327_68 = 30,
1183 IB_RNR_TIMER_491_52 = 31
1184 };
1185
1186 enum ib_qp_attr_mask {
1187 IB_QP_STATE = 1,
1188 IB_QP_CUR_STATE = (1<<1),
1189 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1190 IB_QP_ACCESS_FLAGS = (1<<3),
1191 IB_QP_PKEY_INDEX = (1<<4),
1192 IB_QP_PORT = (1<<5),
1193 IB_QP_QKEY = (1<<6),
1194 IB_QP_AV = (1<<7),
1195 IB_QP_PATH_MTU = (1<<8),
1196 IB_QP_TIMEOUT = (1<<9),
1197 IB_QP_RETRY_CNT = (1<<10),
1198 IB_QP_RNR_RETRY = (1<<11),
1199 IB_QP_RQ_PSN = (1<<12),
1200 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1201 IB_QP_ALT_PATH = (1<<14),
1202 IB_QP_MIN_RNR_TIMER = (1<<15),
1203 IB_QP_SQ_PSN = (1<<16),
1204 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1205 IB_QP_PATH_MIG_STATE = (1<<18),
1206 IB_QP_CAP = (1<<19),
1207 IB_QP_DEST_QPN = (1<<20),
1208 IB_QP_RESERVED1 = (1<<21),
1209 IB_QP_RESERVED2 = (1<<22),
1210 IB_QP_RESERVED3 = (1<<23),
1211 IB_QP_RESERVED4 = (1<<24),
1212 IB_QP_RATE_LIMIT = (1<<25),
1213 };
1214
1215 enum ib_qp_state {
1216 IB_QPS_RESET,
1217 IB_QPS_INIT,
1218 IB_QPS_RTR,
1219 IB_QPS_RTS,
1220 IB_QPS_SQD,
1221 IB_QPS_SQE,
1222 IB_QPS_ERR
1223 };
1224
1225 enum ib_mig_state {
1226 IB_MIG_MIGRATED,
1227 IB_MIG_REARM,
1228 IB_MIG_ARMED
1229 };
1230
1231 enum ib_mw_type {
1232 IB_MW_TYPE_1 = 1,
1233 IB_MW_TYPE_2 = 2
1234 };
1235
1236 struct ib_qp_attr {
1237 enum ib_qp_state qp_state;
1238 enum ib_qp_state cur_qp_state;
1239 enum ib_mtu path_mtu;
1240 enum ib_mig_state path_mig_state;
1241 u32 qkey;
1242 u32 rq_psn;
1243 u32 sq_psn;
1244 u32 dest_qp_num;
1245 int qp_access_flags;
1246 struct ib_qp_cap cap;
1247 struct rdma_ah_attr ah_attr;
1248 struct rdma_ah_attr alt_ah_attr;
1249 u16 pkey_index;
1250 u16 alt_pkey_index;
1251 u8 en_sqd_async_notify;
1252 u8 sq_draining;
1253 u8 max_rd_atomic;
1254 u8 max_dest_rd_atomic;
1255 u8 min_rnr_timer;
1256 u8 port_num;
1257 u8 timeout;
1258 u8 retry_cnt;
1259 u8 rnr_retry;
1260 u8 alt_port_num;
1261 u8 alt_timeout;
1262 u32 rate_limit;
1263 };
1264
1265 enum ib_wr_opcode {
1266 IB_WR_RDMA_WRITE,
1267 IB_WR_RDMA_WRITE_WITH_IMM,
1268 IB_WR_SEND,
1269 IB_WR_SEND_WITH_IMM,
1270 IB_WR_RDMA_READ,
1271 IB_WR_ATOMIC_CMP_AND_SWP,
1272 IB_WR_ATOMIC_FETCH_AND_ADD,
1273 IB_WR_LSO,
1274 IB_WR_SEND_WITH_INV,
1275 IB_WR_RDMA_READ_WITH_INV,
1276 IB_WR_LOCAL_INV,
1277 IB_WR_REG_MR,
1278 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1279 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1280 IB_WR_REG_SIG_MR,
1281 /* reserve values for low level drivers' internal use.
1282 * These values will not be used at all in the ib core layer.
1283 */
1284 IB_WR_RESERVED1 = 0xf0,
1285 IB_WR_RESERVED2,
1286 IB_WR_RESERVED3,
1287 IB_WR_RESERVED4,
1288 IB_WR_RESERVED5,
1289 IB_WR_RESERVED6,
1290 IB_WR_RESERVED7,
1291 IB_WR_RESERVED8,
1292 IB_WR_RESERVED9,
1293 IB_WR_RESERVED10,
1294 };
1295
1296 enum ib_send_flags {
1297 IB_SEND_FENCE = 1,
1298 IB_SEND_SIGNALED = (1<<1),
1299 IB_SEND_SOLICITED = (1<<2),
1300 IB_SEND_INLINE = (1<<3),
1301 IB_SEND_IP_CSUM = (1<<4),
1302
1303 /* reserve bits 26-31 for low level drivers' internal use */
1304 IB_SEND_RESERVED_START = (1 << 26),
1305 IB_SEND_RESERVED_END = (1 << 31),
1306 };
1307
1308 struct ib_sge {
1309 u64 addr;
1310 u32 length;
1311 u32 lkey;
1312 };
1313
1314 struct ib_cqe {
1315 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1316 };
1317
1318 struct ib_send_wr {
1319 struct ib_send_wr *next;
1320 union {
1321 u64 wr_id;
1322 struct ib_cqe *wr_cqe;
1323 };
1324 struct ib_sge *sg_list;
1325 int num_sge;
1326 enum ib_wr_opcode opcode;
1327 int send_flags;
1328 union {
1329 __be32 imm_data;
1330 u32 invalidate_rkey;
1331 } ex;
1332 };
1333
1334 struct ib_rdma_wr {
1335 struct ib_send_wr wr;
1336 u64 remote_addr;
1337 u32 rkey;
1338 };
1339
1340 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1341 {
1342 return container_of(wr, struct ib_rdma_wr, wr);
1343 }
1344
1345 struct ib_atomic_wr {
1346 struct ib_send_wr wr;
1347 u64 remote_addr;
1348 u64 compare_add;
1349 u64 swap;
1350 u64 compare_add_mask;
1351 u64 swap_mask;
1352 u32 rkey;
1353 };
1354
1355 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1356 {
1357 return container_of(wr, struct ib_atomic_wr, wr);
1358 }
1359
1360 struct ib_ud_wr {
1361 struct ib_send_wr wr;
1362 struct ib_ah *ah;
1363 void *header;
1364 int hlen;
1365 int mss;
1366 u32 remote_qpn;
1367 u32 remote_qkey;
1368 u16 pkey_index; /* valid for GSI only */
1369 u8 port_num; /* valid for DR SMPs on switch only */
1370 };
1371
1372 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1373 {
1374 return container_of(wr, struct ib_ud_wr, wr);
1375 }
1376
1377 struct ib_reg_wr {
1378 struct ib_send_wr wr;
1379 struct ib_mr *mr;
1380 u32 key;
1381 int access;
1382 };
1383
1384 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1385 {
1386 return container_of(wr, struct ib_reg_wr, wr);
1387 }
1388
1389 struct ib_sig_handover_wr {
1390 struct ib_send_wr wr;
1391 struct ib_sig_attrs *sig_attrs;
1392 struct ib_mr *sig_mr;
1393 int access_flags;
1394 struct ib_sge *prot;
1395 };
1396
1397 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1398 {
1399 return container_of(wr, struct ib_sig_handover_wr, wr);
1400 }
1401
1402 struct ib_recv_wr {
1403 struct ib_recv_wr *next;
1404 union {
1405 u64 wr_id;
1406 struct ib_cqe *wr_cqe;
1407 };
1408 struct ib_sge *sg_list;
1409 int num_sge;
1410 };
1411
1412 enum ib_access_flags {
1413 IB_ACCESS_LOCAL_WRITE = 1,
1414 IB_ACCESS_REMOTE_WRITE = (1<<1),
1415 IB_ACCESS_REMOTE_READ = (1<<2),
1416 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1417 IB_ACCESS_MW_BIND = (1<<4),
1418 IB_ZERO_BASED = (1<<5),
1419 IB_ACCESS_ON_DEMAND = (1<<6),
1420 IB_ACCESS_HUGETLB = (1<<7),
1421 };
1422
1423 /*
1424 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1425 * are hidden here instead of a uapi header!
1426 */
1427 enum ib_mr_rereg_flags {
1428 IB_MR_REREG_TRANS = 1,
1429 IB_MR_REREG_PD = (1<<1),
1430 IB_MR_REREG_ACCESS = (1<<2),
1431 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1432 };
1433
1434 struct ib_fmr_attr {
1435 int max_pages;
1436 int max_maps;
1437 u8 page_shift;
1438 };
1439
1440 struct ib_umem;
1441
1442 enum rdma_remove_reason {
1443 /* Userspace requested uobject deletion. Call could fail */
1444 RDMA_REMOVE_DESTROY,
1445 /* Context deletion. This call should delete the actual object itself */
1446 RDMA_REMOVE_CLOSE,
1447 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1448 RDMA_REMOVE_DRIVER_REMOVE,
1449 /* Context is being cleaned-up, but commit was just completed */
1450 RDMA_REMOVE_DURING_CLEANUP,
1451 };
1452
1453 struct ib_rdmacg_object {
1454 #ifdef CONFIG_CGROUP_RDMA
1455 struct rdma_cgroup *cg; /* owner rdma cgroup */
1456 #endif
1457 };
1458
1459 struct ib_ucontext {
1460 struct ib_device *device;
1461 struct ib_uverbs_file *ufile;
1462 int closing;
1463
1464 /* locking the uobjects_list */
1465 struct mutex uobjects_lock;
1466 struct list_head uobjects;
1467 /* protects cleanup process from other actions */
1468 struct rw_semaphore cleanup_rwsem;
1469 enum rdma_remove_reason cleanup_reason;
1470
1471 struct pid *tgid;
1472 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1473 struct rb_root_cached umem_tree;
1474 /*
1475 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1476 * mmu notifiers registration.
