]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/uapi/linux/bpf.h
bpf: implement lookup-free direct value access for maps
[mirror_ubuntu-jammy-kernel.git] / include / uapi / linux / bpf.h
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13
14 /* Extended instruction set based on top of classic BPF */
15
16 /* instruction classes */
17 #define BPF_JMP32 0x06 /* jmp mode in word width */
18 #define BPF_ALU64 0x07 /* alu mode in double word width */
19
20 /* ld/ldx fields */
21 #define BPF_DW 0x18 /* double word (64-bit) */
22 #define BPF_XADD 0xc0 /* exclusive add */
23
24 /* alu/jmp fields */
25 #define BPF_MOV 0xb0 /* mov reg to reg */
26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
27
28 /* change endianness of a register */
29 #define BPF_END 0xd0 /* flags for endianness conversion: */
30 #define BPF_TO_LE 0x00 /* convert to little-endian */
31 #define BPF_TO_BE 0x08 /* convert to big-endian */
32 #define BPF_FROM_LE BPF_TO_LE
33 #define BPF_FROM_BE BPF_TO_BE
34
35 /* jmp encodings */
36 #define BPF_JNE 0x50 /* jump != */
37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */
38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */
42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
43 #define BPF_CALL 0x80 /* function call */
44 #define BPF_EXIT 0x90 /* function return */
45
46 /* Register numbers */
47 enum {
48 BPF_REG_0 = 0,
49 BPF_REG_1,
50 BPF_REG_2,
51 BPF_REG_3,
52 BPF_REG_4,
53 BPF_REG_5,
54 BPF_REG_6,
55 BPF_REG_7,
56 BPF_REG_8,
57 BPF_REG_9,
58 BPF_REG_10,
59 __MAX_BPF_REG,
60 };
61
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG __MAX_BPF_REG
64
65 struct bpf_insn {
66 __u8 code; /* opcode */
67 __u8 dst_reg:4; /* dest register */
68 __u8 src_reg:4; /* source register */
69 __s16 off; /* signed offset */
70 __s32 imm; /* signed immediate constant */
71 };
72
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
76 __u8 data[0]; /* Arbitrary size */
77 };
78
79 struct bpf_cgroup_storage_key {
80 __u64 cgroup_inode_id; /* cgroup inode id */
81 __u32 attach_type; /* program attach type */
82 };
83
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 BPF_MAP_CREATE,
87 BPF_MAP_LOOKUP_ELEM,
88 BPF_MAP_UPDATE_ELEM,
89 BPF_MAP_DELETE_ELEM,
90 BPF_MAP_GET_NEXT_KEY,
91 BPF_PROG_LOAD,
92 BPF_OBJ_PIN,
93 BPF_OBJ_GET,
94 BPF_PROG_ATTACH,
95 BPF_PROG_DETACH,
96 BPF_PROG_TEST_RUN,
97 BPF_PROG_GET_NEXT_ID,
98 BPF_MAP_GET_NEXT_ID,
99 BPF_PROG_GET_FD_BY_ID,
100 BPF_MAP_GET_FD_BY_ID,
101 BPF_OBJ_GET_INFO_BY_FD,
102 BPF_PROG_QUERY,
103 BPF_RAW_TRACEPOINT_OPEN,
104 BPF_BTF_LOAD,
105 BPF_BTF_GET_FD_BY_ID,
106 BPF_TASK_FD_QUERY,
107 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 };
109
110 enum bpf_map_type {
111 BPF_MAP_TYPE_UNSPEC,
112 BPF_MAP_TYPE_HASH,
113 BPF_MAP_TYPE_ARRAY,
114 BPF_MAP_TYPE_PROG_ARRAY,
115 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
116 BPF_MAP_TYPE_PERCPU_HASH,
117 BPF_MAP_TYPE_PERCPU_ARRAY,
118 BPF_MAP_TYPE_STACK_TRACE,
119 BPF_MAP_TYPE_CGROUP_ARRAY,
120 BPF_MAP_TYPE_LRU_HASH,
121 BPF_MAP_TYPE_LRU_PERCPU_HASH,
122 BPF_MAP_TYPE_LPM_TRIE,
123 BPF_MAP_TYPE_ARRAY_OF_MAPS,
124 BPF_MAP_TYPE_HASH_OF_MAPS,
125 BPF_MAP_TYPE_DEVMAP,
126 BPF_MAP_TYPE_SOCKMAP,
127 BPF_MAP_TYPE_CPUMAP,
128 BPF_MAP_TYPE_XSKMAP,
129 BPF_MAP_TYPE_SOCKHASH,
130 BPF_MAP_TYPE_CGROUP_STORAGE,
131 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
132 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
133 BPF_MAP_TYPE_QUEUE,
134 BPF_MAP_TYPE_STACK,
135 };
136
137 /* Note that tracing related programs such as
138 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
139 * are not subject to a stable API since kernel internal data
140 * structures can change from release to release and may
141 * therefore break existing tracing BPF programs. Tracing BPF
142 * programs correspond to /a/ specific kernel which is to be
143 * analyzed, and not /a/ specific kernel /and/ all future ones.
144 */
145 enum bpf_prog_type {
146 BPF_PROG_TYPE_UNSPEC,
147 BPF_PROG_TYPE_SOCKET_FILTER,
148 BPF_PROG_TYPE_KPROBE,
149 BPF_PROG_TYPE_SCHED_CLS,
150 BPF_PROG_TYPE_SCHED_ACT,
151 BPF_PROG_TYPE_TRACEPOINT,
152 BPF_PROG_TYPE_XDP,
153 BPF_PROG_TYPE_PERF_EVENT,
154 BPF_PROG_TYPE_CGROUP_SKB,
155 BPF_PROG_TYPE_CGROUP_SOCK,
156 BPF_PROG_TYPE_LWT_IN,
157 BPF_PROG_TYPE_LWT_OUT,
158 BPF_PROG_TYPE_LWT_XMIT,
159 BPF_PROG_TYPE_SOCK_OPS,
160 BPF_PROG_TYPE_SK_SKB,
161 BPF_PROG_TYPE_CGROUP_DEVICE,
162 BPF_PROG_TYPE_SK_MSG,
163 BPF_PROG_TYPE_RAW_TRACEPOINT,
164 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
165 BPF_PROG_TYPE_LWT_SEG6LOCAL,
166 BPF_PROG_TYPE_LIRC_MODE2,
167 BPF_PROG_TYPE_SK_REUSEPORT,
168 BPF_PROG_TYPE_FLOW_DISSECTOR,
169 };
170
171 enum bpf_attach_type {
172 BPF_CGROUP_INET_INGRESS,
173 BPF_CGROUP_INET_EGRESS,
174 BPF_CGROUP_INET_SOCK_CREATE,
175 BPF_CGROUP_SOCK_OPS,
176 BPF_SK_SKB_STREAM_PARSER,
177 BPF_SK_SKB_STREAM_VERDICT,
178 BPF_CGROUP_DEVICE,
179 BPF_SK_MSG_VERDICT,
180 BPF_CGROUP_INET4_BIND,
181 BPF_CGROUP_INET6_BIND,
182 BPF_CGROUP_INET4_CONNECT,
183 BPF_CGROUP_INET6_CONNECT,
184 BPF_CGROUP_INET4_POST_BIND,
185 BPF_CGROUP_INET6_POST_BIND,
186 BPF_CGROUP_UDP4_SENDMSG,
187 BPF_CGROUP_UDP6_SENDMSG,
188 BPF_LIRC_MODE2,
189 BPF_FLOW_DISSECTOR,
190 __MAX_BPF_ATTACH_TYPE
191 };
192
193 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
194
195 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
196 *
197 * NONE(default): No further bpf programs allowed in the subtree.
198 *
199 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
200 * the program in this cgroup yields to sub-cgroup program.
201 *
202 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
203 * that cgroup program gets run in addition to the program in this cgroup.
204 *
205 * Only one program is allowed to be attached to a cgroup with
206 * NONE or BPF_F_ALLOW_OVERRIDE flag.
207 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
208 * release old program and attach the new one. Attach flags has to match.
209 *
210 * Multiple programs are allowed to be attached to a cgroup with
211 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
212 * (those that were attached first, run first)
213 * The programs of sub-cgroup are executed first, then programs of
214 * this cgroup and then programs of parent cgroup.
215 * When children program makes decision (like picking TCP CA or sock bind)
216 * parent program has a chance to override it.
217 *
218 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
219 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
220 * Ex1:
221 * cgrp1 (MULTI progs A, B) ->
222 * cgrp2 (OVERRIDE prog C) ->
223 * cgrp3 (MULTI prog D) ->
224 * cgrp4 (OVERRIDE prog E) ->
225 * cgrp5 (NONE prog F)
226 * the event in cgrp5 triggers execution of F,D,A,B in that order.
227 * if prog F is detached, the execution is E,D,A,B
228 * if prog F and D are detached, the execution is E,A,B
229 * if prog F, E and D are detached, the execution is C,A,B
230 *
231 * All eligible programs are executed regardless of return code from
232 * earlier programs.
233 */
234 #define BPF_F_ALLOW_OVERRIDE (1U << 0)
235 #define BPF_F_ALLOW_MULTI (1U << 1)
236
237 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
238 * verifier will perform strict alignment checking as if the kernel
239 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
240 * and NET_IP_ALIGN defined to 2.
241 */
242 #define BPF_F_STRICT_ALIGNMENT (1U << 0)
243
244 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
245 * verifier will allow any alignment whatsoever. On platforms
246 * with strict alignment requirements for loads ands stores (such
247 * as sparc and mips) the verifier validates that all loads and
248 * stores provably follow this requirement. This flag turns that
249 * checking and enforcement off.
250 *
251 * It is mostly used for testing when we want to validate the
252 * context and memory access aspects of the verifier, but because
253 * of an unaligned access the alignment check would trigger before
254 * the one we are interested in.
255 */
256 #define BPF_F_ANY_ALIGNMENT (1U << 1)
257
258 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
259 * two extensions:
260 *
261 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE
262 * insn[0].imm: map fd map fd
263 * insn[1].imm: 0 offset into value
264 * insn[0].off: 0 0
265 * insn[1].off: 0 0
266 * ldimm64 rewrite: address of map address of map[0]+offset
267 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE
268 */
269 #define BPF_PSEUDO_MAP_FD 1
270 #define BPF_PSEUDO_MAP_VALUE 2
271
272 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
273 * offset to another bpf function
274 */
275 #define BPF_PSEUDO_CALL 1
276
277 /* flags for BPF_MAP_UPDATE_ELEM command */
278 #define BPF_ANY 0 /* create new element or update existing */
279 #define BPF_NOEXIST 1 /* create new element if it didn't exist */
280 #define BPF_EXIST 2 /* update existing element */
281 #define BPF_F_LOCK 4 /* spin_lock-ed map_lookup/map_update */
282
283 /* flags for BPF_MAP_CREATE command */
284 #define BPF_F_NO_PREALLOC (1U << 0)
285 /* Instead of having one common LRU list in the
286 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
287 * which can scale and perform better.
288 * Note, the LRU nodes (including free nodes) cannot be moved
289 * across different LRU lists.
290 */
291 #define BPF_F_NO_COMMON_LRU (1U << 1)
292 /* Specify numa node during map creation */
293 #define BPF_F_NUMA_NODE (1U << 2)
294
295 #define BPF_OBJ_NAME_LEN 16U
296
297 /* Flags for accessing BPF object */
298 #define BPF_F_RDONLY (1U << 3)
299 #define BPF_F_WRONLY (1U << 4)
300
301 /* Flag for stack_map, store build_id+offset instead of pointer */
302 #define BPF_F_STACK_BUILD_ID (1U << 5)
303
304 /* Zero-initialize hash function seed. This should only be used for testing. */
305 #define BPF_F_ZERO_SEED (1U << 6)
306
307 /* flags for BPF_PROG_QUERY */
308 #define BPF_F_QUERY_EFFECTIVE (1U << 0)
309
310 enum bpf_stack_build_id_status {
311 /* user space need an empty entry to identify end of a trace */
312 BPF_STACK_BUILD_ID_EMPTY = 0,
313 /* with valid build_id and offset */
314 BPF_STACK_BUILD_ID_VALID = 1,
315 /* couldn't get build_id, fallback to ip */
316 BPF_STACK_BUILD_ID_IP = 2,
317 };
318
319 #define BPF_BUILD_ID_SIZE 20
320 struct bpf_stack_build_id {
321 __s32 status;
322 unsigned char build_id[BPF_BUILD_ID_SIZE];
323 union {
324 __u64 offset;
325 __u64 ip;
326 };
327 };
328
329 union bpf_attr {
330 struct { /* anonymous struct used by BPF_MAP_CREATE command */
331 __u32 map_type; /* one of enum bpf_map_type */
332 __u32 key_size; /* size of key in bytes */
333 __u32 value_size; /* size of value in bytes */
334 __u32 max_entries; /* max number of entries in a map */
335 __u32 map_flags; /* BPF_MAP_CREATE related
336 * flags defined above.
337 */
338 __u32 inner_map_fd; /* fd pointing to the inner map */
339 __u32 numa_node; /* numa node (effective only if
340 * BPF_F_NUMA_NODE is set).
341 */
342 char map_name[BPF_OBJ_NAME_LEN];
343 __u32 map_ifindex; /* ifindex of netdev to create on */
344 __u32 btf_fd; /* fd pointing to a BTF type data */
345 __u32 btf_key_type_id; /* BTF type_id of the key */
346 __u32 btf_value_type_id; /* BTF type_id of the value */
347 };
348
349 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
350 __u32 map_fd;
351 __aligned_u64 key;
352 union {
353 __aligned_u64 value;
354 __aligned_u64 next_key;
355 };
356 __u64 flags;
357 };
358
359 struct { /* anonymous struct used by BPF_PROG_LOAD command */
360 __u32 prog_type; /* one of enum bpf_prog_type */
361 __u32 insn_cnt;
362 __aligned_u64 insns;
363 __aligned_u64 license;
364 __u32 log_level; /* verbosity level of verifier */
365 __u32 log_size; /* size of user buffer */
366 __aligned_u64 log_buf; /* user supplied buffer */
367 __u32 kern_version; /* not used */
368 __u32 prog_flags;
369 char prog_name[BPF_OBJ_NAME_LEN];
370 __u32 prog_ifindex; /* ifindex of netdev to prep for */
371 /* For some prog types expected attach type must be known at
372 * load time to verify attach type specific parts of prog
373 * (context accesses, allowed helpers, etc).
374 */
375 __u32 expected_attach_type;
376 __u32 prog_btf_fd; /* fd pointing to BTF type data */
377 __u32 func_info_rec_size; /* userspace bpf_func_info size */
378 __aligned_u64 func_info; /* func info */
379 __u32 func_info_cnt; /* number of bpf_func_info records */
380 __u32 line_info_rec_size; /* userspace bpf_line_info size */
381 __aligned_u64 line_info; /* line info */
382 __u32 line_info_cnt; /* number of bpf_line_info records */
383 };
384
385 struct { /* anonymous struct used by BPF_OBJ_* commands */
386 __aligned_u64 pathname;
387 __u32 bpf_fd;
388 __u32 file_flags;
389 };
390
391 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
392 __u32 target_fd; /* container object to attach to */
393 __u32 attach_bpf_fd; /* eBPF program to attach */
394 __u32 attach_type;
395 __u32 attach_flags;
396 };
397
398 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
399 __u32 prog_fd;
400 __u32 retval;
401 __u32 data_size_in; /* input: len of data_in */
402 __u32 data_size_out; /* input/output: len of data_out
403 * returns ENOSPC if data_out
404 * is too small.
