]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/uapi/linux/bpf.h
Merge tags 'auxdisplay-for-linus-v5.9-rc4', 'clang-format-for-linus-v5.9-rc4' and...
[mirror_ubuntu-hirsute-kernel.git] / include / uapi / linux / bpf.h
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13
14 /* Extended instruction set based on top of classic BPF */
15
16 /* instruction classes */
17 #define BPF_JMP32 0x06 /* jmp mode in word width */
18 #define BPF_ALU64 0x07 /* alu mode in double word width */
19
20 /* ld/ldx fields */
21 #define BPF_DW 0x18 /* double word (64-bit) */
22 #define BPF_XADD 0xc0 /* exclusive add */
23
24 /* alu/jmp fields */
25 #define BPF_MOV 0xb0 /* mov reg to reg */
26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
27
28 /* change endianness of a register */
29 #define BPF_END 0xd0 /* flags for endianness conversion: */
30 #define BPF_TO_LE 0x00 /* convert to little-endian */
31 #define BPF_TO_BE 0x08 /* convert to big-endian */
32 #define BPF_FROM_LE BPF_TO_LE
33 #define BPF_FROM_BE BPF_TO_BE
34
35 /* jmp encodings */
36 #define BPF_JNE 0x50 /* jump != */
37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */
38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */
42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
43 #define BPF_CALL 0x80 /* function call */
44 #define BPF_EXIT 0x90 /* function return */
45
46 /* Register numbers */
47 enum {
48 BPF_REG_0 = 0,
49 BPF_REG_1,
50 BPF_REG_2,
51 BPF_REG_3,
52 BPF_REG_4,
53 BPF_REG_5,
54 BPF_REG_6,
55 BPF_REG_7,
56 BPF_REG_8,
57 BPF_REG_9,
58 BPF_REG_10,
59 __MAX_BPF_REG,
60 };
61
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG __MAX_BPF_REG
64
65 struct bpf_insn {
66 __u8 code; /* opcode */
67 __u8 dst_reg:4; /* dest register */
68 __u8 src_reg:4; /* source register */
69 __s16 off; /* signed offset */
70 __s32 imm; /* signed immediate constant */
71 };
72
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
76 __u8 data[0]; /* Arbitrary size */
77 };
78
79 struct bpf_cgroup_storage_key {
80 __u64 cgroup_inode_id; /* cgroup inode id */
81 __u32 attach_type; /* program attach type */
82 };
83
84 union bpf_iter_link_info {
85 struct {
86 __u32 map_fd;
87 } map;
88 };
89
90 /* BPF syscall commands, see bpf(2) man-page for details. */
91 enum bpf_cmd {
92 BPF_MAP_CREATE,
93 BPF_MAP_LOOKUP_ELEM,
94 BPF_MAP_UPDATE_ELEM,
95 BPF_MAP_DELETE_ELEM,
96 BPF_MAP_GET_NEXT_KEY,
97 BPF_PROG_LOAD,
98 BPF_OBJ_PIN,
99 BPF_OBJ_GET,
100 BPF_PROG_ATTACH,
101 BPF_PROG_DETACH,
102 BPF_PROG_TEST_RUN,
103 BPF_PROG_GET_NEXT_ID,
104 BPF_MAP_GET_NEXT_ID,
105 BPF_PROG_GET_FD_BY_ID,
106 BPF_MAP_GET_FD_BY_ID,
107 BPF_OBJ_GET_INFO_BY_FD,
108 BPF_PROG_QUERY,
109 BPF_RAW_TRACEPOINT_OPEN,
110 BPF_BTF_LOAD,
111 BPF_BTF_GET_FD_BY_ID,
112 BPF_TASK_FD_QUERY,
113 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
114 BPF_MAP_FREEZE,
115 BPF_BTF_GET_NEXT_ID,
116 BPF_MAP_LOOKUP_BATCH,
117 BPF_MAP_LOOKUP_AND_DELETE_BATCH,
118 BPF_MAP_UPDATE_BATCH,
119 BPF_MAP_DELETE_BATCH,
120 BPF_LINK_CREATE,
121 BPF_LINK_UPDATE,
122 BPF_LINK_GET_FD_BY_ID,
123 BPF_LINK_GET_NEXT_ID,
124 BPF_ENABLE_STATS,
125 BPF_ITER_CREATE,
126 BPF_LINK_DETACH,
127 };
128
129 enum bpf_map_type {
130 BPF_MAP_TYPE_UNSPEC,
131 BPF_MAP_TYPE_HASH,
132 BPF_MAP_TYPE_ARRAY,
133 BPF_MAP_TYPE_PROG_ARRAY,
134 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
135 BPF_MAP_TYPE_PERCPU_HASH,
136 BPF_MAP_TYPE_PERCPU_ARRAY,
137 BPF_MAP_TYPE_STACK_TRACE,
138 BPF_MAP_TYPE_CGROUP_ARRAY,
139 BPF_MAP_TYPE_LRU_HASH,
140 BPF_MAP_TYPE_LRU_PERCPU_HASH,
141 BPF_MAP_TYPE_LPM_TRIE,
142 BPF_MAP_TYPE_ARRAY_OF_MAPS,
143 BPF_MAP_TYPE_HASH_OF_MAPS,
144 BPF_MAP_TYPE_DEVMAP,
145 BPF_MAP_TYPE_SOCKMAP,
146 BPF_MAP_TYPE_CPUMAP,
147 BPF_MAP_TYPE_XSKMAP,
148 BPF_MAP_TYPE_SOCKHASH,
149 BPF_MAP_TYPE_CGROUP_STORAGE,
150 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
151 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
152 BPF_MAP_TYPE_QUEUE,
153 BPF_MAP_TYPE_STACK,
154 BPF_MAP_TYPE_SK_STORAGE,
155 BPF_MAP_TYPE_DEVMAP_HASH,
156 BPF_MAP_TYPE_STRUCT_OPS,
157 BPF_MAP_TYPE_RINGBUF,
158 };
159
160 /* Note that tracing related programs such as
161 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
162 * are not subject to a stable API since kernel internal data
163 * structures can change from release to release and may
164 * therefore break existing tracing BPF programs. Tracing BPF
165 * programs correspond to /a/ specific kernel which is to be
166 * analyzed, and not /a/ specific kernel /and/ all future ones.
167 */
168 enum bpf_prog_type {
169 BPF_PROG_TYPE_UNSPEC,
170 BPF_PROG_TYPE_SOCKET_FILTER,
171 BPF_PROG_TYPE_KPROBE,
172 BPF_PROG_TYPE_SCHED_CLS,
173 BPF_PROG_TYPE_SCHED_ACT,
174 BPF_PROG_TYPE_TRACEPOINT,
175 BPF_PROG_TYPE_XDP,
176 BPF_PROG_TYPE_PERF_EVENT,
177 BPF_PROG_TYPE_CGROUP_SKB,
178 BPF_PROG_TYPE_CGROUP_SOCK,
179 BPF_PROG_TYPE_LWT_IN,
180 BPF_PROG_TYPE_LWT_OUT,
181 BPF_PROG_TYPE_LWT_XMIT,
182 BPF_PROG_TYPE_SOCK_OPS,
183 BPF_PROG_TYPE_SK_SKB,
184 BPF_PROG_TYPE_CGROUP_DEVICE,
185 BPF_PROG_TYPE_SK_MSG,
186 BPF_PROG_TYPE_RAW_TRACEPOINT,
187 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
188 BPF_PROG_TYPE_LWT_SEG6LOCAL,
189 BPF_PROG_TYPE_LIRC_MODE2,
190 BPF_PROG_TYPE_SK_REUSEPORT,
191 BPF_PROG_TYPE_FLOW_DISSECTOR,
192 BPF_PROG_TYPE_CGROUP_SYSCTL,
193 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
194 BPF_PROG_TYPE_CGROUP_SOCKOPT,
195 BPF_PROG_TYPE_TRACING,
196 BPF_PROG_TYPE_STRUCT_OPS,
197 BPF_PROG_TYPE_EXT,
198 BPF_PROG_TYPE_LSM,
199 BPF_PROG_TYPE_SK_LOOKUP,
200 };
201
202 enum bpf_attach_type {
203 BPF_CGROUP_INET_INGRESS,
204 BPF_CGROUP_INET_EGRESS,
205 BPF_CGROUP_INET_SOCK_CREATE,
206 BPF_CGROUP_SOCK_OPS,
207 BPF_SK_SKB_STREAM_PARSER,
208 BPF_SK_SKB_STREAM_VERDICT,
209 BPF_CGROUP_DEVICE,
210 BPF_SK_MSG_VERDICT,
211 BPF_CGROUP_INET4_BIND,
212 BPF_CGROUP_INET6_BIND,
213 BPF_CGROUP_INET4_CONNECT,
214 BPF_CGROUP_INET6_CONNECT,
215 BPF_CGROUP_INET4_POST_BIND,
216 BPF_CGROUP_INET6_POST_BIND,
217 BPF_CGROUP_UDP4_SENDMSG,
218 BPF_CGROUP_UDP6_SENDMSG,
219 BPF_LIRC_MODE2,
220 BPF_FLOW_DISSECTOR,
221 BPF_CGROUP_SYSCTL,
222 BPF_CGROUP_UDP4_RECVMSG,
223 BPF_CGROUP_UDP6_RECVMSG,
224 BPF_CGROUP_GETSOCKOPT,
225 BPF_CGROUP_SETSOCKOPT,
226 BPF_TRACE_RAW_TP,
227 BPF_TRACE_FENTRY,
228 BPF_TRACE_FEXIT,
229 BPF_MODIFY_RETURN,
230 BPF_LSM_MAC,
231 BPF_TRACE_ITER,
232 BPF_CGROUP_INET4_GETPEERNAME,
233 BPF_CGROUP_INET6_GETPEERNAME,
234 BPF_CGROUP_INET4_GETSOCKNAME,
235 BPF_CGROUP_INET6_GETSOCKNAME,
236 BPF_XDP_DEVMAP,
237 BPF_CGROUP_INET_SOCK_RELEASE,
238 BPF_XDP_CPUMAP,
239 BPF_SK_LOOKUP,
240 BPF_XDP,
241 __MAX_BPF_ATTACH_TYPE
242 };
243
244 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
245
246 enum bpf_link_type {
247 BPF_LINK_TYPE_UNSPEC = 0,
248 BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
249 BPF_LINK_TYPE_TRACING = 2,
250 BPF_LINK_TYPE_CGROUP = 3,
251 BPF_LINK_TYPE_ITER = 4,
252 BPF_LINK_TYPE_NETNS = 5,
253 BPF_LINK_TYPE_XDP = 6,
254
255 MAX_BPF_LINK_TYPE,
256 };
257
258 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
259 *
260 * NONE(default): No further bpf programs allowed in the subtree.
261 *
262 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
263 * the program in this cgroup yields to sub-cgroup program.
264 *
265 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
266 * that cgroup program gets run in addition to the program in this cgroup.
267 *
268 * Only one program is allowed to be attached to a cgroup with
269 * NONE or BPF_F_ALLOW_OVERRIDE flag.
270 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
271 * release old program and attach the new one. Attach flags has to match.
272 *
273 * Multiple programs are allowed to be attached to a cgroup with
274 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
275 * (those that were attached first, run first)
276 * The programs of sub-cgroup are executed first, then programs of
277 * this cgroup and then programs of parent cgroup.
278 * When children program makes decision (like picking TCP CA or sock bind)
279 * parent program has a chance to override it.
280 *
281 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
282 * programs for a cgroup. Though it's possible to replace an old program at
283 * any position by also specifying BPF_F_REPLACE flag and position itself in
284 * replace_bpf_fd attribute. Old program at this position will be released.
285 *
286 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
287 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
288 * Ex1:
289 * cgrp1 (MULTI progs A, B) ->
290 * cgrp2 (OVERRIDE prog C) ->
291 * cgrp3 (MULTI prog D) ->
292 * cgrp4 (OVERRIDE prog E) ->
293 * cgrp5 (NONE prog F)
294 * the event in cgrp5 triggers execution of F,D,A,B in that order.
295 * if prog F is detached, the execution is E,D,A,B
296 * if prog F and D are detached, the execution is E,A,B
297 * if prog F, E and D are detached, the execution is C,A,B
298 *
299 * All eligible programs are executed regardless of return code from
300 * earlier programs.
301 */
302 #define BPF_F_ALLOW_OVERRIDE (1U << 0)
303 #define BPF_F_ALLOW_MULTI (1U << 1)
304 #define BPF_F_REPLACE (1U << 2)
305
306 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
307 * verifier will perform strict alignment checking as if the kernel
308 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
309 * and NET_IP_ALIGN defined to 2.
310 */
311 #define BPF_F_STRICT_ALIGNMENT (1U << 0)
312
313 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
314 * verifier will allow any alignment whatsoever. On platforms
315 * with strict alignment requirements for loads ands stores (such
316 * as sparc and mips) the verifier validates that all loads and
317 * stores provably follow this requirement. This flag turns that
318 * checking and enforcement off.
319 *
320 * It is mostly used for testing when we want to validate the
321 * context and memory access aspects of the verifier, but because
322 * of an unaligned access the alignment check would trigger before
323 * the one we are interested in.
324 */
325 #define BPF_F_ANY_ALIGNMENT (1U << 1)
326
327 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
328 * Verifier does sub-register def/use analysis and identifies instructions whose
329 * def only matters for low 32-bit, high 32-bit is never referenced later
330 * through implicit zero extension. Therefore verifier notifies JIT back-ends
331 * that it is safe to ignore clearing high 32-bit for these instructions. This
332 * saves some back-ends a lot of code-gen. However such optimization is not
333 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
334 * hence hasn't used verifier's analysis result. But, we really want to have a
335 * way to be able to verify the correctness of the described optimization on
336 * x86_64 on which testsuites are frequently exercised.
337 *
338 * So, this flag is introduced. Once it is set, verifier will randomize high
339 * 32-bit for those instructions who has been identified as safe to ignore them.
340 * Then, if verifier is not doing correct analysis, such randomization will
341 * regress tests to expose bugs.
342 */
343 #define BPF_F_TEST_RND_HI32 (1U << 2)
344
345 /* The verifier internal test flag. Behavior is undefined */
346 #define BPF_F_TEST_STATE_FREQ (1U << 3)
347
348 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
349 * two extensions:
350 *
351 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE
352 * insn[0].imm: map fd map fd
353 * insn[1].imm: 0 offset into value
354 * insn[0].off: 0 0
355 * insn[1].off: 0 0
356 * ldimm64 rewrite: address of map address of map[0]+offset
357 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE
358 */
359 #define BPF_PSEUDO_MAP_FD 1
360 #define BPF_PSEUDO_MAP_VALUE 2
361
362 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
363 * offset to another bpf function
364 */
365 #define BPF_PSEUDO_CALL 1
366
367 /* flags for BPF_MAP_UPDATE_ELEM command */
368 enum {
369 BPF_ANY = 0, /* create new element or update existing */
370 BPF_NOEXIST = 1, /* create new element if it didn't exist */
371 BPF_EXIST = 2, /* update existing element */
372 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */
373 };
374
375 /* flags for BPF_MAP_CREATE command */
376 enum {
377 BPF_F_NO_PREALLOC = (1U << 0),
378 /* Instead of having one common LRU list in the
379 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
380 * which can scale and perform better.
381 * Note, the LRU nodes (including free nodes) cannot be moved
382 * across different LRU lists.
383 */
384 BPF_F_NO_COMMON_LRU = (1U << 1),
385 /* Specify numa node during map creation */
386 BPF_F_NUMA_NODE = (1U << 2),
387
388 /* Flags for accessing BPF object from syscall side. */
389 BPF_F_RDONLY = (1U << 3),
390 BPF_F_WRONLY = (1U << 4),
391
392 /* Flag for stack_map, store build_id+offset instead of pointer */
393 BPF_F_STACK_BUILD_ID = (1U << 5),
394
395 /* Zero-initialize hash function seed. This should only be used for testing. */
396 BPF_F_ZERO_SEED = (1U << 6),
397
398 /* Flags for accessing BPF object from program side. */
399 BPF_F_RDONLY_PROG = (1U << 7),
400 BPF_F_WRONLY_PROG = (1U << 8),
401
402 /* Clone map from listener for newly accepted socket */
403 BPF_F_CLONE = (1U << 9),
404
405 /* Enable memory-mapping BPF map */
406 BPF_F_MMAPABLE = (1U << 10),
407 };
408
409 /* Flags for BPF_PROG_QUERY. */
410
411 /* Query effective (directly attached + inherited from ancestor cgroups)
412 * programs that will be executed for events within a cgroup.
413 * attach_flags with this flag are returned only for directly attached programs.
414 */
415 #define BPF_F_QUERY_EFFECTIVE (1U << 0)
416
417 /* type for BPF_ENABLE_STATS */
418 enum bpf_stats_type {
419 /* enabled run_time_ns and run_cnt */
420 BPF_STATS_RUN_TIME = 0,
421 };
422
423 enum bpf_stack_build_id_status {
424 /* user space need an empty entry to identify end of a trace */
425 BPF_STACK_BUILD_ID_EMPTY = 0,
426 /* with valid build_id and offset */
427 BPF_STACK_BUILD_ID_VALID = 1,
428 /* couldn't get build_id, fallback to ip */
429 BPF_STACK_BUILD_ID_IP = 2,
430 };
431
432 #define BPF_BUILD_ID_SIZE 20
433 struct bpf_stack_build_id {
434 __s32 status;
435 unsigned char build_id[BPF_BUILD_ID_SIZE];
436 union {
437 __u64 offset;
438 __u64 ip;
439 };
440 };
441
442 #define BPF_OBJ_NAME_LEN 16U
443
444 union bpf_attr {
445 struct { /* anonymous struct used by BPF_MAP_CREATE command */
446 __u32 map_type; /* one of enum bpf_map_type */
447 __u32 key_size; /* size of key in bytes */
448 __u32 value_size; /* size of value in bytes */
449 __u32 max_entries; /* max number of entries in a map */
450 __u32 map_flags; /* BPF_MAP_CREATE related
451 * flags defined above.
452 */
453 __u32 inner_map_fd; /* fd pointing to the inner map */
454 __u32 numa_node; /* numa node (effective only if
455 * BPF_F_NUMA_NODE is set).
456 */
457 char map_name[BPF_OBJ_NAME_LEN];
458 __u32 map_ifindex; /* ifindex of netdev to create on */
459 __u32 btf_fd; /* fd pointing to a BTF type data */
460 __u32 btf_key_type_id; /* BTF type_id of the key */
461 __u32 btf_value_type_id; /* BTF type_id of the value */
462 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
463 * struct stored as the
464 * map value
465 */
466 };
467
468 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
469 __u32 map_fd;
470 __aligned_u64 key;
471 union {
472 __aligned_u64 value;
473 __aligned_u64 next_key;
474 };
475 __u64 flags;
476 };
477
478 struct { /* struct used by BPF_MAP_*_BATCH commands */
479 __aligned_u64 in_batch; /* start batch,
480 * NULL to start from beginning
481 */
482 __aligned_u64 out_batch; /* output: next start batch */
483 __aligned_u64 keys;
484 __aligned_u64 values;
485 __u32 count; /* input/output:
486 * input: # of key/value
487 * elements
488 * output: # of filled elements
489 */
490 __u32 map_fd;
491 __u64 elem_flags;
492 __u64 flags;
493 } batch;
494
495 struct { /* anonymous struct used by BPF_PROG_LOAD command */
496 __u32 prog_type; /* one of enum bpf_prog_type */
497 __u32 insn_cnt;
498 __aligned_u64 insns;
499 __aligned_u64 license;
500 __u32 log_level; /* verbosity level of verifier */
501 __u32 log_size; /* size of user buffer */
502 __aligned_u64 log_buf; /* user supplied buffer */
503 __u32 kern_version; /* not used */
504 __u32 prog_flags;
505 char prog_name[BPF_OBJ_NAME_LEN];
506 __u32 prog_ifindex; /* ifindex of netdev to prep for */
507 /* For some prog types expected attach type must be known at
508 * load time to verify attach type specific parts of prog
509 * (context accesses, allowed helpers, etc).
