]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/trace/events/sched.h
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-jammy-kernel.git] / include / trace / events / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #undef TRACE_SYSTEM
3 #define TRACE_SYSTEM sched
4
5 #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
6 #define _TRACE_SCHED_H
7
8 #include <linux/kthread.h>
9 #include <linux/sched/numa_balancing.h>
10 #include <linux/tracepoint.h>
11 #include <linux/binfmts.h>
12
13 /*
14 * Tracepoint for calling kthread_stop, performed to end a kthread:
15 */
16 TRACE_EVENT(sched_kthread_stop,
17
18 TP_PROTO(struct task_struct *t),
19
20 TP_ARGS(t),
21
22 TP_STRUCT__entry(
23 __array( char, comm, TASK_COMM_LEN )
24 __field( pid_t, pid )
25 ),
26
27 TP_fast_assign(
28 memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
29 __entry->pid = t->pid;
30 ),
31
32 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
33 );
34
35 /*
36 * Tracepoint for the return value of the kthread stopping:
37 */
38 TRACE_EVENT(sched_kthread_stop_ret,
39
40 TP_PROTO(int ret),
41
42 TP_ARGS(ret),
43
44 TP_STRUCT__entry(
45 __field( int, ret )
46 ),
47
48 TP_fast_assign(
49 __entry->ret = ret;
50 ),
51
52 TP_printk("ret=%d", __entry->ret)
53 );
54
55 /**
56 * sched_kthread_work_queue_work - called when a work gets queued
57 * @worker: pointer to the kthread_worker
58 * @work: pointer to struct kthread_work
59 *
60 * This event occurs when a work is queued immediately or once a
61 * delayed work is actually queued (ie: once the delay has been
62 * reached).
63 */
64 TRACE_EVENT(sched_kthread_work_queue_work,
65
66 TP_PROTO(struct kthread_worker *worker,
67 struct kthread_work *work),
68
69 TP_ARGS(worker, work),
70
71 TP_STRUCT__entry(
72 __field( void *, work )
73 __field( void *, function)
74 __field( void *, worker)
75 ),
76
77 TP_fast_assign(
78 __entry->work = work;
79 __entry->function = work->func;
80 __entry->worker = worker;
81 ),
82
83 TP_printk("work struct=%p function=%ps worker=%p",
84 __entry->work, __entry->function, __entry->worker)
85 );
86
87 /**
88 * sched_kthread_work_execute_start - called immediately before the work callback
89 * @work: pointer to struct kthread_work
90 *
91 * Allows to track kthread work execution.
92 */
93 TRACE_EVENT(sched_kthread_work_execute_start,
94
95 TP_PROTO(struct kthread_work *work),
96
97 TP_ARGS(work),
98
99 TP_STRUCT__entry(
100 __field( void *, work )
101 __field( void *, function)
102 ),
103
104 TP_fast_assign(
105 __entry->work = work;
106 __entry->function = work->func;
107 ),
108
109 TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
110 );
111
112 /**
113 * sched_kthread_work_execute_end - called immediately after the work callback
114 * @work: pointer to struct work_struct
115 * @function: pointer to worker function
116 *
117 * Allows to track workqueue execution.
118 */
119 TRACE_EVENT(sched_kthread_work_execute_end,
120
121 TP_PROTO(struct kthread_work *work, kthread_work_func_t function),
122
123 TP_ARGS(work, function),
124
125 TP_STRUCT__entry(
126 __field( void *, work )
127 __field( void *, function)
128 ),
129
130 TP_fast_assign(
131 __entry->work = work;
132 __entry->function = function;
133 ),
134
135 TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
136 );
137
138 /*
139 * Tracepoint for waking up a task:
140 */
141 DECLARE_EVENT_CLASS(sched_wakeup_template,
142
143 TP_PROTO(struct task_struct *p),
144
145 TP_ARGS(__perf_task(p)),
146
147 TP_STRUCT__entry(
148 __array( char, comm, TASK_COMM_LEN )
149 __field( pid_t, pid )
150 __field( int, prio )
151 __field( int, success )
152 __field( int, target_cpu )
153 ),
154
155 TP_fast_assign(
156 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
157 __entry->pid = p->pid;
158 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
159 __entry->success = 1; /* rudiment, kill when possible */
160 __entry->target_cpu = task_cpu(p);
161 ),
162
163 TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
164 __entry->comm, __entry->pid, __entry->prio,
165 __entry->target_cpu)
166 );
167
168 /*
169 * Tracepoint called when waking a task; this tracepoint is guaranteed to be
170 * called from the waking context.