405 */
406 __aligned_u64 data_in;
407 __aligned_u64 data_out;
408 __u32 repeat;
409 __u32 duration;
410 } test;
411
412 struct { /* anonymous struct used by BPF_*_GET_*_ID */
413 union {
414 __u32 start_id;
415 __u32 prog_id;
416 __u32 map_id;
417 __u32 btf_id;
418 };
419 __u32 next_id;
420 __u32 open_flags;
421 };
422
423 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
424 __u32 bpf_fd;
425 __u32 info_len;
426 __aligned_u64 info;
427 } info;
428
429 struct { /* anonymous struct used by BPF_PROG_QUERY command */
430 __u32 target_fd; /* container object to query */
431 __u32 attach_type;
432 __u32 query_flags;
433 __u32 attach_flags;
434 __aligned_u64 prog_ids;
435 __u32 prog_cnt;
436 } query;
437
438 struct {
439 __u64 name;
440 __u32 prog_fd;
441 } raw_tracepoint;
442
443 struct { /* anonymous struct for BPF_BTF_LOAD */
444 __aligned_u64 btf;
445 __aligned_u64 btf_log_buf;
446 __u32 btf_size;
447 __u32 btf_log_size;
448 __u32 btf_log_level;
449 };
450
451 struct {
452 __u32 pid; /* input: pid */
453 __u32 fd; /* input: fd */
454 __u32 flags; /* input: flags */
455 __u32 buf_len; /* input/output: buf len */
456 __aligned_u64 buf; /* input/output:
457 * tp_name for tracepoint
458 * symbol for kprobe
459 * filename for uprobe
460 */
461 __u32 prog_id; /* output: prod_id */
462 __u32 fd_type; /* output: BPF_FD_TYPE_* */
463 __u64 probe_offset; /* output: probe_offset */
464 __u64 probe_addr; /* output: probe_addr */
465 } task_fd_query;
466 } __attribute__((aligned(8)));
467
468 /* The description below is an attempt at providing documentation to eBPF
469 * developers about the multiple available eBPF helper functions. It can be
470 * parsed and used to produce a manual page. The workflow is the following,
471 * and requires the rst2man utility:
472 *
473 * $ ./scripts/bpf_helpers_doc.py \
474 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
475 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
476 * $ man /tmp/bpf-helpers.7
477 *
478 * Note that in order to produce this external documentation, some RST
479 * formatting is used in the descriptions to get "bold" and "italics" in
480 * manual pages. Also note that the few trailing white spaces are
481 * intentional, removing them would break paragraphs for rst2man.
482 *
483 * Start of BPF helper function descriptions:
484 *
485 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
486 * Description
487 * Perform a lookup in *map* for an entry associated to *key*.
488 * Return
489 * Map value associated to *key*, or **NULL** if no entry was
490 * found.
491 *
492 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
493 * Description
494 * Add or update the value of the entry associated to *key* in
495 * *map* with *value*. *flags* is one of:
496 *
497 * **BPF_NOEXIST**
498 * The entry for *key* must not exist in the map.
499 * **BPF_EXIST**
500 * The entry for *key* must already exist in the map.
501 * **BPF_ANY**
502 * No condition on the existence of the entry for *key*.
503 *
504 * Flag value **BPF_NOEXIST** cannot be used for maps of types
505 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
506 * elements always exist), the helper would return an error.
507 * Return
508 * 0 on success, or a negative error in case of failure.
509 *
510 * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
511 * Description
512 * Delete entry with *key* from *map*.
513 * Return
514 * 0 on success, or a negative error in case of failure.
515 *
516 * int bpf_probe_read(void *dst, u32 size, const void *src)
517 * Description
518 * For tracing programs, safely attempt to read *size* bytes from
519 * address *src* and store the data in *dst*.
520 * Return
521 * 0 on success, or a negative error in case of failure.
522 *
523 * u64 bpf_ktime_get_ns(void)
524 * Description
525 * Return the time elapsed since system boot, in nanoseconds.
526 * Return
527 * Current *ktime*.
528 *
529 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
530 * Description
531 * This helper is a "printk()-like" facility for debugging. It
532 * prints a message defined by format *fmt* (of size *fmt_size*)
533 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
534 * available. It can take up to three additional **u64**
535 * arguments (as an eBPF helpers, the total number of arguments is
536 * limited to five).
537 *
538 * Each time the helper is called, it appends a line to the trace.
539 * The format of the trace is customizable, and the exact output
540 * one will get depends on the options set in
541 * *\/sys/kernel/debug/tracing/trace_options* (see also the
542 * *README* file under the same directory). However, it usually
543 * defaults to something like:
544 *
545 * ::
546 *
547 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
548 *
549 * In the above:
550 *
551 * * ``telnet`` is the name of the current task.
552 * * ``470`` is the PID of the current task.
553 * * ``001`` is the CPU number on which the task is
554 * running.
555 * * In ``.N..``, each character refers to a set of
556 * options (whether irqs are enabled, scheduling
557 * options, whether hard/softirqs are running, level of
558 * preempt_disabled respectively). **N** means that
559 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
560 * are set.
561 * * ``419421.045894`` is a timestamp.
562 * * ``0x00000001`` is a fake value used by BPF for the
563 * instruction pointer register.
564 * * ``<formatted msg>`` is the message formatted with
565 * *fmt*.
566 *
567 * The conversion specifiers supported by *fmt* are similar, but
568 * more limited than for printk(). They are **%d**, **%i**,
569 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
570 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
571 * of field, padding with zeroes, etc.) is available, and the
572 * helper will return **-EINVAL** (but print nothing) if it
573 * encounters an unknown specifier.
574 *
575 * Also, note that **bpf_trace_printk**\ () is slow, and should
576 * only be used for debugging purposes. For this reason, a notice
577 * bloc (spanning several lines) is printed to kernel logs and
578 * states that the helper should not be used "for production use"
579 * the first time this helper is used (or more precisely, when
580 * **trace_printk**\ () buffers are allocated). For passing values
581 * to user space, perf events should be preferred.
582 * Return
583 * The number of bytes written to the buffer, or a negative error
584 * in case of failure.
585 *
586 * u32 bpf_get_prandom_u32(void)
587 * Description
588 * Get a pseudo-random number.
589 *
590 * From a security point of view, this helper uses its own
591 * pseudo-random internal state, and cannot be used to infer the
592 * seed of other random functions in the kernel. However, it is
593 * essential to note that the generator used by the helper is not
594 * cryptographically secure.
595 * Return
596 * A random 32-bit unsigned value.
597 *
598 * u32 bpf_get_smp_processor_id(void)
599 * Description
600 * Get the SMP (symmetric multiprocessing) processor id. Note that
601 * all programs run with preemption disabled, which means that the
602 * SMP processor id is stable during all the execution of the
603 * program.
604 * Return
605 * The SMP id of the processor running the program.
606 *
607 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
608 * Description
609 * Store *len* bytes from address *from* into the packet
610 * associated to *skb*, at *offset*. *flags* are a combination of
611 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
612 * checksum for the packet after storing the bytes) and
613 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
614 * **->swhash** and *skb*\ **->l4hash** to 0).
615 *
616 * A call to this helper is susceptible to change the underlaying
617 * packet buffer. Therefore, at load time, all checks on pointers
618 * previously done by the verifier are invalidated and must be
619 * performed again, if the helper is used in combination with
620 * direct packet access.
621 * Return
622 * 0 on success, or a negative error in case of failure.
623 *
624 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
625 * Description
626 * Recompute the layer 3 (e.g. IP) checksum for the packet
627 * associated to *skb*. Computation is incremental, so the helper
628 * must know the former value of the header field that was
629 * modified (*from*), the new value of this field (*to*), and the
630 * number of bytes (2 or 4) for this field, stored in *size*.
631 * Alternatively, it is possible to store the difference between
632 * the previous and the new values of the header field in *to*, by
633 * setting *from* and *size* to 0. For both methods, *offset*
634 * indicates the location of the IP checksum within the packet.
635 *
636 * This helper works in combination with **bpf_csum_diff**\ (),
637 * which does not update the checksum in-place, but offers more
638 * flexibility and can handle sizes larger than 2 or 4 for the
639 * checksum to update.
640 *
641 * A call to this helper is susceptible to change the underlaying
642 * packet buffer. Therefore, at load time, all checks on pointers
643 * previously done by the verifier are invalidated and must be
644 * performed again, if the helper is used in combination with
645 * direct packet access.
646 * Return
647 * 0 on success, or a negative error in case of failure.
648 *
649 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
650 * Description
651 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
652 * packet associated to *skb*. Computation is incremental, so the
653 * helper must know the former value of the header field that was
654 * modified (*from*), the new value of this field (*to*), and the
655 * number of bytes (2 or 4) for this field, stored on the lowest
656 * four bits of *flags*. Alternatively, it is possible to store
657 * the difference between the previous and the new values of the
658 * header field in *to*, by setting *from* and the four lowest
659 * bits of *flags* to 0. For both methods, *offset* indicates the
660 * location of the IP checksum within the packet. In addition to
661 * the size of the field, *flags* can be added (bitwise OR) actual
662 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
663 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
664 * for updates resulting in a null checksum the value is set to
665 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
666 * the checksum is to be computed against a pseudo-header.
667 *
668 * This helper works in combination with **bpf_csum_diff**\ (),
669 * which does not update the checksum in-place, but offers more
670 * flexibility and can handle sizes larger than 2 or 4 for the
671 * checksum to update.
672 *
673 * A call to this helper is susceptible to change the underlaying
674 * packet buffer. Therefore, at load time, all checks on pointers
675 * previously done by the verifier are invalidated and must be
676 * performed again, if the helper is used in combination with
677 * direct packet access.
678 * Return
679 * 0 on success, or a negative error in case of failure.
680 *
681 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
682 * Description
683 * This special helper is used to trigger a "tail call", or in
684 * other words, to jump into another eBPF program. The same stack
685 * frame is used (but values on stack and in registers for the
686 * caller are not accessible to the callee). This mechanism allows
687 * for program chaining, either for raising the maximum number of
688 * available eBPF instructions, or to execute given programs in
689 * conditional blocks. For security reasons, there is an upper
690 * limit to the number of successive tail calls that can be
691 * performed.
692 *
693 * Upon call of this helper, the program attempts to jump into a
694 * program referenced at index *index* in *prog_array_map*, a
695 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
696 * *ctx*, a pointer to the context.
697 *
698 * If the call succeeds, the kernel immediately runs the first
699 * instruction of the new program. This is not a function call,
700 * and it never returns to the previous program. If the call
701 * fails, then the helper has no effect, and the caller continues
702 * to run its subsequent instructions. A call can fail if the
703 * destination program for the jump does not exist (i.e. *index*
704 * is superior to the number of entries in *prog_array_map*), or
705 * if the maximum number of tail calls has been reached for this
706 * chain of programs. This limit is defined in the kernel by the
707 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
708 * which is currently set to 32.
709 * Return
710 * 0 on success, or a negative error in case of failure.
711 *
712 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
713 * Description
714 * Clone and redirect the packet associated to *skb* to another
715 * net device of index *ifindex*. Both ingress and egress
716 * interfaces can be used for redirection. The **BPF_F_INGRESS**
717 * value in *flags* is used to make the distinction (ingress path
718 * is selected if the flag is present, egress path otherwise).
719 * This is the only flag supported for now.
720 *
721 * In comparison with **bpf_redirect**\ () helper,
722 * **bpf_clone_redirect**\ () has the associated cost of
723 * duplicating the packet buffer, but this can be executed out of
724 * the eBPF program. Conversely, **bpf_redirect**\ () is more
725 * efficient, but it is handled through an action code where the
726 * redirection happens only after the eBPF program has returned.
727 *
728 * A call to this helper is susceptible to change the underlaying
729 * packet buffer. Therefore, at load time, all checks on pointers
730 * previously done by the verifier are invalidated and must be
731 * performed again, if the helper is used in combination with
732 * direct packet access.
733 * Return
734 * 0 on success, or a negative error in case of failure.
735 *
736 * u64 bpf_get_current_pid_tgid(void)
737 * Return
738 * A 64-bit integer containing the current tgid and pid, and
739 * created as such:
740 * *current_task*\ **->tgid << 32 \|**
741 * *current_task*\ **->pid**.
742 *
743 * u64 bpf_get_current_uid_gid(void)
744 * Return
745 * A 64-bit integer containing the current GID and UID, and
746 * created as such: *current_gid* **<< 32 \|** *current_uid*.
747 *
748 * int bpf_get_current_comm(char *buf, u32 size_of_buf)
749 * Description
750 * Copy the **comm** attribute of the current task into *buf* of
751 * *size_of_buf*. The **comm** attribute contains the name of
752 * the executable (excluding the path) for the current task. The
753 * *size_of_buf* must be strictly positive. On success, the
754 * helper makes sure that the *buf* is NUL-terminated. On failure,
755 * it is filled with zeroes.
756 * Return
757 * 0 on success, or a negative error in case of failure.
758 *
759 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
760 * Description
761 * Retrieve the classid for the current task, i.e. for the net_cls
762 * cgroup to which *skb* belongs.
763 *
764 * This helper can be used on TC egress path, but not on ingress.
765 *
766 * The net_cls cgroup provides an interface to tag network packets
767 * based on a user-provided identifier for all traffic coming from
768 * the tasks belonging to the related cgroup. See also the related
769 * kernel documentation, available from the Linux sources in file
770 * *Documentation/cgroup-v1/net_cls.txt*.
771 *
772 * The Linux kernel has two versions for cgroups: there are
773 * cgroups v1 and cgroups v2. Both are available to users, who can
774 * use a mixture of them, but note that the net_cls cgroup is for
775 * cgroup v1 only. This makes it incompatible with BPF programs
776 * run on cgroups, which is a cgroup-v2-only feature (a socket can
777 * only hold data for one version of cgroups at a time).
778 *
779 * This helper is only available is the kernel was compiled with
780 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
781 * "**y**" or to "**m**".
782 * Return
783 * The classid, or 0 for the default unconfigured classid.
784 *
785 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
786 * Description
787 * Push a *vlan_tci* (VLAN tag control information) of protocol
788 * *vlan_proto* to the packet associated to *skb*, then update
789 * the checksum. Note that if *vlan_proto* is different from
790 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
791 * be **ETH_P_8021Q**.
792 *
793 * A call to this helper is susceptible to change the underlaying
794 * packet buffer. Therefore, at load time, all checks on pointers
795 * previously done by the verifier are invalidated and must be
796 * performed again, if the helper is used in combination with
797 * direct packet access.
798 * Return
799 * 0 on success, or a negative error in case of failure.
800 *
801 * int bpf_skb_vlan_pop(struct sk_buff *skb)
802 * Description
803 * Pop a VLAN header from the packet associated to *skb*.
804 *
805 * A call to this helper is susceptible to change the underlaying
806 * packet buffer. Therefore, at load time, all checks on pointers
807 * previously done by the verifier are invalidated and must be
808 * performed again, if the helper is used in combination with
809 * direct packet access.
810 * Return
811 * 0 on success, or a negative error in case of failure.
812 *
813 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
814 * Description
815 * Get tunnel metadata. This helper takes a pointer *key* to an
816 * empty **struct bpf_tunnel_key** of **size**, that will be
817 * filled with tunnel metadata for the packet associated to *skb*.