1477 */
1478 struct rw_semaphore umem_rwsem;
1479 void (*invalidate_range)(struct ib_umem *umem,
1480 unsigned long start, unsigned long end);
1481
1482 struct mmu_notifier mn;
1483 atomic_t notifier_count;
1484 /* A list of umems that don't have private mmu notifier counters yet. */
1485 struct list_head no_private_counters;
1486 int odp_mrs_count;
1487 #endif
1488
1489 struct ib_rdmacg_object cg_obj;
1490 };
1491
1492 struct ib_uobject {
1493 u64 user_handle; /* handle given to us by userspace */
1494 struct ib_ucontext *context; /* associated user context */
1495 void *object; /* containing object */
1496 struct list_head list; /* link to context's list */
1497 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1498 int id; /* index into kernel idr */
1499 struct kref ref;
1500 atomic_t usecnt; /* protects exclusive access */
1501 struct rcu_head rcu; /* kfree_rcu() overhead */
1502
1503 const struct uverbs_obj_type *type;
1504 };
1505
1506 struct ib_uobject_file {
1507 struct ib_uobject uobj;
1508 /* ufile contains the lock between context release and file close */
1509 struct ib_uverbs_file *ufile;
1510 };
1511
1512 struct ib_udata {
1513 const void __user *inbuf;
1514 void __user *outbuf;
1515 size_t inlen;
1516 size_t outlen;
1517 };
1518
1519 struct ib_pd {
1520 u32 local_dma_lkey;
1521 u32 flags;
1522 struct ib_device *device;
1523 struct ib_uobject *uobject;
1524 atomic_t usecnt; /* count all resources */
1525
1526 u32 unsafe_global_rkey;
1527
1528 /*
1529 * Implementation details of the RDMA core, don't use in drivers:
1530 */
1531 struct ib_mr *__internal_mr;
1532 };
1533
1534 struct ib_xrcd {
1535 struct ib_device *device;
1536 atomic_t usecnt; /* count all exposed resources */
1537 struct inode *inode;
1538
1539 struct mutex tgt_qp_mutex;
1540 struct list_head tgt_qp_list;
1541 };
1542
1543 struct ib_ah {
1544 struct ib_device *device;
1545 struct ib_pd *pd;
1546 struct ib_uobject *uobject;
1547 enum rdma_ah_attr_type type;
1548 };
1549
1550 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1551
1552 enum ib_poll_context {
1553 IB_POLL_DIRECT, /* caller context, no hw completions */
1554 IB_POLL_SOFTIRQ, /* poll from softirq context */
1555 IB_POLL_WORKQUEUE, /* poll from workqueue */
1556 };
1557
1558 struct ib_cq {
1559 struct ib_device *device;
1560 struct ib_uobject *uobject;
1561 ib_comp_handler comp_handler;
1562 void (*event_handler)(struct ib_event *, void *);
1563 void *cq_context;
1564 int cqe;
1565 atomic_t usecnt; /* count number of work queues */
1566 enum ib_poll_context poll_ctx;
1567 struct ib_wc *wc;
1568 union {
1569 struct irq_poll iop;
1570 struct work_struct work;
1571 };
1572 };
1573
1574 struct ib_srq {
1575 struct ib_device *device;
1576 struct ib_pd *pd;
1577 struct ib_uobject *uobject;
1578 void (*event_handler)(struct ib_event *, void *);
1579 void *srq_context;
1580 enum ib_srq_type srq_type;
1581 atomic_t usecnt;
1582
1583 struct {
1584 struct ib_cq *cq;
1585 union {
1586 struct {
1587 struct ib_xrcd *xrcd;
1588 u32 srq_num;
1589 } xrc;
1590 };
1591 } ext;
1592 };
1593
1594 enum ib_raw_packet_caps {
1595 /* Strip cvlan from incoming packet and report it in the matching work
1596 * completion is supported.
1597 */
1598 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1599 /* Scatter FCS field of an incoming packet to host memory is supported.
1600 */
1601 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1602 /* Checksum offloads are supported (for both send and receive). */
1603 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1604 /* When a packet is received for an RQ with no receive WQEs, the
1605 * packet processing is delayed.
1606 */
1607 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1608 };
1609
1610 enum ib_wq_type {
1611 IB_WQT_RQ
1612 };
1613
1614 enum ib_wq_state {
1615 IB_WQS_RESET,
1616 IB_WQS_RDY,
1617 IB_WQS_ERR
1618 };
1619
1620 struct ib_wq {
1621 struct ib_device *device;
1622 struct ib_uobject *uobject;
1623 void *wq_context;
1624 void (*event_handler)(struct ib_event *, void *);
1625 struct ib_pd *pd;
1626 struct ib_cq *cq;
1627 u32 wq_num;
1628 enum ib_wq_state state;
1629 enum ib_wq_type wq_type;
1630 atomic_t usecnt;
1631 };
1632
1633 enum ib_wq_flags {
1634 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1635 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1636 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1637 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1638 };
1639
1640 struct ib_wq_init_attr {
1641 void *wq_context;
1642 enum ib_wq_type wq_type;
1643 u32 max_wr;
1644 u32 max_sge;
1645 struct ib_cq *cq;
1646 void (*event_handler)(struct ib_event *, void *);
1647 u32 create_flags; /* Use enum ib_wq_flags */
1648 };
1649
1650 enum ib_wq_attr_mask {
1651 IB_WQ_STATE = 1 << 0,
1652 IB_WQ_CUR_STATE = 1 << 1,
1653 IB_WQ_FLAGS = 1 << 2,
1654 };
1655
1656 struct ib_wq_attr {
1657 enum ib_wq_state wq_state;
1658 enum ib_wq_state curr_wq_state;
1659 u32 flags; /* Use enum ib_wq_flags */
1660 u32 flags_mask; /* Use enum ib_wq_flags */
1661 };
1662
1663 struct ib_rwq_ind_table {
1664 struct ib_device *device;
1665 struct ib_uobject *uobject;
1666 atomic_t usecnt;
1667 u32 ind_tbl_num;
1668 u32 log_ind_tbl_size;
1669 struct ib_wq **ind_tbl;
1670 };
1671
1672 struct ib_rwq_ind_table_init_attr {
1673 u32 log_ind_tbl_size;
1674 /* Each entry is a pointer to Receive Work Queue */
1675 struct ib_wq **ind_tbl;
1676 };
1677
1678 enum port_pkey_state {
1679 IB_PORT_PKEY_NOT_VALID = 0,
1680 IB_PORT_PKEY_VALID = 1,
1681 IB_PORT_PKEY_LISTED = 2,
1682 };
1683
1684 struct ib_qp_security;
1685
1686 struct ib_port_pkey {
1687 enum port_pkey_state state;
1688 u16 pkey_index;
1689 u8 port_num;
1690 struct list_head qp_list;
1691 struct list_head to_error_list;
1692 struct ib_qp_security *sec;
1693 };
1694
1695 struct ib_ports_pkeys {
1696 struct ib_port_pkey main;
1697 struct ib_port_pkey alt;
1698 };
1699
1700 struct ib_qp_security {
1701 struct ib_qp *qp;
1702 struct ib_device *dev;
1703 /* Hold this mutex when changing port and pkey settings. */
1704 struct mutex mutex;
1705 struct ib_ports_pkeys *ports_pkeys;
1706 /* A list of all open shared QP handles. Required to enforce security
1707 * properly for all users of a shared QP.
1708 */
1709 struct list_head shared_qp_list;
1710 void *security;
1711 bool destroying;
1712 atomic_t error_list_count;
1713 struct completion error_complete;
1714 int error_comps_pending;
1715 };
1716
1717 /*
1718 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1719 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1720 */
1721 struct ib_qp {
1722 struct ib_device *device;
1723 struct ib_pd *pd;
1724 struct ib_cq *send_cq;
1725 struct ib_cq *recv_cq;
1726 spinlock_t mr_lock;
1727 int mrs_used;
1728 struct list_head rdma_mrs;
1729 struct list_head sig_mrs;
1730 struct ib_srq *srq;
1731 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1732 struct list_head xrcd_list;
1733
1734 /* count times opened, mcast attaches, flow attaches */
1735 atomic_t usecnt;
1736 struct list_head open_list;
1737 struct ib_qp *real_qp;
1738 struct ib_uobject *uobject;
1739 void (*event_handler)(struct ib_event *, void *);
1740 void *qp_context;
1741 u32 qp_num;
1742 u32 max_write_sge;
1743 u32 max_read_sge;
1744 enum ib_qp_type qp_type;
1745 struct ib_rwq_ind_table *rwq_ind_tbl;
1746 struct ib_qp_security *qp_sec;
1747 u8 port;
1748 };
1749
1750 struct ib_mr {
1751 struct ib_device *device;
1752 struct ib_pd *pd;
1753 u32 lkey;
1754 u32 rkey;
1755 u64 iova;
1756 u64 length;
1757 unsigned int page_size;
1758 bool need_inval;
1759 union {
1760 struct ib_uobject *uobject; /* user */
1761 struct list_head qp_entry; /* FR */
1762 };
1763 };
1764
1765 struct ib_mw {
1766 struct ib_device *device;
1767 struct ib_pd *pd;
1768 struct ib_uobject *uobject;
1769 u32 rkey;
1770 enum ib_mw_type type;
1771 };
1772
1773 struct ib_fmr {
1774 struct ib_device *device;
1775 struct ib_pd *pd;
1776 struct list_head list;
1777 u32 lkey;
1778 u32 rkey;
1779 };
1780
1781 /* Supported steering options */
1782 enum ib_flow_attr_type {
1783 /* steering according to rule specifications */
1784 IB_FLOW_ATTR_NORMAL = 0x0,
1785 /* default unicast and multicast rule -
1786 * receive all Eth traffic which isn't steered to any QP
1787 */
1788 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1789 /* default multicast rule -
1790 * receive all Eth multicast traffic which isn't steered to any QP
1791 */
1792 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1793 /* sniffer rule - receive all port traffic */
1794 IB_FLOW_ATTR_SNIFFER = 0x3
1795 };
1796
1797 /* Supported steering header types */
1798 enum ib_flow_spec_type {
1799 /* L2 headers*/
1800 IB_FLOW_SPEC_ETH = 0x20,
1801 IB_FLOW_SPEC_IB = 0x22,
1802 /* L3 header*/
1803 IB_FLOW_SPEC_IPV4 = 0x30,
1804 IB_FLOW_SPEC_IPV6 = 0x31,
1805 /* L4 headers*/
1806 IB_FLOW_SPEC_TCP = 0x40,
1807 IB_FLOW_SPEC_UDP = 0x41,
1808 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1809 IB_FLOW_SPEC_INNER = 0x100,
1810 /* Actions */
1811 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1812 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1813 };
1814 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1815 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1816
1817 /* Flow steering rule priority is set according to it's domain.
1818 * Lower domain value means higher priority.