171 */
172 DEFINE_EVENT(sched_wakeup_template, sched_waking,
173 TP_PROTO(struct task_struct *p),
174 TP_ARGS(p));
175
176 /*
177 * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG.
178 * It is not always called from the waking context.
179 */
180 DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
181 TP_PROTO(struct task_struct *p),
182 TP_ARGS(p));
183
184 /*
185 * Tracepoint for waking up a new task:
186 */
187 DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
188 TP_PROTO(struct task_struct *p),
189 TP_ARGS(p));
190
191 #ifdef CREATE_TRACE_POINTS
192 static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p)
193 {
194 unsigned int state;
195
196 #ifdef CONFIG_SCHED_DEBUG
197 BUG_ON(p != current);
198 #endif /* CONFIG_SCHED_DEBUG */
199
200 /*
201 * Preemption ignores task state, therefore preempted tasks are always
202 * RUNNING (we will not have dequeued if state != RUNNING).
203 */
204 if (preempt)
205 return TASK_REPORT_MAX;
206
207 /*
208 * task_state_index() uses fls() and returns a value from 0-8 range.
209 * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
210 * it for left shift operation to get the correct task->state
211 * mapping.
212 */
213 state = task_state_index(p);
214
215 return state ? (1 << (state - 1)) : state;
216 }
217 #endif /* CREATE_TRACE_POINTS */
218
219 /*
220 * Tracepoint for task switches, performed by the scheduler:
221 */
222 TRACE_EVENT(sched_switch,
223
224 TP_PROTO(bool preempt,
225 struct task_struct *prev,
226 struct task_struct *next),
227
228 TP_ARGS(preempt, prev, next),
229
230 TP_STRUCT__entry(
231 __array( char, prev_comm, TASK_COMM_LEN )
232 __field( pid_t, prev_pid )
233 __field( int, prev_prio )
234 __field( long, prev_state )
235 __array( char, next_comm, TASK_COMM_LEN )
236 __field( pid_t, next_pid )
237 __field( int, next_prio )
238 ),
239
240 TP_fast_assign(
241 memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
242 __entry->prev_pid = prev->pid;
243 __entry->prev_prio = prev->prio;
244 __entry->prev_state = __trace_sched_switch_state(preempt, prev);
245 memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
246 __entry->next_pid = next->pid;
247 __entry->next_prio = next->prio;
248 /* XXX SCHED_DEADLINE */
249 ),
250
251 TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
252 __entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
253
254 (__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
255 __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
256 { TASK_INTERRUPTIBLE, "S" },
257 { TASK_UNINTERRUPTIBLE, "D" },
258 { __TASK_STOPPED, "T" },
259 { __TASK_TRACED, "t" },
260 { EXIT_DEAD, "X" },
261 { EXIT_ZOMBIE, "Z" },
262 { TASK_PARKED, "P" },
263 { TASK_DEAD, "I" }) :
264 "R",
265
266 __entry->prev_state & TASK_REPORT_MAX ? "+" : "",
267 __entry->next_comm, __entry->next_pid, __entry->next_prio)
268 );
269
270 /*
271 * Tracepoint for a task being migrated:
272 */
273 TRACE_EVENT(sched_migrate_task,
274
275 TP_PROTO(struct task_struct *p, int dest_cpu),
276
277 TP_ARGS(p, dest_cpu),
278
279 TP_STRUCT__entry(
280 __array( char, comm, TASK_COMM_LEN )
281 __field( pid_t, pid )
282 __field( int, prio )
283 __field( int, orig_cpu )
284 __field( int, dest_cpu )
285 ),
286
287 TP_fast_assign(
288 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
289 __entry->pid = p->pid;
290 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
291 __entry->orig_cpu = task_cpu(p);
292 __entry->dest_cpu = dest_cpu;
293 ),
294
295 TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
296 __entry->comm, __entry->pid, __entry->prio,
297 __entry->orig_cpu, __entry->dest_cpu)
298 );
299
300 DECLARE_EVENT_CLASS(sched_process_template,
301
302 TP_PROTO(struct task_struct *p),
303
304 TP_ARGS(p),
305
306 TP_STRUCT__entry(
307 __array( char, comm, TASK_COMM_LEN )
308 __field( pid_t, pid )
309 __field( int, prio )
310 ),
311