818 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
819 * indicates that the tunnel is based on IPv6 protocol instead of
820 * IPv4.
821 *
822 * The **struct bpf_tunnel_key** is an object that generalizes the
823 * principal parameters used by various tunneling protocols into a
824 * single struct. This way, it can be used to easily make a
825 * decision based on the contents of the encapsulation header,
826 * "summarized" in this struct. In particular, it holds the IP
827 * address of the remote end (IPv4 or IPv6, depending on the case)
828 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
829 * this struct exposes the *key*\ **->tunnel_id**, which is
830 * generally mapped to a VNI (Virtual Network Identifier), making
831 * it programmable together with the **bpf_skb_set_tunnel_key**\
832 * () helper.
833 *
834 * Let's imagine that the following code is part of a program
835 * attached to the TC ingress interface, on one end of a GRE
836 * tunnel, and is supposed to filter out all messages coming from
837 * remote ends with IPv4 address other than 10.0.0.1:
838 *
839 * ::
840 *
841 * int ret;
842 * struct bpf_tunnel_key key = {};
843 *
844 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
845 * if (ret < 0)
846 * return TC_ACT_SHOT; // drop packet
847 *
848 * if (key.remote_ipv4 != 0x0a000001)
849 * return TC_ACT_SHOT; // drop packet
850 *
851 * return TC_ACT_OK; // accept packet
852 *
853 * This interface can also be used with all encapsulation devices
854 * that can operate in "collect metadata" mode: instead of having
855 * one network device per specific configuration, the "collect
856 * metadata" mode only requires a single device where the
857 * configuration can be extracted from this helper.
858 *
859 * This can be used together with various tunnels such as VXLan,
860 * Geneve, GRE or IP in IP (IPIP).
861 * Return
862 * 0 on success, or a negative error in case of failure.
863 *
864 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
865 * Description
866 * Populate tunnel metadata for packet associated to *skb.* The
867 * tunnel metadata is set to the contents of *key*, of *size*. The
868 * *flags* can be set to a combination of the following values:
869 *
870 * **BPF_F_TUNINFO_IPV6**
871 * Indicate that the tunnel is based on IPv6 protocol
872 * instead of IPv4.
873 * **BPF_F_ZERO_CSUM_TX**
874 * For IPv4 packets, add a flag to tunnel metadata
875 * indicating that checksum computation should be skipped
876 * and checksum set to zeroes.
877 * **BPF_F_DONT_FRAGMENT**
878 * Add a flag to tunnel metadata indicating that the
879 * packet should not be fragmented.
880 * **BPF_F_SEQ_NUMBER**
881 * Add a flag to tunnel metadata indicating that a
882 * sequence number should be added to tunnel header before
883 * sending the packet. This flag was added for GRE
884 * encapsulation, but might be used with other protocols
885 * as well in the future.
886 *
887 * Here is a typical usage on the transmit path:
888 *
889 * ::
890 *
891 * struct bpf_tunnel_key key;
892 * populate key ...
893 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
894 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
895 *
896 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
897 * helper for additional information.
898 * Return
899 * 0 on success, or a negative error in case of failure.
900 *
901 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
902 * Description
903 * Read the value of a perf event counter. This helper relies on a
904 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
905 * the perf event counter is selected when *map* is updated with
906 * perf event file descriptors. The *map* is an array whose size
907 * is the number of available CPUs, and each cell contains a value
908 * relative to one CPU. The value to retrieve is indicated by
909 * *flags*, that contains the index of the CPU to look up, masked
910 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
911 * **BPF_F_CURRENT_CPU** to indicate that the value for the
912 * current CPU should be retrieved.
913 *
914 * Note that before Linux 4.13, only hardware perf event can be
915 * retrieved.
916 *
917 * Also, be aware that the newer helper
918 * **bpf_perf_event_read_value**\ () is recommended over
919 * **bpf_perf_event_read**\ () in general. The latter has some ABI
920 * quirks where error and counter value are used as a return code
921 * (which is wrong to do since ranges may overlap). This issue is
922 * fixed with **bpf_perf_event_read_value**\ (), which at the same
923 * time provides more features over the **bpf_perf_event_read**\
924 * () interface. Please refer to the description of
925 * **bpf_perf_event_read_value**\ () for details.
926 * Return
927 * The value of the perf event counter read from the map, or a
928 * negative error code in case of failure.
929 *
930 * int bpf_redirect(u32 ifindex, u64 flags)
931 * Description
932 * Redirect the packet to another net device of index *ifindex*.
933 * This helper is somewhat similar to **bpf_clone_redirect**\
934 * (), except that the packet is not cloned, which provides
935 * increased performance.
936 *
937 * Except for XDP, both ingress and egress interfaces can be used
938 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
939 * to make the distinction (ingress path is selected if the flag
940 * is present, egress path otherwise). Currently, XDP only
941 * supports redirection to the egress interface, and accepts no
942 * flag at all.
943 *
944 * The same effect can be attained with the more generic
945 * **bpf_redirect_map**\ (), which requires specific maps to be
946 * used but offers better performance.
947 * Return
948 * For XDP, the helper returns **XDP_REDIRECT** on success or
949 * **XDP_ABORTED** on error. For other program types, the values
950 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
951 * error.
952 *
953 * u32 bpf_get_route_realm(struct sk_buff *skb)
954 * Description
955 * Retrieve the realm or the route, that is to say the
956 * **tclassid** field of the destination for the *skb*. The
957 * indentifier retrieved is a user-provided tag, similar to the
958 * one used with the net_cls cgroup (see description for
959 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
960 * held by a route (a destination entry), not by a task.
961 *
962 * Retrieving this identifier works with the clsact TC egress hook
963 * (see also **tc-bpf(8)**), or alternatively on conventional
964 * classful egress qdiscs, but not on TC ingress path. In case of
965 * clsact TC egress hook, this has the advantage that, internally,
966 * the destination entry has not been dropped yet in the transmit
967 * path. Therefore, the destination entry does not need to be
968 * artificially held via **netif_keep_dst**\ () for a classful
969 * qdisc until the *skb* is freed.
970 *
971 * This helper is available only if the kernel was compiled with
972 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
973 * Return
974 * The realm of the route for the packet associated to *skb*, or 0
975 * if none was found.
976 *
977 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
978 * Description
979 * Write raw *data* blob into a special BPF perf event held by
980 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
981 * event must have the following attributes: **PERF_SAMPLE_RAW**
982 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
983 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
984 *
985 * The *flags* are used to indicate the index in *map* for which
986 * the value must be put, masked with **BPF_F_INDEX_MASK**.
987 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
988 * to indicate that the index of the current CPU core should be
989 * used.
990 *
991 * The value to write, of *size*, is passed through eBPF stack and
992 * pointed by *data*.
993 *
994 * The context of the program *ctx* needs also be passed to the
995 * helper.
996 *
997 * On user space, a program willing to read the values needs to
998 * call **perf_event_open**\ () on the perf event (either for
999 * one or for all CPUs) and to store the file descriptor into the
1000 * *map*. This must be done before the eBPF program can send data
1001 * into it. An example is available in file
1002 * *samples/bpf/trace_output_user.c* in the Linux kernel source
1003 * tree (the eBPF program counterpart is in
1004 * *samples/bpf/trace_output_kern.c*).
1005 *
1006 * **bpf_perf_event_output**\ () achieves better performance
1007 * than **bpf_trace_printk**\ () for sharing data with user
1008 * space, and is much better suitable for streaming data from eBPF
1009 * programs.
1010 *
1011 * Note that this helper is not restricted to tracing use cases
1012 * and can be used with programs attached to TC or XDP as well,
1013 * where it allows for passing data to user space listeners. Data
1014 * can be:
1015 *
1016 * * Only custom structs,
1017 * * Only the packet payload, or
1018 * * A combination of both.
1019 * Return
1020 * 0 on success, or a negative error in case of failure.
1021 *
1022 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1023 * Description
1024 * This helper was provided as an easy way to load data from a
1025 * packet. It can be used to load *len* bytes from *offset* from
1026 * the packet associated to *skb*, into the buffer pointed by
1027 * *to*.
1028 *
1029 * Since Linux 4.7, usage of this helper has mostly been replaced
1030 * by "direct packet access", enabling packet data to be
1031 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1032 * pointing respectively to the first byte of packet data and to
1033 * the byte after the last byte of packet data. However, it
1034 * remains useful if one wishes to read large quantities of data
1035 * at once from a packet into the eBPF stack.
1036 * Return
1037 * 0 on success, or a negative error in case of failure.
1038 *
1039 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
1040 * Description
1041 * Walk a user or a kernel stack and return its id. To achieve
1042 * this, the helper needs *ctx*, which is a pointer to the context
1043 * on which the tracing program is executed, and a pointer to a
1044 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1045 *
1046 * The last argument, *flags*, holds the number of stack frames to
1047 * skip (from 0 to 255), masked with
1048 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1049 * a combination of the following flags:
1050 *
1051 * **BPF_F_USER_STACK**
1052 * Collect a user space stack instead of a kernel stack.
1053 * **BPF_F_FAST_STACK_CMP**
1054 * Compare stacks by hash only.
1055 * **BPF_F_REUSE_STACKID**
1056 * If two different stacks hash into the same *stackid*,
1057 * discard the old one.
1058 *
1059 * The stack id retrieved is a 32 bit long integer handle which
1060 * can be further combined with other data (including other stack
1061 * ids) and used as a key into maps. This can be useful for
1062 * generating a variety of graphs (such as flame graphs or off-cpu
1063 * graphs).
1064 *
1065 * For walking a stack, this helper is an improvement over
1066 * **bpf_probe_read**\ (), which can be used with unrolled loops
1067 * but is not efficient and consumes a lot of eBPF instructions.
1068 * Instead, **bpf_get_stackid**\ () can collect up to
1069 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1070 * this limit can be controlled with the **sysctl** program, and
1071 * that it should be manually increased in order to profile long
1072 * user stacks (such as stacks for Java programs). To do so, use:
1073 *
1074 * ::
1075 *
1076 * # sysctl kernel.perf_event_max_stack=<new value>
1077 * Return
1078 * The positive or null stack id on success, or a negative error
1079 * in case of failure.
1080 *
1081 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1082 * Description
1083 * Compute a checksum difference, from the raw buffer pointed by
1084 * *from*, of length *from_size* (that must be a multiple of 4),
1085 * towards the raw buffer pointed by *to*, of size *to_size*
1086 * (same remark). An optional *seed* can be added to the value
1087 * (this can be cascaded, the seed may come from a previous call
1088 * to the helper).
1089 *
1090 * This is flexible enough to be used in several ways:
1091 *
1092 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
1093 * checksum, it can be used when pushing new data.
1094 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
1095 * checksum, it can be used when removing data from a packet.
1096 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1097 * can be used to compute a diff. Note that *from_size* and
1098 * *to_size* do not need to be equal.
1099 *
1100 * This helper can be used in combination with
1101 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1102 * which one can feed in the difference computed with
1103 * **bpf_csum_diff**\ ().
1104 * Return
1105 * The checksum result, or a negative error code in case of
1106 * failure.
1107 *
1108 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1109 * Description
1110 * Retrieve tunnel options metadata for the packet associated to
1111 * *skb*, and store the raw tunnel option data to the buffer *opt*
1112 * of *size*.
1113 *
1114 * This helper can be used with encapsulation devices that can
1115 * operate in "collect metadata" mode (please refer to the related
1116 * note in the description of **bpf_skb_get_tunnel_key**\ () for
1117 * more details). A particular example where this can be used is
1118 * in combination with the Geneve encapsulation protocol, where it
1119 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1120 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
1121 * the eBPF program. This allows for full customization of these
1122 * headers.
1123 * Return
1124 * The size of the option data retrieved.
1125 *
1126 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1127 * Description
1128 * Set tunnel options metadata for the packet associated to *skb*
1129 * to the option data contained in the raw buffer *opt* of *size*.
1130 *
1131 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1132 * helper for additional information.
1133 * Return
1134 * 0 on success, or a negative error in case of failure.
1135 *
1136 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1137 * Description
1138 * Change the protocol of the *skb* to *proto*. Currently
1139 * supported are transition from IPv4 to IPv6, and from IPv6 to
1140 * IPv4. The helper takes care of the groundwork for the
1141 * transition, including resizing the socket buffer. The eBPF
1142 * program is expected to fill the new headers, if any, via
1143 * **skb_store_bytes**\ () and to recompute the checksums with
1144 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1145 * (). The main case for this helper is to perform NAT64
1146 * operations out of an eBPF program.
1147 *
1148 * Internally, the GSO type is marked as dodgy so that headers are
1149 * checked and segments are recalculated by the GSO/GRO engine.
1150 * The size for GSO target is adapted as well.
1151 *
1152 * All values for *flags* are reserved for future usage, and must
1153 * be left at zero.
1154 *
1155 * A call to this helper is susceptible to change the underlaying
1156 * packet buffer. Therefore, at load time, all checks on pointers
1157 * previously done by the verifier are invalidated and must be
1158 * performed again, if the helper is used in combination with
1159 * direct packet access.
1160 * Return
1161 * 0 on success, or a negative error in case of failure.
1162 *
1163 * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1164 * Description
1165 * Change the packet type for the packet associated to *skb*. This
1166 * comes down to setting *skb*\ **->pkt_type** to *type*, except
1167 * the eBPF program does not have a write access to *skb*\
1168 * **->pkt_type** beside this helper. Using a helper here allows
1169 * for graceful handling of errors.
1170 *
1171 * The major use case is to change incoming *skb*s to
1172 * **PACKET_HOST** in a programmatic way instead of having to
1173 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1174 * example.
1175 *
1176 * Note that *type* only allows certain values. At this time, they
1177 * are:
1178 *
1179 * **PACKET_HOST**
1180 * Packet is for us.
1181 * **PACKET_BROADCAST**
1182 * Send packet to all.
1183 * **PACKET_MULTICAST**
1184 * Send packet to group.
1185 * **PACKET_OTHERHOST**
1186 * Send packet to someone else.
1187 * Return
1188 * 0 on success, or a negative error in case of failure.
1189 *
1190 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1191 * Description
1192 * Check whether *skb* is a descendant of the cgroup2 held by
1193 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1194 * Return
1195 * The return value depends on the result of the test, and can be:
1196 *
1197 * * 0, if the *skb* failed the cgroup2 descendant test.
1198 * * 1, if the *skb* succeeded the cgroup2 descendant test.
1199 * * A negative error code, if an error occurred.
1200 *
1201 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1202 * Description
1203 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1204 * not set, in particular if the hash was cleared due to mangling,
1205 * recompute this hash. Later accesses to the hash can be done
1206 * directly with *skb*\ **->hash**.
1207 *
1208 * Calling **bpf_set_hash_invalid**\ (), changing a packet
1209 * prototype with **bpf_skb_change_proto**\ (), or calling
1210 * **bpf_skb_store_bytes**\ () with the
1211 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1212 * the hash and to trigger a new computation for the next call to
1213 * **bpf_get_hash_recalc**\ ().
1214 * Return
1215 * The 32-bit hash.
1216 *
1217 * u64 bpf_get_current_task(void)
1218 * Return
1219 * A pointer to the current task struct.
1220 *
1221 * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1222 * Description
1223 * Attempt in a safe way to write *len* bytes from the buffer
1224 * *src* to *dst* in memory. It only works for threads that are in
1225 * user context, and *dst* must be a valid user space address.