1819 */
1820 enum ib_flow_domain {
1821 IB_FLOW_DOMAIN_USER,
1822 IB_FLOW_DOMAIN_ETHTOOL,
1823 IB_FLOW_DOMAIN_RFS,
1824 IB_FLOW_DOMAIN_NIC,
1825 IB_FLOW_DOMAIN_NUM /* Must be last */
1826 };
1827
1828 enum ib_flow_flags {
1829 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1830 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1831 };
1832
1833 struct ib_flow_eth_filter {
1834 u8 dst_mac[6];
1835 u8 src_mac[6];
1836 __be16 ether_type;
1837 __be16 vlan_tag;
1838 /* Must be last */
1839 u8 real_sz[0];
1840 };
1841
1842 struct ib_flow_spec_eth {
1843 u32 type;
1844 u16 size;
1845 struct ib_flow_eth_filter val;
1846 struct ib_flow_eth_filter mask;
1847 };
1848
1849 struct ib_flow_ib_filter {
1850 __be16 dlid;
1851 __u8 sl;
1852 /* Must be last */
1853 u8 real_sz[0];
1854 };
1855
1856 struct ib_flow_spec_ib {
1857 u32 type;
1858 u16 size;
1859 struct ib_flow_ib_filter val;
1860 struct ib_flow_ib_filter mask;
1861 };
1862
1863 /* IPv4 header flags */
1864 enum ib_ipv4_flags {
1865 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1866 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1867 last have this flag set */
1868 };
1869
1870 struct ib_flow_ipv4_filter {
1871 __be32 src_ip;
1872 __be32 dst_ip;
1873 u8 proto;
1874 u8 tos;
1875 u8 ttl;
1876 u8 flags;
1877 /* Must be last */
1878 u8 real_sz[0];
1879 };
1880
1881 struct ib_flow_spec_ipv4 {
1882 u32 type;
1883 u16 size;
1884 struct ib_flow_ipv4_filter val;
1885 struct ib_flow_ipv4_filter mask;
1886 };
1887
1888 struct ib_flow_ipv6_filter {
1889 u8 src_ip[16];
1890 u8 dst_ip[16];
1891 __be32 flow_label;
1892 u8 next_hdr;
1893 u8 traffic_class;
1894 u8 hop_limit;
1895 /* Must be last */
1896 u8 real_sz[0];
1897 };
1898
1899 struct ib_flow_spec_ipv6 {
1900 u32 type;
1901 u16 size;
1902 struct ib_flow_ipv6_filter val;
1903 struct ib_flow_ipv6_filter mask;
1904 };
1905
1906 struct ib_flow_tcp_udp_filter {
1907 __be16 dst_port;
1908 __be16 src_port;
1909 /* Must be last */
1910 u8 real_sz[0];
1911 };
1912
1913 struct ib_flow_spec_tcp_udp {
1914 u32 type;
1915 u16 size;
1916 struct ib_flow_tcp_udp_filter val;
1917 struct ib_flow_tcp_udp_filter mask;
1918 };
1919
1920 struct ib_flow_tunnel_filter {
1921 __be32 tunnel_id;
1922 u8 real_sz[0];
1923 };
1924
1925 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1926 * the tunnel_id from val has the vni value
1927 */
1928 struct ib_flow_spec_tunnel {
1929 u32 type;
1930 u16 size;
1931 struct ib_flow_tunnel_filter val;
1932 struct ib_flow_tunnel_filter mask;
1933 };
1934
1935 struct ib_flow_spec_action_tag {
1936 enum ib_flow_spec_type type;
1937 u16 size;
1938 u32 tag_id;
1939 };
1940
1941 struct ib_flow_spec_action_drop {
1942 enum ib_flow_spec_type type;
1943 u16 size;
1944 };
1945
1946 union ib_flow_spec {
1947 struct {
1948 u32 type;
1949 u16 size;
1950 };
1951 struct ib_flow_spec_eth eth;
1952 struct ib_flow_spec_ib ib;
1953 struct ib_flow_spec_ipv4 ipv4;
1954 struct ib_flow_spec_tcp_udp tcp_udp;
1955 struct ib_flow_spec_ipv6 ipv6;
1956 struct ib_flow_spec_tunnel tunnel;
1957 struct ib_flow_spec_action_tag flow_tag;
1958 struct ib_flow_spec_action_drop drop;
1959 };
1960
1961 struct ib_flow_attr {
1962 enum ib_flow_attr_type type;
1963 u16 size;
1964 u16 priority;
1965 u32 flags;
1966 u8 num_of_specs;
1967 u8 port;
1968 /* Following are the optional layers according to user request
1969 * struct ib_flow_spec_xxx
1970 * struct ib_flow_spec_yyy
1971 */
1972 };
1973
1974 struct ib_flow {
1975 struct ib_qp *qp;
1976 struct ib_uobject *uobject;
1977 };
1978
1979 struct ib_mad_hdr;
1980 struct ib_grh;
1981
1982 enum ib_process_mad_flags {
1983 IB_MAD_IGNORE_MKEY = 1,
1984 IB_MAD_IGNORE_BKEY = 2,
1985 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1986 };
1987
1988 enum ib_mad_result {
1989 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1990 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1991 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1992 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1993 };
1994
1995 struct ib_port_cache {
1996 u64 subnet_prefix;
1997 struct ib_pkey_cache *pkey;
1998 struct ib_gid_table *gid;
1999 u8 lmc;
2000 enum ib_port_state port_state;
2001 };
2002
2003 struct ib_cache {
2004 rwlock_t lock;
2005 struct ib_event_handler event_handler;
2006 struct ib_port_cache *ports;
2007 };
2008
2009 struct iw_cm_verbs;
2010
2011 struct ib_port_immutable {
2012 int pkey_tbl_len;
2013 int gid_tbl_len;
2014 u32 core_cap_flags;
2015 u32 max_mad_size;
2016 };
2017
2018 /* rdma netdev type - specifies protocol type */
2019 enum rdma_netdev_t {
2020 RDMA_NETDEV_OPA_VNIC,
2021 RDMA_NETDEV_IPOIB,
2022 };
2023
2024 /**
2025 * struct rdma_netdev - rdma netdev
2026 * For cases where netstack interfacing is required.
2027 */
2028 struct rdma_netdev {
2029 void *clnt_priv;
2030 struct ib_device *hca;
2031 u8 port_num;
2032
2033 /* cleanup function must be specified */
2034 void (*free_rdma_netdev)(struct net_device *netdev);
2035
2036 /* control functions */
2037 void (*set_id)(struct net_device *netdev, int id);
2038 /* send packet */
2039 int (*send)(struct net_device *dev, struct sk_buff *skb,
2040 struct ib_ah *address, u32 dqpn);
2041 /* multicast */
2042 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2043 union ib_gid *gid, u16 mlid,
2044 int set_qkey, u32 qkey);
2045 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2046 union ib_gid *gid, u16 mlid);
2047 };
2048
2049 struct ib_port_pkey_list {
2050 /* Lock to hold while modifying the list. */
2051 spinlock_t list_lock;
2052 struct list_head pkey_list;
2053 };
2054
2055 struct ib_device {
2056 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2057 struct device *dma_device;
2058
2059 char name[IB_DEVICE_NAME_MAX];
2060
2061 struct list_head event_handler_list;
2062 spinlock_t event_handler_lock;
2063
2064 spinlock_t client_data_lock;
2065 struct list_head core_list;
2066 /* Access to the client_data_list is protected by the client_data_lock
2067 * spinlock and the lists_rwsem read-write semaphore */
2068 struct list_head client_data_list;
2069
2070 struct ib_cache cache;
2071 /**
2072 * port_immutable is indexed by port number
2073 */
2074 struct ib_port_immutable *port_immutable;
2075
2076 int num_comp_vectors;
2077
2078 struct ib_port_pkey_list *port_pkey_list;
2079
2080 struct iw_cm_verbs *iwcm;
2081
2082 /**
2083 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2084 * driver initialized data. The struct is kfree()'ed by the sysfs
2085 * core when the device is removed. A lifespan of -1 in the return
2086 * struct tells the core to set a default lifespan.
2087 */
2088 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2089 u8 port_num);
2090 /**
2091 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2092 * @index - The index in the value array we wish to have updated, or
2093 * num_counters if we want all stats updated
2094 * Return codes -
2095 * < 0 - Error, no counters updated
2096 * index - Updated the single counter pointed to by index
2097 * num_counters - Updated all counters (will reset the timestamp
2098 * and prevent further calls for lifespan milliseconds)
2099 * Drivers are allowed to update all counters in leiu of just the
2100 * one given in index at their option
2101 */
2102 int (*get_hw_stats)(struct ib_device *device,
2103 struct rdma_hw_stats *stats,
2104 u8 port, int index);
2105 int (*query_device)(struct ib_device *device,
2106 struct ib_device_attr *device_attr,
2107 struct ib_udata *udata);
2108 int (*query_port)(struct ib_device *device,
2109 u8 port_num,
2110 struct ib_port_attr *port_attr);
2111 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2112 u8 port_num);
2113 /* When calling get_netdev, the HW vendor's driver should return the
2114 * net device of device @device at port @port_num or NULL if such
2115 * a net device doesn't exist. The vendor driver should call dev_hold
2116 * on this net device. The HW vendor's device driver must guarantee
2117 * that this function returns NULL before the net device reaches
2118 * NETDEV_UNREGISTER_FINAL state.
2119 */
2120 struct net_device *(*get_netdev)(struct ib_device *device,
2121 u8 port_num);
2122 int (*query_gid)(struct ib_device *device,
2123 u8 port_num, int index,
2124 union ib_gid *gid);
2125 /* When calling add_gid, the HW vendor's driver should
2126 * add the gid of device @device at gid index @index of
2127 * port @port_num to be @gid. Meta-info of that gid (for example,
2128 * the network device related to this gid is available
2129 * at @attr. @context allows the HW vendor driver to store extra
2130 * information together with a GID entry. The HW vendor may allocate
2131 * memory to contain this information and store it in @context when a
2132 * new GID entry is written to. Params are consistent until the next
2133 * call of add_gid or delete_gid. The function should return 0 on
2134 * success or error otherwise. The function could be called
2135 * concurrently for different ports. This function is only called
2136 * when roce_gid_table is used.
2137 */
2138 int (*add_gid)(struct ib_device *device,
2139 u8 port_num,
2140 unsigned int index,
2141 const union ib_gid *gid,
2142 const struct ib_gid_attr *attr,
2143 void **context);
2144 /* When calling del_gid, the HW vendor's driver should delete the
2145 * gid of device @device at gid index @index of port @port_num.
2146 * Upon the deletion of a GID entry, the HW vendor must free any
2147 * allocated memory. The caller will clear @context afterwards.