510 */
511 __u32 expected_attach_type;
512 __u32 prog_btf_fd; /* fd pointing to BTF type data */
513 __u32 func_info_rec_size; /* userspace bpf_func_info size */
514 __aligned_u64 func_info; /* func info */
515 __u32 func_info_cnt; /* number of bpf_func_info records */
516 __u32 line_info_rec_size; /* userspace bpf_line_info size */
517 __aligned_u64 line_info; /* line info */
518 __u32 line_info_cnt; /* number of bpf_line_info records */
519 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */
520 __u32 attach_prog_fd; /* 0 to attach to vmlinux */
521 };
522
523 struct { /* anonymous struct used by BPF_OBJ_* commands */
524 __aligned_u64 pathname;
525 __u32 bpf_fd;
526 __u32 file_flags;
527 };
528
529 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
530 __u32 target_fd; /* container object to attach to */
531 __u32 attach_bpf_fd; /* eBPF program to attach */
532 __u32 attach_type;
533 __u32 attach_flags;
534 __u32 replace_bpf_fd; /* previously attached eBPF
535 * program to replace if
536 * BPF_F_REPLACE is used
537 */
538 };
539
540 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
541 __u32 prog_fd;
542 __u32 retval;
543 __u32 data_size_in; /* input: len of data_in */
544 __u32 data_size_out; /* input/output: len of data_out
545 * returns ENOSPC if data_out
546 * is too small.
547 */
548 __aligned_u64 data_in;
549 __aligned_u64 data_out;
550 __u32 repeat;
551 __u32 duration;
552 __u32 ctx_size_in; /* input: len of ctx_in */
553 __u32 ctx_size_out; /* input/output: len of ctx_out
554 * returns ENOSPC if ctx_out
555 * is too small.
556 */
557 __aligned_u64 ctx_in;
558 __aligned_u64 ctx_out;
559 } test;
560
561 struct { /* anonymous struct used by BPF_*_GET_*_ID */
562 union {
563 __u32 start_id;
564 __u32 prog_id;
565 __u32 map_id;
566 __u32 btf_id;
567 __u32 link_id;
568 };
569 __u32 next_id;
570 __u32 open_flags;
571 };
572
573 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
574 __u32 bpf_fd;
575 __u32 info_len;
576 __aligned_u64 info;
577 } info;
578
579 struct { /* anonymous struct used by BPF_PROG_QUERY command */
580 __u32 target_fd; /* container object to query */
581 __u32 attach_type;
582 __u32 query_flags;
583 __u32 attach_flags;
584 __aligned_u64 prog_ids;
585 __u32 prog_cnt;
586 } query;
587
588 struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
589 __u64 name;
590 __u32 prog_fd;
591 } raw_tracepoint;
592
593 struct { /* anonymous struct for BPF_BTF_LOAD */
594 __aligned_u64 btf;
595 __aligned_u64 btf_log_buf;
596 __u32 btf_size;
597 __u32 btf_log_size;
598 __u32 btf_log_level;
599 };
600
601 struct {
602 __u32 pid; /* input: pid */
603 __u32 fd; /* input: fd */
604 __u32 flags; /* input: flags */
605 __u32 buf_len; /* input/output: buf len */
606 __aligned_u64 buf; /* input/output:
607 * tp_name for tracepoint
608 * symbol for kprobe
609 * filename for uprobe
610 */
611 __u32 prog_id; /* output: prod_id */
612 __u32 fd_type; /* output: BPF_FD_TYPE_* */
613 __u64 probe_offset; /* output: probe_offset */
614 __u64 probe_addr; /* output: probe_addr */
615 } task_fd_query;
616
617 struct { /* struct used by BPF_LINK_CREATE command */
618 __u32 prog_fd; /* eBPF program to attach */
619 union {
620 __u32 target_fd; /* object to attach to */
621 __u32 target_ifindex; /* target ifindex */
622 };
623 __u32 attach_type; /* attach type */
624 __u32 flags; /* extra flags */
625 __aligned_u64 iter_info; /* extra bpf_iter_link_info */
626 __u32 iter_info_len; /* iter_info length */
627 } link_create;
628
629 struct { /* struct used by BPF_LINK_UPDATE command */
630 __u32 link_fd; /* link fd */
631 /* new program fd to update link with */
632 __u32 new_prog_fd;
633 __u32 flags; /* extra flags */
634 /* expected link's program fd; is specified only if
635 * BPF_F_REPLACE flag is set in flags */
636 __u32 old_prog_fd;
637 } link_update;
638
639 struct {
640 __u32 link_fd;
641 } link_detach;
642
643 struct { /* struct used by BPF_ENABLE_STATS command */
644 __u32 type;
645 } enable_stats;
646
647 struct { /* struct used by BPF_ITER_CREATE command */
648 __u32 link_fd;
649 __u32 flags;
650 } iter_create;
651
652 } __attribute__((aligned(8)));
653
654 /* The description below is an attempt at providing documentation to eBPF
655 * developers about the multiple available eBPF helper functions. It can be
656 * parsed and used to produce a manual page. The workflow is the following,
657 * and requires the rst2man utility:
658 *
659 * $ ./scripts/bpf_helpers_doc.py \
660 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
661 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
662 * $ man /tmp/bpf-helpers.7
663 *
664 * Note that in order to produce this external documentation, some RST
665 * formatting is used in the descriptions to get "bold" and "italics" in
666 * manual pages. Also note that the few trailing white spaces are
667 * intentional, removing them would break paragraphs for rst2man.
668 *
669 * Start of BPF helper function descriptions:
670 *
671 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
672 * Description
673 * Perform a lookup in *map* for an entry associated to *key*.
674 * Return
675 * Map value associated to *key*, or **NULL** if no entry was
676 * found.
677 *
678 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
679 * Description
680 * Add or update the value of the entry associated to *key* in
681 * *map* with *value*. *flags* is one of:
682 *
683 * **BPF_NOEXIST**
684 * The entry for *key* must not exist in the map.
685 * **BPF_EXIST**
686 * The entry for *key* must already exist in the map.
687 * **BPF_ANY**
688 * No condition on the existence of the entry for *key*.
689 *
690 * Flag value **BPF_NOEXIST** cannot be used for maps of types
691 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
692 * elements always exist), the helper would return an error.
693 * Return
694 * 0 on success, or a negative error in case of failure.
695 *
696 * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
697 * Description
698 * Delete entry with *key* from *map*.
699 * Return
700 * 0 on success, or a negative error in case of failure.
701 *
702 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
703 * Description
704 * For tracing programs, safely attempt to read *size* bytes from
705 * kernel space address *unsafe_ptr* and store the data in *dst*.
706 *
707 * Generally, use **bpf_probe_read_user**\ () or
708 * **bpf_probe_read_kernel**\ () instead.
709 * Return
710 * 0 on success, or a negative error in case of failure.
711 *
712 * u64 bpf_ktime_get_ns(void)
713 * Description
714 * Return the time elapsed since system boot, in nanoseconds.
715 * Does not include time the system was suspended.
716 * See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
717 * Return
718 * Current *ktime*.
719 *
720 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
721 * Description
722 * This helper is a "printk()-like" facility for debugging. It
723 * prints a message defined by format *fmt* (of size *fmt_size*)
724 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
725 * available. It can take up to three additional **u64**
726 * arguments (as an eBPF helpers, the total number of arguments is
727 * limited to five).
728 *
729 * Each time the helper is called, it appends a line to the trace.
730 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
731 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
732 * The format of the trace is customizable, and the exact output
733 * one will get depends on the options set in
734 * *\/sys/kernel/debug/tracing/trace_options* (see also the
735 * *README* file under the same directory). However, it usually
736 * defaults to something like:
737 *
738 * ::
739 *
740 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
741 *
742 * In the above:
743 *
744 * * ``telnet`` is the name of the current task.
745 * * ``470`` is the PID of the current task.
746 * * ``001`` is the CPU number on which the task is
747 * running.
748 * * In ``.N..``, each character refers to a set of
749 * options (whether irqs are enabled, scheduling
750 * options, whether hard/softirqs are running, level of
751 * preempt_disabled respectively). **N** means that
752 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
753 * are set.
754 * * ``419421.045894`` is a timestamp.
755 * * ``0x00000001`` is a fake value used by BPF for the
756 * instruction pointer register.
757 * * ``<formatted msg>`` is the message formatted with
758 * *fmt*.
759 *
760 * The conversion specifiers supported by *fmt* are similar, but
761 * more limited than for printk(). They are **%d**, **%i**,
762 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
763 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
764 * of field, padding with zeroes, etc.) is available, and the
765 * helper will return **-EINVAL** (but print nothing) if it
766 * encounters an unknown specifier.
767 *
768 * Also, note that **bpf_trace_printk**\ () is slow, and should
769 * only be used for debugging purposes. For this reason, a notice
770 * block (spanning several lines) is printed to kernel logs and
771 * states that the helper should not be used "for production use"
772 * the first time this helper is used (or more precisely, when
773 * **trace_printk**\ () buffers are allocated). For passing values
774 * to user space, perf events should be preferred.
775 * Return
776 * The number of bytes written to the buffer, or a negative error
777 * in case of failure.
778 *
779 * u32 bpf_get_prandom_u32(void)
780 * Description
781 * Get a pseudo-random number.
782 *
783 * From a security point of view, this helper uses its own
784 * pseudo-random internal state, and cannot be used to infer the
785 * seed of other random functions in the kernel. However, it is
786 * essential to note that the generator used by the helper is not
787 * cryptographically secure.
788 * Return
789 * A random 32-bit unsigned value.
790 *
791 * u32 bpf_get_smp_processor_id(void)
792 * Description
793 * Get the SMP (symmetric multiprocessing) processor id. Note that
794 * all programs run with preemption disabled, which means that the
795 * SMP processor id is stable during all the execution of the
796 * program.
797 * Return
798 * The SMP id of the processor running the program.
799 *
800 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
801 * Description
802 * Store *len* bytes from address *from* into the packet
803 * associated to *skb*, at *offset*. *flags* are a combination of
804 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
805 * checksum for the packet after storing the bytes) and
806 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
807 * **->swhash** and *skb*\ **->l4hash** to 0).
808 *
809 * A call to this helper is susceptible to change the underlying
810 * packet buffer. Therefore, at load time, all checks on pointers
811 * previously done by the verifier are invalidated and must be
812 * performed again, if the helper is used in combination with
813 * direct packet access.
814 * Return
815 * 0 on success, or a negative error in case of failure.
816 *
817 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
818 * Description
819 * Recompute the layer 3 (e.g. IP) checksum for the packet
820 * associated to *skb*. Computation is incremental, so the helper
821 * must know the former value of the header field that was
822 * modified (*from*), the new value of this field (*to*), and the
823 * number of bytes (2 or 4) for this field, stored in *size*.
824 * Alternatively, it is possible to store the difference between
825 * the previous and the new values of the header field in *to*, by
826 * setting *from* and *size* to 0. For both methods, *offset*
827 * indicates the location of the IP checksum within the packet.
828 *
829 * This helper works in combination with **bpf_csum_diff**\ (),
830 * which does not update the checksum in-place, but offers more
831 * flexibility and can handle sizes larger than 2 or 4 for the
832 * checksum to update.
833 *
834 * A call to this helper is susceptible to change the underlying
835 * packet buffer. Therefore, at load time, all checks on pointers
836 * previously done by the verifier are invalidated and must be
837 * performed again, if the helper is used in combination with
838 * direct packet access.
839 * Return
840 * 0 on success, or a negative error in case of failure.
841 *
842 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
843 * Description
844 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
845 * packet associated to *skb*. Computation is incremental, so the
846 * helper must know the former value of the header field that was
847 * modified (*from*), the new value of this field (*to*), and the
848 * number of bytes (2 or 4) for this field, stored on the lowest
849 * four bits of *flags*. Alternatively, it is possible to store
850 * the difference between the previous and the new values of the
851 * header field in *to*, by setting *from* and the four lowest
852 * bits of *flags* to 0. For both methods, *offset* indicates the
853 * location of the IP checksum within the packet. In addition to
854 * the size of the field, *flags* can be added (bitwise OR) actual
855 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
856 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
857 * for updates resulting in a null checksum the value is set to
858 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
859 * the checksum is to be computed against a pseudo-header.
860 *
861 * This helper works in combination with **bpf_csum_diff**\ (),
862 * which does not update the checksum in-place, but offers more
863 * flexibility and can handle sizes larger than 2 or 4 for the
864 * checksum to update.
865 *
866 * A call to this helper is susceptible to change the underlying
867 * packet buffer. Therefore, at load time, all checks on pointers
868 * previously done by the verifier are invalidated and must be
869 * performed again, if the helper is used in combination with
870 * direct packet access.
871 * Return
872 * 0 on success, or a negative error in case of failure.
873 *
874 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
875 * Description
876 * This special helper is used to trigger a "tail call", or in
877 * other words, to jump into another eBPF program. The same stack
878 * frame is used (but values on stack and in registers for the
879 * caller are not accessible to the callee). This mechanism allows
880 * for program chaining, either for raising the maximum number of
881 * available eBPF instructions, or to execute given programs in
882 * conditional blocks. For security reasons, there is an upper
883 * limit to the number of successive tail calls that can be
884 * performed.
885 *
886 * Upon call of this helper, the program attempts to jump into a
887 * program referenced at index *index* in *prog_array_map*, a
888 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
889 * *ctx*, a pointer to the context.
890 *
891 * If the call succeeds, the kernel immediately runs the first
892 * instruction of the new program. This is not a function call,
893 * and it never returns to the previous program. If the call
894 * fails, then the helper has no effect, and the caller continues
895 * to run its subsequent instructions. A call can fail if the
896 * destination program for the jump does not exist (i.e. *index*
897 * is superior to the number of entries in *prog_array_map*), or
898 * if the maximum number of tail calls has been reached for this
899 * chain of programs. This limit is defined in the kernel by the
900 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
901 * which is currently set to 32.
902 * Return
903 * 0 on success, or a negative error in case of failure.
904 *
905 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
906 * Description
907 * Clone and redirect the packet associated to *skb* to another
908 * net device of index *ifindex*. Both ingress and egress
909 * interfaces can be used for redirection. The **BPF_F_INGRESS**
910 * value in *flags* is used to make the distinction (ingress path
911 * is selected if the flag is present, egress path otherwise).
912 * This is the only flag supported for now.
913 *
914 * In comparison with **bpf_redirect**\ () helper,
915 * **bpf_clone_redirect**\ () has the associated cost of
916 * duplicating the packet buffer, but this can be executed out of
917 * the eBPF program. Conversely, **bpf_redirect**\ () is more
918 * efficient, but it is handled through an action code where the
919 * redirection happens only after the eBPF program has returned.
920 *
921 * A call to this helper is susceptible to change the underlying
922 * packet buffer. Therefore, at load time, all checks on pointers
923 * previously done by the verifier are invalidated and must be
924 * performed again, if the helper is used in combination with
925 * direct packet access.
926 * Return
927 * 0 on success, or a negative error in case of failure.
928 *
929 * u64 bpf_get_current_pid_tgid(void)
930 * Return
931 * A 64-bit integer containing the current tgid and pid, and
932 * created as such:
933 * *current_task*\ **->tgid << 32 \|**
934 * *current_task*\ **->pid**.
935 *
936 * u64 bpf_get_current_uid_gid(void)
937 * Return
938 * A 64-bit integer containing the current GID and UID, and
939 * created as such: *current_gid* **<< 32 \|** *current_uid*.
940 *
941 * long bpf_get_current_comm(void *buf, u32 size_of_buf)
942 * Description
943 * Copy the **comm** attribute of the current task into *buf* of
944 * *size_of_buf*. The **comm** attribute contains the name of
945 * the executable (excluding the path) for the current task. The
946 * *size_of_buf* must be strictly positive. On success, the
947 * helper makes sure that the *buf* is NUL-terminated. On failure,
948 * it is filled with zeroes.
949 * Return
950 * 0 on success, or a negative error in case of failure.
951 *
952 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
953 * Description
954 * Retrieve the classid for the current task, i.e. for the net_cls
955 * cgroup to which *skb* belongs.
956 *
957 * This helper can be used on TC egress path, but not on ingress.
958 *
959 * The net_cls cgroup provides an interface to tag network packets
960 * based on a user-provided identifier for all traffic coming from
961 * the tasks belonging to the related cgroup. See also the related
962 * kernel documentation, available from the Linux sources in file
963 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
964 *
965 * The Linux kernel has two versions for cgroups: there are
966 * cgroups v1 and cgroups v2. Both are available to users, who can
967 * use a mixture of them, but note that the net_cls cgroup is for
968 * cgroup v1 only. This makes it incompatible with BPF programs
969 * run on cgroups, which is a cgroup-v2-only feature (a socket can
970 * only hold data for one version of cgroups at a time).
971 *
972 * This helper is only available is the kernel was compiled with
973 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
974 * "**y**" or to "**m**".
975 * Return
976 * The classid, or 0 for the default unconfigured classid.
977 *
978 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
979 * Description
980 * Push a *vlan_tci* (VLAN tag control information) of protocol
981 * *vlan_proto* to the packet associated to *skb*, then update
982 * the checksum. Note that if *vlan_proto* is different from
983 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
984 * be **ETH_P_8021Q**.
985 *
986 * A call to this helper is susceptible to change the underlying
987 * packet buffer. Therefore, at load time, all checks on pointers
988 * previously done by the verifier are invalidated and must be
989 * performed again, if the helper is used in combination with
990 * direct packet access.
991 * Return
992 * 0 on success, or a negative error in case of failure.
993 *
994 * long bpf_skb_vlan_pop(struct sk_buff *skb)
995 * Description
996 * Pop a VLAN header from the packet associated to *skb*.
997 *
998 * A call to this helper is susceptible to change the underlying
999 * packet buffer. Therefore, at load time, all checks on pointers
1000 * previously done by the verifier are invalidated and must be
1001 * performed again, if the helper is used in combination with
1002 * direct packet access.
1003 * Return
1004 * 0 on success, or a negative error in case of failure.
1005 *
1006 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1007 * Description
1008 * Get tunnel metadata. This helper takes a pointer *key* to an
1009 * empty **struct bpf_tunnel_key** of **size**, that will be
1010 * filled with tunnel metadata for the packet associated to *skb*.
1011 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
1012 * indicates that the tunnel is based on IPv6 protocol instead of
1013 * IPv4.
1014 *
1015 * The **struct bpf_tunnel_key** is an object that generalizes the
1016 * principal parameters used by various tunneling protocols into a
1017 * single struct. This way, it can be used to easily make a
1018 * decision based on the contents of the encapsulation header,
1019 * "summarized" in this struct. In particular, it holds the IP
1020 * address of the remote end (IPv4 or IPv6, depending on the case)
1021 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
1022 * this struct exposes the *key*\ **->tunnel_id**, which is
1023 * generally mapped to a VNI (Virtual Network Identifier), making
1024 * it programmable together with the **bpf_skb_set_tunnel_key**\
1025 * () helper.