1226 *
1227 * This helper should not be used to implement any kind of
1228 * security mechanism because of TOC-TOU attacks, but rather to
1229 * debug, divert, and manipulate execution of semi-cooperative
1230 * processes.
1231 *
1232 * Keep in mind that this feature is meant for experiments, and it
1233 * has a risk of crashing the system and running programs.
1234 * Therefore, when an eBPF program using this helper is attached,
1235 * a warning including PID and process name is printed to kernel
1236 * logs.
1237 * Return
1238 * 0 on success, or a negative error in case of failure.
1239 *
1240 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1241 * Description
1242 * Check whether the probe is being run is the context of a given
1243 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1244 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1245 * Return
1246 * The return value depends on the result of the test, and can be:
1247 *
1248 * * 0, if the *skb* task belongs to the cgroup2.
1249 * * 1, if the *skb* task does not belong to the cgroup2.
1250 * * A negative error code, if an error occurred.
1251 *
1252 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1253 * Description
1254 * Resize (trim or grow) the packet associated to *skb* to the
1255 * new *len*. The *flags* are reserved for future usage, and must
1256 * be left at zero.
1257 *
1258 * The basic idea is that the helper performs the needed work to
1259 * change the size of the packet, then the eBPF program rewrites
1260 * the rest via helpers like **bpf_skb_store_bytes**\ (),
1261 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1262 * and others. This helper is a slow path utility intended for
1263 * replies with control messages. And because it is targeted for
1264 * slow path, the helper itself can afford to be slow: it
1265 * implicitly linearizes, unclones and drops offloads from the
1266 * *skb*.
1267 *
1268 * A call to this helper is susceptible to change the underlaying
1269 * packet buffer. Therefore, at load time, all checks on pointers
1270 * previously done by the verifier are invalidated and must be
1271 * performed again, if the helper is used in combination with
1272 * direct packet access.
1273 * Return
1274 * 0 on success, or a negative error in case of failure.
1275 *
1276 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1277 * Description
1278 * Pull in non-linear data in case the *skb* is non-linear and not
1279 * all of *len* are part of the linear section. Make *len* bytes
1280 * from *skb* readable and writable. If a zero value is passed for
1281 * *len*, then the whole length of the *skb* is pulled.
1282 *
1283 * This helper is only needed for reading and writing with direct
1284 * packet access.
1285 *
1286 * For direct packet access, testing that offsets to access
1287 * are within packet boundaries (test on *skb*\ **->data_end**) is
1288 * susceptible to fail if offsets are invalid, or if the requested
1289 * data is in non-linear parts of the *skb*. On failure the
1290 * program can just bail out, or in the case of a non-linear
1291 * buffer, use a helper to make the data available. The
1292 * **bpf_skb_load_bytes**\ () helper is a first solution to access
1293 * the data. Another one consists in using **bpf_skb_pull_data**
1294 * to pull in once the non-linear parts, then retesting and
1295 * eventually access the data.
1296 *
1297 * At the same time, this also makes sure the *skb* is uncloned,
1298 * which is a necessary condition for direct write. As this needs
1299 * to be an invariant for the write part only, the verifier
1300 * detects writes and adds a prologue that is calling
1301 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
1302 * the very beginning in case it is indeed cloned.
1303 *
1304 * A call to this helper is susceptible to change the underlaying
1305 * packet buffer. Therefore, at load time, all checks on pointers
1306 * previously done by the verifier are invalidated and must be
1307 * performed again, if the helper is used in combination with
1308 * direct packet access.
1309 * Return
1310 * 0 on success, or a negative error in case of failure.
1311 *
1312 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1313 * Description
1314 * Add the checksum *csum* into *skb*\ **->csum** in case the
1315 * driver has supplied a checksum for the entire packet into that
1316 * field. Return an error otherwise. This helper is intended to be
1317 * used in combination with **bpf_csum_diff**\ (), in particular
1318 * when the checksum needs to be updated after data has been
1319 * written into the packet through direct packet access.
1320 * Return
1321 * The checksum on success, or a negative error code in case of
1322 * failure.
1323 *
1324 * void bpf_set_hash_invalid(struct sk_buff *skb)
1325 * Description
1326 * Invalidate the current *skb*\ **->hash**. It can be used after
1327 * mangling on headers through direct packet access, in order to
1328 * indicate that the hash is outdated and to trigger a
1329 * recalculation the next time the kernel tries to access this
1330 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
1331 *
1332 * int bpf_get_numa_node_id(void)
1333 * Description
1334 * Return the id of the current NUMA node. The primary use case
1335 * for this helper is the selection of sockets for the local NUMA
1336 * node, when the program is attached to sockets using the
1337 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1338 * but the helper is also available to other eBPF program types,
1339 * similarly to **bpf_get_smp_processor_id**\ ().
1340 * Return
1341 * The id of current NUMA node.
1342 *
1343 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1344 * Description
1345 * Grows headroom of packet associated to *skb* and adjusts the
1346 * offset of the MAC header accordingly, adding *len* bytes of
1347 * space. It automatically extends and reallocates memory as
1348 * required.
1349 *
1350 * This helper can be used on a layer 3 *skb* to push a MAC header
1351 * for redirection into a layer 2 device.
1352 *
1353 * All values for *flags* are reserved for future usage, and must
1354 * be left at zero.
1355 *
1356 * A call to this helper is susceptible to change the underlaying
1357 * packet buffer. Therefore, at load time, all checks on pointers
1358 * previously done by the verifier are invalidated and must be
1359 * performed again, if the helper is used in combination with
1360 * direct packet access.
1361 * Return
1362 * 0 on success, or a negative error in case of failure.
1363 *
1364 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1365 * Description
1366 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1367 * it is possible to use a negative value for *delta*. This helper
1368 * can be used to prepare the packet for pushing or popping
1369 * headers.
1370 *
1371 * A call to this helper is susceptible to change the underlaying
1372 * packet buffer. Therefore, at load time, all checks on pointers
1373 * previously done by the verifier are invalidated and must be
1374 * performed again, if the helper is used in combination with
1375 * direct packet access.
1376 * Return
1377 * 0 on success, or a negative error in case of failure.
1378 *
1379 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
1380 * Description
1381 * Copy a NUL terminated string from an unsafe address
1382 * *unsafe_ptr* to *dst*. The *size* should include the
1383 * terminating NUL byte. In case the string length is smaller than
1384 * *size*, the target is not padded with further NUL bytes. If the
1385 * string length is larger than *size*, just *size*-1 bytes are
1386 * copied and the last byte is set to NUL.
1387 *
1388 * On success, the length of the copied string is returned. This
1389 * makes this helper useful in tracing programs for reading
1390 * strings, and more importantly to get its length at runtime. See
1391 * the following snippet:
1392 *
1393 * ::
1394 *
1395 * SEC("kprobe/sys_open")
1396 * void bpf_sys_open(struct pt_regs *ctx)
1397 * {
1398 * char buf[PATHLEN]; // PATHLEN is defined to 256
1399 * int res = bpf_probe_read_str(buf, sizeof(buf),
1400 * ctx->di);
1401 *
1402 * // Consume buf, for example push it to
1403 * // userspace via bpf_perf_event_output(); we
1404 * // can use res (the string length) as event
1405 * // size, after checking its boundaries.
1406 * }
1407 *
1408 * In comparison, using **bpf_probe_read()** helper here instead
1409 * to read the string would require to estimate the length at
1410 * compile time, and would often result in copying more memory
1411 * than necessary.
1412 *
1413 * Another useful use case is when parsing individual process
1414 * arguments or individual environment variables navigating
1415 * *current*\ **->mm->arg_start** and *current*\
1416 * **->mm->env_start**: using this helper and the return value,
1417 * one can quickly iterate at the right offset of the memory area.
1418 * Return
1419 * On success, the strictly positive length of the string,
1420 * including the trailing NUL character. On error, a negative
1421 * value.
1422 *
1423 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1424 * Description
1425 * If the **struct sk_buff** pointed by *skb* has a known socket,
1426 * retrieve the cookie (generated by the kernel) of this socket.
1427 * If no cookie has been set yet, generate a new cookie. Once
1428 * generated, the socket cookie remains stable for the life of the
1429 * socket. This helper can be useful for monitoring per socket
1430 * networking traffic statistics as it provides a unique socket
1431 * identifier per namespace.
1432 * Return
1433 * A 8-byte long non-decreasing number on success, or 0 if the
1434 * socket field is missing inside *skb*.
1435 *
1436 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1437 * Description
1438 * Equivalent to bpf_get_socket_cookie() helper that accepts
1439 * *skb*, but gets socket from **struct bpf_sock_addr** context.
1440 * Return
1441 * A 8-byte long non-decreasing number.
1442 *
1443 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1444 * Description
1445 * Equivalent to bpf_get_socket_cookie() helper that accepts
1446 * *skb*, but gets socket from **struct bpf_sock_ops** context.
1447 * Return
1448 * A 8-byte long non-decreasing number.
1449 *
1450 * u32 bpf_get_socket_uid(struct sk_buff *skb)
1451 * Return
1452 * The owner UID of the socket associated to *skb*. If the socket
1453 * is **NULL**, or if it is not a full socket (i.e. if it is a
1454 * time-wait or a request socket instead), **overflowuid** value
1455 * is returned (note that **overflowuid** might also be the actual
1456 * UID value for the socket).
1457 *
1458 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1459 * Description
1460 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
1461 * to value *hash*.
1462 * Return
1463 * 0
1464 *
1465 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1466 * Description
1467 * Emulate a call to **setsockopt()** on the socket associated to
1468 * *bpf_socket*, which must be a full socket. The *level* at
1469 * which the option resides and the name *optname* of the option
1470 * must be specified, see **setsockopt(2)** for more information.
1471 * The option value of length *optlen* is pointed by *optval*.
1472 *
1473 * This helper actually implements a subset of **setsockopt()**.
1474 * It supports the following *level*\ s:
1475 *
1476 * * **SOL_SOCKET**, which supports the following *optname*\ s:
1477 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1478 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1479 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
1480 * **TCP_CONGESTION**, **TCP_BPF_IW**,
1481 * **TCP_BPF_SNDCWND_CLAMP**.
1482 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1483 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1484 * Return
1485 * 0 on success, or a negative error in case of failure.
1486 *
1487 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1488 * Description
1489 * Grow or shrink the room for data in the packet associated to
1490 * *skb* by *len_diff*, and according to the selected *mode*.
1491 *
1492 * There are two supported modes at this time:
1493 *
1494 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1495 * (room space is added or removed below the layer 2 header).
1496 *
1497 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1498 * (room space is added or removed below the layer 3 header).
1499 *
1500 * The following flags are supported at this time:
1501 *
1502 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1503 * Adjusting mss in this way is not allowed for datagrams.
1504 *
1505 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 **:
1506 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 **:
1507 * Any new space is reserved to hold a tunnel header.
1508 * Configure skb offsets and other fields accordingly.
1509 *
1510 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE **:
1511 * * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP **:
1512 * Use with ENCAP_L3 flags to further specify the tunnel type.
1513 *
1514 * A call to this helper is susceptible to change the underlaying
1515 * packet buffer. Therefore, at load time, all checks on pointers
1516 * previously done by the verifier are invalidated and must be
1517 * performed again, if the helper is used in combination with
1518 * direct packet access.
1519 * Return
1520 * 0 on success, or a negative error in case of failure.
1521 *
1522 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1523 * Description
1524 * Redirect the packet to the endpoint referenced by *map* at
1525 * index *key*. Depending on its type, this *map* can contain
1526 * references to net devices (for forwarding packets through other
1527 * ports), or to CPUs (for redirecting XDP frames to another CPU;
1528 * but this is only implemented for native XDP (with driver
1529 * support) as of this writing).
1530 *
1531 * All values for *flags* are reserved for future usage, and must
1532 * be left at zero.
1533 *
1534 * When used to redirect packets to net devices, this helper
1535 * provides a high performance increase over **bpf_redirect**\ ().
1536 * This is due to various implementation details of the underlying
1537 * mechanisms, one of which is the fact that **bpf_redirect_map**\
1538 * () tries to send packet as a "bulk" to the device.
1539 * Return
1540 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1541 *
1542 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1543 * Description
1544 * Redirect the packet to the socket referenced by *map* (of type
1545 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1546 * egress interfaces can be used for redirection. The
1547 * **BPF_F_INGRESS** value in *flags* is used to make the
1548 * distinction (ingress path is selected if the flag is present,
1549 * egress path otherwise). This is the only flag supported for now.
1550 * Return
1551 * **SK_PASS** on success, or **SK_DROP** on error.
1552 *
1553 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1554 * Description
1555 * Add an entry to, or update a *map* referencing sockets. The
1556 * *skops* is used as a new value for the entry associated to
1557 * *key*. *flags* is one of:
1558 *
1559 * **BPF_NOEXIST**
1560 * The entry for *key* must not exist in the map.
1561 * **BPF_EXIST**
1562 * The entry for *key* must already exist in the map.
1563 * **BPF_ANY**
1564 * No condition on the existence of the entry for *key*.
1565 *
1566 * If the *map* has eBPF programs (parser and verdict), those will
1567 * be inherited by the socket being added. If the socket is
1568 * already attached to eBPF programs, this results in an error.
1569 * Return
1570 * 0 on success, or a negative error in case of failure.
1571 *
1572 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1573 * Description
1574 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
1575 * *delta* (which can be positive or negative). Note that this
1576 * operation modifies the address stored in *xdp_md*\ **->data**,
1577 * so the latter must be loaded only after the helper has been
1578 * called.
1579 *
1580 * The use of *xdp_md*\ **->data_meta** is optional and programs
1581 * are not required to use it. The rationale is that when the
1582 * packet is processed with XDP (e.g. as DoS filter), it is
1583 * possible to push further meta data along with it before passing
1584 * to the stack, and to give the guarantee that an ingress eBPF
1585 * program attached as a TC classifier on the same device can pick
1586 * this up for further post-processing. Since TC works with socket
1587 * buffers, it remains possible to set from XDP the **mark** or
1588 * **priority** pointers, or other pointers for the socket buffer.
1589 * Having this scratch space generic and programmable allows for
1590 * more flexibility as the user is free to store whatever meta
1591 * data they need.
1592 *
1593 * A call to this helper is susceptible to change the underlaying
1594 * packet buffer. Therefore, at load time, all checks on pointers
1595 * previously done by the verifier are invalidated and must be
1596 * performed again, if the helper is used in combination with
1597 * direct packet access.
1598 * Return
1599 * 0 on success, or a negative error in case of failure.
1600 *
1601 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1602 * Description
1603 * Read the value of a perf event counter, and store it into *buf*
1604 * of size *buf_size*. This helper relies on a *map* of type
1605 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1606 * counter is selected when *map* is updated with perf event file
1607 * descriptors. The *map* is an array whose size is the number of
1608 * available CPUs, and each cell contains a value relative to one
1609 * CPU. The value to retrieve is indicated by *flags*, that
1610 * contains the index of the CPU to look up, masked with
1611 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1612 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1613 * current CPU should be retrieved.
1614 *
1615 * This helper behaves in a way close to
1616 * **bpf_perf_event_read**\ () helper, save that instead of
1617 * just returning the value observed, it fills the *buf*
1618 * structure. This allows for additional data to be retrieved: in
1619 * particular, the enabled and running times (in *buf*\
1620 * **->enabled** and *buf*\ **->running**, respectively) are
1621 * copied. In general, **bpf_perf_event_read_value**\ () is
1622 * recommended over **bpf_perf_event_read**\ (), which has some
1623 * ABI issues and provides fewer functionalities.