312 TP_fast_assign(
313 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
314 __entry->pid = p->pid;
315 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
316 ),
317
318 TP_printk("comm=%s pid=%d prio=%d",
319 __entry->comm, __entry->pid, __entry->prio)
320 );
321
322 /*
323 * Tracepoint for freeing a task:
324 */
325 DEFINE_EVENT(sched_process_template, sched_process_free,
326 TP_PROTO(struct task_struct *p),
327 TP_ARGS(p));
328
329 /*
330 * Tracepoint for a task exiting:
331 */
332 DEFINE_EVENT(sched_process_template, sched_process_exit,
333 TP_PROTO(struct task_struct *p),
334 TP_ARGS(p));
335
336 /*
337 * Tracepoint for waiting on task to unschedule:
338 */
339 DEFINE_EVENT(sched_process_template, sched_wait_task,
340 TP_PROTO(struct task_struct *p),
341 TP_ARGS(p));
342
343 /*
344 * Tracepoint for a waiting task:
345 */
346 TRACE_EVENT(sched_process_wait,
347
348 TP_PROTO(struct pid *pid),
349
350 TP_ARGS(pid),
351
352 TP_STRUCT__entry(
353 __array( char, comm, TASK_COMM_LEN )
354 __field( pid_t, pid )
355 __field( int, prio )
356 ),
357
358 TP_fast_assign(
359 memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
360 __entry->pid = pid_nr(pid);
361 __entry->prio = current->prio; /* XXX SCHED_DEADLINE */
362 ),
363
364 TP_printk("comm=%s pid=%d prio=%d",
365 __entry->comm, __entry->pid, __entry->prio)
366 );
367
368 /*
369 * Tracepoint for kernel_clone:
370 */
371 TRACE_EVENT(sched_process_fork,
372
373 TP_PROTO(struct task_struct *parent, struct task_struct *child),
374
375 TP_ARGS(parent, child),
376
377 TP_STRUCT__entry(
378 __array( char, parent_comm, TASK_COMM_LEN )
379 __field( pid_t, parent_pid )
380 __array( char, child_comm, TASK_COMM_LEN )
381 __field( pid_t, child_pid )
382 ),
383
384 TP_fast_assign(
385 memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
386 __entry->parent_pid = parent->pid;
387 memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
388 __entry->child_pid = child->pid;
389 ),
390
391 TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
392 __entry->parent_comm, __entry->parent_pid,
393 __entry->child_comm, __entry->child_pid)
394 );
395
396 /*
397 * Tracepoint for exec:
398 */
399 TRACE_EVENT(sched_process_exec,
400
401 TP_PROTO(struct task_struct *p, pid_t old_pid,
402 struct linux_binprm *bprm),
403
404 TP_ARGS(p, old_pid, bprm),
405
406 TP_STRUCT__entry(
407 __string( filename, bprm->filename )
408 __field( pid_t, pid )
409 __field( pid_t, old_pid )
410 ),
411
412 TP_fast_assign(
413 __assign_str(filename, bprm->filename);
414 __entry->pid = p->pid;
415 __entry->old_pid = old_pid;
416 ),
417
418 TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
419 __entry->pid, __entry->old_pid)
420 );
421
422
423 #ifdef CONFIG_SCHEDSTATS
424 #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT
425 #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS
426 #else
427 #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP
428 #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP
429 #endif
430
431 /*
432 * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
433 * adding sched_stat support to SCHED_FIFO/RR would be welcome.
434 */
435 DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template,
436
437 TP_PROTO(struct task_struct *tsk, u64 delay),
438
439 TP_ARGS(__perf_task(tsk), __perf_count(delay)),
440
441 TP_STRUCT__entry(
442 __array( char, comm, TASK_COMM_LEN )
443 __field( pid_t, pid )
444 __field( u64, delay )
445 ),
446
447 TP_fast_assign(
448 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
449 __entry->pid = tsk->pid;
450 __entry->delay = delay;
451 ),
452
453 TP_printk("comm=%s pid=%d delay=%Lu [ns]",
454 __entry->comm, __entry->pid,
455 (unsigned long long)__entry->delay)
456 );
457
458 /*
459 * Tracepoint for accounting wait time (time the task is runnable
460 * but not actually running due to scheduler contention).