1026 *
1027 * Let's imagine that the following code is part of a program
1028 * attached to the TC ingress interface, on one end of a GRE
1029 * tunnel, and is supposed to filter out all messages coming from
1030 * remote ends with IPv4 address other than 10.0.0.1:
1031 *
1032 * ::
1033 *
1034 * int ret;
1035 * struct bpf_tunnel_key key = {};
1036 *
1037 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
1038 * if (ret < 0)
1039 * return TC_ACT_SHOT; // drop packet
1040 *
1041 * if (key.remote_ipv4 != 0x0a000001)
1042 * return TC_ACT_SHOT; // drop packet
1043 *
1044 * return TC_ACT_OK; // accept packet
1045 *
1046 * This interface can also be used with all encapsulation devices
1047 * that can operate in "collect metadata" mode: instead of having
1048 * one network device per specific configuration, the "collect
1049 * metadata" mode only requires a single device where the
1050 * configuration can be extracted from this helper.
1051 *
1052 * This can be used together with various tunnels such as VXLan,
1053 * Geneve, GRE or IP in IP (IPIP).
1054 * Return
1055 * 0 on success, or a negative error in case of failure.
1056 *
1057 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1058 * Description
1059 * Populate tunnel metadata for packet associated to *skb.* The
1060 * tunnel metadata is set to the contents of *key*, of *size*. The
1061 * *flags* can be set to a combination of the following values:
1062 *
1063 * **BPF_F_TUNINFO_IPV6**
1064 * Indicate that the tunnel is based on IPv6 protocol
1065 * instead of IPv4.
1066 * **BPF_F_ZERO_CSUM_TX**
1067 * For IPv4 packets, add a flag to tunnel metadata
1068 * indicating that checksum computation should be skipped
1069 * and checksum set to zeroes.
1070 * **BPF_F_DONT_FRAGMENT**
1071 * Add a flag to tunnel metadata indicating that the
1072 * packet should not be fragmented.
1073 * **BPF_F_SEQ_NUMBER**
1074 * Add a flag to tunnel metadata indicating that a
1075 * sequence number should be added to tunnel header before
1076 * sending the packet. This flag was added for GRE
1077 * encapsulation, but might be used with other protocols
1078 * as well in the future.
1079 *
1080 * Here is a typical usage on the transmit path:
1081 *
1082 * ::
1083 *
1084 * struct bpf_tunnel_key key;
1085 * populate key ...
1086 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
1087 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
1088 *
1089 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
1090 * helper for additional information.
1091 * Return
1092 * 0 on success, or a negative error in case of failure.
1093 *
1094 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1095 * Description
1096 * Read the value of a perf event counter. This helper relies on a
1097 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1098 * the perf event counter is selected when *map* is updated with
1099 * perf event file descriptors. The *map* is an array whose size
1100 * is the number of available CPUs, and each cell contains a value
1101 * relative to one CPU. The value to retrieve is indicated by
1102 * *flags*, that contains the index of the CPU to look up, masked
1103 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1104 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1105 * current CPU should be retrieved.
1106 *
1107 * Note that before Linux 4.13, only hardware perf event can be
1108 * retrieved.
1109 *
1110 * Also, be aware that the newer helper
1111 * **bpf_perf_event_read_value**\ () is recommended over
1112 * **bpf_perf_event_read**\ () in general. The latter has some ABI
1113 * quirks where error and counter value are used as a return code
1114 * (which is wrong to do since ranges may overlap). This issue is
1115 * fixed with **bpf_perf_event_read_value**\ (), which at the same
1116 * time provides more features over the **bpf_perf_event_read**\
1117 * () interface. Please refer to the description of
1118 * **bpf_perf_event_read_value**\ () for details.
1119 * Return
1120 * The value of the perf event counter read from the map, or a
1121 * negative error code in case of failure.
1122 *
1123 * long bpf_redirect(u32 ifindex, u64 flags)
1124 * Description
1125 * Redirect the packet to another net device of index *ifindex*.
1126 * This helper is somewhat similar to **bpf_clone_redirect**\
1127 * (), except that the packet is not cloned, which provides
1128 * increased performance.
1129 *
1130 * Except for XDP, both ingress and egress interfaces can be used
1131 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
1132 * to make the distinction (ingress path is selected if the flag
1133 * is present, egress path otherwise). Currently, XDP only
1134 * supports redirection to the egress interface, and accepts no
1135 * flag at all.
1136 *
1137 * The same effect can also be attained with the more generic
1138 * **bpf_redirect_map**\ (), which uses a BPF map to store the
1139 * redirect target instead of providing it directly to the helper.
1140 * Return
1141 * For XDP, the helper returns **XDP_REDIRECT** on success or
1142 * **XDP_ABORTED** on error. For other program types, the values
1143 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1144 * error.
1145 *
1146 * u32 bpf_get_route_realm(struct sk_buff *skb)
1147 * Description
1148 * Retrieve the realm or the route, that is to say the
1149 * **tclassid** field of the destination for the *skb*. The
1150 * identifier retrieved is a user-provided tag, similar to the
1151 * one used with the net_cls cgroup (see description for
1152 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
1153 * held by a route (a destination entry), not by a task.
1154 *
1155 * Retrieving this identifier works with the clsact TC egress hook
1156 * (see also **tc-bpf(8)**), or alternatively on conventional
1157 * classful egress qdiscs, but not on TC ingress path. In case of
1158 * clsact TC egress hook, this has the advantage that, internally,
1159 * the destination entry has not been dropped yet in the transmit
1160 * path. Therefore, the destination entry does not need to be
1161 * artificially held via **netif_keep_dst**\ () for a classful
1162 * qdisc until the *skb* is freed.
1163 *
1164 * This helper is available only if the kernel was compiled with
1165 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
1166 * Return
1167 * The realm of the route for the packet associated to *skb*, or 0
1168 * if none was found.
1169 *
1170 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
1171 * Description
1172 * Write raw *data* blob into a special BPF perf event held by
1173 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
1174 * event must have the following attributes: **PERF_SAMPLE_RAW**
1175 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1176 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1177 *
1178 * The *flags* are used to indicate the index in *map* for which
1179 * the value must be put, masked with **BPF_F_INDEX_MASK**.
1180 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1181 * to indicate that the index of the current CPU core should be
1182 * used.
1183 *
1184 * The value to write, of *size*, is passed through eBPF stack and
1185 * pointed by *data*.
1186 *
1187 * The context of the program *ctx* needs also be passed to the
1188 * helper.
1189 *
1190 * On user space, a program willing to read the values needs to
1191 * call **perf_event_open**\ () on the perf event (either for
1192 * one or for all CPUs) and to store the file descriptor into the
1193 * *map*. This must be done before the eBPF program can send data
1194 * into it. An example is available in file
1195 * *samples/bpf/trace_output_user.c* in the Linux kernel source
1196 * tree (the eBPF program counterpart is in
1197 * *samples/bpf/trace_output_kern.c*).
1198 *
1199 * **bpf_perf_event_output**\ () achieves better performance
1200 * than **bpf_trace_printk**\ () for sharing data with user
1201 * space, and is much better suitable for streaming data from eBPF
1202 * programs.
1203 *
1204 * Note that this helper is not restricted to tracing use cases
1205 * and can be used with programs attached to TC or XDP as well,
1206 * where it allows for passing data to user space listeners. Data
1207 * can be:
1208 *
1209 * * Only custom structs,
1210 * * Only the packet payload, or
1211 * * A combination of both.
1212 * Return
1213 * 0 on success, or a negative error in case of failure.
1214 *
1215 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
1216 * Description
1217 * This helper was provided as an easy way to load data from a
1218 * packet. It can be used to load *len* bytes from *offset* from
1219 * the packet associated to *skb*, into the buffer pointed by
1220 * *to*.
1221 *
1222 * Since Linux 4.7, usage of this helper has mostly been replaced
1223 * by "direct packet access", enabling packet data to be
1224 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1225 * pointing respectively to the first byte of packet data and to
1226 * the byte after the last byte of packet data. However, it
1227 * remains useful if one wishes to read large quantities of data
1228 * at once from a packet into the eBPF stack.
1229 * Return
1230 * 0 on success, or a negative error in case of failure.
1231 *
1232 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
1233 * Description
1234 * Walk a user or a kernel stack and return its id. To achieve
1235 * this, the helper needs *ctx*, which is a pointer to the context
1236 * on which the tracing program is executed, and a pointer to a
1237 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1238 *
1239 * The last argument, *flags*, holds the number of stack frames to
1240 * skip (from 0 to 255), masked with
1241 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1242 * a combination of the following flags:
1243 *
1244 * **BPF_F_USER_STACK**
1245 * Collect a user space stack instead of a kernel stack.
1246 * **BPF_F_FAST_STACK_CMP**
1247 * Compare stacks by hash only.
1248 * **BPF_F_REUSE_STACKID**
1249 * If two different stacks hash into the same *stackid*,
1250 * discard the old one.
1251 *
1252 * The stack id retrieved is a 32 bit long integer handle which
1253 * can be further combined with other data (including other stack
1254 * ids) and used as a key into maps. This can be useful for
1255 * generating a variety of graphs (such as flame graphs or off-cpu
1256 * graphs).
1257 *
1258 * For walking a stack, this helper is an improvement over
1259 * **bpf_probe_read**\ (), which can be used with unrolled loops
1260 * but is not efficient and consumes a lot of eBPF instructions.
1261 * Instead, **bpf_get_stackid**\ () can collect up to
1262 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1263 * this limit can be controlled with the **sysctl** program, and
1264 * that it should be manually increased in order to profile long
1265 * user stacks (such as stacks for Java programs). To do so, use:
1266 *
1267 * ::
1268 *
1269 * # sysctl kernel.perf_event_max_stack=<new value>
1270 * Return
1271 * The positive or null stack id on success, or a negative error
1272 * in case of failure.
1273 *
1274 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1275 * Description
1276 * Compute a checksum difference, from the raw buffer pointed by
1277 * *from*, of length *from_size* (that must be a multiple of 4),
1278 * towards the raw buffer pointed by *to*, of size *to_size*
1279 * (same remark). An optional *seed* can be added to the value
1280 * (this can be cascaded, the seed may come from a previous call
1281 * to the helper).
1282 *
1283 * This is flexible enough to be used in several ways:
1284 *
1285 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
1286 * checksum, it can be used when pushing new data.
1287 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
1288 * checksum, it can be used when removing data from a packet.
1289 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1290 * can be used to compute a diff. Note that *from_size* and
1291 * *to_size* do not need to be equal.
1292 *
1293 * This helper can be used in combination with
1294 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1295 * which one can feed in the difference computed with
1296 * **bpf_csum_diff**\ ().
1297 * Return
1298 * The checksum result, or a negative error code in case of
1299 * failure.
1300 *
1301 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1302 * Description
1303 * Retrieve tunnel options metadata for the packet associated to
1304 * *skb*, and store the raw tunnel option data to the buffer *opt*
1305 * of *size*.
1306 *
1307 * This helper can be used with encapsulation devices that can
1308 * operate in "collect metadata" mode (please refer to the related
1309 * note in the description of **bpf_skb_get_tunnel_key**\ () for
1310 * more details). A particular example where this can be used is
1311 * in combination with the Geneve encapsulation protocol, where it
1312 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1313 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
1314 * the eBPF program. This allows for full customization of these
1315 * headers.
1316 * Return
1317 * The size of the option data retrieved.
1318 *
1319 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1320 * Description
1321 * Set tunnel options metadata for the packet associated to *skb*
1322 * to the option data contained in the raw buffer *opt* of *size*.
1323 *
1324 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1325 * helper for additional information.
1326 * Return
1327 * 0 on success, or a negative error in case of failure.
1328 *
1329 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1330 * Description
1331 * Change the protocol of the *skb* to *proto*. Currently
1332 * supported are transition from IPv4 to IPv6, and from IPv6 to
1333 * IPv4. The helper takes care of the groundwork for the
1334 * transition, including resizing the socket buffer. The eBPF
1335 * program is expected to fill the new headers, if any, via
1336 * **skb_store_bytes**\ () and to recompute the checksums with
1337 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1338 * (). The main case for this helper is to perform NAT64
1339 * operations out of an eBPF program.
1340 *
1341 * Internally, the GSO type is marked as dodgy so that headers are
1342 * checked and segments are recalculated by the GSO/GRO engine.
1343 * The size for GSO target is adapted as well.
1344 *
1345 * All values for *flags* are reserved for future usage, and must
1346 * be left at zero.
1347 *
1348 * A call to this helper is susceptible to change the underlying
1349 * packet buffer. Therefore, at load time, all checks on pointers
1350 * previously done by the verifier are invalidated and must be
1351 * performed again, if the helper is used in combination with
1352 * direct packet access.
1353 * Return
1354 * 0 on success, or a negative error in case of failure.
1355 *
1356 * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
1357 * Description
1358 * Change the packet type for the packet associated to *skb*. This
1359 * comes down to setting *skb*\ **->pkt_type** to *type*, except
1360 * the eBPF program does not have a write access to *skb*\
1361 * **->pkt_type** beside this helper. Using a helper here allows
1362 * for graceful handling of errors.
1363 *
1364 * The major use case is to change incoming *skb*s to
1365 * **PACKET_HOST** in a programmatic way instead of having to
1366 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1367 * example.
1368 *
1369 * Note that *type* only allows certain values. At this time, they
1370 * are:
1371 *
1372 * **PACKET_HOST**
1373 * Packet is for us.
1374 * **PACKET_BROADCAST**
1375 * Send packet to all.
1376 * **PACKET_MULTICAST**
1377 * Send packet to group.
1378 * **PACKET_OTHERHOST**
1379 * Send packet to someone else.
1380 * Return
1381 * 0 on success, or a negative error in case of failure.
1382 *
1383 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1384 * Description
1385 * Check whether *skb* is a descendant of the cgroup2 held by
1386 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1387 * Return
1388 * The return value depends on the result of the test, and can be:
1389 *
1390 * * 0, if the *skb* failed the cgroup2 descendant test.
1391 * * 1, if the *skb* succeeded the cgroup2 descendant test.
1392 * * A negative error code, if an error occurred.
1393 *
1394 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1395 * Description
1396 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1397 * not set, in particular if the hash was cleared due to mangling,
1398 * recompute this hash. Later accesses to the hash can be done
1399 * directly with *skb*\ **->hash**.
1400 *
1401 * Calling **bpf_set_hash_invalid**\ (), changing a packet
1402 * prototype with **bpf_skb_change_proto**\ (), or calling
1403 * **bpf_skb_store_bytes**\ () with the
1404 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1405 * the hash and to trigger a new computation for the next call to
1406 * **bpf_get_hash_recalc**\ ().
1407 * Return
1408 * The 32-bit hash.
1409 *
1410 * u64 bpf_get_current_task(void)
1411 * Return
1412 * A pointer to the current task struct.
1413 *
1414 * long bpf_probe_write_user(void *dst, const void *src, u32 len)
1415 * Description
1416 * Attempt in a safe way to write *len* bytes from the buffer
1417 * *src* to *dst* in memory. It only works for threads that are in
1418 * user context, and *dst* must be a valid user space address.
1419 *
1420 * This helper should not be used to implement any kind of
1421 * security mechanism because of TOC-TOU attacks, but rather to
1422 * debug, divert, and manipulate execution of semi-cooperative
1423 * processes.
1424 *
1425 * Keep in mind that this feature is meant for experiments, and it
1426 * has a risk of crashing the system and running programs.
1427 * Therefore, when an eBPF program using this helper is attached,
1428 * a warning including PID and process name is printed to kernel
1429 * logs.
1430 * Return
1431 * 0 on success, or a negative error in case of failure.
1432 *
1433 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1434 * Description
1435 * Check whether the probe is being run is the context of a given
1436 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1437 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1438 * Return
1439 * The return value depends on the result of the test, and can be:
1440 *
1441 * * 0, if the *skb* task belongs to the cgroup2.
1442 * * 1, if the *skb* task does not belong to the cgroup2.
1443 * * A negative error code, if an error occurred.
1444 *
1445 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1446 * Description
1447 * Resize (trim or grow) the packet associated to *skb* to the
1448 * new *len*. The *flags* are reserved for future usage, and must
1449 * be left at zero.
1450 *
1451 * The basic idea is that the helper performs the needed work to
1452 * change the size of the packet, then the eBPF program rewrites
1453 * the rest via helpers like **bpf_skb_store_bytes**\ (),
1454 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1455 * and others. This helper is a slow path utility intended for
1456 * replies with control messages. And because it is targeted for
1457 * slow path, the helper itself can afford to be slow: it
1458 * implicitly linearizes, unclones and drops offloads from the
1459 * *skb*.
1460 *
1461 * A call to this helper is susceptible to change the underlying
1462 * packet buffer. Therefore, at load time, all checks on pointers
1463 * previously done by the verifier are invalidated and must be
1464 * performed again, if the helper is used in combination with
1465 * direct packet access.
1466 * Return
1467 * 0 on success, or a negative error in case of failure.
1468 *
1469 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1470 * Description
1471 * Pull in non-linear data in case the *skb* is non-linear and not
1472 * all of *len* are part of the linear section. Make *len* bytes
1473 * from *skb* readable and writable. If a zero value is passed for
1474 * *len*, then the whole length of the *skb* is pulled.
1475 *
1476 * This helper is only needed for reading and writing with direct
1477 * packet access.
1478 *
1479 * For direct packet access, testing that offsets to access
1480 * are within packet boundaries (test on *skb*\ **->data_end**) is
1481 * susceptible to fail if offsets are invalid, or if the requested
1482 * data is in non-linear parts of the *skb*. On failure the
1483 * program can just bail out, or in the case of a non-linear
1484 * buffer, use a helper to make the data available. The
1485 * **bpf_skb_load_bytes**\ () helper is a first solution to access
1486 * the data. Another one consists in using **bpf_skb_pull_data**
1487 * to pull in once the non-linear parts, then retesting and
1488 * eventually access the data.
1489 *
1490 * At the same time, this also makes sure the *skb* is uncloned,
1491 * which is a necessary condition for direct write. As this needs
1492 * to be an invariant for the write part only, the verifier
1493 * detects writes and adds a prologue that is calling
1494 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
1495 * the very beginning in case it is indeed cloned.
1496 *
1497 * A call to this helper is susceptible to change the underlying
1498 * packet buffer. Therefore, at load time, all checks on pointers
1499 * previously done by the verifier are invalidated and must be
1500 * performed again, if the helper is used in combination with
1501 * direct packet access.
1502 * Return
1503 * 0 on success, or a negative error in case of failure.
1504 *
1505 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1506 * Description
1507 * Add the checksum *csum* into *skb*\ **->csum** in case the
1508 * driver has supplied a checksum for the entire packet into that
1509 * field. Return an error otherwise. This helper is intended to be
1510 * used in combination with **bpf_csum_diff**\ (), in particular
1511 * when the checksum needs to be updated after data has been
1512 * written into the packet through direct packet access.
1513 * Return
1514 * The checksum on success, or a negative error code in case of
1515 * failure.
1516 *
1517 * void bpf_set_hash_invalid(struct sk_buff *skb)
1518 * Description
1519 * Invalidate the current *skb*\ **->hash**. It can be used after
1520 * mangling on headers through direct packet access, in order to
1521 * indicate that the hash is outdated and to trigger a
1522 * recalculation the next time the kernel tries to access this
1523 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
1524 *
1525 * long bpf_get_numa_node_id(void)
1526 * Description
1527 * Return the id of the current NUMA node. The primary use case
1528 * for this helper is the selection of sockets for the local NUMA
1529 * node, when the program is attached to sockets using the
1530 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1531 * but the helper is also available to other eBPF program types,
1532 * similarly to **bpf_get_smp_processor_id**\ ().