1624 *
1625 * These values are interesting, because hardware PMU (Performance
1626 * Monitoring Unit) counters are limited resources. When there are
1627 * more PMU based perf events opened than available counters,
1628 * kernel will multiplex these events so each event gets certain
1629 * percentage (but not all) of the PMU time. In case that
1630 * multiplexing happens, the number of samples or counter value
1631 * will not reflect the case compared to when no multiplexing
1632 * occurs. This makes comparison between different runs difficult.
1633 * Typically, the counter value should be normalized before
1634 * comparing to other experiments. The usual normalization is done
1635 * as follows.
1636 *
1637 * ::
1638 *
1639 * normalized_counter = counter * t_enabled / t_running
1640 *
1641 * Where t_enabled is the time enabled for event and t_running is
1642 * the time running for event since last normalization. The
1643 * enabled and running times are accumulated since the perf event
1644 * open. To achieve scaling factor between two invocations of an
1645 * eBPF program, users can can use CPU id as the key (which is
1646 * typical for perf array usage model) to remember the previous
1647 * value and do the calculation inside the eBPF program.
1648 * Return
1649 * 0 on success, or a negative error in case of failure.
1650 *
1651 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1652 * Description
1653 * For en eBPF program attached to a perf event, retrieve the
1654 * value of the event counter associated to *ctx* and store it in
1655 * the structure pointed by *buf* and of size *buf_size*. Enabled
1656 * and running times are also stored in the structure (see
1657 * description of helper **bpf_perf_event_read_value**\ () for
1658 * more details).
1659 * Return
1660 * 0 on success, or a negative error in case of failure.
1661 *
1662 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1663 * Description
1664 * Emulate a call to **getsockopt()** on the socket associated to
1665 * *bpf_socket*, which must be a full socket. The *level* at
1666 * which the option resides and the name *optname* of the option
1667 * must be specified, see **getsockopt(2)** for more information.
1668 * The retrieved value is stored in the structure pointed by
1669 * *opval* and of length *optlen*.
1670 *
1671 * This helper actually implements a subset of **getsockopt()**.
1672 * It supports the following *level*\ s:
1673 *
1674 * * **IPPROTO_TCP**, which supports *optname*
1675 * **TCP_CONGESTION**.
1676 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1677 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1678 * Return
1679 * 0 on success, or a negative error in case of failure.
1680 *
1681 * int bpf_override_return(struct pt_reg *regs, u64 rc)
1682 * Description
1683 * Used for error injection, this helper uses kprobes to override
1684 * the return value of the probed function, and to set it to *rc*.
1685 * The first argument is the context *regs* on which the kprobe
1686 * works.
1687 *
1688 * This helper works by setting setting the PC (program counter)
1689 * to an override function which is run in place of the original
1690 * probed function. This means the probed function is not run at
1691 * all. The replacement function just returns with the required
1692 * value.
1693 *
1694 * This helper has security implications, and thus is subject to
1695 * restrictions. It is only available if the kernel was compiled
1696 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1697 * option, and in this case it only works on functions tagged with
1698 * **ALLOW_ERROR_INJECTION** in the kernel code.
1699 *
1700 * Also, the helper is only available for the architectures having
1701 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1702 * x86 architecture is the only one to support this feature.
1703 * Return
1704 * 0
1705 *
1706 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1707 * Description
1708 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1709 * for the full TCP socket associated to *bpf_sock_ops* to
1710 * *argval*.
1711 *
1712 * The primary use of this field is to determine if there should
1713 * be calls to eBPF programs of type
1714 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1715 * code. A program of the same type can change its value, per
1716 * connection and as necessary, when the connection is
1717 * established. This field is directly accessible for reading, but
1718 * this helper must be used for updates in order to return an
1719 * error if an eBPF program tries to set a callback that is not
1720 * supported in the current kernel.
1721 *
1722 * The supported callback values that *argval* can combine are:
1723 *
1724 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1725 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1726 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1727 *
1728 * Here are some examples of where one could call such eBPF
1729 * program:
1730 *
1731 * * When RTO fires.
1732 * * When a packet is retransmitted.
1733 * * When the connection terminates.
1734 * * When a packet is sent.
1735 * * When a packet is received.
1736 * Return
1737 * Code **-EINVAL** if the socket is not a full TCP socket;
1738 * otherwise, a positive number containing the bits that could not
1739 * be set is returned (which comes down to 0 if all bits were set
1740 * as required).
1741 *
1742 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1743 * Description
1744 * This helper is used in programs implementing policies at the
1745 * socket level. If the message *msg* is allowed to pass (i.e. if
1746 * the verdict eBPF program returns **SK_PASS**), redirect it to
1747 * the socket referenced by *map* (of type
1748 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1749 * egress interfaces can be used for redirection. The
1750 * **BPF_F_INGRESS** value in *flags* is used to make the
1751 * distinction (ingress path is selected if the flag is present,
1752 * egress path otherwise). This is the only flag supported for now.
1753 * Return
1754 * **SK_PASS** on success, or **SK_DROP** on error.
1755 *
1756 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1757 * Description
1758 * For socket policies, apply the verdict of the eBPF program to
1759 * the next *bytes* (number of bytes) of message *msg*.
1760 *
1761 * For example, this helper can be used in the following cases:
1762 *
1763 * * A single **sendmsg**\ () or **sendfile**\ () system call
1764 * contains multiple logical messages that the eBPF program is
1765 * supposed to read and for which it should apply a verdict.
1766 * * An eBPF program only cares to read the first *bytes* of a
1767 * *msg*. If the message has a large payload, then setting up
1768 * and calling the eBPF program repeatedly for all bytes, even
1769 * though the verdict is already known, would create unnecessary
1770 * overhead.
1771 *
1772 * When called from within an eBPF program, the helper sets a
1773 * counter internal to the BPF infrastructure, that is used to
1774 * apply the last verdict to the next *bytes*. If *bytes* is
1775 * smaller than the current data being processed from a
1776 * **sendmsg**\ () or **sendfile**\ () system call, the first
1777 * *bytes* will be sent and the eBPF program will be re-run with
1778 * the pointer for start of data pointing to byte number *bytes*
1779 * **+ 1**. If *bytes* is larger than the current data being
1780 * processed, then the eBPF verdict will be applied to multiple
1781 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1782 * consumed.
1783 *
1784 * Note that if a socket closes with the internal counter holding
1785 * a non-zero value, this is not a problem because data is not
1786 * being buffered for *bytes* and is sent as it is received.
1787 * Return
1788 * 0
1789 *
1790 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1791 * Description
1792 * For socket policies, prevent the execution of the verdict eBPF
1793 * program for message *msg* until *bytes* (byte number) have been
1794 * accumulated.
1795 *
1796 * This can be used when one needs a specific number of bytes
1797 * before a verdict can be assigned, even if the data spans
1798 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1799 * case would be a user calling **sendmsg**\ () repeatedly with
1800 * 1-byte long message segments. Obviously, this is bad for
1801 * performance, but it is still valid. If the eBPF program needs
1802 * *bytes* bytes to validate a header, this helper can be used to
1803 * prevent the eBPF program to be called again until *bytes* have
1804 * been accumulated.
1805 * Return
1806 * 0
1807 *
1808 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1809 * Description
1810 * For socket policies, pull in non-linear data from user space
1811 * for *msg* and set pointers *msg*\ **->data** and *msg*\
1812 * **->data_end** to *start* and *end* bytes offsets into *msg*,
1813 * respectively.
1814 *
1815 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1816 * *msg* it can only parse data that the (**data**, **data_end**)
1817 * pointers have already consumed. For **sendmsg**\ () hooks this
1818 * is likely the first scatterlist element. But for calls relying
1819 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1820 * be the range (**0**, **0**) because the data is shared with
1821 * user space and by default the objective is to avoid allowing
1822 * user space to modify data while (or after) eBPF verdict is
1823 * being decided. This helper can be used to pull in data and to
1824 * set the start and end pointer to given values. Data will be
1825 * copied if necessary (i.e. if data was not linear and if start
1826 * and end pointers do not point to the same chunk).
1827 *
1828 * A call to this helper is susceptible to change the underlaying
1829 * packet buffer. Therefore, at load time, all checks on pointers
1830 * previously done by the verifier are invalidated and must be
1831 * performed again, if the helper is used in combination with
1832 * direct packet access.
1833 *
1834 * All values for *flags* are reserved for future usage, and must
1835 * be left at zero.
1836 * Return
1837 * 0 on success, or a negative error in case of failure.
1838 *
1839 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1840 * Description
1841 * Bind the socket associated to *ctx* to the address pointed by
1842 * *addr*, of length *addr_len*. This allows for making outgoing
1843 * connection from the desired IP address, which can be useful for
1844 * example when all processes inside a cgroup should use one
1845 * single IP address on a host that has multiple IP configured.
1846 *
1847 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1848 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1849 * **AF_INET6**). Looking for a free port to bind to can be
1850 * expensive, therefore binding to port is not permitted by the
1851 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1852 * must be set to zero.
1853 * Return
1854 * 0 on success, or a negative error in case of failure.
1855 *
1856 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1857 * Description
1858 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1859 * only possible to shrink the packet as of this writing,
1860 * therefore *delta* must be a negative integer.
1861 *
1862 * A call to this helper is susceptible to change the underlaying
1863 * packet buffer. Therefore, at load time, all checks on pointers
1864 * previously done by the verifier are invalidated and must be
1865 * performed again, if the helper is used in combination with
1866 * direct packet access.
1867 * Return
1868 * 0 on success, or a negative error in case of failure.
1869 *
1870 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1871 * Description
1872 * Retrieve the XFRM state (IP transform framework, see also
1873 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1874 *
1875 * The retrieved value is stored in the **struct bpf_xfrm_state**
1876 * pointed by *xfrm_state* and of length *size*.
1877 *
1878 * All values for *flags* are reserved for future usage, and must
1879 * be left at zero.
1880 *
1881 * This helper is available only if the kernel was compiled with
1882 * **CONFIG_XFRM** configuration option.
1883 * Return
1884 * 0 on success, or a negative error in case of failure.
1885 *
1886 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1887 * Description
1888 * Return a user or a kernel stack in bpf program provided buffer.
1889 * To achieve this, the helper needs *ctx*, which is a pointer
1890 * to the context on which the tracing program is executed.
1891 * To store the stacktrace, the bpf program provides *buf* with
1892 * a nonnegative *size*.
1893 *
1894 * The last argument, *flags*, holds the number of stack frames to
1895 * skip (from 0 to 255), masked with
1896 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1897 * the following flags:
1898 *
1899 * **BPF_F_USER_STACK**
1900 * Collect a user space stack instead of a kernel stack.
1901 * **BPF_F_USER_BUILD_ID**
1902 * Collect buildid+offset instead of ips for user stack,
1903 * only valid if **BPF_F_USER_STACK** is also specified.
1904 *
1905 * **bpf_get_stack**\ () can collect up to
1906 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1907 * to sufficient large buffer size. Note that
1908 * this limit can be controlled with the **sysctl** program, and
1909 * that it should be manually increased in order to profile long
1910 * user stacks (such as stacks for Java programs). To do so, use:
1911 *
1912 * ::
1913 *
1914 * # sysctl kernel.perf_event_max_stack=<new value>
1915 * Return
1916 * A non-negative value equal to or less than *size* on success,
1917 * or a negative error in case of failure.
1918 *
1919 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
1920 * Description
1921 * This helper is similar to **bpf_skb_load_bytes**\ () in that
1922 * it provides an easy way to load *len* bytes from *offset*
1923 * from the packet associated to *skb*, into the buffer pointed
1924 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1925 * a fifth argument *start_header* exists in order to select a
1926 * base offset to start from. *start_header* can be one of:
1927 *
1928 * **BPF_HDR_START_MAC**
1929 * Base offset to load data from is *skb*'s mac header.
1930 * **BPF_HDR_START_NET**
1931 * Base offset to load data from is *skb*'s network header.
1932 *
1933 * In general, "direct packet access" is the preferred method to
1934 * access packet data, however, this helper is in particular useful
1935 * in socket filters where *skb*\ **->data** does not always point
1936 * to the start of the mac header and where "direct packet access"
1937 * is not available.
1938 * Return
1939 * 0 on success, or a negative error in case of failure.
1940 *
1941 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1942 * Description
1943 * Do FIB lookup in kernel tables using parameters in *params*.
1944 * If lookup is successful and result shows packet is to be
1945 * forwarded, the neighbor tables are searched for the nexthop.
1946 * If successful (ie., FIB lookup shows forwarding and nexthop
1947 * is resolved), the nexthop address is returned in ipv4_dst
1948 * or ipv6_dst based on family, smac is set to mac address of
1949 * egress device, dmac is set to nexthop mac address, rt_metric
1950 * is set to metric from route (IPv4/IPv6 only), and ifindex
1951 * is set to the device index of the nexthop from the FIB lookup.
1952 *
1953 * *plen* argument is the size of the passed in struct.
1954 * *flags* argument can be a combination of one or more of the
1955 * following values:
1956 *
1957 * **BPF_FIB_LOOKUP_DIRECT**
1958 * Do a direct table lookup vs full lookup using FIB
1959 * rules.
1960 * **BPF_FIB_LOOKUP_OUTPUT**
1961 * Perform lookup from an egress perspective (default is
1962 * ingress).
1963 *
1964 * *ctx* is either **struct xdp_md** for XDP programs or
1965 * **struct sk_buff** tc cls_act programs.
1966 * Return
1967 * * < 0 if any input argument is invalid
1968 * * 0 on success (packet is forwarded, nexthop neighbor exists)
1969 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
1970 * packet is not forwarded or needs assist from full stack
1971 *
1972 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
1973 * Description
1974 * Add an entry to, or update a sockhash *map* referencing sockets.
1975 * The *skops* is used as a new value for the entry associated to
1976 * *key*. *flags* is one of:
1977 *
1978 * **BPF_NOEXIST**
1979 * The entry for *key* must not exist in the map.
1980 * **BPF_EXIST**
1981 * The entry for *key* must already exist in the map.
1982 * **BPF_ANY**
1983 * No condition on the existence of the entry for *key*.
1984 *
1985 * If the *map* has eBPF programs (parser and verdict), those will
1986 * be inherited by the socket being added. If the socket is
1987 * already attached to eBPF programs, this results in an error.
1988 * Return
1989 * 0 on success, or a negative error in case of failure.
1990 *
1991 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
1992 * Description
1993 * This helper is used in programs implementing policies at the
1994 * socket level. If the message *msg* is allowed to pass (i.e. if
1995 * the verdict eBPF program returns **SK_PASS**), redirect it to
1996 * the socket referenced by *map* (of type
1997 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1998 * egress interfaces can be used for redirection. The
1999 * **BPF_F_INGRESS** value in *flags* is used to make the
2000 * distinction (ingress path is selected if the flag is present,
2001 * egress path otherwise). This is the only flag supported for now.
2002 * Return
2003 * **SK_PASS** on success, or **SK_DROP** on error.
2004 *
2005 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2006 * Description
2007 * This helper is used in programs implementing policies at the
2008 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2009 * if the verdeict eBPF program returns **SK_PASS**), redirect it
2010 * to the socket referenced by *map* (of type
2011 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2012 * egress interfaces can be used for redirection. The
2013 * **BPF_F_INGRESS** value in *flags* is used to make the
2014 * distinction (ingress path is selected if the flag is present,
2015 * egress otherwise). This is the only flag supported for now.