2148 * This function is only called when roce_gid_table is used.
2149 */
2150 int (*del_gid)(struct ib_device *device,
2151 u8 port_num,
2152 unsigned int index,
2153 void **context);
2154 int (*query_pkey)(struct ib_device *device,
2155 u8 port_num, u16 index, u16 *pkey);
2156 int (*modify_device)(struct ib_device *device,
2157 int device_modify_mask,
2158 struct ib_device_modify *device_modify);
2159 int (*modify_port)(struct ib_device *device,
2160 u8 port_num, int port_modify_mask,
2161 struct ib_port_modify *port_modify);
2162 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2163 struct ib_udata *udata);
2164 int (*dealloc_ucontext)(struct ib_ucontext *context);
2165 int (*mmap)(struct ib_ucontext *context,
2166 struct vm_area_struct *vma);
2167 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2168 struct ib_ucontext *context,
2169 struct ib_udata *udata);
2170 int (*dealloc_pd)(struct ib_pd *pd);
2171 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2172 struct rdma_ah_attr *ah_attr,
2173 struct ib_udata *udata);
2174 int (*modify_ah)(struct ib_ah *ah,
2175 struct rdma_ah_attr *ah_attr);
2176 int (*query_ah)(struct ib_ah *ah,
2177 struct rdma_ah_attr *ah_attr);
2178 int (*destroy_ah)(struct ib_ah *ah);
2179 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2180 struct ib_srq_init_attr *srq_init_attr,
2181 struct ib_udata *udata);
2182 int (*modify_srq)(struct ib_srq *srq,
2183 struct ib_srq_attr *srq_attr,
2184 enum ib_srq_attr_mask srq_attr_mask,
2185 struct ib_udata *udata);
2186 int (*query_srq)(struct ib_srq *srq,
2187 struct ib_srq_attr *srq_attr);
2188 int (*destroy_srq)(struct ib_srq *srq);
2189 int (*post_srq_recv)(struct ib_srq *srq,
2190 struct ib_recv_wr *recv_wr,
2191 struct ib_recv_wr **bad_recv_wr);
2192 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2193 struct ib_qp_init_attr *qp_init_attr,
2194 struct ib_udata *udata);
2195 int (*modify_qp)(struct ib_qp *qp,
2196 struct ib_qp_attr *qp_attr,
2197 int qp_attr_mask,
2198 struct ib_udata *udata);
2199 int (*query_qp)(struct ib_qp *qp,
2200 struct ib_qp_attr *qp_attr,
2201 int qp_attr_mask,
2202 struct ib_qp_init_attr *qp_init_attr);
2203 int (*destroy_qp)(struct ib_qp *qp);
2204 int (*post_send)(struct ib_qp *qp,
2205 struct ib_send_wr *send_wr,
2206 struct ib_send_wr **bad_send_wr);
2207 int (*post_recv)(struct ib_qp *qp,
2208 struct ib_recv_wr *recv_wr,
2209 struct ib_recv_wr **bad_recv_wr);
2210 struct ib_cq * (*create_cq)(struct ib_device *device,
2211 const struct ib_cq_init_attr *attr,
2212 struct ib_ucontext *context,
2213 struct ib_udata *udata);
2214 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2215 u16 cq_period);
2216 int (*destroy_cq)(struct ib_cq *cq);
2217 int (*resize_cq)(struct ib_cq *cq, int cqe,
2218 struct ib_udata *udata);
2219 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2220 struct ib_wc *wc);
2221 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2222 int (*req_notify_cq)(struct ib_cq *cq,
2223 enum ib_cq_notify_flags flags);
2224 int (*req_ncomp_notif)(struct ib_cq *cq,
2225 int wc_cnt);
2226 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2227 int mr_access_flags);
2228 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2229 u64 start, u64 length,
2230 u64 virt_addr,
2231 int mr_access_flags,
2232 struct ib_udata *udata);
2233 int (*rereg_user_mr)(struct ib_mr *mr,
2234 int flags,
2235 u64 start, u64 length,
2236 u64 virt_addr,
2237 int mr_access_flags,
2238 struct ib_pd *pd,
2239 struct ib_udata *udata);
2240 int (*dereg_mr)(struct ib_mr *mr);
2241 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2242 enum ib_mr_type mr_type,
2243 u32 max_num_sg);
2244 int (*map_mr_sg)(struct ib_mr *mr,
2245 struct scatterlist *sg,
2246 int sg_nents,
2247 unsigned int *sg_offset);
2248 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2249 enum ib_mw_type type,
2250 struct ib_udata *udata);
2251 int (*dealloc_mw)(struct ib_mw *mw);
2252 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2253 int mr_access_flags,
2254 struct ib_fmr_attr *fmr_attr);
2255 int (*map_phys_fmr)(struct ib_fmr *fmr,
2256 u64 *page_list, int list_len,
2257 u64 iova);
2258 int (*unmap_fmr)(struct list_head *fmr_list);
2259 int (*dealloc_fmr)(struct ib_fmr *fmr);
2260 int (*attach_mcast)(struct ib_qp *qp,
2261 union ib_gid *gid,
2262 u16 lid);
2263 int (*detach_mcast)(struct ib_qp *qp,
2264 union ib_gid *gid,
2265 u16 lid);
2266 int (*process_mad)(struct ib_device *device,
2267 int process_mad_flags,
2268 u8 port_num,
2269 const struct ib_wc *in_wc,
2270 const struct ib_grh *in_grh,
2271 const struct ib_mad_hdr *in_mad,
2272 size_t in_mad_size,
2273 struct ib_mad_hdr *out_mad,
2274 size_t *out_mad_size,
2275 u16 *out_mad_pkey_index);
2276 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2277 struct ib_ucontext *ucontext,
2278 struct ib_udata *udata);
2279 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2280 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2281 struct ib_flow_attr
2282 *flow_attr,
2283 int domain);
2284 int (*destroy_flow)(struct ib_flow *flow_id);
2285 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2286 struct ib_mr_status *mr_status);
2287 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2288 void (*drain_rq)(struct ib_qp *qp);
2289 void (*drain_sq)(struct ib_qp *qp);
2290 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2291 int state);
2292 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2293 struct ifla_vf_info *ivf);
2294 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2295 struct ifla_vf_stats *stats);
2296 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2297 int type);
2298 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2299 struct ib_wq_init_attr *init_attr,
2300 struct ib_udata *udata);
2301 int (*destroy_wq)(struct ib_wq *wq);
2302 int (*modify_wq)(struct ib_wq *wq,
2303 struct ib_wq_attr *attr,
2304 u32 wq_attr_mask,
2305 struct ib_udata *udata);
2306 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2307 struct ib_rwq_ind_table_init_attr *init_attr,
2308 struct ib_udata *udata);
2309 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2310 /**
2311 * rdma netdev operation
2312 *
2313 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2314 * doesn't support the specified rdma netdev type.
2315 */
2316 struct net_device *(*alloc_rdma_netdev)(
2317 struct ib_device *device,
2318 u8 port_num,
2319 enum rdma_netdev_t type,
2320 const char *name,
2321 unsigned char name_assign_type,
2322 void (*setup)(struct net_device *));
2323
2324 struct module *owner;
2325 struct device dev;
2326 struct kobject *ports_parent;
2327 struct list_head port_list;
2328
2329 enum {
2330 IB_DEV_UNINITIALIZED,
2331 IB_DEV_REGISTERED,
2332 IB_DEV_UNREGISTERED
2333 } reg_state;
2334
2335 int uverbs_abi_ver;
2336 u64 uverbs_cmd_mask;
2337 u64 uverbs_ex_cmd_mask;
2338
2339 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2340 __be64 node_guid;
2341 u32 local_dma_lkey;
2342 u16 is_switch:1;
2343 u8 node_type;
2344 u8 phys_port_cnt;
2345 struct ib_device_attr attrs;
2346 struct attribute_group *hw_stats_ag;
2347 struct rdma_hw_stats *hw_stats;
2348
2349 #ifdef CONFIG_CGROUP_RDMA
2350 struct rdmacg_device cg_device;
2351 #endif
2352
2353 u32 index;
2354
2355 /**
2356 * The following mandatory functions are used only at device
2357 * registration. Keep functions such as these at the end of this
2358 * structure to avoid cache line misses when accessing struct ib_device
2359 * in fast paths.
2360 */
2361 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2362 void (*get_dev_fw_str)(struct ib_device *, char *str);
2363 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2364 int comp_vector);
2365
2366 struct uverbs_root_spec *specs_root;
2367 };
2368
2369 struct ib_client {
2370 char *name;
2371 void (*add) (struct ib_device *);
2372 void (*remove)(struct ib_device *, void *client_data);
2373
2374 /* Returns the net_dev belonging to this ib_client and matching the
2375 * given parameters.
2376 * @dev: An RDMA device that the net_dev use for communication.
2377 * @port: A physical port number on the RDMA device.
2378 * @pkey: P_Key that the net_dev uses if applicable.
2379 * @gid: A GID that the net_dev uses to communicate.
2380 * @addr: An IP address the net_dev is configured with.
2381 * @client_data: The device's client data set by ib_set_client_data().
2382 *
2383 * An ib_client that implements a net_dev on top of RDMA devices
2384 * (such as IP over IB) should implement this callback, allowing the
2385 * rdma_cm module to find the right net_dev for a given request.
2386 *
2387 * The caller is responsible for calling dev_put on the returned
2388 * netdev. */
2389 struct net_device *(*get_net_dev_by_params)(
2390 struct ib_device *dev,
2391 u8 port,
2392 u16 pkey,
2393 const union ib_gid *gid,
2394 const struct sockaddr *addr,
2395 void *client_data);
2396 struct list_head list;
2397 };
2398
2399 struct ib_device *ib_alloc_device(size_t size);
2400 void ib_dealloc_device(struct ib_device *device);
2401
2402 void ib_get_device_fw_str(struct ib_device *device, char *str);
2403
2404 int ib_register_device(struct ib_device *device,
2405 int (*port_callback)(struct ib_device *,
2406 u8, struct kobject *));
2407 void ib_unregister_device(struct ib_device *device);
2408
2409 int ib_register_client (struct ib_client *client);
2410 void ib_unregister_client(struct ib_client *client);
2411
2412 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2413 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2414 void *data);
2415
2416 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2417 {
2418 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2419 }
2420
2421 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2422 {
2423 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2424 }
2425
2426 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2427 size_t offset,
2428 size_t len)
2429 {
2430 const void __user *p = udata->inbuf + offset;
2431 bool ret;
2432 u8 *buf;
2433
2434 if (len > USHRT_MAX)
2435 return false;
2436
2437 buf = memdup_user(p, len);
2438 if (IS_ERR(buf))
2439 return false;
2440
2441 ret = !memchr_inv(buf, 0, len);
2442 kfree(buf);
2443 return ret;
2444 }
2445
2446 /**
2447 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2448 * contains all required attributes and no attributes not allowed for
2449 * the given QP state transition.