1533 * Return
1534 * The id of current NUMA node.
1535 *
1536 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1537 * Description
1538 * Grows headroom of packet associated to *skb* and adjusts the
1539 * offset of the MAC header accordingly, adding *len* bytes of
1540 * space. It automatically extends and reallocates memory as
1541 * required.
1542 *
1543 * This helper can be used on a layer 3 *skb* to push a MAC header
1544 * for redirection into a layer 2 device.
1545 *
1546 * All values for *flags* are reserved for future usage, and must
1547 * be left at zero.
1548 *
1549 * A call to this helper is susceptible to change the underlying
1550 * packet buffer. Therefore, at load time, all checks on pointers
1551 * previously done by the verifier are invalidated and must be
1552 * performed again, if the helper is used in combination with
1553 * direct packet access.
1554 * Return
1555 * 0 on success, or a negative error in case of failure.
1556 *
1557 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1558 * Description
1559 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1560 * it is possible to use a negative value for *delta*. This helper
1561 * can be used to prepare the packet for pushing or popping
1562 * headers.
1563 *
1564 * A call to this helper is susceptible to change the underlying
1565 * packet buffer. Therefore, at load time, all checks on pointers
1566 * previously done by the verifier are invalidated and must be
1567 * performed again, if the helper is used in combination with
1568 * direct packet access.
1569 * Return
1570 * 0 on success, or a negative error in case of failure.
1571 *
1572 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
1573 * Description
1574 * Copy a NUL terminated string from an unsafe kernel address
1575 * *unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
1576 * more details.
1577 *
1578 * Generally, use **bpf_probe_read_user_str**\ () or
1579 * **bpf_probe_read_kernel_str**\ () instead.
1580 * Return
1581 * On success, the strictly positive length of the string,
1582 * including the trailing NUL character. On error, a negative
1583 * value.
1584 *
1585 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1586 * Description
1587 * If the **struct sk_buff** pointed by *skb* has a known socket,
1588 * retrieve the cookie (generated by the kernel) of this socket.
1589 * If no cookie has been set yet, generate a new cookie. Once
1590 * generated, the socket cookie remains stable for the life of the
1591 * socket. This helper can be useful for monitoring per socket
1592 * networking traffic statistics as it provides a global socket
1593 * identifier that can be assumed unique.
1594 * Return
1595 * A 8-byte long non-decreasing number on success, or 0 if the
1596 * socket field is missing inside *skb*.
1597 *
1598 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1599 * Description
1600 * Equivalent to bpf_get_socket_cookie() helper that accepts
1601 * *skb*, but gets socket from **struct bpf_sock_addr** context.
1602 * Return
1603 * A 8-byte long non-decreasing number.
1604 *
1605 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1606 * Description
1607 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
1608 * *skb*, but gets socket from **struct bpf_sock_ops** context.
1609 * Return
1610 * A 8-byte long non-decreasing number.
1611 *
1612 * u32 bpf_get_socket_uid(struct sk_buff *skb)
1613 * Return
1614 * The owner UID of the socket associated to *skb*. If the socket
1615 * is **NULL**, or if it is not a full socket (i.e. if it is a
1616 * time-wait or a request socket instead), **overflowuid** value
1617 * is returned (note that **overflowuid** might also be the actual
1618 * UID value for the socket).
1619 *
1620 * long bpf_set_hash(struct sk_buff *skb, u32 hash)
1621 * Description
1622 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
1623 * to value *hash*.
1624 * Return
1625 * 0
1626 *
1627 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
1628 * Description
1629 * Emulate a call to **setsockopt()** on the socket associated to
1630 * *bpf_socket*, which must be a full socket. The *level* at
1631 * which the option resides and the name *optname* of the option
1632 * must be specified, see **setsockopt(2)** for more information.
1633 * The option value of length *optlen* is pointed by *optval*.
1634 *
1635 * *bpf_socket* should be one of the following:
1636 *
1637 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
1638 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
1639 * and **BPF_CGROUP_INET6_CONNECT**.
1640 *
1641 * This helper actually implements a subset of **setsockopt()**.
1642 * It supports the following *level*\ s:
1643 *
1644 * * **SOL_SOCKET**, which supports the following *optname*\ s:
1645 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1646 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
1647 * **SO_BINDTODEVICE**, **SO_KEEPALIVE**.
1648 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
1649 * **TCP_CONGESTION**, **TCP_BPF_IW**,
1650 * **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
1651 * **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
1652 * **TCP_SYNCNT**, **TCP_USER_TIMEOUT**.
1653 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1654 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1655 * Return
1656 * 0 on success, or a negative error in case of failure.
1657 *
1658 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1659 * Description
1660 * Grow or shrink the room for data in the packet associated to
1661 * *skb* by *len_diff*, and according to the selected *mode*.
1662 *
1663 * By default, the helper will reset any offloaded checksum
1664 * indicator of the skb to CHECKSUM_NONE. This can be avoided
1665 * by the following flag:
1666 *
1667 * * **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
1668 * checksum data of the skb to CHECKSUM_NONE.
1669 *
1670 * There are two supported modes at this time:
1671 *
1672 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1673 * (room space is added or removed below the layer 2 header).
1674 *
1675 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1676 * (room space is added or removed below the layer 3 header).
1677 *
1678 * The following flags are supported at this time:
1679 *
1680 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1681 * Adjusting mss in this way is not allowed for datagrams.
1682 *
1683 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1684 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1685 * Any new space is reserved to hold a tunnel header.
1686 * Configure skb offsets and other fields accordingly.
1687 *
1688 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1689 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1690 * Use with ENCAP_L3 flags to further specify the tunnel type.
1691 *
1692 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1693 * Use with ENCAP_L3/L4 flags to further specify the tunnel
1694 * type; *len* is the length of the inner MAC header.
1695 *
1696 * A call to this helper is susceptible to change the underlying
1697 * packet buffer. Therefore, at load time, all checks on pointers
1698 * previously done by the verifier are invalidated and must be
1699 * performed again, if the helper is used in combination with
1700 * direct packet access.
1701 * Return
1702 * 0 on success, or a negative error in case of failure.
1703 *
1704 * long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1705 * Description
1706 * Redirect the packet to the endpoint referenced by *map* at
1707 * index *key*. Depending on its type, this *map* can contain
1708 * references to net devices (for forwarding packets through other
1709 * ports), or to CPUs (for redirecting XDP frames to another CPU;
1710 * but this is only implemented for native XDP (with driver
1711 * support) as of this writing).
1712 *
1713 * The lower two bits of *flags* are used as the return code if
1714 * the map lookup fails. This is so that the return value can be
1715 * one of the XDP program return codes up to **XDP_TX**, as chosen
1716 * by the caller. Any higher bits in the *flags* argument must be
1717 * unset.
1718 *
1719 * See also **bpf_redirect**\ (), which only supports redirecting
1720 * to an ifindex, but doesn't require a map to do so.
1721 * Return
1722 * **XDP_REDIRECT** on success, or the value of the two lower bits
1723 * of the *flags* argument on error.
1724 *
1725 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
1726 * Description
1727 * Redirect the packet to the socket referenced by *map* (of type
1728 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1729 * egress interfaces can be used for redirection. The
1730 * **BPF_F_INGRESS** value in *flags* is used to make the
1731 * distinction (ingress path is selected if the flag is present,
1732 * egress path otherwise). This is the only flag supported for now.
1733 * Return
1734 * **SK_PASS** on success, or **SK_DROP** on error.
1735 *
1736 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1737 * Description
1738 * Add an entry to, or update a *map* referencing sockets. The
1739 * *skops* is used as a new value for the entry associated to
1740 * *key*. *flags* is one of:
1741 *
1742 * **BPF_NOEXIST**
1743 * The entry for *key* must not exist in the map.
1744 * **BPF_EXIST**
1745 * The entry for *key* must already exist in the map.
1746 * **BPF_ANY**
1747 * No condition on the existence of the entry for *key*.
1748 *
1749 * If the *map* has eBPF programs (parser and verdict), those will
1750 * be inherited by the socket being added. If the socket is
1751 * already attached to eBPF programs, this results in an error.
1752 * Return
1753 * 0 on success, or a negative error in case of failure.
1754 *
1755 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1756 * Description
1757 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
1758 * *delta* (which can be positive or negative). Note that this
1759 * operation modifies the address stored in *xdp_md*\ **->data**,
1760 * so the latter must be loaded only after the helper has been
1761 * called.
1762 *
1763 * The use of *xdp_md*\ **->data_meta** is optional and programs
1764 * are not required to use it. The rationale is that when the
1765 * packet is processed with XDP (e.g. as DoS filter), it is
1766 * possible to push further meta data along with it before passing
1767 * to the stack, and to give the guarantee that an ingress eBPF
1768 * program attached as a TC classifier on the same device can pick
1769 * this up for further post-processing. Since TC works with socket
1770 * buffers, it remains possible to set from XDP the **mark** or
1771 * **priority** pointers, or other pointers for the socket buffer.
1772 * Having this scratch space generic and programmable allows for
1773 * more flexibility as the user is free to store whatever meta
1774 * data they need.
1775 *
1776 * A call to this helper is susceptible to change the underlying
1777 * packet buffer. Therefore, at load time, all checks on pointers
1778 * previously done by the verifier are invalidated and must be
1779 * performed again, if the helper is used in combination with
1780 * direct packet access.
1781 * Return
1782 * 0 on success, or a negative error in case of failure.
1783 *
1784 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1785 * Description
1786 * Read the value of a perf event counter, and store it into *buf*
1787 * of size *buf_size*. This helper relies on a *map* of type
1788 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1789 * counter is selected when *map* is updated with perf event file
1790 * descriptors. The *map* is an array whose size is the number of
1791 * available CPUs, and each cell contains a value relative to one
1792 * CPU. The value to retrieve is indicated by *flags*, that
1793 * contains the index of the CPU to look up, masked with
1794 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1795 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1796 * current CPU should be retrieved.
1797 *
1798 * This helper behaves in a way close to
1799 * **bpf_perf_event_read**\ () helper, save that instead of
1800 * just returning the value observed, it fills the *buf*
1801 * structure. This allows for additional data to be retrieved: in
1802 * particular, the enabled and running times (in *buf*\
1803 * **->enabled** and *buf*\ **->running**, respectively) are
1804 * copied. In general, **bpf_perf_event_read_value**\ () is
1805 * recommended over **bpf_perf_event_read**\ (), which has some
1806 * ABI issues and provides fewer functionalities.
1807 *
1808 * These values are interesting, because hardware PMU (Performance
1809 * Monitoring Unit) counters are limited resources. When there are
1810 * more PMU based perf events opened than available counters,
1811 * kernel will multiplex these events so each event gets certain
1812 * percentage (but not all) of the PMU time. In case that
1813 * multiplexing happens, the number of samples or counter value
1814 * will not reflect the case compared to when no multiplexing
1815 * occurs. This makes comparison between different runs difficult.
1816 * Typically, the counter value should be normalized before
1817 * comparing to other experiments. The usual normalization is done
1818 * as follows.
1819 *
1820 * ::
1821 *
1822 * normalized_counter = counter * t_enabled / t_running
1823 *
1824 * Where t_enabled is the time enabled for event and t_running is
1825 * the time running for event since last normalization. The
1826 * enabled and running times are accumulated since the perf event
1827 * open. To achieve scaling factor between two invocations of an
1828 * eBPF program, users can use CPU id as the key (which is
1829 * typical for perf array usage model) to remember the previous
1830 * value and do the calculation inside the eBPF program.
1831 * Return
1832 * 0 on success, or a negative error in case of failure.
1833 *
1834 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1835 * Description
1836 * For en eBPF program attached to a perf event, retrieve the
1837 * value of the event counter associated to *ctx* and store it in
1838 * the structure pointed by *buf* and of size *buf_size*. Enabled
1839 * and running times are also stored in the structure (see
1840 * description of helper **bpf_perf_event_read_value**\ () for
1841 * more details).
1842 * Return
1843 * 0 on success, or a negative error in case of failure.
1844 *
1845 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
1846 * Description
1847 * Emulate a call to **getsockopt()** on the socket associated to
1848 * *bpf_socket*, which must be a full socket. The *level* at
1849 * which the option resides and the name *optname* of the option
1850 * must be specified, see **getsockopt(2)** for more information.
1851 * The retrieved value is stored in the structure pointed by
1852 * *opval* and of length *optlen*.
1853 *
1854 * *bpf_socket* should be one of the following:
1855 *
1856 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
1857 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
1858 * and **BPF_CGROUP_INET6_CONNECT**.
1859 *
1860 * This helper actually implements a subset of **getsockopt()**.
1861 * It supports the following *level*\ s:
1862 *
1863 * * **IPPROTO_TCP**, which supports *optname*
1864 * **TCP_CONGESTION**.
1865 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1866 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1867 * Return
1868 * 0 on success, or a negative error in case of failure.
1869 *
1870 * long bpf_override_return(struct pt_regs *regs, u64 rc)
1871 * Description
1872 * Used for error injection, this helper uses kprobes to override
1873 * the return value of the probed function, and to set it to *rc*.
1874 * The first argument is the context *regs* on which the kprobe
1875 * works.
1876 *
1877 * This helper works by setting the PC (program counter)
1878 * to an override function which is run in place of the original
1879 * probed function. This means the probed function is not run at
1880 * all. The replacement function just returns with the required
1881 * value.
1882 *
1883 * This helper has security implications, and thus is subject to
1884 * restrictions. It is only available if the kernel was compiled
1885 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1886 * option, and in this case it only works on functions tagged with
1887 * **ALLOW_ERROR_INJECTION** in the kernel code.
1888 *
1889 * Also, the helper is only available for the architectures having
1890 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1891 * x86 architecture is the only one to support this feature.
1892 * Return
1893 * 0
1894 *
1895 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1896 * Description
1897 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1898 * for the full TCP socket associated to *bpf_sock_ops* to
1899 * *argval*.
1900 *
1901 * The primary use of this field is to determine if there should
1902 * be calls to eBPF programs of type
1903 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1904 * code. A program of the same type can change its value, per
1905 * connection and as necessary, when the connection is
1906 * established. This field is directly accessible for reading, but
1907 * this helper must be used for updates in order to return an
1908 * error if an eBPF program tries to set a callback that is not
1909 * supported in the current kernel.
1910 *
1911 * *argval* is a flag array which can combine these flags:
1912 *
1913 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1914 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1915 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1916 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
1917 *
1918 * Therefore, this function can be used to clear a callback flag by
1919 * setting the appropriate bit to zero. e.g. to disable the RTO
1920 * callback:
1921 *
1922 * **bpf_sock_ops_cb_flags_set(bpf_sock,**
1923 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1924 *
1925 * Here are some examples of where one could call such eBPF
1926 * program:
1927 *
1928 * * When RTO fires.
1929 * * When a packet is retransmitted.
1930 * * When the connection terminates.
1931 * * When a packet is sent.
1932 * * When a packet is received.
1933 * Return
1934 * Code **-EINVAL** if the socket is not a full TCP socket;
1935 * otherwise, a positive number containing the bits that could not
1936 * be set is returned (which comes down to 0 if all bits were set
1937 * as required).
1938 *
1939 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1940 * Description
1941 * This helper is used in programs implementing policies at the
1942 * socket level. If the message *msg* is allowed to pass (i.e. if
1943 * the verdict eBPF program returns **SK_PASS**), redirect it to
1944 * the socket referenced by *map* (of type
1945 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1946 * egress interfaces can be used for redirection. The
1947 * **BPF_F_INGRESS** value in *flags* is used to make the
1948 * distinction (ingress path is selected if the flag is present,
1949 * egress path otherwise). This is the only flag supported for now.
1950 * Return
1951 * **SK_PASS** on success, or **SK_DROP** on error.
1952 *
1953 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1954 * Description
1955 * For socket policies, apply the verdict of the eBPF program to
1956 * the next *bytes* (number of bytes) of message *msg*.
1957 *
1958 * For example, this helper can be used in the following cases:
1959 *
1960 * * A single **sendmsg**\ () or **sendfile**\ () system call
1961 * contains multiple logical messages that the eBPF program is
1962 * supposed to read and for which it should apply a verdict.
1963 * * An eBPF program only cares to read the first *bytes* of a
1964 * *msg*. If the message has a large payload, then setting up
1965 * and calling the eBPF program repeatedly for all bytes, even
1966 * though the verdict is already known, would create unnecessary
1967 * overhead.
1968 *
1969 * When called from within an eBPF program, the helper sets a
1970 * counter internal to the BPF infrastructure, that is used to
1971 * apply the last verdict to the next *bytes*. If *bytes* is
1972 * smaller than the current data being processed from a
1973 * **sendmsg**\ () or **sendfile**\ () system call, the first
1974 * *bytes* will be sent and the eBPF program will be re-run with
1975 * the pointer for start of data pointing to byte number *bytes*
1976 * **+ 1**. If *bytes* is larger than the current data being
1977 * processed, then the eBPF verdict will be applied to multiple
1978 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1979 * consumed.
1980 *
1981 * Note that if a socket closes with the internal counter holding
1982 * a non-zero value, this is not a problem because data is not
1983 * being buffered for *bytes* and is sent as it is received.
1984 * Return
1985 * 0
1986 *
1987 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1988 * Description
1989 * For socket policies, prevent the execution of the verdict eBPF
1990 * program for message *msg* until *bytes* (byte number) have been
1991 * accumulated.
1992 *
1993 * This can be used when one needs a specific number of bytes
1994 * before a verdict can be assigned, even if the data spans
1995 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1996 * case would be a user calling **sendmsg**\ () repeatedly with
1997 * 1-byte long message segments. Obviously, this is bad for
1998 * performance, but it is still valid. If the eBPF program needs
1999 * *bytes* bytes to validate a header, this helper can be used to
2000 * prevent the eBPF program to be called again until *bytes* have
2001 * been accumulated.
2002 * Return
2003 * 0
2004 *
2005 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
2006 * Description
2007 * For socket policies, pull in non-linear data from user space
2008 * for *msg* and set pointers *msg*\ **->data** and *msg*\
2009 * **->data_end** to *start* and *end* bytes offsets into *msg*,
2010 * respectively.
2011 *
2012 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2013 * *msg* it can only parse data that the (**data**, **data_end**)
2014 * pointers have already consumed. For **sendmsg**\ () hooks this
2015 * is likely the first scatterlist element. But for calls relying
2016 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
2017 * be the range (**0**, **0**) because the data is shared with
2018 * user space and by default the objective is to avoid allowing
2019 * user space to modify data while (or after) eBPF verdict is
2020 * being decided. This helper can be used to pull in data and to
2021 * set the start and end pointer to given values. Data will be
2022 * copied if necessary (i.e. if data was not linear and if start
2023 * and end pointers do not point to the same chunk).
2024 *
2025 * A call to this helper is susceptible to change the underlying
2026 * packet buffer. Therefore, at load time, all checks on pointers
2027 * previously done by the verifier are invalidated and must be
2028 * performed again, if the helper is used in combination with
2029 * direct packet access.
2030 *
2031 * All values for *flags* are reserved for future usage, and must
2032 * be left at zero.
2033 * Return
2034 * 0 on success, or a negative error in case of failure.
2035 *
2036 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
2037 * Description
2038 * Bind the socket associated to *ctx* to the address pointed by
2039 * *addr*, of length *addr_len*. This allows for making outgoing
2040 * connection from the desired IP address, which can be useful for
2041 * example when all processes inside a cgroup should use one
2042 * single IP address on a host that has multiple IP configured.