2016 * Return
2017 * **SK_PASS** on success, or **SK_DROP** on error.
2018 *
2019 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2020 * Description
2021 * Encapsulate the packet associated to *skb* within a Layer 3
2022 * protocol header. This header is provided in the buffer at
2023 * address *hdr*, with *len* its size in bytes. *type* indicates
2024 * the protocol of the header and can be one of:
2025 *
2026 * **BPF_LWT_ENCAP_SEG6**
2027 * IPv6 encapsulation with Segment Routing Header
2028 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2029 * the IPv6 header is computed by the kernel.
2030 * **BPF_LWT_ENCAP_SEG6_INLINE**
2031 * Only works if *skb* contains an IPv6 packet. Insert a
2032 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
2033 * the IPv6 header.
2034 * **BPF_LWT_ENCAP_IP**
2035 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2036 * must be IPv4 or IPv6, followed by zero or more
2037 * additional headers, up to LWT_BPF_MAX_HEADROOM total
2038 * bytes in all prepended headers. Please note that
2039 * if skb_is_gso(skb) is true, no more than two headers
2040 * can be prepended, and the inner header, if present,
2041 * should be either GRE or UDP/GUE.
2042 *
2043 * BPF_LWT_ENCAP_SEG6*** types can be called by bpf programs of
2044 * type BPF_PROG_TYPE_LWT_IN; BPF_LWT_ENCAP_IP type can be called
2045 * by bpf programs of types BPF_PROG_TYPE_LWT_IN and
2046 * BPF_PROG_TYPE_LWT_XMIT.
2047 *
2048 * A call to this helper is susceptible to change the underlaying
2049 * packet buffer. Therefore, at load time, all checks on pointers
2050 * previously done by the verifier are invalidated and must be
2051 * performed again, if the helper is used in combination with
2052 * direct packet access.
2053 * Return
2054 * 0 on success, or a negative error in case of failure.
2055 *
2056 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2057 * Description
2058 * Store *len* bytes from address *from* into the packet
2059 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
2060 * inside the outermost IPv6 Segment Routing Header can be
2061 * modified through this helper.
2062 *
2063 * A call to this helper is susceptible to change the underlaying
2064 * packet buffer. Therefore, at load time, all checks on pointers
2065 * previously done by the verifier are invalidated and must be
2066 * performed again, if the helper is used in combination with
2067 * direct packet access.
2068 * Return
2069 * 0 on success, or a negative error in case of failure.
2070 *
2071 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2072 * Description
2073 * Adjust the size allocated to TLVs in the outermost IPv6
2074 * Segment Routing Header contained in the packet associated to
2075 * *skb*, at position *offset* by *delta* bytes. Only offsets
2076 * after the segments are accepted. *delta* can be as well
2077 * positive (growing) as negative (shrinking).
2078 *
2079 * A call to this helper is susceptible to change the underlaying
2080 * packet buffer. Therefore, at load time, all checks on pointers
2081 * previously done by the verifier are invalidated and must be
2082 * performed again, if the helper is used in combination with
2083 * direct packet access.
2084 * Return
2085 * 0 on success, or a negative error in case of failure.
2086 *
2087 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2088 * Description
2089 * Apply an IPv6 Segment Routing action of type *action* to the
2090 * packet associated to *skb*. Each action takes a parameter
2091 * contained at address *param*, and of length *param_len* bytes.
2092 * *action* can be one of:
2093 *
2094 * **SEG6_LOCAL_ACTION_END_X**
2095 * End.X action: Endpoint with Layer-3 cross-connect.
2096 * Type of *param*: **struct in6_addr**.
2097 * **SEG6_LOCAL_ACTION_END_T**
2098 * End.T action: Endpoint with specific IPv6 table lookup.
2099 * Type of *param*: **int**.
2100 * **SEG6_LOCAL_ACTION_END_B6**
2101 * End.B6 action: Endpoint bound to an SRv6 policy.
2102 * Type of param: **struct ipv6_sr_hdr**.
2103 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
2104 * End.B6.Encap action: Endpoint bound to an SRv6
2105 * encapsulation policy.
2106 * Type of param: **struct ipv6_sr_hdr**.
2107 *
2108 * A call to this helper is susceptible to change the underlaying
2109 * packet buffer. Therefore, at load time, all checks on pointers
2110 * previously done by the verifier are invalidated and must be
2111 * performed again, if the helper is used in combination with
2112 * direct packet access.
2113 * Return
2114 * 0 on success, or a negative error in case of failure.
2115 *
2116 * int bpf_rc_repeat(void *ctx)
2117 * Description
2118 * This helper is used in programs implementing IR decoding, to
2119 * report a successfully decoded repeat key message. This delays
2120 * the generation of a key up event for previously generated
2121 * key down event.
2122 *
2123 * Some IR protocols like NEC have a special IR message for
2124 * repeating last button, for when a button is held down.
2125 *
2126 * The *ctx* should point to the lirc sample as passed into
2127 * the program.
2128 *
2129 * This helper is only available is the kernel was compiled with
2130 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2131 * "**y**".
2132 * Return
2133 * 0
2134 *
2135 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2136 * Description
2137 * This helper is used in programs implementing IR decoding, to
2138 * report a successfully decoded key press with *scancode*,
2139 * *toggle* value in the given *protocol*. The scancode will be
2140 * translated to a keycode using the rc keymap, and reported as
2141 * an input key down event. After a period a key up event is
2142 * generated. This period can be extended by calling either
2143 * **bpf_rc_keydown**\ () again with the same values, or calling
2144 * **bpf_rc_repeat**\ ().
2145 *
2146 * Some protocols include a toggle bit, in case the button was
2147 * released and pressed again between consecutive scancodes.
2148 *
2149 * The *ctx* should point to the lirc sample as passed into
2150 * the program.
2151 *
2152 * The *protocol* is the decoded protocol number (see
2153 * **enum rc_proto** for some predefined values).
2154 *
2155 * This helper is only available is the kernel was compiled with
2156 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2157 * "**y**".
2158 * Return
2159 * 0
2160 *
2161 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2162 * Description
2163 * Return the cgroup v2 id of the socket associated with the *skb*.
2164 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2165 * helper for cgroup v1 by providing a tag resp. identifier that
2166 * can be matched on or used for map lookups e.g. to implement
2167 * policy. The cgroup v2 id of a given path in the hierarchy is
2168 * exposed in user space through the f_handle API in order to get
2169 * to the same 64-bit id.
2170 *
2171 * This helper can be used on TC egress path, but not on ingress,
2172 * and is available only if the kernel was compiled with the
2173 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
2174 * Return
2175 * The id is returned or 0 in case the id could not be retrieved.
2176 *
2177 * u64 bpf_get_current_cgroup_id(void)
2178 * Return
2179 * A 64-bit integer containing the current cgroup id based
2180 * on the cgroup within which the current task is running.
2181 *
2182 * void *bpf_get_local_storage(void *map, u64 flags)
2183 * Description
2184 * Get the pointer to the local storage area.
2185 * The type and the size of the local storage is defined
2186 * by the *map* argument.
2187 * The *flags* meaning is specific for each map type,
2188 * and has to be 0 for cgroup local storage.
2189 *
2190 * Depending on the BPF program type, a local storage area
2191 * can be shared between multiple instances of the BPF program,
2192 * running simultaneously.
2193 *
2194 * A user should care about the synchronization by himself.
2195 * For example, by using the **BPF_STX_XADD** instruction to alter
2196 * the shared data.
2197 * Return
2198 * A pointer to the local storage area.
2199 *
2200 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2201 * Description
2202 * Select a **SO_REUSEPORT** socket from a
2203 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2204 * It checks the selected socket is matching the incoming
2205 * request in the socket buffer.
2206 * Return
2207 * 0 on success, or a negative error in case of failure.
2208 *
2209 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2210 * Description
2211 * Return id of cgroup v2 that is ancestor of cgroup associated
2212 * with the *skb* at the *ancestor_level*. The root cgroup is at
2213 * *ancestor_level* zero and each step down the hierarchy
2214 * increments the level. If *ancestor_level* == level of cgroup
2215 * associated with *skb*, then return value will be same as that
2216 * of **bpf_skb_cgroup_id**\ ().
2217 *
2218 * The helper is useful to implement policies based on cgroups
2219 * that are upper in hierarchy than immediate cgroup associated
2220 * with *skb*.
2221 *
2222 * The format of returned id and helper limitations are same as in
2223 * **bpf_skb_cgroup_id**\ ().
2224 * Return
2225 * The id is returned or 0 in case the id could not be retrieved.
2226 *
2227 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2228 * Description
2229 * Look for TCP socket matching *tuple*, optionally in a child
2230 * network namespace *netns*. The return value must be checked,
2231 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2232 *
2233 * The *ctx* should point to the context of the program, such as
2234 * the skb or socket (depending on the hook in use). This is used
2235 * to determine the base network namespace for the lookup.
2236 *
2237 * *tuple_size* must be one of:
2238 *
2239 * **sizeof**\ (*tuple*\ **->ipv4**)
2240 * Look for an IPv4 socket.
2241 * **sizeof**\ (*tuple*\ **->ipv6**)
2242 * Look for an IPv6 socket.
2243 *
2244 * If the *netns* is a negative signed 32-bit integer, then the
2245 * socket lookup table in the netns associated with the *ctx* will
2246 * will be used. For the TC hooks, this is the netns of the device
2247 * in the skb. For socket hooks, this is the netns of the socket.
2248 * If *netns* is any other signed 32-bit value greater than or
2249 * equal to zero then it specifies the ID of the netns relative to
2250 * the netns associated with the *ctx*. *netns* values beyond the
2251 * range of 32-bit integers are reserved for future use.
2252 *
2253 * All values for *flags* are reserved for future usage, and must
2254 * be left at zero.
2255 *
2256 * This helper is available only if the kernel was compiled with
2257 * **CONFIG_NET** configuration option.
2258 * Return
2259 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2260 * For sockets with reuseport option, the **struct bpf_sock**
2261 * result is from **reuse->socks**\ [] using the hash of the tuple.
2262 *
2263 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2264 * Description
2265 * Look for UDP socket matching *tuple*, optionally in a child
2266 * network namespace *netns*. The return value must be checked,
2267 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2268 *
2269 * The *ctx* should point to the context of the program, such as
2270 * the skb or socket (depending on the hook in use). This is used
2271 * to determine the base network namespace for the lookup.
2272 *
2273 * *tuple_size* must be one of:
2274 *
2275 * **sizeof**\ (*tuple*\ **->ipv4**)
2276 * Look for an IPv4 socket.
2277 * **sizeof**\ (*tuple*\ **->ipv6**)
2278 * Look for an IPv6 socket.
2279 *
2280 * If the *netns* is a negative signed 32-bit integer, then the
2281 * socket lookup table in the netns associated with the *ctx* will
2282 * will be used. For the TC hooks, this is the netns of the device
2283 * in the skb. For socket hooks, this is the netns of the socket.
2284 * If *netns* is any other signed 32-bit value greater than or
2285 * equal to zero then it specifies the ID of the netns relative to
2286 * the netns associated with the *ctx*. *netns* values beyond the
2287 * range of 32-bit integers are reserved for future use.
2288 *
2289 * All values for *flags* are reserved for future usage, and must
2290 * be left at zero.
2291 *
2292 * This helper is available only if the kernel was compiled with
2293 * **CONFIG_NET** configuration option.
2294 * Return
2295 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2296 * For sockets with reuseport option, the **struct bpf_sock**
2297 * result is from **reuse->socks**\ [] using the hash of the tuple.
2298 *
2299 * int bpf_sk_release(struct bpf_sock *sock)
2300 * Description
2301 * Release the reference held by *sock*. *sock* must be a
2302 * non-**NULL** pointer that was returned from
2303 * **bpf_sk_lookup_xxx**\ ().
2304 * Return
2305 * 0 on success, or a negative error in case of failure.
2306 *
2307 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2308 * Description
2309 * Push an element *value* in *map*. *flags* is one of:
2310 *
2311 * **BPF_EXIST**
2312 * If the queue/stack is full, the oldest element is
2313 * removed to make room for this.
2314 * Return
2315 * 0 on success, or a negative error in case of failure.
2316 *
2317 * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2318 * Description
2319 * Pop an element from *map*.
2320 * Return
2321 * 0 on success, or a negative error in case of failure.
2322 *
2323 * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2324 * Description
2325 * Get an element from *map* without removing it.
2326 * Return
2327 * 0 on success, or a negative error in case of failure.
2328 *
2329 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags)
2330 * Description
2331 * For socket policies, insert *len* bytes into *msg* at offset
2332 * *start*.
2333 *
2334 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2335 * *msg* it may want to insert metadata or options into the *msg*.
2336 * This can later be read and used by any of the lower layer BPF
2337 * hooks.
2338 *
2339 * This helper may fail if under memory pressure (a malloc
2340 * fails) in these cases BPF programs will get an appropriate
2341 * error and BPF programs will need to handle them.
2342 * Return
2343 * 0 on success, or a negative error in case of failure.
2344 *
2345 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags)
2346 * Description
2347 * Will remove *pop* bytes from a *msg* starting at byte *start*.
2348 * This may result in **ENOMEM** errors under certain situations if
2349 * an allocation and copy are required due to a full ring buffer.
2350 * However, the helper will try to avoid doing the allocation
2351 * if possible. Other errors can occur if input parameters are
2352 * invalid either due to *start* byte not being valid part of *msg*
2353 * payload and/or *pop* value being to large.
2354 * Return
2355 * 0 on success, or a negative error in case of failure.
2356 *
2357 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2358 * Description
2359 * This helper is used in programs implementing IR decoding, to
2360 * report a successfully decoded pointer movement.
2361 *
2362 * The *ctx* should point to the lirc sample as passed into
2363 * the program.
2364 *
2365 * This helper is only available is the kernel was compiled with
2366 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2367 * "**y**".
2368 * Return
2369 * 0
2370 *
2371 * int bpf_spin_lock(struct bpf_spin_lock *lock)
2372 * Description
2373 * Acquire a spinlock represented by the pointer *lock*, which is
2374 * stored as part of a value of a map. Taking the lock allows to
2375 * safely update the rest of the fields in that value. The
2376 * spinlock can (and must) later be released with a call to
2377 * **bpf_spin_unlock**\ (\ *lock*\ ).
2378 *
2379 * Spinlocks in BPF programs come with a number of restrictions
2380 * and constraints:
2381 *
2382 * * **bpf_spin_lock** objects are only allowed inside maps of
2383 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2384 * list could be extended in the future).
2385 * * BTF description of the map is mandatory.
2386 * * The BPF program can take ONE lock at a time, since taking two
2387 * or more could cause dead locks.
2388 * * Only one **struct bpf_spin_lock** is allowed per map element.
2389 * * When the lock is taken, calls (either BPF to BPF or helpers)
2390 * are not allowed.
2391 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2392 * allowed inside a spinlock-ed region.
2393 * * The BPF program MUST call **bpf_spin_unlock**\ () to release
2394 * the lock, on all execution paths, before it returns.
2395 * * The BPF program can access **struct bpf_spin_lock** only via
2396 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2397 * helpers. Loading or storing data into the **struct
2398 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2399 * * To use the **bpf_spin_lock**\ () helper, the BTF description
2400 * of the map value must be a struct and have **struct
2401 * bpf_spin_lock** *anyname*\ **;** field at the top level.