2450 * @cur_state: Current QP state
2451 * @next_state: Next QP state
2452 * @type: QP type
2453 * @mask: Mask of supplied QP attributes
2454 * @ll : link layer of port
2455 *
2456 * This function is a helper function that a low-level driver's
2457 * modify_qp method can use to validate the consumer's input. It
2458 * checks that cur_state and next_state are valid QP states, that a
2459 * transition from cur_state to next_state is allowed by the IB spec,
2460 * and that the attribute mask supplied is allowed for the transition.
2461 */
2462 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2463 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2464 enum rdma_link_layer ll);
2465
2466 void ib_register_event_handler(struct ib_event_handler *event_handler);
2467 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2468 void ib_dispatch_event(struct ib_event *event);
2469
2470 int ib_query_port(struct ib_device *device,
2471 u8 port_num, struct ib_port_attr *port_attr);
2472
2473 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2474 u8 port_num);
2475
2476 /**
2477 * rdma_cap_ib_switch - Check if the device is IB switch
2478 * @device: Device to check
2479 *
2480 * Device driver is responsible for setting is_switch bit on
2481 * in ib_device structure at init time.
2482 *
2483 * Return: true if the device is IB switch.
2484 */
2485 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2486 {
2487 return device->is_switch;
2488 }
2489
2490 /**
2491 * rdma_start_port - Return the first valid port number for the device
2492 * specified
2493 *
2494 * @device: Device to be checked
2495 *
2496 * Return start port number
2497 */
2498 static inline u8 rdma_start_port(const struct ib_device *device)
2499 {
2500 return rdma_cap_ib_switch(device) ? 0 : 1;
2501 }
2502
2503 /**
2504 * rdma_end_port - Return the last valid port number for the device
2505 * specified
2506 *
2507 * @device: Device to be checked
2508 *
2509 * Return last port number
2510 */
2511 static inline u8 rdma_end_port(const struct ib_device *device)
2512 {
2513 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2514 }
2515
2516 static inline int rdma_is_port_valid(const struct ib_device *device,
2517 unsigned int port)
2518 {
2519 return (port >= rdma_start_port(device) &&
2520 port <= rdma_end_port(device));
2521 }
2522
2523 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2524 {
2525 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2526 }
2527
2528 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2529 {
2530 return device->port_immutable[port_num].core_cap_flags &
2531 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2532 }
2533
2534 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2535 {
2536 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2537 }
2538
2539 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2540 {
2541 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2542 }
2543
2544 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2545 {
2546 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2547 }
2548
2549 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2550 {
2551 return rdma_protocol_ib(device, port_num) ||
2552 rdma_protocol_roce(device, port_num);
2553 }
2554
2555 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2556 {
2557 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2558 }
2559
2560 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2561 {
2562 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2563 }
2564
2565 /**
2566 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2567 * Management Datagrams.
2568 * @device: Device to check
2569 * @port_num: Port number to check
2570 *
2571 * Management Datagrams (MAD) are a required part of the InfiniBand
2572 * specification and are supported on all InfiniBand devices. A slightly
2573 * extended version are also supported on OPA interfaces.
2574 *
2575 * Return: true if the port supports sending/receiving of MAD packets.
2576 */
2577 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2578 {
2579 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2580 }
2581
2582 /**
2583 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2584 * Management Datagrams.
2585 * @device: Device to check
2586 * @port_num: Port number to check
2587 *
2588 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2589 * datagrams with their own versions. These OPA MADs share many but not all of
2590 * the characteristics of InfiniBand MADs.
2591 *
2592 * OPA MADs differ in the following ways:
2593 *
2594 * 1) MADs are variable size up to 2K
2595 * IBTA defined MADs remain fixed at 256 bytes
2596 * 2) OPA SMPs must carry valid PKeys
2597 * 3) OPA SMP packets are a different format
2598 *
2599 * Return: true if the port supports OPA MAD packet formats.
2600 */
2601 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2602 {
2603 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2604 == RDMA_CORE_CAP_OPA_MAD;
2605 }
2606
2607 /**
2608 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2609 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2610 * @device: Device to check
2611 * @port_num: Port number to check
2612 *
2613 * Each InfiniBand node is required to provide a Subnet Management Agent
2614 * that the subnet manager can access. Prior to the fabric being fully
2615 * configured by the subnet manager, the SMA is accessed via a well known
2616 * interface called the Subnet Management Interface (SMI). This interface
2617 * uses directed route packets to communicate with the SM to get around the
2618 * chicken and egg problem of the SM needing to know what's on the fabric
2619 * in order to configure the fabric, and needing to configure the fabric in
2620 * order to send packets to the devices on the fabric. These directed
2621 * route packets do not need the fabric fully configured in order to reach
2622 * their destination. The SMI is the only method allowed to send
2623 * directed route packets on an InfiniBand fabric.
2624 *
2625 * Return: true if the port provides an SMI.
2626 */
2627 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2628 {
2629 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2630 }
2631
2632 /**
2633 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2634 * Communication Manager.
2635 * @device: Device to check
2636 * @port_num: Port number to check
2637 *
2638 * The InfiniBand Communication Manager is one of many pre-defined General
2639 * Service Agents (GSA) that are accessed via the General Service
2640 * Interface (GSI). It's role is to facilitate establishment of connections
2641 * between nodes as well as other management related tasks for established
2642 * connections.
2643 *
2644 * Return: true if the port supports an IB CM (this does not guarantee that
2645 * a CM is actually running however).
2646 */
2647 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2648 {
2649 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2650 }
2651
2652 /**
2653 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2654 * Communication Manager.
2655 * @device: Device to check
2656 * @port_num: Port number to check
2657 *
2658 * Similar to above, but specific to iWARP connections which have a different
2659 * managment protocol than InfiniBand.
2660 *
2661 * Return: true if the port supports an iWARP CM (this does not guarantee that
2662 * a CM is actually running however).
2663 */
2664 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2665 {
2666 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2667 }
2668
2669 /**
2670 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2671 * Subnet Administration.
2672 * @device: Device to check
2673 * @port_num: Port number to check
2674 *
2675 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2676 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2677 * fabrics, devices should resolve routes to other hosts by contacting the
2678 * SA to query the proper route.
2679 *
2680 * Return: true if the port should act as a client to the fabric Subnet
2681 * Administration interface. This does not imply that the SA service is
2682 * running locally.
2683 */
2684 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2685 {
2686 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2687 }
2688
2689 /**
2690 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2691 * Multicast.
2692 * @device: Device to check
2693 * @port_num: Port number to check
2694 *
2695 * InfiniBand multicast registration is more complex than normal IPv4 or
2696 * IPv6 multicast registration. Each Host Channel Adapter must register
2697 * with the Subnet Manager when it wishes to join a multicast group. It
2698 * should do so only once regardless of how many queue pairs it subscribes
2699 * to this group. And it should leave the group only after all queue pairs
2700 * attached to the group have been detached.
2701 *
2702 * Return: true if the port must undertake the additional adminstrative
2703 * overhead of registering/unregistering with the SM and tracking of the
2704 * total number of queue pairs attached to the multicast group.
2705 */
2706 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2707 {
2708 return rdma_cap_ib_sa(device, port_num);
2709 }
2710
2711 /**
2712 * rdma_cap_af_ib - Check if the port of device has the capability
2713 * Native Infiniband Address.
2714 * @device: Device to check
2715 * @port_num: Port number to check
2716 *
2717 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2718 * GID. RoCE uses a different mechanism, but still generates a GID via
2719 * a prescribed mechanism and port specific data.
2720 *
2721 * Return: true if the port uses a GID address to identify devices on the
2722 * network.
2723 */
2724 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2725 {
2726 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2727 }
2728
2729 /**
2730 * rdma_cap_eth_ah - Check if the port of device has the capability
2731 * Ethernet Address Handle.
2732 * @device: Device to check
2733 * @port_num: Port number to check
2734 *
2735 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2736 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2737 * port. Normally, packet headers are generated by the sending host
2738 * adapter, but when sending connectionless datagrams, we must manually
2739 * inject the proper headers for the fabric we are communicating over.
2740 *
2741 * Return: true if we are running as a RoCE port and must force the
2742 * addition of a Global Route Header built from our Ethernet Address
2743 * Handle into our header list for connectionless packets.
2744 */
2745 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2746 {
2747 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2748 }
2749
2750 /**
2751 * rdma_cap_opa_ah - Check if the port of device supports
2752 * OPA Address handles
2753 * @device: Device to check
2754 * @port_num: Port number to check
2755 *
2756 * Return: true if we are running on an OPA device which supports
2757 * the extended OPA addressing.
2758 */
2759 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2760 {
2761 return (device->port_immutable[port_num].core_cap_flags &
2762 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2763 }
2764
2765 /**
2766 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2767 *
2768 * @device: Device
2769 * @port_num: Port number
2770 *
2771 * This MAD size includes the MAD headers and MAD payload. No other headers
2772 * are included.
2773 *
2774 * Return the max MAD size required by the Port. Will return 0 if the port
2775 * does not support MADs
2776 */
2777 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2778 {
2779 return device->port_immutable[port_num].max_mad_size;
2780 }
2781
2782 /**
2783 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2784 * @device: Device to check
2785 * @port_num: Port number to check
2786 *
2787 * RoCE GID table mechanism manages the various GIDs for a device.
2788 *
2789 * NOTE: if allocating the port's GID table has failed, this call will still
2790 * return true, but any RoCE GID table API will fail.
2791 *
2792 * Return: true if the port uses RoCE GID table mechanism in order to manage
2793 * its GIDs.
2794 */
2795 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2796 u8 port_num)
2797 {
2798 return rdma_protocol_roce(device, port_num) &&
2799 device->add_gid && device->del_gid;
2800 }
2801
2802 /*
2803 * Check if the device supports READ W/ INVALIDATE.
2804 */
2805 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2806 {
2807 /*
2808 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2809 * has support for it yet.