461 */
462 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait,
463 TP_PROTO(struct task_struct *tsk, u64 delay),
464 TP_ARGS(tsk, delay));
465
466 /*
467 * Tracepoint for accounting sleep time (time the task is not runnable,
468 * including iowait, see below).
469 */
470 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep,
471 TP_PROTO(struct task_struct *tsk, u64 delay),
472 TP_ARGS(tsk, delay));
473
474 /*
475 * Tracepoint for accounting iowait time (time the task is not runnable
476 * due to waiting on IO to complete).
477 */
478 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait,
479 TP_PROTO(struct task_struct *tsk, u64 delay),
480 TP_ARGS(tsk, delay));
481
482 /*
483 * Tracepoint for accounting blocked time (time the task is in uninterruptible).
484 */
485 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked,
486 TP_PROTO(struct task_struct *tsk, u64 delay),
487 TP_ARGS(tsk, delay));
488
489 /*
490 * Tracepoint for accounting runtime (time the task is executing
491 * on a CPU).
492 */
493 DECLARE_EVENT_CLASS(sched_stat_runtime,
494
495 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
496
497 TP_ARGS(tsk, __perf_count(runtime), vruntime),
498
499 TP_STRUCT__entry(
500 __array( char, comm, TASK_COMM_LEN )
501 __field( pid_t, pid )
502 __field( u64, runtime )
503 __field( u64, vruntime )
504 ),
505
506 TP_fast_assign(
507 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
508 __entry->pid = tsk->pid;
509 __entry->runtime = runtime;
510 __entry->vruntime = vruntime;
511 ),
512
513 TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
514 __entry->comm, __entry->pid,
515 (unsigned long long)__entry->runtime,
516 (unsigned long long)__entry->vruntime)
517 );
518
519 DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
520 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
521 TP_ARGS(tsk, runtime, vruntime));
522
523 /*
524 * Tracepoint for showing priority inheritance modifying a tasks
525 * priority.
526 */
527 TRACE_EVENT(sched_pi_setprio,
528
529 TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
530
531 TP_ARGS(tsk, pi_task),
532
533 TP_STRUCT__entry(
534 __array( char, comm, TASK_COMM_LEN )
535 __field( pid_t, pid )
536 __field( int, oldprio )
537 __field( int, newprio )
538 ),
539
540 TP_fast_assign(
541 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
542 __entry->pid = tsk->pid;
543 __entry->oldprio = tsk->prio;
544 __entry->newprio = pi_task ?
545 min(tsk->normal_prio, pi_task->prio) :
546 tsk->normal_prio;
547 /* XXX SCHED_DEADLINE bits missing */
548 ),
549
550 TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
551 __entry->comm, __entry->pid,
552 __entry->oldprio, __entry->newprio)
553 );
554
555 #ifdef CONFIG_DETECT_HUNG_TASK
556 TRACE_EVENT(sched_process_hang,
557 TP_PROTO(struct task_struct *tsk),
558 TP_ARGS(tsk),
559
560 TP_STRUCT__entry(
561 __array( char, comm, TASK_COMM_LEN )
562 __field( pid_t, pid )
563 ),
564
565 TP_fast_assign(
566 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
567 __entry->pid = tsk->pid;
568 ),
569
570 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
571 );
572 #endif /* CONFIG_DETECT_HUNG_TASK */
573
574 /*
575 * Tracks migration of tasks from one runqueue to another. Can be used to
576 * detect if automatic NUMA balancing is bouncing between nodes.