2402 * Nested lock inside another struct is not allowed.
2403 * * The **struct bpf_spin_lock** *lock* field in a map value must
2404 * be aligned on a multiple of 4 bytes in that value.
2405 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2406 * the **bpf_spin_lock** field to user space.
2407 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2408 * a BPF program, do not update the **bpf_spin_lock** field.
2409 * * **bpf_spin_lock** cannot be on the stack or inside a
2410 * networking packet (it can only be inside of a map values).
2411 * * **bpf_spin_lock** is available to root only.
2412 * * Tracing programs and socket filter programs cannot use
2413 * **bpf_spin_lock**\ () due to insufficient preemption checks
2414 * (but this may change in the future).
2415 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2416 * Return
2417 * 0
2418 *
2419 * int bpf_spin_unlock(struct bpf_spin_lock *lock)
2420 * Description
2421 * Release the *lock* previously locked by a call to
2422 * **bpf_spin_lock**\ (\ *lock*\ ).
2423 * Return
2424 * 0
2425 *
2426 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2427 * Description
2428 * This helper gets a **struct bpf_sock** pointer such
2429 * that all the fields in this **bpf_sock** can be accessed.
2430 * Return
2431 * A **struct bpf_sock** pointer on success, or **NULL** in
2432 * case of failure.
2433 *
2434 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2435 * Description
2436 * This helper gets a **struct bpf_tcp_sock** pointer from a
2437 * **struct bpf_sock** pointer.
2438 * Return
2439 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2440 * case of failure.
2441 *
2442 * int bpf_skb_ecn_set_ce(struct sk_buf *skb)
2443 * Description
2444 * Set ECN (Explicit Congestion Notification) field of IP header
2445 * to **CE** (Congestion Encountered) if current value is **ECT**
2446 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2447 * and IPv4.
2448 * Return
2449 * 1 if the **CE** flag is set (either by the current helper call
2450 * or because it was already present), 0 if it is not set.
2451 *
2452 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2453 * Description
2454 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2455 * **bpf_sk_release**\ () is unnecessary and not allowed.
2456 * Return
2457 * A **struct bpf_sock** pointer on success, or **NULL** in
2458 * case of failure.
2459 *
2460 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2461 * Description
2462 * Look for TCP socket matching *tuple*, optionally in a child
2463 * network namespace *netns*. The return value must be checked,
2464 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2465 *
2466 * This function is identical to bpf_sk_lookup_tcp, except that it
2467 * also returns timewait or request sockets. Use bpf_sk_fullsock
2468 * or bpf_tcp_socket to access the full structure.
2469 *
2470 * This helper is available only if the kernel was compiled with
2471 * **CONFIG_NET** configuration option.
2472 * Return
2473 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2474 * For sockets with reuseport option, the **struct bpf_sock**
2475 * result is from **reuse->socks**\ [] using the hash of the tuple.
2476 *
2477 * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2478 * Description
2479 * Check whether iph and th contain a valid SYN cookie ACK for
2480 * the listening socket in sk.
2481 *
2482 * iph points to the start of the IPv4 or IPv6 header, while
2483 * iph_len contains sizeof(struct iphdr) or sizeof(struct ip6hdr).
2484 *
2485 * th points to the start of the TCP header, while th_len contains
2486 * sizeof(struct tcphdr).
2487 *
2488 * Return
2489 * 0 if iph and th are a valid SYN cookie ACK, or a negative error
2490 * otherwise.
2491 */
2492 #define __BPF_FUNC_MAPPER(FN) \
2493 FN(unspec), \
2494 FN(map_lookup_elem), \
2495 FN(map_update_elem), \
2496 FN(map_delete_elem), \
2497 FN(probe_read), \
2498 FN(ktime_get_ns), \
2499 FN(trace_printk), \
2500 FN(get_prandom_u32), \
2501 FN(get_smp_processor_id), \
2502 FN(skb_store_bytes), \
2503 FN(l3_csum_replace), \
2504 FN(l4_csum_replace), \
2505 FN(tail_call), \
2506 FN(clone_redirect), \
2507 FN(get_current_pid_tgid), \
2508 FN(get_current_uid_gid), \
2509 FN(get_current_comm), \
2510 FN(get_cgroup_classid), \
2511 FN(skb_vlan_push), \
2512 FN(skb_vlan_pop), \
2513 FN(skb_get_tunnel_key), \
2514 FN(skb_set_tunnel_key), \
2515 FN(perf_event_read), \
2516 FN(redirect), \
2517 FN(get_route_realm), \
2518 FN(perf_event_output), \
2519 FN(skb_load_bytes), \
2520 FN(get_stackid), \
2521 FN(csum_diff), \
2522 FN(skb_get_tunnel_opt), \
2523 FN(skb_set_tunnel_opt), \
2524 FN(skb_change_proto), \
2525 FN(skb_change_type), \
2526 FN(skb_under_cgroup), \
2527 FN(get_hash_recalc), \
2528 FN(get_current_task), \
2529 FN(probe_write_user), \
2530 FN(current_task_under_cgroup), \
2531 FN(skb_change_tail), \
2532 FN(skb_pull_data), \
2533 FN(csum_update), \
2534 FN(set_hash_invalid), \
2535 FN(get_numa_node_id), \
2536 FN(skb_change_head), \
2537 FN(xdp_adjust_head), \
2538 FN(probe_read_str), \
2539 FN(get_socket_cookie), \
2540 FN(get_socket_uid), \
2541 FN(set_hash), \
2542 FN(setsockopt), \
2543 FN(skb_adjust_room), \
2544 FN(redirect_map), \
2545 FN(sk_redirect_map), \
2546 FN(sock_map_update), \
2547 FN(xdp_adjust_meta), \
2548 FN(perf_event_read_value), \
2549 FN(perf_prog_read_value), \
2550 FN(getsockopt), \
2551 FN(override_return), \
2552 FN(sock_ops_cb_flags_set), \
2553 FN(msg_redirect_map), \
2554 FN(msg_apply_bytes), \
2555 FN(msg_cork_bytes), \
2556 FN(msg_pull_data), \
2557 FN(bind), \
2558 FN(xdp_adjust_tail), \
2559 FN(skb_get_xfrm_state), \
2560 FN(get_stack), \
2561 FN(skb_load_bytes_relative), \
2562 FN(fib_lookup), \
2563 FN(sock_hash_update), \
2564 FN(msg_redirect_hash), \
2565 FN(sk_redirect_hash), \
2566 FN(lwt_push_encap), \
2567 FN(lwt_seg6_store_bytes), \
2568 FN(lwt_seg6_adjust_srh), \
2569 FN(lwt_seg6_action), \
2570 FN(rc_repeat), \
2571 FN(rc_keydown), \
2572 FN(skb_cgroup_id), \
2573 FN(get_current_cgroup_id), \
2574 FN(get_local_storage), \
2575 FN(sk_select_reuseport), \
2576 FN(skb_ancestor_cgroup_id), \
2577 FN(sk_lookup_tcp), \
2578 FN(sk_lookup_udp), \
2579 FN(sk_release), \
2580 FN(map_push_elem), \
2581 FN(map_pop_elem), \
2582 FN(map_peek_elem), \
2583 FN(msg_push_data), \
2584 FN(msg_pop_data), \
2585 FN(rc_pointer_rel), \
2586 FN(spin_lock), \
2587 FN(spin_unlock), \
2588 FN(sk_fullsock), \
2589 FN(tcp_sock), \
2590 FN(skb_ecn_set_ce), \
2591 FN(get_listener_sock), \
2592 FN(skc_lookup_tcp), \
2593 FN(tcp_check_syncookie),
2594
2595 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
2596 * function eBPF program intends to call
2597 */
2598 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
2599 enum bpf_func_id {
2600 __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
2601 __BPF_FUNC_MAX_ID,
2602 };
2603 #undef __BPF_ENUM_FN
2604
2605 /* All flags used by eBPF helper functions, placed here. */
2606
2607 /* BPF_FUNC_skb_store_bytes flags. */
2608 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0)
2609 #define BPF_F_INVALIDATE_HASH (1ULL << 1)
2610
2611 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2612 * First 4 bits are for passing the header field size.
2613 */
2614 #define BPF_F_HDR_FIELD_MASK 0xfULL
2615
2616 /* BPF_FUNC_l4_csum_replace flags. */
2617 #define BPF_F_PSEUDO_HDR (1ULL << 4)
2618 #define BPF_F_MARK_MANGLED_0 (1ULL << 5)
2619 #define BPF_F_MARK_ENFORCE (1ULL << 6)
2620
2621 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2622 #define BPF_F_INGRESS (1ULL << 0)
2623
2624 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2625 #define BPF_F_TUNINFO_IPV6 (1ULL << 0)
2626
2627 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
2628 #define BPF_F_SKIP_FIELD_MASK 0xffULL
2629 #define BPF_F_USER_STACK (1ULL << 8)
2630 /* flags used by BPF_FUNC_get_stackid only. */
2631 #define BPF_F_FAST_STACK_CMP (1ULL << 9)
2632 #define BPF_F_REUSE_STACKID (1ULL << 10)
2633 /* flags used by BPF_FUNC_get_stack only. */
2634 #define BPF_F_USER_BUILD_ID (1ULL << 11)
2635
2636 /* BPF_FUNC_skb_set_tunnel_key flags. */
2637 #define BPF_F_ZERO_CSUM_TX (1ULL << 1)
2638 #define BPF_F_DONT_FRAGMENT (1ULL << 2)
2639 #define BPF_F_SEQ_NUMBER (1ULL << 3)
2640
2641 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2642 * BPF_FUNC_perf_event_read_value flags.
2643 */
2644 #define BPF_F_INDEX_MASK 0xffffffffULL
2645 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK
2646 /* BPF_FUNC_perf_event_output for sk_buff input context. */
2647 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32)
2648
2649 /* Current network namespace */
2650 #define BPF_F_CURRENT_NETNS (-1L)
2651
2652 /* BPF_FUNC_skb_adjust_room flags. */
2653 #define BPF_F_ADJ_ROOM_FIXED_GSO (1ULL << 0)
2654
2655 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 (1ULL << 1)
2656 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 (1ULL << 2)
2657 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE (1ULL << 3)
2658 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP (1ULL << 4)
2659
2660 /* Mode for BPF_FUNC_skb_adjust_room helper. */
2661 enum bpf_adj_room_mode {
2662 BPF_ADJ_ROOM_NET,
2663 BPF_ADJ_ROOM_MAC,
2664 };
2665
2666 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
2667 enum bpf_hdr_start_off {
2668 BPF_HDR_START_MAC,
2669 BPF_HDR_START_NET,
2670 };
2671
2672 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
2673 enum bpf_lwt_encap_mode {
2674 BPF_LWT_ENCAP_SEG6,
2675 BPF_LWT_ENCAP_SEG6_INLINE,
2676 BPF_LWT_ENCAP_IP,
2677 };
2678
2679 #define __bpf_md_ptr(type, name) \
2680 union { \
2681 type name; \
2682 __u64 :64; \
2683 } __attribute__((aligned(8)))
2684
2685 /* user accessible mirror of in-kernel sk_buff.
2686 * new fields can only be added to the end of this structure
2687 */
2688 struct __sk_buff {
2689 __u32 len;
2690 __u32 pkt_type;
2691 __u32 mark;
2692 __u32 queue_mapping;
2693 __u32 protocol;
2694 __u32 vlan_present;
2695 __u32 vlan_tci;
2696 __u32 vlan_proto;
2697 __u32 priority;
2698 __u32 ingress_ifindex;
2699 __u32 ifindex;
2700 __u32 tc_index;
2701 __u32 cb[5];
2702 __u32 hash;
2703 __u32 tc_classid;
2704 __u32 data;
2705 __u32 data_end;
2706 __u32 napi_id;
2707
2708 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
2709 __u32 family;
2710 __u32 remote_ip4; /* Stored in network byte order */
2711 __u32 local_ip4; /* Stored in network byte order */
2712 __u32 remote_ip6[4]; /* Stored in network byte order */
2713 __u32 local_ip6[4]; /* Stored in network byte order */
2714 __u32 remote_port; /* Stored in network byte order */
2715 __u32 local_port; /* stored in host byte order */
2716 /* ... here. */
2717
2718 __u32 data_meta;
2719 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
2720 __u64 tstamp;
2721 __u32 wire_len;
2722 __u32 gso_segs;
2723 __bpf_md_ptr(struct bpf_sock *, sk);
2724 };
2725
2726 struct bpf_tunnel_key {
2727 __u32 tunnel_id;
2728 union {
2729 __u32 remote_ipv4;
2730 __u32 remote_ipv6[4];
2731 };
2732 __u8 tunnel_tos;
2733 __u8 tunnel_ttl;
2734 __u16 tunnel_ext; /* Padding, future use. */
2735 __u32 tunnel_label;
2736 };
2737
2738 /* user accessible mirror of in-kernel xfrm_state.
2739 * new fields can only be added to the end of this structure
2740 */
2741 struct bpf_xfrm_state {
2742 __u32 reqid;
2743 __u32 spi; /* Stored in network byte order */
2744 __u16 family;
2745 __u16 ext; /* Padding, future use. */
2746 union {
2747 __u32 remote_ipv4; /* Stored in network byte order */
2748 __u32 remote_ipv6[4]; /* Stored in network byte order */
2749 };
2750 };
2751
2752 /* Generic BPF return codes which all BPF program types may support.
2753 * The values are binary compatible with their TC_ACT_* counter-part to
2754 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2755 * programs.
2756 *
2757 * XDP is handled seprately, see XDP_*.
2758 */
2759 enum bpf_ret_code {
2760 BPF_OK = 0,
2761 /* 1 reserved */
2762 BPF_DROP = 2,
2763 /* 3-6 reserved */
2764 BPF_REDIRECT = 7,
2765 /* >127 are reserved for prog type specific return codes.
2766 *
2767 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
2768 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
2769 * changed and should be routed based on its new L3 header.
2770 * (This is an L3 redirect, as opposed to L2 redirect
2771 * represented by BPF_REDIRECT above).
2772 */
2773 BPF_LWT_REROUTE = 128,
2774 };
2775
2776 struct bpf_sock {
2777 __u32 bound_dev_if;
2778 __u32 family;
2779 __u32 type;
2780 __u32 protocol;
2781 __u32 mark;
2782 __u32 priority;
2783 /* IP address also allows 1 and 2 bytes access */
2784 __u32 src_ip4;
2785 __u32 src_ip6[4];
2786 __u32 src_port; /* host byte order */
2787 __u32 dst_port; /* network byte order */
2788 __u32 dst_ip4;
2789 __u32 dst_ip6[4];
2790 __u32 state;
2791 };
2792
2793 struct bpf_tcp_sock {
2794 __u32 snd_cwnd; /* Sending congestion window */
2795 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */
2796 __u32 rtt_min;
2797 __u32 snd_ssthresh; /* Slow start size threshold */
2798 __u32 rcv_nxt; /* What we want to receive next */
2799 __u32 snd_nxt; /* Next sequence we send */
2800 __u32 snd_una; /* First byte we want an ack for */
2801 __u32 mss_cache; /* Cached effective mss, not including SACKS */
2802 __u32 ecn_flags; /* ECN status bits. */
2803 __u32 rate_delivered; /* saved rate sample: packets delivered */
2804 __u32 rate_interval_us; /* saved rate sample: time elapsed */
2805 __u32 packets_out; /* Packets which are "in flight" */
2806 __u32 retrans_out; /* Retransmitted packets out */
2807 __u32 total_retrans; /* Total retransmits for entire connection */
2808 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn
2809 * total number of segments in.