2810 */
2811 return rdma_protocol_iwarp(dev, port_num);
2812 }
2813
2814 int ib_query_gid(struct ib_device *device,
2815 u8 port_num, int index, union ib_gid *gid,
2816 struct ib_gid_attr *attr);
2817
2818 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2819 int state);
2820 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2821 struct ifla_vf_info *info);
2822 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2823 struct ifla_vf_stats *stats);
2824 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2825 int type);
2826
2827 int ib_query_pkey(struct ib_device *device,
2828 u8 port_num, u16 index, u16 *pkey);
2829
2830 int ib_modify_device(struct ib_device *device,
2831 int device_modify_mask,
2832 struct ib_device_modify *device_modify);
2833
2834 int ib_modify_port(struct ib_device *device,
2835 u8 port_num, int port_modify_mask,
2836 struct ib_port_modify *port_modify);
2837
2838 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2839 enum ib_gid_type gid_type, struct net_device *ndev,
2840 u8 *port_num, u16 *index);
2841
2842 int ib_find_pkey(struct ib_device *device,
2843 u8 port_num, u16 pkey, u16 *index);
2844
2845 enum ib_pd_flags {
2846 /*
2847 * Create a memory registration for all memory in the system and place
2848 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2849 * ULPs to avoid the overhead of dynamic MRs.
2850 *
2851 * This flag is generally considered unsafe and must only be used in
2852 * extremly trusted environments. Every use of it will log a warning
2853 * in the kernel log.
2854 */
2855 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2856 };
2857
2858 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2859 const char *caller);
2860 #define ib_alloc_pd(device, flags) \
2861 __ib_alloc_pd((device), (flags), __func__)
2862 void ib_dealloc_pd(struct ib_pd *pd);
2863
2864 /**
2865 * rdma_create_ah - Creates an address handle for the given address vector.
2866 * @pd: The protection domain associated with the address handle.
2867 * @ah_attr: The attributes of the address vector.
2868 *
2869 * The address handle is used to reference a local or global destination
2870 * in all UD QP post sends.
2871 */
2872 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2873
2874 /**
2875 * rdma_create_user_ah - Creates an address handle for the given address vector.
2876 * It resolves destination mac address for ah attribute of RoCE type.
2877 * @pd: The protection domain associated with the address handle.
2878 * @ah_attr: The attributes of the address vector.
2879 * @udata: pointer to user's input output buffer information need by
2880 * provider driver.
2881 *
2882 * It returns 0 on success and returns appropriate error code on error.
2883 * The address handle is used to reference a local or global destination
2884 * in all UD QP post sends.
2885 */
2886 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
2887 struct rdma_ah_attr *ah_attr,
2888 struct ib_udata *udata);
2889 /**
2890 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2891 * work completion.
2892 * @hdr: the L3 header to parse
2893 * @net_type: type of header to parse
2894 * @sgid: place to store source gid
2895 * @dgid: place to store destination gid
2896 */
2897 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2898 enum rdma_network_type net_type,
2899 union ib_gid *sgid, union ib_gid *dgid);
2900
2901 /**
2902 * ib_get_rdma_header_version - Get the header version
2903 * @hdr: the L3 header to parse
2904 */
2905 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2906
2907 /**
2908 * ib_init_ah_from_wc - Initializes address handle attributes from a
2909 * work completion.
2910 * @device: Device on which the received message arrived.
2911 * @port_num: Port on which the received message arrived.
2912 * @wc: Work completion associated with the received message.
2913 * @grh: References the received global route header. This parameter is
2914 * ignored unless the work completion indicates that the GRH is valid.
2915 * @ah_attr: Returned attributes that can be used when creating an address
2916 * handle for replying to the message.
2917 */
2918 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2919 const struct ib_wc *wc, const struct ib_grh *grh,
2920 struct rdma_ah_attr *ah_attr);
2921
2922 /**
2923 * ib_create_ah_from_wc - Creates an address handle associated with the
2924 * sender of the specified work completion.
2925 * @pd: The protection domain associated with the address handle.
2926 * @wc: Work completion information associated with a received message.
2927 * @grh: References the received global route header. This parameter is
2928 * ignored unless the work completion indicates that the GRH is valid.
2929 * @port_num: The outbound port number to associate with the address.
2930 *
2931 * The address handle is used to reference a local or global destination
2932 * in all UD QP post sends.
2933 */
2934 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2935 const struct ib_grh *grh, u8 port_num);
2936
2937 /**
2938 * rdma_modify_ah - Modifies the address vector associated with an address
2939 * handle.
2940 * @ah: The address handle to modify.
2941 * @ah_attr: The new address vector attributes to associate with the
2942 * address handle.
2943 */
2944 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2945
2946 /**
2947 * rdma_query_ah - Queries the address vector associated with an address
2948 * handle.
2949 * @ah: The address handle to query.
2950 * @ah_attr: The address vector attributes associated with the address
2951 * handle.
2952 */
2953 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2954
2955 /**
2956 * rdma_destroy_ah - Destroys an address handle.
2957 * @ah: The address handle to destroy.
2958 */
2959 int rdma_destroy_ah(struct ib_ah *ah);
2960
2961 /**
2962 * ib_create_srq - Creates a SRQ associated with the specified protection
2963 * domain.
2964 * @pd: The protection domain associated with the SRQ.
2965 * @srq_init_attr: A list of initial attributes required to create the
2966 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2967 * the actual capabilities of the created SRQ.
2968 *
2969 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2970 * requested size of the SRQ, and set to the actual values allocated
2971 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2972 * will always be at least as large as the requested values.
2973 */
2974 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2975 struct ib_srq_init_attr *srq_init_attr);
2976
2977 /**
2978 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2979 * @srq: The SRQ to modify.
2980 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2981 * the current values of selected SRQ attributes are returned.
2982 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2983 * are being modified.
2984 *
2985 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2986 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2987 * the number of receives queued drops below the limit.
2988 */
2989 int ib_modify_srq(struct ib_srq *srq,
2990 struct ib_srq_attr *srq_attr,
2991 enum ib_srq_attr_mask srq_attr_mask);
2992
2993 /**
2994 * ib_query_srq - Returns the attribute list and current values for the
2995 * specified SRQ.
2996 * @srq: The SRQ to query.
2997 * @srq_attr: The attributes of the specified SRQ.
2998 */
2999 int ib_query_srq(struct ib_srq *srq,
3000 struct ib_srq_attr *srq_attr);
3001
3002 /**
3003 * ib_destroy_srq - Destroys the specified SRQ.
3004 * @srq: The SRQ to destroy.
3005 */
3006 int ib_destroy_srq(struct ib_srq *srq);
3007
3008 /**
3009 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3010 * @srq: The SRQ to post the work request on.
3011 * @recv_wr: A list of work requests to post on the receive queue.
3012 * @bad_recv_wr: On an immediate failure, this parameter will reference
3013 * the work request that failed to be posted on the QP.
3014 */
3015 static inline int ib_post_srq_recv(struct ib_srq *srq,
3016 struct ib_recv_wr *recv_wr,
3017 struct ib_recv_wr **bad_recv_wr)
3018 {
3019 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3020 }
3021
3022 /**
3023 * ib_create_qp - Creates a QP associated with the specified protection
3024 * domain.
3025 * @pd: The protection domain associated with the QP.
3026 * @qp_init_attr: A list of initial attributes required to create the
3027 * QP. If QP creation succeeds, then the attributes are updated to
3028 * the actual capabilities of the created QP.
3029 */
3030 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3031 struct ib_qp_init_attr *qp_init_attr);
3032
3033 /**
3034 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3035 * @qp: The QP to modify.
3036 * @attr: On input, specifies the QP attributes to modify. On output,
3037 * the current values of selected QP attributes are returned.
3038 * @attr_mask: A bit-mask used to specify which attributes of the QP
3039 * are being modified.
3040 * @udata: pointer to user's input output buffer information
3041 * are being modified.
3042 * It returns 0 on success and returns appropriate error code on error.
3043 */
3044 int ib_modify_qp_with_udata(struct ib_qp *qp,
3045 struct ib_qp_attr *attr,
3046 int attr_mask,
3047 struct ib_udata *udata);
3048
3049 /**
3050 * ib_modify_qp - Modifies the attributes for the specified QP and then
3051 * transitions the QP to the given state.
3052 * @qp: The QP to modify.
3053 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3054 * the current values of selected QP attributes are returned.
3055 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3056 * are being modified.
3057 */
3058 int ib_modify_qp(struct ib_qp *qp,
3059 struct ib_qp_attr *qp_attr,
3060 int qp_attr_mask);
3061
3062 /**
3063 * ib_query_qp - Returns the attribute list and current values for the
3064 * specified QP.
3065 * @qp: The QP to query.
3066 * @qp_attr: The attributes of the specified QP.
3067 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3068 * @qp_init_attr: Additional attributes of the selected QP.
3069 *
3070 * The qp_attr_mask may be used to limit the query to gathering only the
3071 * selected attributes.
3072 */
3073 int ib_query_qp(struct ib_qp *qp,
3074 struct ib_qp_attr *qp_attr,
3075 int qp_attr_mask,
3076 struct ib_qp_init_attr *qp_init_attr);
3077
3078 /**
3079 * ib_destroy_qp - Destroys the specified QP.
3080 * @qp: The QP to destroy.
3081 */
3082 int ib_destroy_qp(struct ib_qp *qp);
3083
3084 /**
3085 * ib_open_qp - Obtain a reference to an existing sharable QP.
3086 * @xrcd - XRC domain
3087 * @qp_open_attr: Attributes identifying the QP to open.
3088 *
3089 * Returns a reference to a sharable QP.
3090 */
3091 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3092 struct ib_qp_open_attr *qp_open_attr);
3093
3094 /**
3095 * ib_close_qp - Release an external reference to a QP.
3096 * @qp: The QP handle to release
3097 *
3098 * The opened QP handle is released by the caller. The underlying
3099 * shared QP is not destroyed until all internal references are released.
3100 */
3101 int ib_close_qp(struct ib_qp *qp);
3102
3103 /**
3104 * ib_post_send - Posts a list of work requests to the send queue of
3105 * the specified QP.
3106 * @qp: The QP to post the work request on.
3107 * @send_wr: A list of work requests to post on the send queue.
3108 * @bad_send_wr: On an immediate failure, this parameter will reference
3109 * the work request that failed to be posted on the QP.
3110 *
3111 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3112 * error is returned, the QP state shall not be affected,
3113 * ib_post_send() will return an immediate error after queueing any
3114 * earlier work requests in the list.
3115 */
3116 static inline int ib_post_send(struct ib_qp *qp,
3117 struct ib_send_wr *send_wr,
3118 struct ib_send_wr **bad_send_wr)
3119 {
3120 return qp->device->post_send(qp, send_wr, bad_send_wr);
3121 }
3122
3123 /**
3124 * ib_post_recv - Posts a list of work requests to the receive queue of
3125 * the specified QP.