2043 *
2044 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
2045 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
2046 * **AF_INET6**). It's advised to pass zero port (**sin_port**
2047 * or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
2048 * behavior and lets the kernel efficiently pick up an unused
2049 * port as long as 4-tuple is unique. Passing non-zero port might
2050 * lead to degraded performance.
2051 * Return
2052 * 0 on success, or a negative error in case of failure.
2053 *
2054 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
2055 * Description
2056 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
2057 * possible to both shrink and grow the packet tail.
2058 * Shrink done via *delta* being a negative integer.
2059 *
2060 * A call to this helper is susceptible to change the underlying
2061 * packet buffer. Therefore, at load time, all checks on pointers
2062 * previously done by the verifier are invalidated and must be
2063 * performed again, if the helper is used in combination with
2064 * direct packet access.
2065 * Return
2066 * 0 on success, or a negative error in case of failure.
2067 *
2068 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
2069 * Description
2070 * Retrieve the XFRM state (IP transform framework, see also
2071 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
2072 *
2073 * The retrieved value is stored in the **struct bpf_xfrm_state**
2074 * pointed by *xfrm_state* and of length *size*.
2075 *
2076 * All values for *flags* are reserved for future usage, and must
2077 * be left at zero.
2078 *
2079 * This helper is available only if the kernel was compiled with
2080 * **CONFIG_XFRM** configuration option.
2081 * Return
2082 * 0 on success, or a negative error in case of failure.
2083 *
2084 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
2085 * Description
2086 * Return a user or a kernel stack in bpf program provided buffer.
2087 * To achieve this, the helper needs *ctx*, which is a pointer
2088 * to the context on which the tracing program is executed.
2089 * To store the stacktrace, the bpf program provides *buf* with
2090 * a nonnegative *size*.
2091 *
2092 * The last argument, *flags*, holds the number of stack frames to
2093 * skip (from 0 to 255), masked with
2094 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2095 * the following flags:
2096 *
2097 * **BPF_F_USER_STACK**
2098 * Collect a user space stack instead of a kernel stack.
2099 * **BPF_F_USER_BUILD_ID**
2100 * Collect buildid+offset instead of ips for user stack,
2101 * only valid if **BPF_F_USER_STACK** is also specified.
2102 *
2103 * **bpf_get_stack**\ () can collect up to
2104 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
2105 * to sufficient large buffer size. Note that
2106 * this limit can be controlled with the **sysctl** program, and
2107 * that it should be manually increased in order to profile long
2108 * user stacks (such as stacks for Java programs). To do so, use:
2109 *
2110 * ::
2111 *
2112 * # sysctl kernel.perf_event_max_stack=<new value>
2113 * Return
2114 * A non-negative value equal to or less than *size* on success,
2115 * or a negative error in case of failure.
2116 *
2117 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
2118 * Description
2119 * This helper is similar to **bpf_skb_load_bytes**\ () in that
2120 * it provides an easy way to load *len* bytes from *offset*
2121 * from the packet associated to *skb*, into the buffer pointed
2122 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
2123 * a fifth argument *start_header* exists in order to select a
2124 * base offset to start from. *start_header* can be one of:
2125 *
2126 * **BPF_HDR_START_MAC**
2127 * Base offset to load data from is *skb*'s mac header.
2128 * **BPF_HDR_START_NET**
2129 * Base offset to load data from is *skb*'s network header.
2130 *
2131 * In general, "direct packet access" is the preferred method to
2132 * access packet data, however, this helper is in particular useful
2133 * in socket filters where *skb*\ **->data** does not always point
2134 * to the start of the mac header and where "direct packet access"
2135 * is not available.
2136 * Return
2137 * 0 on success, or a negative error in case of failure.
2138 *
2139 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
2140 * Description
2141 * Do FIB lookup in kernel tables using parameters in *params*.
2142 * If lookup is successful and result shows packet is to be
2143 * forwarded, the neighbor tables are searched for the nexthop.
2144 * If successful (ie., FIB lookup shows forwarding and nexthop
2145 * is resolved), the nexthop address is returned in ipv4_dst
2146 * or ipv6_dst based on family, smac is set to mac address of
2147 * egress device, dmac is set to nexthop mac address, rt_metric
2148 * is set to metric from route (IPv4/IPv6 only), and ifindex
2149 * is set to the device index of the nexthop from the FIB lookup.
2150 *
2151 * *plen* argument is the size of the passed in struct.
2152 * *flags* argument can be a combination of one or more of the
2153 * following values:
2154 *
2155 * **BPF_FIB_LOOKUP_DIRECT**
2156 * Do a direct table lookup vs full lookup using FIB
2157 * rules.
2158 * **BPF_FIB_LOOKUP_OUTPUT**
2159 * Perform lookup from an egress perspective (default is
2160 * ingress).
2161 *
2162 * *ctx* is either **struct xdp_md** for XDP programs or
2163 * **struct sk_buff** tc cls_act programs.
2164 * Return
2165 * * < 0 if any input argument is invalid
2166 * * 0 on success (packet is forwarded, nexthop neighbor exists)
2167 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
2168 * packet is not forwarded or needs assist from full stack
2169 *
2170 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2171 * Description
2172 * Add an entry to, or update a sockhash *map* referencing sockets.
2173 * The *skops* is used as a new value for the entry associated to
2174 * *key*. *flags* is one of:
2175 *
2176 * **BPF_NOEXIST**
2177 * The entry for *key* must not exist in the map.
2178 * **BPF_EXIST**
2179 * The entry for *key* must already exist in the map.
2180 * **BPF_ANY**
2181 * No condition on the existence of the entry for *key*.
2182 *
2183 * If the *map* has eBPF programs (parser and verdict), those will
2184 * be inherited by the socket being added. If the socket is
2185 * already attached to eBPF programs, this results in an error.
2186 * Return
2187 * 0 on success, or a negative error in case of failure.
2188 *
2189 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2190 * Description
2191 * This helper is used in programs implementing policies at the
2192 * socket level. If the message *msg* is allowed to pass (i.e. if
2193 * the verdict eBPF program returns **SK_PASS**), redirect it to
2194 * the socket referenced by *map* (of type
2195 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2196 * egress interfaces can be used for redirection. The
2197 * **BPF_F_INGRESS** value in *flags* is used to make the
2198 * distinction (ingress path is selected if the flag is present,
2199 * egress path otherwise). This is the only flag supported for now.
2200 * Return
2201 * **SK_PASS** on success, or **SK_DROP** on error.
2202 *
2203 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2204 * Description
2205 * This helper is used in programs implementing policies at the
2206 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2207 * if the verdeict eBPF program returns **SK_PASS**), redirect it
2208 * to the socket referenced by *map* (of type
2209 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2210 * egress interfaces can be used for redirection. The
2211 * **BPF_F_INGRESS** value in *flags* is used to make the
2212 * distinction (ingress path is selected if the flag is present,
2213 * egress otherwise). This is the only flag supported for now.
2214 * Return
2215 * **SK_PASS** on success, or **SK_DROP** on error.
2216 *
2217 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2218 * Description
2219 * Encapsulate the packet associated to *skb* within a Layer 3
2220 * protocol header. This header is provided in the buffer at
2221 * address *hdr*, with *len* its size in bytes. *type* indicates
2222 * the protocol of the header and can be one of:
2223 *
2224 * **BPF_LWT_ENCAP_SEG6**
2225 * IPv6 encapsulation with Segment Routing Header
2226 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2227 * the IPv6 header is computed by the kernel.
2228 * **BPF_LWT_ENCAP_SEG6_INLINE**
2229 * Only works if *skb* contains an IPv6 packet. Insert a
2230 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
2231 * the IPv6 header.
2232 * **BPF_LWT_ENCAP_IP**
2233 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2234 * must be IPv4 or IPv6, followed by zero or more
2235 * additional headers, up to **LWT_BPF_MAX_HEADROOM**
2236 * total bytes in all prepended headers. Please note that
2237 * if **skb_is_gso**\ (*skb*) is true, no more than two
2238 * headers can be prepended, and the inner header, if
2239 * present, should be either GRE or UDP/GUE.
2240 *
2241 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2242 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2243 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2244 * **BPF_PROG_TYPE_LWT_XMIT**.
2245 *
2246 * A call to this helper is susceptible to change the underlying
2247 * packet buffer. Therefore, at load time, all checks on pointers
2248 * previously done by the verifier are invalidated and must be
2249 * performed again, if the helper is used in combination with
2250 * direct packet access.
2251 * Return
2252 * 0 on success, or a negative error in case of failure.
2253 *
2254 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2255 * Description
2256 * Store *len* bytes from address *from* into the packet
2257 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
2258 * inside the outermost IPv6 Segment Routing Header can be
2259 * modified through this helper.
2260 *
2261 * A call to this helper is susceptible to change the underlying
2262 * packet buffer. Therefore, at load time, all checks on pointers
2263 * previously done by the verifier are invalidated and must be
2264 * performed again, if the helper is used in combination with
2265 * direct packet access.
2266 * Return
2267 * 0 on success, or a negative error in case of failure.
2268 *
2269 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2270 * Description
2271 * Adjust the size allocated to TLVs in the outermost IPv6
2272 * Segment Routing Header contained in the packet associated to
2273 * *skb*, at position *offset* by *delta* bytes. Only offsets
2274 * after the segments are accepted. *delta* can be as well
2275 * positive (growing) as negative (shrinking).
2276 *
2277 * A call to this helper is susceptible to change the underlying
2278 * packet buffer. Therefore, at load time, all checks on pointers
2279 * previously done by the verifier are invalidated and must be
2280 * performed again, if the helper is used in combination with
2281 * direct packet access.
2282 * Return
2283 * 0 on success, or a negative error in case of failure.
2284 *
2285 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2286 * Description
2287 * Apply an IPv6 Segment Routing action of type *action* to the
2288 * packet associated to *skb*. Each action takes a parameter
2289 * contained at address *param*, and of length *param_len* bytes.
2290 * *action* can be one of:
2291 *
2292 * **SEG6_LOCAL_ACTION_END_X**
2293 * End.X action: Endpoint with Layer-3 cross-connect.
2294 * Type of *param*: **struct in6_addr**.
2295 * **SEG6_LOCAL_ACTION_END_T**
2296 * End.T action: Endpoint with specific IPv6 table lookup.
2297 * Type of *param*: **int**.
2298 * **SEG6_LOCAL_ACTION_END_B6**
2299 * End.B6 action: Endpoint bound to an SRv6 policy.
2300 * Type of *param*: **struct ipv6_sr_hdr**.
2301 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
2302 * End.B6.Encap action: Endpoint bound to an SRv6
2303 * encapsulation policy.
2304 * Type of *param*: **struct ipv6_sr_hdr**.
2305 *
2306 * A call to this helper is susceptible to change the underlying
2307 * packet buffer. Therefore, at load time, all checks on pointers
2308 * previously done by the verifier are invalidated and must be
2309 * performed again, if the helper is used in combination with
2310 * direct packet access.
2311 * Return
2312 * 0 on success, or a negative error in case of failure.
2313 *
2314 * long bpf_rc_repeat(void *ctx)
2315 * Description
2316 * This helper is used in programs implementing IR decoding, to
2317 * report a successfully decoded repeat key message. This delays
2318 * the generation of a key up event for previously generated
2319 * key down event.
2320 *
2321 * Some IR protocols like NEC have a special IR message for
2322 * repeating last button, for when a button is held down.
2323 *
2324 * The *ctx* should point to the lirc sample as passed into
2325 * the program.
2326 *
2327 * This helper is only available is the kernel was compiled with
2328 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2329 * "**y**".
2330 * Return
2331 * 0
2332 *
2333 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2334 * Description
2335 * This helper is used in programs implementing IR decoding, to
2336 * report a successfully decoded key press with *scancode*,
2337 * *toggle* value in the given *protocol*. The scancode will be
2338 * translated to a keycode using the rc keymap, and reported as
2339 * an input key down event. After a period a key up event is
2340 * generated. This period can be extended by calling either
2341 * **bpf_rc_keydown**\ () again with the same values, or calling
2342 * **bpf_rc_repeat**\ ().
2343 *
2344 * Some protocols include a toggle bit, in case the button was
2345 * released and pressed again between consecutive scancodes.
2346 *
2347 * The *ctx* should point to the lirc sample as passed into
2348 * the program.
2349 *
2350 * The *protocol* is the decoded protocol number (see
2351 * **enum rc_proto** for some predefined values).
2352 *
2353 * This helper is only available is the kernel was compiled with
2354 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2355 * "**y**".
2356 * Return
2357 * 0
2358 *
2359 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2360 * Description
2361 * Return the cgroup v2 id of the socket associated with the *skb*.
2362 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2363 * helper for cgroup v1 by providing a tag resp. identifier that
2364 * can be matched on or used for map lookups e.g. to implement
2365 * policy. The cgroup v2 id of a given path in the hierarchy is
2366 * exposed in user space through the f_handle API in order to get
2367 * to the same 64-bit id.
2368 *
2369 * This helper can be used on TC egress path, but not on ingress,
2370 * and is available only if the kernel was compiled with the
2371 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
2372 * Return
2373 * The id is returned or 0 in case the id could not be retrieved.
2374 *
2375 * u64 bpf_get_current_cgroup_id(void)
2376 * Return
2377 * A 64-bit integer containing the current cgroup id based
2378 * on the cgroup within which the current task is running.
2379 *
2380 * void *bpf_get_local_storage(void *map, u64 flags)
2381 * Description
2382 * Get the pointer to the local storage area.
2383 * The type and the size of the local storage is defined
2384 * by the *map* argument.
2385 * The *flags* meaning is specific for each map type,
2386 * and has to be 0 for cgroup local storage.
2387 *
2388 * Depending on the BPF program type, a local storage area
2389 * can be shared between multiple instances of the BPF program,
2390 * running simultaneously.
2391 *
2392 * A user should care about the synchronization by himself.
2393 * For example, by using the **BPF_STX_XADD** instruction to alter
2394 * the shared data.
2395 * Return
2396 * A pointer to the local storage area.
2397 *
2398 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2399 * Description
2400 * Select a **SO_REUSEPORT** socket from a
2401 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2402 * It checks the selected socket is matching the incoming
2403 * request in the socket buffer.
2404 * Return
2405 * 0 on success, or a negative error in case of failure.
2406 *
2407 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2408 * Description
2409 * Return id of cgroup v2 that is ancestor of cgroup associated
2410 * with the *skb* at the *ancestor_level*. The root cgroup is at
2411 * *ancestor_level* zero and each step down the hierarchy
2412 * increments the level. If *ancestor_level* == level of cgroup
2413 * associated with *skb*, then return value will be same as that
2414 * of **bpf_skb_cgroup_id**\ ().
2415 *
2416 * The helper is useful to implement policies based on cgroups
2417 * that are upper in hierarchy than immediate cgroup associated
2418 * with *skb*.
2419 *
2420 * The format of returned id and helper limitations are same as in
2421 * **bpf_skb_cgroup_id**\ ().
2422 * Return
2423 * The id is returned or 0 in case the id could not be retrieved.
2424 *
2425 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2426 * Description
2427 * Look for TCP socket matching *tuple*, optionally in a child
2428 * network namespace *netns*. The return value must be checked,
2429 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2430 *
2431 * The *ctx* should point to the context of the program, such as
2432 * the skb or socket (depending on the hook in use). This is used
2433 * to determine the base network namespace for the lookup.
2434 *
2435 * *tuple_size* must be one of:
2436 *
2437 * **sizeof**\ (*tuple*\ **->ipv4**)
2438 * Look for an IPv4 socket.
2439 * **sizeof**\ (*tuple*\ **->ipv6**)
2440 * Look for an IPv6 socket.
2441 *
2442 * If the *netns* is a negative signed 32-bit integer, then the
2443 * socket lookup table in the netns associated with the *ctx*
2444 * will be used. For the TC hooks, this is the netns of the device
2445 * in the skb. For socket hooks, this is the netns of the socket.
2446 * If *netns* is any other signed 32-bit value greater than or
2447 * equal to zero then it specifies the ID of the netns relative to
2448 * the netns associated with the *ctx*. *netns* values beyond the
2449 * range of 32-bit integers are reserved for future use.
2450 *
2451 * All values for *flags* are reserved for future usage, and must
2452 * be left at zero.
2453 *
2454 * This helper is available only if the kernel was compiled with
2455 * **CONFIG_NET** configuration option.
2456 * Return
2457 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2458 * For sockets with reuseport option, the **struct bpf_sock**
2459 * result is from *reuse*\ **->socks**\ [] using the hash of the
2460 * tuple.
2461 *
2462 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2463 * Description
2464 * Look for UDP socket matching *tuple*, optionally in a child
2465 * network namespace *netns*. The return value must be checked,
2466 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2467 *
2468 * The *ctx* should point to the context of the program, such as
2469 * the skb or socket (depending on the hook in use). This is used
2470 * to determine the base network namespace for the lookup.
2471 *
2472 * *tuple_size* must be one of:
2473 *
2474 * **sizeof**\ (*tuple*\ **->ipv4**)
2475 * Look for an IPv4 socket.
2476 * **sizeof**\ (*tuple*\ **->ipv6**)
2477 * Look for an IPv6 socket.
2478 *
2479 * If the *netns* is a negative signed 32-bit integer, then the
2480 * socket lookup table in the netns associated with the *ctx*
2481 * will be used. For the TC hooks, this is the netns of the device
2482 * in the skb. For socket hooks, this is the netns of the socket.
2483 * If *netns* is any other signed 32-bit value greater than or
2484 * equal to zero then it specifies the ID of the netns relative to
2485 * the netns associated with the *ctx*. *netns* values beyond the
2486 * range of 32-bit integers are reserved for future use.
2487 *
2488 * All values for *flags* are reserved for future usage, and must
2489 * be left at zero.
2490 *
2491 * This helper is available only if the kernel was compiled with
2492 * **CONFIG_NET** configuration option.
2493 * Return
2494 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2495 * For sockets with reuseport option, the **struct bpf_sock**
2496 * result is from *reuse*\ **->socks**\ [] using the hash of the
2497 * tuple.
2498 *
2499 * long bpf_sk_release(struct bpf_sock *sock)
2500 * Description
2501 * Release the reference held by *sock*. *sock* must be a
2502 * non-**NULL** pointer that was returned from
2503 * **bpf_sk_lookup_xxx**\ ().
2504 * Return
2505 * 0 on success, or a negative error in case of failure.
2506 *
2507 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2508 * Description
2509 * Push an element *value* in *map*. *flags* is one of:
2510 *
2511 * **BPF_EXIST**
2512 * If the queue/stack is full, the oldest element is
2513 * removed to make room for this.
2514 * Return
2515 * 0 on success, or a negative error in case of failure.
2516 *
2517 * long bpf_map_pop_elem(struct bpf_map *map, void *value)
2518 * Description
2519 * Pop an element from *map*.
2520 * Return
2521 * 0 on success, or a negative error in case of failure.
2522 *
2523 * long bpf_map_peek_elem(struct bpf_map *map, void *value)
2524 * Description
2525 * Get an element from *map* without removing it.
2526 * Return
2527 * 0 on success, or a negative error in case of failure.
2528 *
2529 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2530 * Description
2531 * For socket policies, insert *len* bytes into *msg* at offset
2532 * *start*.
2533 *
2534 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2535 * *msg* it may want to insert metadata or options into the *msg*.
2536 * This can later be read and used by any of the lower layer BPF
2537 * hooks.
2538 *
2539 * This helper may fail if under memory pressure (a malloc
2540 * fails) in these cases BPF programs will get an appropriate
2541 * error and BPF programs will need to handle them.
2542 * Return
2543 * 0 on success, or a negative error in case of failure.