577 */
578 TRACE_EVENT(sched_move_numa,
579
580 TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
581
582 TP_ARGS(tsk, src_cpu, dst_cpu),
583
584 TP_STRUCT__entry(
585 __field( pid_t, pid )
586 __field( pid_t, tgid )
587 __field( pid_t, ngid )
588 __field( int, src_cpu )
589 __field( int, src_nid )
590 __field( int, dst_cpu )
591 __field( int, dst_nid )
592 ),
593
594 TP_fast_assign(
595 __entry->pid = task_pid_nr(tsk);
596 __entry->tgid = task_tgid_nr(tsk);
597 __entry->ngid = task_numa_group_id(tsk);
598 __entry->src_cpu = src_cpu;
599 __entry->src_nid = cpu_to_node(src_cpu);
600 __entry->dst_cpu = dst_cpu;
601 __entry->dst_nid = cpu_to_node(dst_cpu);
602 ),
603
604 TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
605 __entry->pid, __entry->tgid, __entry->ngid,
606 __entry->src_cpu, __entry->src_nid,
607 __entry->dst_cpu, __entry->dst_nid)
608 );
609
610 DECLARE_EVENT_CLASS(sched_numa_pair_template,
611
612 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
613 struct task_struct *dst_tsk, int dst_cpu),
614
615 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
616
617 TP_STRUCT__entry(
618 __field( pid_t, src_pid )
619 __field( pid_t, src_tgid )
620 __field( pid_t, src_ngid )
621 __field( int, src_cpu )
622 __field( int, src_nid )
623 __field( pid_t, dst_pid )
624 __field( pid_t, dst_tgid )
625 __field( pid_t, dst_ngid )
626 __field( int, dst_cpu )
627 __field( int, dst_nid )
628 ),
629
630 TP_fast_assign(
631 __entry->src_pid = task_pid_nr(src_tsk);
632 __entry->src_tgid = task_tgid_nr(src_tsk);
633 __entry->src_ngid = task_numa_group_id(src_tsk);
634 __entry->src_cpu = src_cpu;
635 __entry->src_nid = cpu_to_node(src_cpu);
636 __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0;
637 __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0;
638 __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0;
639 __entry->dst_cpu = dst_cpu;
640 __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1;
641 ),
642
643 TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
644 __entry->src_pid, __entry->src_tgid, __entry->src_ngid,
645 __entry->src_cpu, __entry->src_nid,
646 __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
647 __entry->dst_cpu, __entry->dst_nid)
648 );
649
650 DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa,
651
652 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
653 struct task_struct *dst_tsk, int dst_cpu),
654
655 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
656 );
657
658 DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa,
659
660 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
661 struct task_struct *dst_tsk, int dst_cpu),
662
663 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
664 );
665
666
667 /*
668 * Tracepoint for waking a polling cpu without an IPI.
669 */
670 TRACE_EVENT(sched_wake_idle_without_ipi,
671
672 TP_PROTO(int cpu),
673
674 TP_ARGS(cpu),
675
676 TP_STRUCT__entry(
677 __field( int, cpu )
678 ),
679
680 TP_fast_assign(
681 __entry->cpu = cpu;
682 ),
683
684 TP_printk("cpu=%d", __entry->cpu)
685 );
686
687 /*
688 * Following tracepoints are not exported in tracefs and provide hooking
689 * mechanisms only for testing and debugging purposes.
690 *
691 * Postfixed with _tp to make them easily identifiable in the code.
692 */
693 DECLARE_TRACE(pelt_cfs_tp,
694 TP_PROTO(struct cfs_rq *cfs_rq),
695 TP_ARGS(cfs_rq));
696
697 DECLARE_TRACE(pelt_rt_tp,
698 TP_PROTO(struct rq *rq),
699 TP_ARGS(rq));
700
701 DECLARE_TRACE(pelt_dl_tp,
702 TP_PROTO(struct rq *rq),
703 TP_ARGS(rq));
704
705 DECLARE_TRACE(pelt_thermal_tp,
706 TP_PROTO(struct rq *rq),
707 TP_ARGS(rq));
708
709 DECLARE_TRACE(pelt_irq_tp,
710 TP_PROTO(struct rq *rq),
711 TP_ARGS(rq));
712
713 DECLARE_TRACE(pelt_se_tp,
714 TP_PROTO(struct sched_entity *se),
715 TP_ARGS(se));
716
717 DECLARE_TRACE(sched_cpu_capacity_tp,
718 TP_PROTO(struct rq *rq),
719 TP_ARGS(rq));
720
721 DECLARE_TRACE(sched_overutilized_tp,
722 TP_PROTO(struct root_domain *rd, bool overutilized),
723 TP_ARGS(rd, overutilized));
724
725 DECLARE_TRACE(sched_util_est_cfs_tp,
726 TP_PROTO(struct cfs_rq *cfs_rq),
727 TP_ARGS(cfs_rq));
728
729 DECLARE_TRACE(sched_util_est_se_tp,
730 TP_PROTO(struct sched_entity *se),
731 TP_ARGS(se));
732
733 DECLARE_TRACE(sched_update_nr_running_tp,
734 TP_PROTO(struct rq *rq, int change),
735 TP_ARGS(rq, change));
736
737 #endif /* _TRACE_SCHED_H */
738
739 /* This part must be outside protection */
740 #include <trace/define_trace.h>