3126 * @qp: The QP to post the work request on.
3127 * @recv_wr: A list of work requests to post on the receive queue.
3128 * @bad_recv_wr: On an immediate failure, this parameter will reference
3129 * the work request that failed to be posted on the QP.
3130 */
3131 static inline int ib_post_recv(struct ib_qp *qp,
3132 struct ib_recv_wr *recv_wr,
3133 struct ib_recv_wr **bad_recv_wr)
3134 {
3135 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3136 }
3137
3138 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3139 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
3140 void ib_free_cq(struct ib_cq *cq);
3141 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3142
3143 /**
3144 * ib_create_cq - Creates a CQ on the specified device.
3145 * @device: The device on which to create the CQ.
3146 * @comp_handler: A user-specified callback that is invoked when a
3147 * completion event occurs on the CQ.
3148 * @event_handler: A user-specified callback that is invoked when an
3149 * asynchronous event not associated with a completion occurs on the CQ.
3150 * @cq_context: Context associated with the CQ returned to the user via
3151 * the associated completion and event handlers.
3152 * @cq_attr: The attributes the CQ should be created upon.
3153 *
3154 * Users can examine the cq structure to determine the actual CQ size.
3155 */
3156 struct ib_cq *ib_create_cq(struct ib_device *device,
3157 ib_comp_handler comp_handler,
3158 void (*event_handler)(struct ib_event *, void *),
3159 void *cq_context,
3160 const struct ib_cq_init_attr *cq_attr);
3161
3162 /**
3163 * ib_resize_cq - Modifies the capacity of the CQ.
3164 * @cq: The CQ to resize.
3165 * @cqe: The minimum size of the CQ.
3166 *
3167 * Users can examine the cq structure to determine the actual CQ size.
3168 */
3169 int ib_resize_cq(struct ib_cq *cq, int cqe);
3170
3171 /**
3172 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3173 * @cq: The CQ to modify.
3174 * @cq_count: number of CQEs that will trigger an event
3175 * @cq_period: max period of time in usec before triggering an event
3176 *
3177 */
3178 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3179
3180 /**
3181 * ib_destroy_cq - Destroys the specified CQ.
3182 * @cq: The CQ to destroy.
3183 */
3184 int ib_destroy_cq(struct ib_cq *cq);
3185
3186 /**
3187 * ib_poll_cq - poll a CQ for completion(s)
3188 * @cq:the CQ being polled
3189 * @num_entries:maximum number of completions to return
3190 * @wc:array of at least @num_entries &struct ib_wc where completions
3191 * will be returned
3192 *
3193 * Poll a CQ for (possibly multiple) completions. If the return value
3194 * is < 0, an error occurred. If the return value is >= 0, it is the
3195 * number of completions returned. If the return value is
3196 * non-negative and < num_entries, then the CQ was emptied.
3197 */
3198 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3199 struct ib_wc *wc)
3200 {
3201 return cq->device->poll_cq(cq, num_entries, wc);
3202 }
3203
3204 /**
3205 * ib_peek_cq - Returns the number of unreaped completions currently
3206 * on the specified CQ.
3207 * @cq: The CQ to peek.
3208 * @wc_cnt: A minimum number of unreaped completions to check for.
3209 *
3210 * If the number of unreaped completions is greater than or equal to wc_cnt,
3211 * this function returns wc_cnt, otherwise, it returns the actual number of
3212 * unreaped completions.
3213 */
3214 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3215
3216 /**
3217 * ib_req_notify_cq - Request completion notification on a CQ.
3218 * @cq: The CQ to generate an event for.
3219 * @flags:
3220 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3221 * to request an event on the next solicited event or next work
3222 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3223 * may also be |ed in to request a hint about missed events, as
3224 * described below.
3225 *
3226 * Return Value:
3227 * < 0 means an error occurred while requesting notification
3228 * == 0 means notification was requested successfully, and if
3229 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3230 * were missed and it is safe to wait for another event. In
3231 * this case is it guaranteed that any work completions added
3232 * to the CQ since the last CQ poll will trigger a completion
3233 * notification event.
3234 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3235 * in. It means that the consumer must poll the CQ again to
3236 * make sure it is empty to avoid missing an event because of a
3237 * race between requesting notification and an entry being
3238 * added to the CQ. This return value means it is possible
3239 * (but not guaranteed) that a work completion has been added
3240 * to the CQ since the last poll without triggering a
3241 * completion notification event.
3242 */
3243 static inline int ib_req_notify_cq(struct ib_cq *cq,
3244 enum ib_cq_notify_flags flags)
3245 {
3246 return cq->device->req_notify_cq(cq, flags);
3247 }
3248
3249 /**
3250 * ib_req_ncomp_notif - Request completion notification when there are
3251 * at least the specified number of unreaped completions on the CQ.
3252 * @cq: The CQ to generate an event for.
3253 * @wc_cnt: The number of unreaped completions that should be on the
3254 * CQ before an event is generated.
3255 */
3256 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3257 {
3258 return cq->device->req_ncomp_notif ?
3259 cq->device->req_ncomp_notif(cq, wc_cnt) :
3260 -ENOSYS;
3261 }
3262
3263 /**
3264 * ib_dma_mapping_error - check a DMA addr for error
3265 * @dev: The device for which the dma_addr was created
3266 * @dma_addr: The DMA address to check
3267 */
3268 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3269 {
3270 return dma_mapping_error(dev->dma_device, dma_addr);
3271 }
3272
3273 /**
3274 * ib_dma_map_single - Map a kernel virtual address to DMA address
3275 * @dev: The device for which the dma_addr is to be created
3276 * @cpu_addr: The kernel virtual address
3277 * @size: The size of the region in bytes
3278 * @direction: The direction of the DMA
3279 */
3280 static inline u64 ib_dma_map_single(struct ib_device *dev,
3281 void *cpu_addr, size_t size,
3282 enum dma_data_direction direction)
3283 {
3284 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3285 }
3286
3287 /**
3288 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3289 * @dev: The device for which the DMA address was created
3290 * @addr: The DMA address
3291 * @size: The size of the region in bytes
3292 * @direction: The direction of the DMA
3293 */
3294 static inline void ib_dma_unmap_single(struct ib_device *dev,
3295 u64 addr, size_t size,
3296 enum dma_data_direction direction)
3297 {
3298 dma_unmap_single(dev->dma_device, addr, size, direction);
3299 }
3300
3301 /**
3302 * ib_dma_map_page - Map a physical page to DMA address
3303 * @dev: The device for which the dma_addr is to be created
3304 * @page: The page to be mapped
3305 * @offset: The offset within the page
3306 * @size: The size of the region in bytes
3307 * @direction: The direction of the DMA
3308 */
3309 static inline u64 ib_dma_map_page(struct ib_device *dev,
3310 struct page *page,
3311 unsigned long offset,
3312 size_t size,
3313 enum dma_data_direction direction)
3314 {
3315 return dma_map_page(dev->dma_device, page, offset, size, direction);
3316 }
3317
3318 /**
3319 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3320 * @dev: The device for which the DMA address was created
3321 * @addr: The DMA address
3322 * @size: The size of the region in bytes
3323 * @direction: The direction of the DMA
3324 */
3325 static inline void ib_dma_unmap_page(struct ib_device *dev,
3326 u64 addr, size_t size,
3327 enum dma_data_direction direction)
3328 {
3329 dma_unmap_page(dev->dma_device, addr, size, direction);
3330 }
3331
3332 /**
3333 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3334 * @dev: The device for which the DMA addresses are to be created
3335 * @sg: The array of scatter/gather entries
3336 * @nents: The number of scatter/gather entries
3337 * @direction: The direction of the DMA
3338 */
3339 static inline int ib_dma_map_sg(struct ib_device *dev,
3340 struct scatterlist *sg, int nents,
3341 enum dma_data_direction direction)
3342 {
3343 return dma_map_sg(dev->dma_device, sg, nents, direction);
3344 }
3345
3346 /**
3347 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3348 * @dev: The device for which the DMA addresses were created
3349 * @sg: The array of scatter/gather entries
3350 * @nents: The number of scatter/gather entries
3351 * @direction: The direction of the DMA
3352 */
3353 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3354 struct scatterlist *sg, int nents,
3355 enum dma_data_direction direction)
3356 {
3357 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3358 }
3359
3360 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3361 struct scatterlist *sg, int nents,
3362 enum dma_data_direction direction,
3363 unsigned long dma_attrs)
3364 {
3365 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3366 dma_attrs);
3367 }
3368
3369 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3370 struct scatterlist *sg, int nents,
3371 enum dma_data_direction direction,
3372 unsigned long dma_attrs)
3373 {
3374 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3375 }
3376 /**
3377 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3378 * @dev: The device for which the DMA addresses were created
3379 * @sg: The scatter/gather entry
3380 *
3381 * Note: this function is obsolete. To do: change all occurrences of
3382 * ib_sg_dma_address() into sg_dma_address().
3383 */
3384 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3385 struct scatterlist *sg)
3386 {
3387 return sg_dma_address(sg);
3388 }
3389
3390 /**
3391 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3392 * @dev: The device for which the DMA addresses were created
3393 * @sg: The scatter/gather entry
3394 *
3395 * Note: this function is obsolete. To do: change all occurrences of
3396 * ib_sg_dma_len() into sg_dma_len().
3397 */
3398 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3399 struct scatterlist *sg)
3400 {
3401 return sg_dma_len(sg);
3402 }
3403
3404 /**
3405 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3406 * @dev: The device for which the DMA address was created
3407 * @addr: The DMA address
3408 * @size: The size of the region in bytes
3409 * @dir: The direction of the DMA
3410 */
3411 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3412 u64 addr,
3413 size_t size,
3414 enum dma_data_direction dir)
3415 {
3416 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3417 }
3418
3419 /**
3420 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3421 * @dev: The device for which the DMA address was created
3422 * @addr: The DMA address
3423 * @size: The size of the region in bytes
3424 * @dir: The direction of the DMA
3425 */
3426 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3427 u64 addr,
3428 size_t size,
3429 enum dma_data_direction dir)
3430 {
3431 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3432 }
3433
3434 /**
3435 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3436 * @dev: The device for which the DMA address is requested
3437 * @size: The size of the region to allocate in bytes
3438 * @dma_handle: A pointer for returning the DMA address of the region
3439 * @flag: memory allocator flags
3440 */
3441 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3442 size_t size,
3443 dma_addr_t *dma_handle,
3444 gfp_t flag)
3445 {
3446 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3447 }
3448
3449 /**
3450 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3451 * @dev: The device for which the DMA addresses were allocated
3452 * @size: The size of the region
3453 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3454 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3455 */
3456 static inline void ib_dma_free_coherent(struct ib_device *dev,
3457 size_t size, void *cpu_addr,
3458 dma_addr_t dma_handle)
3459 {
3460 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3461 }
3462
3463 /**
3464 * ib_dereg_mr - Deregisters a memory region and removes it from the
3465 * HCA translation table.