2544 *
2545 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2546 * Description
2547 * Will remove *len* bytes from a *msg* starting at byte *start*.
2548 * This may result in **ENOMEM** errors under certain situations if
2549 * an allocation and copy are required due to a full ring buffer.
2550 * However, the helper will try to avoid doing the allocation
2551 * if possible. Other errors can occur if input parameters are
2552 * invalid either due to *start* byte not being valid part of *msg*
2553 * payload and/or *pop* value being to large.
2554 * Return
2555 * 0 on success, or a negative error in case of failure.
2556 *
2557 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2558 * Description
2559 * This helper is used in programs implementing IR decoding, to
2560 * report a successfully decoded pointer movement.
2561 *
2562 * The *ctx* should point to the lirc sample as passed into
2563 * the program.
2564 *
2565 * This helper is only available is the kernel was compiled with
2566 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2567 * "**y**".
2568 * Return
2569 * 0
2570 *
2571 * long bpf_spin_lock(struct bpf_spin_lock *lock)
2572 * Description
2573 * Acquire a spinlock represented by the pointer *lock*, which is
2574 * stored as part of a value of a map. Taking the lock allows to
2575 * safely update the rest of the fields in that value. The
2576 * spinlock can (and must) later be released with a call to
2577 * **bpf_spin_unlock**\ (\ *lock*\ ).
2578 *
2579 * Spinlocks in BPF programs come with a number of restrictions
2580 * and constraints:
2581 *
2582 * * **bpf_spin_lock** objects are only allowed inside maps of
2583 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2584 * list could be extended in the future).
2585 * * BTF description of the map is mandatory.
2586 * * The BPF program can take ONE lock at a time, since taking two
2587 * or more could cause dead locks.
2588 * * Only one **struct bpf_spin_lock** is allowed per map element.
2589 * * When the lock is taken, calls (either BPF to BPF or helpers)
2590 * are not allowed.
2591 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2592 * allowed inside a spinlock-ed region.
2593 * * The BPF program MUST call **bpf_spin_unlock**\ () to release
2594 * the lock, on all execution paths, before it returns.
2595 * * The BPF program can access **struct bpf_spin_lock** only via
2596 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2597 * helpers. Loading or storing data into the **struct
2598 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2599 * * To use the **bpf_spin_lock**\ () helper, the BTF description
2600 * of the map value must be a struct and have **struct
2601 * bpf_spin_lock** *anyname*\ **;** field at the top level.
2602 * Nested lock inside another struct is not allowed.
2603 * * The **struct bpf_spin_lock** *lock* field in a map value must
2604 * be aligned on a multiple of 4 bytes in that value.
2605 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2606 * the **bpf_spin_lock** field to user space.
2607 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2608 * a BPF program, do not update the **bpf_spin_lock** field.
2609 * * **bpf_spin_lock** cannot be on the stack or inside a
2610 * networking packet (it can only be inside of a map values).
2611 * * **bpf_spin_lock** is available to root only.
2612 * * Tracing programs and socket filter programs cannot use
2613 * **bpf_spin_lock**\ () due to insufficient preemption checks
2614 * (but this may change in the future).
2615 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2616 * Return
2617 * 0
2618 *
2619 * long bpf_spin_unlock(struct bpf_spin_lock *lock)
2620 * Description
2621 * Release the *lock* previously locked by a call to
2622 * **bpf_spin_lock**\ (\ *lock*\ ).
2623 * Return
2624 * 0
2625 *
2626 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2627 * Description
2628 * This helper gets a **struct bpf_sock** pointer such
2629 * that all the fields in this **bpf_sock** can be accessed.
2630 * Return
2631 * A **struct bpf_sock** pointer on success, or **NULL** in
2632 * case of failure.
2633 *
2634 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2635 * Description
2636 * This helper gets a **struct bpf_tcp_sock** pointer from a
2637 * **struct bpf_sock** pointer.
2638 * Return
2639 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2640 * case of failure.
2641 *
2642 * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
2643 * Description
2644 * Set ECN (Explicit Congestion Notification) field of IP header
2645 * to **CE** (Congestion Encountered) if current value is **ECT**
2646 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2647 * and IPv4.
2648 * Return
2649 * 1 if the **CE** flag is set (either by the current helper call
2650 * or because it was already present), 0 if it is not set.
2651 *
2652 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2653 * Description
2654 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2655 * **bpf_sk_release**\ () is unnecessary and not allowed.
2656 * Return
2657 * A **struct bpf_sock** pointer on success, or **NULL** in
2658 * case of failure.
2659 *
2660 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2661 * Description
2662 * Look for TCP socket matching *tuple*, optionally in a child
2663 * network namespace *netns*. The return value must be checked,
2664 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2665 *
2666 * This function is identical to **bpf_sk_lookup_tcp**\ (), except
2667 * that it also returns timewait or request sockets. Use
2668 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2669 * full structure.
2670 *
2671 * This helper is available only if the kernel was compiled with
2672 * **CONFIG_NET** configuration option.
2673 * Return
2674 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2675 * For sockets with reuseport option, the **struct bpf_sock**
2676 * result is from *reuse*\ **->socks**\ [] using the hash of the
2677 * tuple.
2678 *
2679 * long bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2680 * Description
2681 * Check whether *iph* and *th* contain a valid SYN cookie ACK for
2682 * the listening socket in *sk*.
2683 *
2684 * *iph* points to the start of the IPv4 or IPv6 header, while
2685 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
2686 * **sizeof**\ (**struct ip6hdr**).
2687 *
2688 * *th* points to the start of the TCP header, while *th_len*
2689 * contains **sizeof**\ (**struct tcphdr**).
2690 * Return
2691 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2692 * error otherwise.
2693 *
2694 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2695 * Description
2696 * Get name of sysctl in /proc/sys/ and copy it into provided by
2697 * program buffer *buf* of size *buf_len*.
2698 *
2699 * The buffer is always NUL terminated, unless it's zero-sized.
2700 *
2701 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2702 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2703 * only (e.g. "tcp_mem").
2704 * Return
2705 * Number of character copied (not including the trailing NUL).
2706 *
2707 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
2708 * truncated name in this case).
2709 *
2710 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2711 * Description
2712 * Get current value of sysctl as it is presented in /proc/sys
2713 * (incl. newline, etc), and copy it as a string into provided
2714 * by program buffer *buf* of size *buf_len*.
2715 *
2716 * The whole value is copied, no matter what file position user
2717 * space issued e.g. sys_read at.
2718 *
2719 * The buffer is always NUL terminated, unless it's zero-sized.
2720 * Return
2721 * Number of character copied (not including the trailing NUL).
2722 *
2723 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
2724 * truncated name in this case).
2725 *
2726 * **-EINVAL** if current value was unavailable, e.g. because
2727 * sysctl is uninitialized and read returns -EIO for it.
2728 *
2729 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2730 * Description
2731 * Get new value being written by user space to sysctl (before
2732 * the actual write happens) and copy it as a string into
2733 * provided by program buffer *buf* of size *buf_len*.
2734 *
2735 * User space may write new value at file position > 0.
2736 *
2737 * The buffer is always NUL terminated, unless it's zero-sized.
2738 * Return
2739 * Number of character copied (not including the trailing NUL).
2740 *
2741 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
2742 * truncated name in this case).
2743 *
2744 * **-EINVAL** if sysctl is being read.
2745 *
2746 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2747 * Description
2748 * Override new value being written by user space to sysctl with
2749 * value provided by program in buffer *buf* of size *buf_len*.
2750 *
2751 * *buf* should contain a string in same form as provided by user
2752 * space on sysctl write.
2753 *
2754 * User space may write new value at file position > 0. To override
2755 * the whole sysctl value file position should be set to zero.
2756 * Return
2757 * 0 on success.
2758 *
2759 * **-E2BIG** if the *buf_len* is too big.
2760 *
2761 * **-EINVAL** if sysctl is being read.
2762 *
2763 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2764 * Description
2765 * Convert the initial part of the string from buffer *buf* of
2766 * size *buf_len* to a long integer according to the given base
2767 * and save the result in *res*.
2768 *
2769 * The string may begin with an arbitrary amount of white space
2770 * (as determined by **isspace**\ (3)) followed by a single
2771 * optional '**-**' sign.
2772 *
2773 * Five least significant bits of *flags* encode base, other bits
2774 * are currently unused.
2775 *
2776 * Base must be either 8, 10, 16 or 0 to detect it automatically
2777 * similar to user space **strtol**\ (3).
2778 * Return
2779 * Number of characters consumed on success. Must be positive but
2780 * no more than *buf_len*.
2781 *
2782 * **-EINVAL** if no valid digits were found or unsupported base
2783 * was provided.
2784 *
2785 * **-ERANGE** if resulting value was out of range.
2786 *
2787 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2788 * Description
2789 * Convert the initial part of the string from buffer *buf* of
2790 * size *buf_len* to an unsigned long integer according to the
2791 * given base and save the result in *res*.
2792 *
2793 * The string may begin with an arbitrary amount of white space
2794 * (as determined by **isspace**\ (3)).
2795 *
2796 * Five least significant bits of *flags* encode base, other bits
2797 * are currently unused.
2798 *
2799 * Base must be either 8, 10, 16 or 0 to detect it automatically
2800 * similar to user space **strtoul**\ (3).
2801 * Return
2802 * Number of characters consumed on success. Must be positive but
2803 * no more than *buf_len*.
2804 *
2805 * **-EINVAL** if no valid digits were found or unsupported base
2806 * was provided.
2807 *
2808 * **-ERANGE** if resulting value was out of range.
2809 *
2810 * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags)
2811 * Description
2812 * Get a bpf-local-storage from a *sk*.
2813 *
2814 * Logically, it could be thought of getting the value from
2815 * a *map* with *sk* as the **key**. From this
2816 * perspective, the usage is not much different from
2817 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2818 * helper enforces the key must be a full socket and the map must
2819 * be a **BPF_MAP_TYPE_SK_STORAGE** also.
2820 *
2821 * Underneath, the value is stored locally at *sk* instead of
2822 * the *map*. The *map* is used as the bpf-local-storage
2823 * "type". The bpf-local-storage "type" (i.e. the *map*) is
2824 * searched against all bpf-local-storages residing at *sk*.
2825 *
2826 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2827 * used such that a new bpf-local-storage will be
2828 * created if one does not exist. *value* can be used
2829 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2830 * the initial value of a bpf-local-storage. If *value* is
2831 * **NULL**, the new bpf-local-storage will be zero initialized.
2832 * Return
2833 * A bpf-local-storage pointer is returned on success.
2834 *
2835 * **NULL** if not found or there was an error in adding
2836 * a new bpf-local-storage.
2837 *
2838 * long bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)
2839 * Description
2840 * Delete a bpf-local-storage from a *sk*.
2841 * Return
2842 * 0 on success.
2843 *
2844 * **-ENOENT** if the bpf-local-storage cannot be found.
2845 *
2846 * long bpf_send_signal(u32 sig)
2847 * Description
2848 * Send signal *sig* to the process of the current task.
2849 * The signal may be delivered to any of this process's threads.
2850 * Return
2851 * 0 on success or successfully queued.
2852 *
2853 * **-EBUSY** if work queue under nmi is full.
2854 *
2855 * **-EINVAL** if *sig* is invalid.
2856 *
2857 * **-EPERM** if no permission to send the *sig*.
2858 *
2859 * **-EAGAIN** if bpf program can try again.
2860 *
2861 * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2862 * Description
2863 * Try to issue a SYN cookie for the packet with corresponding
2864 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
2865 *
2866 * *iph* points to the start of the IPv4 or IPv6 header, while
2867 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
2868 * **sizeof**\ (**struct ip6hdr**).
2869 *
2870 * *th* points to the start of the TCP header, while *th_len*
2871 * contains the length of the TCP header.
2872 * Return
2873 * On success, lower 32 bits hold the generated SYN cookie in
2874 * followed by 16 bits which hold the MSS value for that cookie,
2875 * and the top 16 bits are unused.
2876 *
2877 * On failure, the returned value is one of the following:
2878 *
2879 * **-EINVAL** SYN cookie cannot be issued due to error
2880 *
2881 * **-ENOENT** SYN cookie should not be issued (no SYN flood)
2882 *
2883 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies
2884 *
2885 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6
2886 *
2887 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2888 * Description
2889 * Write raw *data* blob into a special BPF perf event held by
2890 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2891 * event must have the following attributes: **PERF_SAMPLE_RAW**
2892 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2893 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2894 *
2895 * The *flags* are used to indicate the index in *map* for which
2896 * the value must be put, masked with **BPF_F_INDEX_MASK**.
2897 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2898 * to indicate that the index of the current CPU core should be
2899 * used.
2900 *
2901 * The value to write, of *size*, is passed through eBPF stack and
2902 * pointed by *data*.
2903 *
2904 * *ctx* is a pointer to in-kernel struct sk_buff.
2905 *
2906 * This helper is similar to **bpf_perf_event_output**\ () but
2907 * restricted to raw_tracepoint bpf programs.
2908 * Return
2909 * 0 on success, or a negative error in case of failure.
2910 *
2911 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
2912 * Description
2913 * Safely attempt to read *size* bytes from user space address
2914 * *unsafe_ptr* and store the data in *dst*.
2915 * Return
2916 * 0 on success, or a negative error in case of failure.
2917 *
2918 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2919 * Description
2920 * Safely attempt to read *size* bytes from kernel space address
2921 * *unsafe_ptr* and store the data in *dst*.
2922 * Return
2923 * 0 on success, or a negative error in case of failure.
2924 *
2925 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
2926 * Description
2927 * Copy a NUL terminated string from an unsafe user address
2928 * *unsafe_ptr* to *dst*. The *size* should include the
2929 * terminating NUL byte. In case the string length is smaller than
2930 * *size*, the target is not padded with further NUL bytes. If the
2931 * string length is larger than *size*, just *size*-1 bytes are
2932 * copied and the last byte is set to NUL.
2933 *
2934 * On success, the length of the copied string is returned. This
2935 * makes this helper useful in tracing programs for reading
2936 * strings, and more importantly to get its length at runtime. See
2937 * the following snippet:
2938 *
2939 * ::
2940 *
2941 * SEC("kprobe/sys_open")
2942 * void bpf_sys_open(struct pt_regs *ctx)
2943 * {
2944 * char buf[PATHLEN]; // PATHLEN is defined to 256
2945 * int res = bpf_probe_read_user_str(buf, sizeof(buf),
2946 * ctx->di);
2947 *
2948 * // Consume buf, for example push it to
2949 * // userspace via bpf_perf_event_output(); we
2950 * // can use res (the string length) as event
2951 * // size, after checking its boundaries.
2952 * }
2953 *
2954 * In comparison, using **bpf_probe_read_user**\ () helper here
2955 * instead to read the string would require to estimate the length
2956 * at compile time, and would often result in copying more memory
2957 * than necessary.
2958 *
2959 * Another useful use case is when parsing individual process
2960 * arguments or individual environment variables navigating
2961 * *current*\ **->mm->arg_start** and *current*\
2962 * **->mm->env_start**: using this helper and the return value,
2963 * one can quickly iterate at the right offset of the memory area.
2964 * Return
2965 * On success, the strictly positive length of the string,
2966 * including the trailing NUL character. On error, a negative
2967 * value.
2968 *
2969 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
2970 * Description
2971 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
2972 * to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
2973 * Return
2974 * On success, the strictly positive length of the string, including
2975 * the trailing NUL character. On error, a negative value.
2976 *
2977 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
2978 * Description
2979 * Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
2980 * *rcv_nxt* is the ack_seq to be sent out.
2981 * Return
2982 * 0 on success, or a negative error in case of failure.
2983 *
2984 * long bpf_send_signal_thread(u32 sig)
2985 * Description
2986 * Send signal *sig* to the thread corresponding to the current task.
2987 * Return
2988 * 0 on success or successfully queued.
2989 *
2990 * **-EBUSY** if work queue under nmi is full.
2991 *
2992 * **-EINVAL** if *sig* is invalid.
2993 *
2994 * **-EPERM** if no permission to send the *sig*.
2995 *
2996 * **-EAGAIN** if bpf program can try again.
2997 *
2998 * u64 bpf_jiffies64(void)
2999 * Description
3000 * Obtain the 64bit jiffies
3001 * Return
3002 * The 64 bit jiffies
3003 *
3004 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
3005 * Description
3006 * For an eBPF program attached to a perf event, retrieve the
3007 * branch records (**struct perf_branch_entry**) associated to *ctx*
3008 * and store it in the buffer pointed by *buf* up to size
3009 * *size* bytes.
3010 * Return
3011 * On success, number of bytes written to *buf*. On error, a
3012 * negative value.
3013 *
3014 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
3015 * instead return the number of bytes required to store all the
3016 * branch entries. If this flag is set, *buf* may be NULL.
3017 *
3018 * **-EINVAL** if arguments invalid or **size** not a multiple
3019 * of **sizeof**\ (**struct perf_branch_entry**\ ).
3020 *
3021 * **-ENOENT** if architecture does not support branch records.
3022 *
3023 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
3024 * Description
3025 * Returns 0 on success, values for *pid* and *tgid* as seen from the current
3026 * *namespace* will be returned in *nsdata*.
3027 * Return
3028 * 0 on success, or one of the following in case of failure:
3029 *
3030 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number
3031 * with nsfs of current task, or if dev conversion to dev_t lost high bits.
3032 *
3033 * **-ENOENT** if pidns does not exists for the current task.
3034 *
3035 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3036 * Description
3037 * Write raw *data* blob into a special BPF perf event held by
3038 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3039 * event must have the following attributes: **PERF_SAMPLE_RAW**
3040 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3041 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3042 *
3043 * The *flags* are used to indicate the index in *map* for which
3044 * the value must be put, masked with **BPF_F_INDEX_MASK**.
3045 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3046 * to indicate that the index of the current CPU core should be
3047 * used.
3048 *
3049 * The value to write, of *size*, is passed through eBPF stack and
3050 * pointed by *data*.
3051 *
3052 * *ctx* is a pointer to in-kernel struct xdp_buff.
3053 *
3054 * This helper is similar to **bpf_perf_eventoutput**\ () but
3055 * restricted to raw_tracepoint bpf programs.
3056 * Return
3057 * 0 on success, or a negative error in case of failure.
3058 *
3059 * u64 bpf_get_netns_cookie(void *ctx)
3060 * Description
3061 * Retrieve the cookie (generated by the kernel) of the network
3062 * namespace the input *ctx* is associated with. The network
3063 * namespace cookie remains stable for its lifetime and provides
3064 * a global identifier that can be assumed unique. If *ctx* is
3065 * NULL, then the helper returns the cookie for the initial
3066 * network namespace. The cookie itself is very similar to that
3067 * of **bpf_get_socket_cookie**\ () helper, but for network
3068 * namespaces instead of sockets.
3069 * Return
3070 * A 8-byte long opaque number.
3071 *
3072 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
3073 * Description
3074 * Return id of cgroup v2 that is ancestor of the cgroup associated
3075 * with the current task at the *ancestor_level*. The root cgroup
3076 * is at *ancestor_level* zero and each step down the hierarchy
3077 * increments the level. If *ancestor_level* == level of cgroup
3078 * associated with the current task, then return value will be the
3079 * same as that of **bpf_get_current_cgroup_id**\ ().
3080 *
3081 * The helper is useful to implement policies based on cgroups
3082 * that are upper in hierarchy than immediate cgroup associated
3083 * with the current task.
3084 *
3085 * The format of returned id and helper limitations are same as in
3086 * **bpf_get_current_cgroup_id**\ ().
3087 * Return
3088 * The id is returned or 0 in case the id could not be retrieved.