2810 */
2811 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn
2812 * total number of data segments in.
2813 */
2814 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut
2815 * The total number of segments sent.
2816 */
2817 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut
2818 * total number of data segments sent.
2819 */
2820 __u32 lost_out; /* Lost packets */
2821 __u32 sacked_out; /* SACK'd packets */
2822 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived
2823 * sum(delta(rcv_nxt)), or how many bytes
2824 * were acked.
2825 */
2826 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked
2827 * sum(delta(snd_una)), or how many bytes
2828 * were acked.
2829 */
2830 };
2831
2832 struct bpf_sock_tuple {
2833 union {
2834 struct {
2835 __be32 saddr;
2836 __be32 daddr;
2837 __be16 sport;
2838 __be16 dport;
2839 } ipv4;
2840 struct {
2841 __be32 saddr[4];
2842 __be32 daddr[4];
2843 __be16 sport;
2844 __be16 dport;
2845 } ipv6;
2846 };
2847 };
2848
2849 #define XDP_PACKET_HEADROOM 256
2850
2851 /* User return codes for XDP prog type.
2852 * A valid XDP program must return one of these defined values. All other
2853 * return codes are reserved for future use. Unknown return codes will
2854 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
2855 */
2856 enum xdp_action {
2857 XDP_ABORTED = 0,
2858 XDP_DROP,
2859 XDP_PASS,
2860 XDP_TX,
2861 XDP_REDIRECT,
2862 };
2863
2864 /* user accessible metadata for XDP packet hook
2865 * new fields must be added to the end of this structure
2866 */
2867 struct xdp_md {
2868 __u32 data;
2869 __u32 data_end;
2870 __u32 data_meta;
2871 /* Below access go through struct xdp_rxq_info */
2872 __u32 ingress_ifindex; /* rxq->dev->ifindex */
2873 __u32 rx_queue_index; /* rxq->queue_index */
2874 };
2875
2876 enum sk_action {
2877 SK_DROP = 0,
2878 SK_PASS,
2879 };
2880
2881 /* user accessible metadata for SK_MSG packet hook, new fields must
2882 * be added to the end of this structure
2883 */
2884 struct sk_msg_md {
2885 __bpf_md_ptr(void *, data);
2886 __bpf_md_ptr(void *, data_end);
2887
2888 __u32 family;
2889 __u32 remote_ip4; /* Stored in network byte order */
2890 __u32 local_ip4; /* Stored in network byte order */
2891 __u32 remote_ip6[4]; /* Stored in network byte order */
2892 __u32 local_ip6[4]; /* Stored in network byte order */
2893 __u32 remote_port; /* Stored in network byte order */
2894 __u32 local_port; /* stored in host byte order */
2895 __u32 size; /* Total size of sk_msg */
2896 };
2897
2898 struct sk_reuseport_md {
2899 /*
2900 * Start of directly accessible data. It begins from
2901 * the tcp/udp header.
2902 */
2903 __bpf_md_ptr(void *, data);
2904 /* End of directly accessible data */
2905 __bpf_md_ptr(void *, data_end);
2906 /*
2907 * Total length of packet (starting from the tcp/udp header).
2908 * Note that the directly accessible bytes (data_end - data)
2909 * could be less than this "len". Those bytes could be
2910 * indirectly read by a helper "bpf_skb_load_bytes()".
2911 */
2912 __u32 len;
2913 /*
2914 * Eth protocol in the mac header (network byte order). e.g.
2915 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
2916 */
2917 __u32 eth_protocol;
2918 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
2919 __u32 bind_inany; /* Is sock bound to an INANY address? */
2920 __u32 hash; /* A hash of the packet 4 tuples */
2921 };
2922
2923 #define BPF_TAG_SIZE 8
2924
2925 struct bpf_prog_info {
2926 __u32 type;
2927 __u32 id;
2928 __u8 tag[BPF_TAG_SIZE];
2929 __u32 jited_prog_len;
2930 __u32 xlated_prog_len;
2931 __aligned_u64 jited_prog_insns;
2932 __aligned_u64 xlated_prog_insns;
2933 __u64 load_time; /* ns since boottime */
2934 __u32 created_by_uid;
2935 __u32 nr_map_ids;
2936 __aligned_u64 map_ids;
2937 char name[BPF_OBJ_NAME_LEN];
2938 __u32 ifindex;
2939 __u32 gpl_compatible:1;
2940 __u64 netns_dev;
2941 __u64 netns_ino;
2942 __u32 nr_jited_ksyms;
2943 __u32 nr_jited_func_lens;
2944 __aligned_u64 jited_ksyms;
2945 __aligned_u64 jited_func_lens;
2946 __u32 btf_id;
2947 __u32 func_info_rec_size;
2948 __aligned_u64 func_info;
2949 __u32 nr_func_info;
2950 __u32 nr_line_info;
2951 __aligned_u64 line_info;
2952 __aligned_u64 jited_line_info;
2953 __u32 nr_jited_line_info;
2954 __u32 line_info_rec_size;
2955 __u32 jited_line_info_rec_size;
2956 __u32 nr_prog_tags;
2957 __aligned_u64 prog_tags;
2958 __u64 run_time_ns;
2959 __u64 run_cnt;
2960 } __attribute__((aligned(8)));
2961
2962 struct bpf_map_info {
2963 __u32 type;
2964 __u32 id;
2965 __u32 key_size;
2966 __u32 value_size;
2967 __u32 max_entries;
2968 __u32 map_flags;
2969 char name[BPF_OBJ_NAME_LEN];
2970 __u32 ifindex;
2971 __u32 :32;
2972 __u64 netns_dev;
2973 __u64 netns_ino;
2974 __u32 btf_id;
2975 __u32 btf_key_type_id;
2976 __u32 btf_value_type_id;
2977 } __attribute__((aligned(8)));
2978
2979 struct bpf_btf_info {
2980 __aligned_u64 btf;
2981 __u32 btf_size;
2982 __u32 id;
2983 } __attribute__((aligned(8)));
2984
2985 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
2986 * by user and intended to be used by socket (e.g. to bind to, depends on
2987 * attach attach type).
2988 */
2989 struct bpf_sock_addr {
2990 __u32 user_family; /* Allows 4-byte read, but no write. */
2991 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
2992 * Stored in network byte order.
2993 */
2994 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write.
2995 * Stored in network byte order.
2996 */
2997 __u32 user_port; /* Allows 4-byte read and write.
2998 * Stored in network byte order
2999 */
3000 __u32 family; /* Allows 4-byte read, but no write */
3001 __u32 type; /* Allows 4-byte read, but no write */
3002 __u32 protocol; /* Allows 4-byte read, but no write */
3003 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write.
3004 * Stored in network byte order.
3005 */
3006 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write.
3007 * Stored in network byte order.
3008 */
3009 };
3010
3011 /* User bpf_sock_ops struct to access socket values and specify request ops
3012 * and their replies.
3013 * Some of this fields are in network (bigendian) byte order and may need
3014 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
3015 * New fields can only be added at the end of this structure
3016 */
3017 struct bpf_sock_ops {
3018 __u32 op;
3019 union {
3020 __u32 args[4]; /* Optionally passed to bpf program */
3021 __u32 reply; /* Returned by bpf program */
3022 __u32 replylong[4]; /* Optionally returned by bpf prog */
3023 };
3024 __u32 family;
3025 __u32 remote_ip4; /* Stored in network byte order */
3026 __u32 local_ip4; /* Stored in network byte order */
3027 __u32 remote_ip6[4]; /* Stored in network byte order */
3028 __u32 local_ip6[4]; /* Stored in network byte order */
3029 __u32 remote_port; /* Stored in network byte order */
3030 __u32 local_port; /* stored in host byte order */
3031 __u32 is_fullsock; /* Some TCP fields are only valid if
3032 * there is a full socket. If not, the
3033 * fields read as zero.
3034 */
3035 __u32 snd_cwnd;
3036 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
3037 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
3038 __u32 state;
3039 __u32 rtt_min;
3040 __u32 snd_ssthresh;
3041 __u32 rcv_nxt;
3042 __u32 snd_nxt;
3043 __u32 snd_una;
3044 __u32 mss_cache;
3045 __u32 ecn_flags;
3046 __u32 rate_delivered;
3047 __u32 rate_interval_us;
3048 __u32 packets_out;
3049 __u32 retrans_out;
3050 __u32 total_retrans;
3051 __u32 segs_in;
3052 __u32 data_segs_in;
3053 __u32 segs_out;
3054 __u32 data_segs_out;
3055 __u32 lost_out;
3056 __u32 sacked_out;
3057 __u32 sk_txhash;
3058 __u64 bytes_received;
3059 __u64 bytes_acked;
3060 };
3061
3062 /* Definitions for bpf_sock_ops_cb_flags */
3063 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0)
3064 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1)
3065 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2)
3066 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently
3067 * supported cb flags
3068 */
3069
3070 /* List of known BPF sock_ops operators.
3071 * New entries can only be added at the end
3072 */
3073 enum {
3074 BPF_SOCK_OPS_VOID,
3075 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
3076 * -1 if default value should be used
3077 */
3078 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
3079 * window (in packets) or -1 if default
3080 * value should be used
3081 */
3082 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
3083 * active connection is initialized
3084 */
3085 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
3086 * active connection is
3087 * established
3088 */
3089 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
3090 * passive connection is
3091 * established
3092 */
3093 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
3094 * needs ECN
3095 */
3096 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
3097 * based on the path and may be
3098 * dependent on the congestion control
3099 * algorithm. In general it indicates
3100 * a congestion threshold. RTTs above
3101 * this indicate congestion
3102 */
3103 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
3104 * Arg1: value of icsk_retransmits
3105 * Arg2: value of icsk_rto
3106 * Arg3: whether RTO has expired
3107 */
3108 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
3109 * Arg1: sequence number of 1st byte
3110 * Arg2: # segments
3111 * Arg3: return value of
3112 * tcp_transmit_skb (0 => success)
3113 */
3114 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
3115 * Arg1: old_state
3116 * Arg2: new_state
3117 */
3118 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
3119 * socket transition to LISTEN state.
3120 */
3121 };
3122
3123 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
3124 * changes between the TCP and BPF versions. Ideally this should never happen.
3125 * If it does, we need to add code to convert them before calling
3126 * the BPF sock_ops function.
3127 */
3128 enum {
3129 BPF_TCP_ESTABLISHED = 1,
3130 BPF_TCP_SYN_SENT,
3131 BPF_TCP_SYN_RECV,
3132 BPF_TCP_FIN_WAIT1,
3133 BPF_TCP_FIN_WAIT2,
3134 BPF_TCP_TIME_WAIT,
3135 BPF_TCP_CLOSE,
3136 BPF_TCP_CLOSE_WAIT,
3137 BPF_TCP_LAST_ACK,
3138 BPF_TCP_LISTEN,
3139 BPF_TCP_CLOSING, /* Now a valid state */
3140 BPF_TCP_NEW_SYN_RECV,
3141
3142 BPF_TCP_MAX_STATES /* Leave at the end! */
3143 };
3144
3145 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */
3146 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */
3147
3148 struct bpf_perf_event_value {
3149 __u64 counter;
3150 __u64 enabled;
3151 __u64 running;
3152 };
3153
3154 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0)
3155 #define BPF_DEVCG_ACC_READ (1ULL << 1)
3156 #define BPF_DEVCG_ACC_WRITE (1ULL << 2)
3157
3158 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0)
3159 #define BPF_DEVCG_DEV_CHAR (1ULL << 1)
3160
3161 struct bpf_cgroup_dev_ctx {
3162 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
3163 __u32 access_type;
3164 __u32 major;
3165 __u32 minor;
3166 };
3167
3168 struct bpf_raw_tracepoint_args {
3169 __u64 args[0];
3170 };
3171
3172 /* DIRECT: Skip the FIB rules and go to FIB table associated with device
3173 * OUTPUT: Do lookup from egress perspective; default is ingress
3174 */
3175 #define BPF_FIB_LOOKUP_DIRECT BIT(0)
3176 #define BPF_FIB_LOOKUP_OUTPUT BIT(1)
3177
3178 enum {
3179 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
3180 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
3181 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
3182 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
3183 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
3184 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
3185 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
3186 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
3187 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
3188 };
3189
3190 struct bpf_fib_lookup {
3191 /* input: network family for lookup (AF_INET, AF_INET6)
3192 * output: network family of egress nexthop
3193 */
3194 __u8 family;
3195
3196 /* set if lookup is to consider L4 data - e.g., FIB rules */
3197 __u8 l4_protocol;
3198 __be16 sport;
3199 __be16 dport;
3200
3201 /* total length of packet from network header - used for MTU check */
3202 __u16 tot_len;
3203
3204 /* input: L3 device index for lookup
3205 * output: device index from FIB lookup
3206 */
3207 __u32 ifindex;
3208
3209 union {
3210 /* inputs to lookup */
3211 __u8 tos; /* AF_INET */
3212 __be32 flowinfo; /* AF_INET6, flow_label + priority */
3213
3214 /* output: metric of fib result (IPv4/IPv6 only) */
3215 __u32 rt_metric;
3216 };
3217
3218 union {
3219 __be32 ipv4_src;
3220 __u32 ipv6_src[4]; /* in6_addr; network order */
3221 };
3222
3223 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
3224 * network header. output: bpf_fib_lookup sets to gateway address
3225 * if FIB lookup returns gateway route
3226 */
3227 union {
3228 __be32 ipv4_dst;
3229 __u32 ipv6_dst[4]; /* in6_addr; network order */
3230 };
3231
3232 /* output */
3233 __be16 h_vlan_proto;
3234 __be16 h_vlan_TCI;
3235 __u8 smac[6]; /* ETH_ALEN */
3236 __u8 dmac[6]; /* ETH_ALEN */
3237 };
3238
3239 enum bpf_task_fd_type {
3240 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
3241 BPF_FD_TYPE_TRACEPOINT, /* tp name */
3242 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
3243 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
3244 BPF_FD_TYPE_UPROBE, /* filename + offset */
3245 BPF_FD_TYPE_URETPROBE, /* filename + offset */
3246 };
3247
3248 struct bpf_flow_keys {
3249 __u16 nhoff;
3250 __u16 thoff;
3251 __u16 addr_proto; /* ETH_P_* of valid addrs */
3252 __u8 is_frag;
3253 __u8 is_first_frag;
3254 __u8 is_encap;
3255 __u8 ip_proto;
3256 __be16 n_proto;
3257 __be16 sport;
3258 __be16 dport;
3259 union {
3260 struct {
3261 __be32 ipv4_src;
3262 __be32 ipv4_dst;
3263 };
3264 struct {
3265 __u32 ipv6_src[4]; /* in6_addr; network order */
3266 __u32 ipv6_dst[4]; /* in6_addr; network order */
3267 };
3268 };
3269 };
3270
3271 struct bpf_func_info {
3272 __u32 insn_off;
3273 __u32 type_id;
3274 };
3275
3276 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
3277 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
3278
3279 struct bpf_line_info {
3280 __u32 insn_off;
3281 __u32 file_name_off;
3282 __u32 line_off;
3283 __u32 line_col;
3284 };
3285
3286 struct bpf_spin_lock {
3287 __u32 val;
3288 };
3289 #endif /* _UAPI__LINUX_BPF_H__ */