3466 * @mr: The memory region to deregister.
3467 *
3468 * This function can fail, if the memory region has memory windows bound to it.
3469 */
3470 int ib_dereg_mr(struct ib_mr *mr);
3471
3472 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3473 enum ib_mr_type mr_type,
3474 u32 max_num_sg);
3475
3476 /**
3477 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3478 * R_Key and L_Key.
3479 * @mr - struct ib_mr pointer to be updated.
3480 * @newkey - new key to be used.
3481 */
3482 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3483 {
3484 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3485 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3486 }
3487
3488 /**
3489 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3490 * for calculating a new rkey for type 2 memory windows.
3491 * @rkey - the rkey to increment.
3492 */
3493 static inline u32 ib_inc_rkey(u32 rkey)
3494 {
3495 const u32 mask = 0x000000ff;
3496 return ((rkey + 1) & mask) | (rkey & ~mask);
3497 }
3498
3499 /**
3500 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3501 * @pd: The protection domain associated with the unmapped region.
3502 * @mr_access_flags: Specifies the memory access rights.
3503 * @fmr_attr: Attributes of the unmapped region.
3504 *
3505 * A fast memory region must be mapped before it can be used as part of
3506 * a work request.
3507 */
3508 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3509 int mr_access_flags,
3510 struct ib_fmr_attr *fmr_attr);
3511
3512 /**
3513 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3514 * @fmr: The fast memory region to associate with the pages.
3515 * @page_list: An array of physical pages to map to the fast memory region.
3516 * @list_len: The number of pages in page_list.
3517 * @iova: The I/O virtual address to use with the mapped region.
3518 */
3519 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3520 u64 *page_list, int list_len,
3521 u64 iova)
3522 {
3523 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3524 }
3525
3526 /**
3527 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3528 * @fmr_list: A linked list of fast memory regions to unmap.
3529 */
3530 int ib_unmap_fmr(struct list_head *fmr_list);
3531
3532 /**
3533 * ib_dealloc_fmr - Deallocates a fast memory region.
3534 * @fmr: The fast memory region to deallocate.
3535 */
3536 int ib_dealloc_fmr(struct ib_fmr *fmr);
3537
3538 /**
3539 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3540 * @qp: QP to attach to the multicast group. The QP must be type
3541 * IB_QPT_UD.
3542 * @gid: Multicast group GID.
3543 * @lid: Multicast group LID in host byte order.
3544 *
3545 * In order to send and receive multicast packets, subnet
3546 * administration must have created the multicast group and configured
3547 * the fabric appropriately. The port associated with the specified
3548 * QP must also be a member of the multicast group.
3549 */
3550 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3551
3552 /**
3553 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3554 * @qp: QP to detach from the multicast group.
3555 * @gid: Multicast group GID.
3556 * @lid: Multicast group LID in host byte order.
3557 */
3558 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3559
3560 /**
3561 * ib_alloc_xrcd - Allocates an XRC domain.
3562 * @device: The device on which to allocate the XRC domain.
3563 */
3564 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3565
3566 /**
3567 * ib_dealloc_xrcd - Deallocates an XRC domain.
3568 * @xrcd: The XRC domain to deallocate.
3569 */
3570 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3571
3572 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3573 struct ib_flow_attr *flow_attr, int domain);
3574 int ib_destroy_flow(struct ib_flow *flow_id);
3575
3576 static inline int ib_check_mr_access(int flags)
3577 {
3578 /*
3579 * Local write permission is required if remote write or
3580 * remote atomic permission is also requested.
3581 */
3582 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3583 !(flags & IB_ACCESS_LOCAL_WRITE))
3584 return -EINVAL;
3585
3586 return 0;
3587 }
3588
3589 /**
3590 * ib_check_mr_status: lightweight check of MR status.
3591 * This routine may provide status checks on a selected
3592 * ib_mr. first use is for signature status check.
3593 *
3594 * @mr: A memory region.
3595 * @check_mask: Bitmask of which checks to perform from
3596 * ib_mr_status_check enumeration.
3597 * @mr_status: The container of relevant status checks.
3598 * failed checks will be indicated in the status bitmask
3599 * and the relevant info shall be in the error item.
3600 */
3601 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3602 struct ib_mr_status *mr_status);
3603
3604 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3605 u16 pkey, const union ib_gid *gid,
3606 const struct sockaddr *addr);
3607 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3608 struct ib_wq_init_attr *init_attr);
3609 int ib_destroy_wq(struct ib_wq *wq);
3610 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3611 u32 wq_attr_mask);
3612 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3613 struct ib_rwq_ind_table_init_attr*
3614 wq_ind_table_init_attr);
3615 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3616
3617 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3618 unsigned int *sg_offset, unsigned int page_size);
3619
3620 static inline int
3621 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3622 unsigned int *sg_offset, unsigned int page_size)
3623 {
3624 int n;
3625
3626 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3627 mr->iova = 0;
3628
3629 return n;
3630 }
3631
3632 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3633 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3634
3635 void ib_drain_rq(struct ib_qp *qp);
3636 void ib_drain_sq(struct ib_qp *qp);
3637 void ib_drain_qp(struct ib_qp *qp);
3638
3639 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3640
3641 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3642 {
3643 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3644 return attr->roce.dmac;
3645 return NULL;
3646 }
3647
3648 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3649 {
3650 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3651 attr->ib.dlid = (u16)dlid;
3652 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3653 attr->opa.dlid = dlid;
3654 }
3655
3656 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3657 {
3658 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3659 return attr->ib.dlid;
3660 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3661 return attr->opa.dlid;
3662 return 0;
3663 }
3664
3665 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3666 {
3667 attr->sl = sl;
3668 }
3669
3670 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3671 {
3672 return attr->sl;
3673 }
3674
3675 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3676 u8 src_path_bits)
3677 {
3678 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3679 attr->ib.src_path_bits = src_path_bits;
3680 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3681 attr->opa.src_path_bits = src_path_bits;
3682 }
3683
3684 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3685 {
3686 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3687 return attr->ib.src_path_bits;
3688 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3689 return attr->opa.src_path_bits;
3690 return 0;
3691 }
3692
3693 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3694 bool make_grd)
3695 {
3696 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3697 attr->opa.make_grd = make_grd;
3698 }
3699
3700 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3701 {
3702 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3703 return attr->opa.make_grd;
3704 return false;
3705 }
3706
3707 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3708 {
3709 attr->port_num = port_num;
3710 }
3711
3712 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3713 {
3714 return attr->port_num;
3715 }
3716
3717 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3718 u8 static_rate)
3719 {
3720 attr->static_rate = static_rate;
3721 }
3722
3723 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3724 {
3725 return attr->static_rate;
3726 }
3727
3728 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3729 enum ib_ah_flags flag)
3730 {
3731 attr->ah_flags = flag;
3732 }
3733
3734 static inline enum ib_ah_flags
3735 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3736 {
3737 return attr->ah_flags;
3738 }
3739
3740 static inline const struct ib_global_route
3741 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3742 {
3743 return &attr->grh;
3744 }
3745
3746 /*To retrieve and modify the grh */
3747 static inline struct ib_global_route
3748 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3749 {
3750 return &attr->grh;
3751 }
3752
3753 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3754 {
3755 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3756
3757 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3758 }
3759
3760 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3761 __be64 prefix)
3762 {
3763 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3764
3765 grh->dgid.global.subnet_prefix = prefix;
3766 }
3767
3768 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3769 __be64 if_id)
3770 {
3771 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3772
3773 grh->dgid.global.interface_id = if_id;
3774 }
3775
3776 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3777 union ib_gid *dgid, u32 flow_label,
3778 u8 sgid_index, u8 hop_limit,
3779 u8 traffic_class)
3780 {
3781 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3782
3783 attr->ah_flags = IB_AH_GRH;
3784 if (dgid)
3785 grh->dgid = *dgid;
3786 grh->flow_label = flow_label;
3787 grh->sgid_index = sgid_index;
3788 grh->hop_limit = hop_limit;
3789 grh->traffic_class = traffic_class;
3790 }
3791
3792 /*Get AH type */
3793 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3794 u32 port_num)
3795 {
3796 if ((rdma_protocol_roce(dev, port_num)) ||
3797 (rdma_protocol_iwarp(dev, port_num)))
3798 return RDMA_AH_ATTR_TYPE_ROCE;
3799 else if ((rdma_protocol_ib(dev, port_num)) &&
3800 (rdma_cap_opa_ah(dev, port_num)))
3801 return RDMA_AH_ATTR_TYPE_OPA;
3802 else
3803 return RDMA_AH_ATTR_TYPE_IB;
3804 }
3805
3806 /**
3807 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3808 * In the current implementation the only way to get
3809 * get the 32bit lid is from other sources for OPA.
3810 * For IB, lids will always be 16bits so cast the
3811 * value accordingly.
3812 *
3813 * @lid: A 32bit LID
3814 */
3815 static inline u16 ib_lid_cpu16(u32 lid)
3816 {
3817 WARN_ON_ONCE(lid & 0xFFFF0000);
3818 return (u16)lid;
3819 }
3820
3821 /**
3822 * ib_lid_be16 - Return lid in 16bit BE encoding.
3823 *
3824 * @lid: A 32bit LID
3825 */
3826 static inline __be16 ib_lid_be16(u32 lid)
3827 {
3828 WARN_ON_ONCE(lid & 0xFFFF0000);
3829 return cpu_to_be16((u16)lid);
3830 }
3831
3832 /**
3833 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3834 * vector
3835 * @device: the rdma device
3836 * @comp_vector: index of completion vector
3837 *
3838 * Returns NULL on failure, otherwise a corresponding cpu map of the
3839 * completion vector (returns all-cpus map if the device driver doesn't
3840 * implement get_vector_affinity).
3841 */
3842 static inline const struct cpumask *
3843 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3844 {
3845 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3846 !device->get_vector_affinity)
3847 return NULL;
3848
3849 return device->get_vector_affinity(device, comp_vector);
3850
3851 }
3852
3853 #endif /* IB_VERBS_H */