3089 *
3090 * long bpf_sk_assign(struct sk_buff *skb, struct bpf_sock *sk, u64 flags)
3091 * Description
3092 * Helper is overloaded depending on BPF program type. This
3093 * description applies to **BPF_PROG_TYPE_SCHED_CLS** and
3094 * **BPF_PROG_TYPE_SCHED_ACT** programs.
3095 *
3096 * Assign the *sk* to the *skb*. When combined with appropriate
3097 * routing configuration to receive the packet towards the socket,
3098 * will cause *skb* to be delivered to the specified socket.
3099 * Subsequent redirection of *skb* via **bpf_redirect**\ (),
3100 * **bpf_clone_redirect**\ () or other methods outside of BPF may
3101 * interfere with successful delivery to the socket.
3102 *
3103 * This operation is only valid from TC ingress path.
3104 *
3105 * The *flags* argument must be zero.
3106 * Return
3107 * 0 on success, or a negative error in case of failure:
3108 *
3109 * **-EINVAL** if specified *flags* are not supported.
3110 *
3111 * **-ENOENT** if the socket is unavailable for assignment.
3112 *
3113 * **-ENETUNREACH** if the socket is unreachable (wrong netns).
3114 *
3115 * **-EOPNOTSUPP** if the operation is not supported, for example
3116 * a call from outside of TC ingress.
3117 *
3118 * **-ESOCKTNOSUPPORT** if the socket type is not supported
3119 * (reuseport).
3120 *
3121 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
3122 * Description
3123 * Helper is overloaded depending on BPF program type. This
3124 * description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
3125 *
3126 * Select the *sk* as a result of a socket lookup.
3127 *
3128 * For the operation to succeed passed socket must be compatible
3129 * with the packet description provided by the *ctx* object.
3130 *
3131 * L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
3132 * be an exact match. While IP family (**AF_INET** or
3133 * **AF_INET6**) must be compatible, that is IPv6 sockets
3134 * that are not v6-only can be selected for IPv4 packets.
3135 *
3136 * Only TCP listeners and UDP unconnected sockets can be
3137 * selected. *sk* can also be NULL to reset any previous
3138 * selection.
3139 *
3140 * *flags* argument can combination of following values:
3141 *
3142 * * **BPF_SK_LOOKUP_F_REPLACE** to override the previous
3143 * socket selection, potentially done by a BPF program
3144 * that ran before us.
3145 *
3146 * * **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
3147 * load-balancing within reuseport group for the socket
3148 * being selected.
3149 *
3150 * On success *ctx->sk* will point to the selected socket.
3151 *
3152 * Return
3153 * 0 on success, or a negative errno in case of failure.
3154 *
3155 * * **-EAFNOSUPPORT** if socket family (*sk->family*) is
3156 * not compatible with packet family (*ctx->family*).
3157 *
3158 * * **-EEXIST** if socket has been already selected,
3159 * potentially by another program, and
3160 * **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
3161 *
3162 * * **-EINVAL** if unsupported flags were specified.
3163 *
3164 * * **-EPROTOTYPE** if socket L4 protocol
3165 * (*sk->protocol*) doesn't match packet protocol
3166 * (*ctx->protocol*).
3167 *
3168 * * **-ESOCKTNOSUPPORT** if socket is not in allowed
3169 * state (TCP listening or UDP unconnected).
3170 *
3171 * u64 bpf_ktime_get_boot_ns(void)
3172 * Description
3173 * Return the time elapsed since system boot, in nanoseconds.
3174 * Does include the time the system was suspended.
3175 * See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
3176 * Return
3177 * Current *ktime*.
3178 *
3179 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
3180 * Description
3181 * **bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
3182 * out the format string.
3183 * The *m* represents the seq_file. The *fmt* and *fmt_size* are for
3184 * the format string itself. The *data* and *data_len* are format string
3185 * arguments. The *data* are a **u64** array and corresponding format string
3186 * values are stored in the array. For strings and pointers where pointees
3187 * are accessed, only the pointer values are stored in the *data* array.
3188 * The *data_len* is the size of *data* in bytes.
3189 *
3190 * Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
3191 * Reading kernel memory may fail due to either invalid address or
3192 * valid address but requiring a major memory fault. If reading kernel memory
3193 * fails, the string for **%s** will be an empty string, and the ip
3194 * address for **%p{i,I}{4,6}** will be 0. Not returning error to
3195 * bpf program is consistent with what **bpf_trace_printk**\ () does for now.
3196 * Return
3197 * 0 on success, or a negative error in case of failure:
3198 *
3199 * **-EBUSY** if per-CPU memory copy buffer is busy, can try again
3200 * by returning 1 from bpf program.
3201 *
3202 * **-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
3203 *
3204 * **-E2BIG** if *fmt* contains too many format specifiers.
3205 *
3206 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
3207 *
3208 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
3209 * Description
3210 * **bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
3211 * The *m* represents the seq_file. The *data* and *len* represent the
3212 * data to write in bytes.
3213 * Return
3214 * 0 on success, or a negative error in case of failure:
3215 *
3216 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
3217 *
3218 * u64 bpf_sk_cgroup_id(struct bpf_sock *sk)
3219 * Description
3220 * Return the cgroup v2 id of the socket *sk*.
3221 *
3222 * *sk* must be a non-**NULL** pointer to a full socket, e.g. one
3223 * returned from **bpf_sk_lookup_xxx**\ (),
3224 * **bpf_sk_fullsock**\ (), etc. The format of returned id is
3225 * same as in **bpf_skb_cgroup_id**\ ().
3226 *
3227 * This helper is available only if the kernel was compiled with
3228 * the **CONFIG_SOCK_CGROUP_DATA** configuration option.
3229 * Return
3230 * The id is returned or 0 in case the id could not be retrieved.
3231 *
3232 * u64 bpf_sk_ancestor_cgroup_id(struct bpf_sock *sk, int ancestor_level)
3233 * Description
3234 * Return id of cgroup v2 that is ancestor of cgroup associated
3235 * with the *sk* at the *ancestor_level*. The root cgroup is at
3236 * *ancestor_level* zero and each step down the hierarchy
3237 * increments the level. If *ancestor_level* == level of cgroup
3238 * associated with *sk*, then return value will be same as that
3239 * of **bpf_sk_cgroup_id**\ ().
3240 *
3241 * The helper is useful to implement policies based on cgroups
3242 * that are upper in hierarchy than immediate cgroup associated
3243 * with *sk*.
3244 *
3245 * The format of returned id and helper limitations are same as in
3246 * **bpf_sk_cgroup_id**\ ().
3247 * Return
3248 * The id is returned or 0 in case the id could not be retrieved.
3249 *
3250 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
3251 * Description
3252 * Copy *size* bytes from *data* into a ring buffer *ringbuf*.
3253 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3254 * of new data availability is sent.
3255 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3256 * of new data availability is sent unconditionally.
3257 * Return
3258 * 0 on success, or a negative error in case of failure.
3259 *
3260 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
3261 * Description
3262 * Reserve *size* bytes of payload in a ring buffer *ringbuf*.
3263 * Return
3264 * Valid pointer with *size* bytes of memory available; NULL,
3265 * otherwise.
3266 *
3267 * void bpf_ringbuf_submit(void *data, u64 flags)
3268 * Description
3269 * Submit reserved ring buffer sample, pointed to by *data*.
3270 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3271 * of new data availability is sent.
3272 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3273 * of new data availability is sent unconditionally.
3274 * Return
3275 * Nothing. Always succeeds.
3276 *
3277 * void bpf_ringbuf_discard(void *data, u64 flags)
3278 * Description
3279 * Discard reserved ring buffer sample, pointed to by *data*.
3280 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3281 * of new data availability is sent.
3282 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3283 * of new data availability is sent unconditionally.
3284 * Return
3285 * Nothing. Always succeeds.
3286 *
3287 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
3288 * Description
3289 * Query various characteristics of provided ring buffer. What
3290 * exactly is queries is determined by *flags*:
3291 *
3292 * * **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
3293 * * **BPF_RB_RING_SIZE**: The size of ring buffer.
3294 * * **BPF_RB_CONS_POS**: Consumer position (can wrap around).
3295 * * **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
3296 *
3297 * Data returned is just a momentary snapshot of actual values
3298 * and could be inaccurate, so this facility should be used to
3299 * power heuristics and for reporting, not to make 100% correct
3300 * calculation.
3301 * Return
3302 * Requested value, or 0, if *flags* are not recognized.
3303 *
3304 * long bpf_csum_level(struct sk_buff *skb, u64 level)
3305 * Description
3306 * Change the skbs checksum level by one layer up or down, or
3307 * reset it entirely to none in order to have the stack perform
3308 * checksum validation. The level is applicable to the following
3309 * protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
3310 * | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
3311 * through **bpf_skb_adjust_room**\ () helper with passing in
3312 * **BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one call
3313 * to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
3314 * the UDP header is removed. Similarly, an encap of the latter
3315 * into the former could be accompanied by a helper call to
3316 * **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
3317 * skb is still intended to be processed in higher layers of the
3318 * stack instead of just egressing at tc.
3319 *
3320 * There are three supported level settings at this time:
3321 *
3322 * * **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
3323 * with CHECKSUM_UNNECESSARY.
3324 * * **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
3325 * with CHECKSUM_UNNECESSARY.
3326 * * **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
3327 * sets CHECKSUM_NONE to force checksum validation by the stack.
3328 * * **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
3329 * skb->csum_level.
3330 * Return
3331 * 0 on success, or a negative error in case of failure. In the
3332 * case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
3333 * is returned or the error code -EACCES in case the skb is not
3334 * subject to CHECKSUM_UNNECESSARY.
3335 *
3336 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
3337 * Description
3338 * Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
3339 * Return
3340 * *sk* if casting is valid, or NULL otherwise.
3341 *
3342 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
3343 * Description
3344 * Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
3345 * Return
3346 * *sk* if casting is valid, or NULL otherwise.
3347 *
3348 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
3349 * Description
3350 * Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
3351 * Return
3352 * *sk* if casting is valid, or NULL otherwise.
3353 *
3354 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
3355 * Description
3356 * Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
3357 * Return
3358 * *sk* if casting is valid, or NULL otherwise.
3359 *
3360 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
3361 * Description
3362 * Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
3363 * Return
3364 * *sk* if casting is valid, or NULL otherwise.
3365 *
3366 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
3367 * Description
3368 * Return a user or a kernel stack in bpf program provided buffer.
3369 * To achieve this, the helper needs *task*, which is a valid
3370 * pointer to struct task_struct. To store the stacktrace, the
3371 * bpf program provides *buf* with a nonnegative *size*.
3372 *
3373 * The last argument, *flags*, holds the number of stack frames to
3374 * skip (from 0 to 255), masked with
3375 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
3376 * the following flags:
3377 *
3378 * **BPF_F_USER_STACK**
3379 * Collect a user space stack instead of a kernel stack.
3380 * **BPF_F_USER_BUILD_ID**
3381 * Collect buildid+offset instead of ips for user stack,
3382 * only valid if **BPF_F_USER_STACK** is also specified.
3383 *
3384 * **bpf_get_task_stack**\ () can collect up to
3385 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
3386 * to sufficient large buffer size. Note that
3387 * this limit can be controlled with the **sysctl** program, and
3388 * that it should be manually increased in order to profile long
3389 * user stacks (such as stacks for Java programs). To do so, use:
3390 *
3391 * ::
3392 *
3393 * # sysctl kernel.perf_event_max_stack=<new value>
3394 * Return
3395 * A non-negative value equal to or less than *size* on success,
3396 * or a negative error in case of failure.
3397 *
3398 */
3399 #define __BPF_FUNC_MAPPER(FN) \
3400 FN(unspec), \
3401 FN(map_lookup_elem), \
3402 FN(map_update_elem), \
3403 FN(map_delete_elem), \
3404 FN(probe_read), \
3405 FN(ktime_get_ns), \
3406 FN(trace_printk), \
3407 FN(get_prandom_u32), \
3408 FN(get_smp_processor_id), \
3409 FN(skb_store_bytes), \
3410 FN(l3_csum_replace), \
3411 FN(l4_csum_replace), \
3412 FN(tail_call), \
3413 FN(clone_redirect), \
3414 FN(get_current_pid_tgid), \
3415 FN(get_current_uid_gid), \
3416 FN(get_current_comm), \
3417 FN(get_cgroup_classid), \
3418 FN(skb_vlan_push), \
3419 FN(skb_vlan_pop), \
3420 FN(skb_get_tunnel_key), \
3421 FN(skb_set_tunnel_key), \
3422 FN(perf_event_read), \
3423 FN(redirect), \
3424 FN(get_route_realm), \
3425 FN(perf_event_output), \
3426 FN(skb_load_bytes), \
3427 FN(get_stackid), \
3428 FN(csum_diff), \
3429 FN(skb_get_tunnel_opt), \
3430 FN(skb_set_tunnel_opt), \
3431 FN(skb_change_proto), \
3432 FN(skb_change_type), \
3433 FN(skb_under_cgroup), \
3434 FN(get_hash_recalc), \
3435 FN(get_current_task), \
3436 FN(probe_write_user), \
3437 FN(current_task_under_cgroup), \
3438 FN(skb_change_tail), \
3439 FN(skb_pull_data), \
3440 FN(csum_update), \
3441 FN(set_hash_invalid), \
3442 FN(get_numa_node_id), \
3443 FN(skb_change_head), \
3444 FN(xdp_adjust_head), \
3445 FN(probe_read_str), \
3446 FN(get_socket_cookie), \
3447 FN(get_socket_uid), \
3448 FN(set_hash), \
3449 FN(setsockopt), \
3450 FN(skb_adjust_room), \
3451 FN(redirect_map), \
3452 FN(sk_redirect_map), \
3453 FN(sock_map_update), \
3454 FN(xdp_adjust_meta), \
3455 FN(perf_event_read_value), \
3456 FN(perf_prog_read_value), \
3457 FN(getsockopt), \
3458 FN(override_return), \
3459 FN(sock_ops_cb_flags_set), \
3460 FN(msg_redirect_map), \
3461 FN(msg_apply_bytes), \
3462 FN(msg_cork_bytes), \
3463 FN(msg_pull_data), \
3464 FN(bind), \
3465 FN(xdp_adjust_tail), \
3466 FN(skb_get_xfrm_state), \
3467 FN(get_stack), \
3468 FN(skb_load_bytes_relative), \
3469 FN(fib_lookup), \
3470 FN(sock_hash_update), \
3471 FN(msg_redirect_hash), \
3472 FN(sk_redirect_hash), \
3473 FN(lwt_push_encap), \
3474 FN(lwt_seg6_store_bytes), \
3475 FN(lwt_seg6_adjust_srh), \
3476 FN(lwt_seg6_action), \
3477 FN(rc_repeat), \
3478 FN(rc_keydown), \
3479 FN(skb_cgroup_id), \
3480 FN(get_current_cgroup_id), \
3481 FN(get_local_storage), \
3482 FN(sk_select_reuseport), \
3483 FN(skb_ancestor_cgroup_id), \
3484 FN(sk_lookup_tcp), \
3485 FN(sk_lookup_udp), \
3486 FN(sk_release), \
3487 FN(map_push_elem), \
3488 FN(map_pop_elem), \
3489 FN(map_peek_elem), \
3490 FN(msg_push_data), \
3491 FN(msg_pop_data), \
3492 FN(rc_pointer_rel), \
3493 FN(spin_lock), \
3494 FN(spin_unlock), \
3495 FN(sk_fullsock), \
3496 FN(tcp_sock), \
3497 FN(skb_ecn_set_ce), \
3498 FN(get_listener_sock), \
3499 FN(skc_lookup_tcp), \
3500 FN(tcp_check_syncookie), \
3501 FN(sysctl_get_name), \
3502 FN(sysctl_get_current_value), \
3503 FN(sysctl_get_new_value), \
3504 FN(sysctl_set_new_value), \
3505 FN(strtol), \
3506 FN(strtoul), \
3507 FN(sk_storage_get), \
3508 FN(sk_storage_delete), \
3509 FN(send_signal), \
3510 FN(tcp_gen_syncookie), \
3511 FN(skb_output), \
3512 FN(probe_read_user), \
3513 FN(probe_read_kernel), \
3514 FN(probe_read_user_str), \
3515 FN(probe_read_kernel_str), \
3516 FN(tcp_send_ack), \
3517 FN(send_signal_thread), \
3518 FN(jiffies64), \
3519 FN(read_branch_records), \
3520 FN(get_ns_current_pid_tgid), \
3521 FN(xdp_output), \
3522 FN(get_netns_cookie), \
3523 FN(get_current_ancestor_cgroup_id), \
3524 FN(sk_assign), \
3525 FN(ktime_get_boot_ns), \
3526 FN(seq_printf), \
3527 FN(seq_write), \
3528 FN(sk_cgroup_id), \
3529 FN(sk_ancestor_cgroup_id), \
3530 FN(ringbuf_output), \
3531 FN(ringbuf_reserve), \
3532 FN(ringbuf_submit), \
3533 FN(ringbuf_discard), \
3534 FN(ringbuf_query), \
3535 FN(csum_level), \
3536 FN(skc_to_tcp6_sock), \
3537 FN(skc_to_tcp_sock), \
3538 FN(skc_to_tcp_timewait_sock), \
3539 FN(skc_to_tcp_request_sock), \
3540 FN(skc_to_udp6_sock), \
3541 FN(get_task_stack), \
3542 /* */
3543
3544 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
3545 * function eBPF program intends to call
3546 */
3547 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
3548 enum bpf_func_id {
3549 __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
3550 __BPF_FUNC_MAX_ID,
3551 };
3552 #undef __BPF_ENUM_FN
3553
3554 /* All flags used by eBPF helper functions, placed here. */
3555
3556 /* BPF_FUNC_skb_store_bytes flags. */
3557 enum {
3558 BPF_F_RECOMPUTE_CSUM = (1ULL << 0),
3559 BPF_F_INVALIDATE_HASH = (1ULL << 1),
3560 };
3561
3562 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
3563 * First 4 bits are for passing the header field size.
3564 */
3565 enum {
3566 BPF_F_HDR_FIELD_MASK = 0xfULL,
3567 };
3568
3569 /* BPF_FUNC_l4_csum_replace flags. */
3570 enum {
3571 BPF_F_PSEUDO_HDR = (1ULL << 4),
3572 BPF_F_MARK_MANGLED_0 = (1ULL << 5),
3573 BPF_F_MARK_ENFORCE = (1ULL << 6),
3574 };
3575
3576 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
3577 enum {
3578 BPF_F_INGRESS = (1ULL << 0),
3579 };
3580
3581 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
3582 enum {
3583 BPF_F_TUNINFO_IPV6 = (1ULL << 0),
3584 };
3585
3586 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
3587 enum {
3588 BPF_F_SKIP_FIELD_MASK = 0xffULL,
3589 BPF_F_USER_STACK = (1ULL << 8),
3590 /* flags used by BPF_FUNC_get_stackid only. */
3591 BPF_F_FAST_STACK_CMP = (1ULL << 9),
3592 BPF_F_REUSE_STACKID = (1ULL << 10),
3593 /* flags used by BPF_FUNC_get_stack only. */
3594 BPF_F_USER_BUILD_ID = (1ULL << 11),
3595 };
3596
3597 /* BPF_FUNC_skb_set_tunnel_key flags. */
3598 enum {
3599 BPF_F_ZERO_CSUM_TX = (1ULL << 1),
3600 BPF_F_DONT_FRAGMENT = (1ULL << 2),
3601 BPF_F_SEQ_NUMBER = (1ULL << 3),
3602 };
3603
3604 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
3605 * BPF_FUNC_perf_event_read_value flags.
3606 */
3607 enum {
3608 BPF_F_INDEX_MASK = 0xffffffffULL,
3609 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
3610 /* BPF_FUNC_perf_event_output for sk_buff input context. */
3611 BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
3612 };
3613
3614 /* Current network namespace */
3615 enum {
3616 BPF_F_CURRENT_NETNS = (-1L),
3617 };
3618
3619 /* BPF_FUNC_csum_level level values. */
3620 enum {
3621 BPF_CSUM_LEVEL_QUERY,
3622 BPF_CSUM_LEVEL_INC,
3623 BPF_CSUM_LEVEL_DEC,
3624 BPF_CSUM_LEVEL_RESET,
3625 };
3626
3627 /* BPF_FUNC_skb_adjust_room flags. */
3628 enum {
3629 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0),
3630 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1),
3631 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2),
3632 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3),
3633 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4),
3634 BPF_F_ADJ_ROOM_NO_CSUM_RESET = (1ULL << 5),
3635 };
3636
3637 enum {
3638 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff,
3639 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56,
3640 };
3641
3642 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \
3643 BPF_ADJ_ROOM_ENCAP_L2_MASK) \
3644 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
3645
3646 /* BPF_FUNC_sysctl_get_name flags. */
3647 enum {
3648 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0),
3649 };
3650
3651 /* BPF_FUNC_sk_storage_get flags */
3652 enum {
3653 BPF_SK_STORAGE_GET_F_CREATE = (1ULL << 0),
3654 };
3655
3656 /* BPF_FUNC_read_branch_records flags. */
3657 enum {
3658 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0),
3659 };
3660
3661 /* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
3662 * BPF_FUNC_bpf_ringbuf_output flags.
3663 */
3664 enum {
3665 BPF_RB_NO_WAKEUP = (1ULL << 0),
3666 BPF_RB_FORCE_WAKEUP = (1ULL << 1),
3667 };
3668
3669 /* BPF_FUNC_bpf_ringbuf_query flags */
3670 enum {
3671 BPF_RB_AVAIL_DATA = 0,
3672 BPF_RB_RING_SIZE = 1,
3673 BPF_RB_CONS_POS = 2,
3674 BPF_RB_PROD_POS = 3,
3675 };
3676
3677 /* BPF ring buffer constants */
3678 enum {
3679 BPF_RINGBUF_BUSY_BIT = (1U << 31),
3680 BPF_RINGBUF_DISCARD_BIT = (1U << 30),
3681 BPF_RINGBUF_HDR_SZ = 8,
3682 };
3683
3684 /* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
3685 enum {
3686 BPF_SK_LOOKUP_F_REPLACE = (1ULL << 0),
3687 BPF_SK_LOOKUP_F_NO_REUSEPORT = (1ULL << 1),
3688 };
3689
3690 /* Mode for BPF_FUNC_skb_adjust_room helper. */
3691 enum bpf_adj_room_mode {
3692 BPF_ADJ_ROOM_NET,
3693 BPF_ADJ_ROOM_MAC,
3694 };
3695
3696 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
3697 enum bpf_hdr_start_off {
3698 BPF_HDR_START_MAC,
3699 BPF_HDR_START_NET,
3700 };
3701
3702 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
3703 enum bpf_lwt_encap_mode {
3704 BPF_LWT_ENCAP_SEG6,
3705 BPF_LWT_ENCAP_SEG6_INLINE,
3706 BPF_LWT_ENCAP_IP,
3707 };
3708
3709 #define __bpf_md_ptr(type, name) \
3710 union { \
3711 type name; \
3712 __u64 :64; \
3713 } __attribute__((aligned(8)))
3714
3715 /* user accessible mirror of in-kernel sk_buff.
3716 * new fields can only be added to the end of this structure
3717 */
3718 struct __sk_buff {
3719 __u32 len;
3720 __u32 pkt_type;
3721 __u32 mark;
3722 __u32 queue_mapping;
3723 __u32 protocol;
3724 __u32 vlan_present;
3725 __u32 vlan_tci;
3726 __u32 vlan_proto;
3727 __u32 priority;
3728 __u32 ingress_ifindex;
3729 __u32 ifindex;
3730 __u32 tc_index;
3731 __u32 cb[5];
3732 __u32 hash;
3733 __u32 tc_classid;
3734 __u32 data;
3735 __u32 data_end;
3736 __u32 napi_id;
3737
3738 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
3739 __u32 family;
3740 __u32 remote_ip4; /* Stored in network byte order */
3741 __u32 local_ip4; /* Stored in network byte order */
3742 __u32 remote_ip6[4]; /* Stored in network byte order */
3743 __u32 local_ip6[4]; /* Stored in network byte order */
3744 __u32 remote_port; /* Stored in network byte order */
3745 __u32 local_port; /* stored in host byte order */
3746 /* ... here. */
3747
3748 __u32 data_meta;
3749 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
3750 __u64 tstamp;
3751 __u32 wire_len;
3752 __u32 gso_segs;
3753 __bpf_md_ptr(struct bpf_sock *, sk);
3754 __u32 gso_size;
3755 };
3756
3757 struct bpf_tunnel_key {
3758 __u32 tunnel_id;
3759 union {
3760 __u32 remote_ipv4;
3761 __u32 remote_ipv6[4];
3762 };
3763 __u8 tunnel_tos;
3764 __u8 tunnel_ttl;
3765 __u16 tunnel_ext; /* Padding, future use. */
3766 __u32 tunnel_label;
3767 };
3768
3769 /* user accessible mirror of in-kernel xfrm_state.
3770 * new fields can only be added to the end of this structure
3771 */
3772 struct bpf_xfrm_state {
3773 __u32 reqid;
3774 __u32 spi; /* Stored in network byte order */
3775 __u16 family;
3776 __u16 ext; /* Padding, future use. */
3777 union {
3778 __u32 remote_ipv4; /* Stored in network byte order */
3779 __u32 remote_ipv6[4]; /* Stored in network byte order */
3780 };
3781 };
3782
3783 /* Generic BPF return codes which all BPF program types may support.
3784 * The values are binary compatible with their TC_ACT_* counter-part to
3785 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
3786 * programs.
3787 *
3788 * XDP is handled seprately, see XDP_*.
3789 */
3790 enum bpf_ret_code {
3791 BPF_OK = 0,
3792 /* 1 reserved */
3793 BPF_DROP = 2,
3794 /* 3-6 reserved */
3795 BPF_REDIRECT = 7,
3796 /* >127 are reserved for prog type specific return codes.
3797 *
3798 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
3799 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
3800 * changed and should be routed based on its new L3 header.
3801 * (This is an L3 redirect, as opposed to L2 redirect
3802 * represented by BPF_REDIRECT above).
3803 */
3804 BPF_LWT_REROUTE = 128,
3805 };
3806
3807 struct bpf_sock {
3808 __u32 bound_dev_if;
3809 __u32 family;
3810 __u32 type;
3811 __u32 protocol;
3812 __u32 mark;
3813 __u32 priority;
3814 /* IP address also allows 1 and 2 bytes access */
3815 __u32 src_ip4;
3816 __u32 src_ip6[4];
3817 __u32 src_port; /* host byte order */
3818 __u32 dst_port; /* network byte order */
3819 __u32 dst_ip4;
3820 __u32 dst_ip6[4];
3821 __u32 state;
3822 __s32 rx_queue_mapping;
3823 };
3824
3825 struct bpf_tcp_sock {
3826 __u32 snd_cwnd; /* Sending congestion window */
3827 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */
3828 __u32 rtt_min;
3829 __u32 snd_ssthresh; /* Slow start size threshold */
3830 __u32 rcv_nxt; /* What we want to receive next */
3831 __u32 snd_nxt; /* Next sequence we send */
3832 __u32 snd_una; /* First byte we want an ack for */
3833 __u32 mss_cache; /* Cached effective mss, not including SACKS */
3834 __u32 ecn_flags; /* ECN status bits. */
3835 __u32 rate_delivered; /* saved rate sample: packets delivered */
3836 __u32 rate_interval_us; /* saved rate sample: time elapsed */
3837 __u32 packets_out; /* Packets which are "in flight" */
3838 __u32 retrans_out; /* Retransmitted packets out */
3839 __u32 total_retrans; /* Total retransmits for entire connection */
3840 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn
3841 * total number of segments in.
3842 */
3843 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn
3844 * total number of data segments in.
3845 */
3846 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut
3847 * The total number of segments sent.
3848 */
3849 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut
3850 * total number of data segments sent.
3851 */
3852 __u32 lost_out; /* Lost packets */
3853 __u32 sacked_out; /* SACK'd packets */
3854 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived
3855 * sum(delta(rcv_nxt)), or how many bytes
3856 * were acked.
3857 */
3858 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked
3859 * sum(delta(snd_una)), or how many bytes
3860 * were acked.
3861 */
3862 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups
3863 * total number of DSACK blocks received
3864 */
3865 __u32 delivered; /* Total data packets delivered incl. rexmits */
3866 __u32 delivered_ce; /* Like the above but only ECE marked packets */
3867 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */
3868 };
3869
3870 struct bpf_sock_tuple {
3871 union {
3872 struct {
3873 __be32 saddr;
3874 __be32 daddr;
3875 __be16 sport;
3876 __be16 dport;
3877 } ipv4;
3878 struct {
3879 __be32 saddr[4];
3880 __be32 daddr[4];
3881 __be16 sport;
3882 __be16 dport;
3883 } ipv6;
3884 };
3885 };
3886
3887 struct bpf_xdp_sock {
3888 __u32 queue_id;
3889 };
3890
3891 #define XDP_PACKET_HEADROOM 256
3892
3893 /* User return codes for XDP prog type.
3894 * A valid XDP program must return one of these defined values. All other
3895 * return codes are reserved for future use. Unknown return codes will
3896 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
3897 */
3898 enum xdp_action {
3899 XDP_ABORTED = 0,
3900 XDP_DROP,
3901 XDP_PASS,
3902 XDP_TX,
3903 XDP_REDIRECT,
3904 };
3905
3906 /* user accessible metadata for XDP packet hook
3907 * new fields must be added to the end of this structure
3908 */
3909 struct xdp_md {
3910 __u32 data;
3911 __u32 data_end;
3912 __u32 data_meta;
3913 /* Below access go through struct xdp_rxq_info */
3914 __u32 ingress_ifindex; /* rxq->dev->ifindex */
3915 __u32 rx_queue_index; /* rxq->queue_index */
3916
3917 __u32 egress_ifindex; /* txq->dev->ifindex */
3918 };
3919
3920 /* DEVMAP map-value layout
3921 *
3922 * The struct data-layout of map-value is a configuration interface.
3923 * New members can only be added to the end of this structure.
3924 */
3925 struct bpf_devmap_val {
3926 __u32 ifindex; /* device index */
3927 union {
3928 int fd; /* prog fd on map write */
3929 __u32 id; /* prog id on map read */
3930 } bpf_prog;
3931 };
3932
3933 /* CPUMAP map-value layout
3934 *
3935 * The struct data-layout of map-value is a configuration interface.
3936 * New members can only be added to the end of this structure.
3937 */
3938 struct bpf_cpumap_val {
3939 __u32 qsize; /* queue size to remote target CPU */
3940 union {
3941 int fd; /* prog fd on map write */
3942 __u32 id; /* prog id on map read */
3943 } bpf_prog;
3944 };
3945
3946 enum sk_action {
3947 SK_DROP = 0,
3948 SK_PASS,
3949 };
3950
3951 /* user accessible metadata for SK_MSG packet hook, new fields must
3952 * be added to the end of this structure
3953 */
3954 struct sk_msg_md {
3955 __bpf_md_ptr(void *, data);
3956 __bpf_md_ptr(void *, data_end);
3957
3958 __u32 family;
3959 __u32 remote_ip4; /* Stored in network byte order */
3960 __u32 local_ip4; /* Stored in network byte order */
3961 __u32 remote_ip6[4]; /* Stored in network byte order */
3962 __u32 local_ip6[4]; /* Stored in network byte order */
3963 __u32 remote_port; /* Stored in network byte order */
3964 __u32 local_port; /* stored in host byte order */
3965 __u32 size; /* Total size of sk_msg */
3966
3967 __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
3968 };
3969
3970 struct sk_reuseport_md {
3971 /*
3972 * Start of directly accessible data. It begins from
3973 * the tcp/udp header.
3974 */
3975 __bpf_md_ptr(void *, data);
3976 /* End of directly accessible data */
3977 __bpf_md_ptr(void *, data_end);
3978 /*
3979 * Total length of packet (starting from the tcp/udp header).
3980 * Note that the directly accessible bytes (data_end - data)
3981 * could be less than this "len". Those bytes could be
3982 * indirectly read by a helper "bpf_skb_load_bytes()".
3983 */
3984 __u32 len;
3985 /*
3986 * Eth protocol in the mac header (network byte order). e.g.
3987 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
3988 */
3989 __u32 eth_protocol;
3990 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
3991 __u32 bind_inany; /* Is sock bound to an INANY address? */
3992 __u32 hash; /* A hash of the packet 4 tuples */
3993 };
3994
3995 #define BPF_TAG_SIZE 8
3996
3997 struct bpf_prog_info {
3998 __u32 type;
3999 __u32 id;
4000 __u8 tag[BPF_TAG_SIZE];
4001 __u32 jited_prog_len;
4002 __u32 xlated_prog_len;
4003 __aligned_u64 jited_prog_insns;
4004 __aligned_u64 xlated_prog_insns;
4005 __u64 load_time; /* ns since boottime */
4006 __u32 created_by_uid;
4007 __u32 nr_map_ids;
4008 __aligned_u64 map_ids;
4009 char name[BPF_OBJ_NAME_LEN];
4010 __u32 ifindex;
4011 __u32 gpl_compatible:1;
4012 __u32 :31; /* alignment pad */
4013 __u64 netns_dev;
4014 __u64 netns_ino;
4015 __u32 nr_jited_ksyms;
4016 __u32 nr_jited_func_lens;
4017 __aligned_u64 jited_ksyms;
4018 __aligned_u64 jited_func_lens;
4019 __u32 btf_id;
4020 __u32 func_info_rec_size;
4021 __aligned_u64 func_info;
4022 __u32 nr_func_info;
4023 __u32 nr_line_info;
4024 __aligned_u64 line_info;
4025 __aligned_u64 jited_line_info;
4026 __u32 nr_jited_line_info;
4027 __u32 line_info_rec_size;
4028 __u32 jited_line_info_rec_size;
4029 __u32 nr_prog_tags;
4030 __aligned_u64 prog_tags;
4031 __u64 run_time_ns;
4032 __u64 run_cnt;
4033 } __attribute__((aligned(8)));
4034
4035 struct bpf_map_info {
4036 __u32 type;
4037 __u32 id;
4038 __u32 key_size;
4039 __u32 value_size;
4040 __u32 max_entries;
4041 __u32 map_flags;
4042 char name[BPF_OBJ_NAME_LEN];
4043 __u32 ifindex;
4044 __u32 btf_vmlinux_value_type_id;
4045 __u64 netns_dev;
4046 __u64 netns_ino;
4047 __u32 btf_id;
4048 __u32 btf_key_type_id;
4049 __u32 btf_value_type_id;
4050 } __attribute__((aligned(8)));
4051
4052 struct bpf_btf_info {
4053 __aligned_u64 btf;
4054 __u32 btf_size;
4055 __u32 id;
4056 } __attribute__((aligned(8)));
4057
4058 struct bpf_link_info {
4059 __u32 type;
4060 __u32 id;
4061 __u32 prog_id;
4062 union {
4063 struct {
4064 __aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
4065 __u32 tp_name_len; /* in/out: tp_name buffer len */
4066 } raw_tracepoint;
4067 struct {
4068 __u32 attach_type;
4069 } tracing;
4070 struct {
4071 __u64 cgroup_id;
4072 __u32 attach_type;
4073 } cgroup;
4074 struct {
4075 __u32 netns_ino;
4076 __u32 attach_type;
4077 } netns;
4078 struct {
4079 __u32 ifindex;
4080 } xdp;
4081 };
4082 } __attribute__((aligned(8)));
4083
4084 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
4085 * by user and intended to be used by socket (e.g. to bind to, depends on
4086 * attach type).
4087 */
4088 struct bpf_sock_addr {
4089 __u32 user_family; /* Allows 4-byte read, but no write. */
4090 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
4091 * Stored in network byte order.
4092 */
4093 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
4094 * Stored in network byte order.
4095 */
4096 __u32 user_port; /* Allows 1,2,4-byte read and 4-byte write.
4097 * Stored in network byte order
4098 */
4099 __u32 family; /* Allows 4-byte read, but no write */
4100 __u32 type; /* Allows 4-byte read, but no write */
4101 __u32 protocol; /* Allows 4-byte read, but no write */
4102 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write.
4103 * Stored in network byte order.
4104 */
4105 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
4106 * Stored in network byte order.
4107 */
4108 __bpf_md_ptr(struct bpf_sock *, sk);
4109 };
4110
4111 /* User bpf_sock_ops struct to access socket values and specify request ops
4112 * and their replies.
4113 * Some of this fields are in network (bigendian) byte order and may need
4114 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
4115 * New fields can only be added at the end of this structure
4116 */
4117 struct bpf_sock_ops {
4118 __u32 op;
4119 union {
4120 __u32 args[4]; /* Optionally passed to bpf program */
4121 __u32 reply; /* Returned by bpf program */
4122 __u32 replylong[4]; /* Optionally returned by bpf prog */
4123 };
4124 __u32 family;
4125 __u32 remote_ip4; /* Stored in network byte order */
4126 __u32 local_ip4; /* Stored in network byte order */
4127 __u32 remote_ip6[4]; /* Stored in network byte order */
4128 __u32 local_ip6[4]; /* Stored in network byte order */
4129 __u32 remote_port; /* Stored in network byte order */
4130 __u32 local_port; /* stored in host byte order */
4131 __u32 is_fullsock; /* Some TCP fields are only valid if
4132 * there is a full socket. If not, the
4133 * fields read as zero.
4134 */
4135 __u32 snd_cwnd;
4136 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
4137 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
4138 __u32 state;
4139 __u32 rtt_min;
4140 __u32 snd_ssthresh;
4141 __u32 rcv_nxt;
4142 __u32 snd_nxt;
4143 __u32 snd_una;
4144 __u32 mss_cache;
4145 __u32 ecn_flags;
4146 __u32 rate_delivered;
4147 __u32 rate_interval_us;
4148 __u32 packets_out;
4149 __u32 retrans_out;
4150 __u32 total_retrans;
4151 __u32 segs_in;
4152 __u32 data_segs_in;
4153 __u32 segs_out;
4154 __u32 data_segs_out;
4155 __u32 lost_out;
4156 __u32 sacked_out;
4157 __u32 sk_txhash;
4158 __u64 bytes_received;
4159 __u64 bytes_acked;
4160 __bpf_md_ptr(struct bpf_sock *, sk);
4161 };
4162
4163 /* Definitions for bpf_sock_ops_cb_flags */
4164 enum {
4165 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0),
4166 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1),
4167 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2),
4168 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3),
4169 /* Mask of all currently supported cb flags */
4170 BPF_SOCK_OPS_ALL_CB_FLAGS = 0xF,
4171 };
4172
4173 /* List of known BPF sock_ops operators.
4174 * New entries can only be added at the end
4175 */
4176 enum {
4177 BPF_SOCK_OPS_VOID,
4178 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
4179 * -1 if default value should be used
4180 */
4181 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
4182 * window (in packets) or -1 if default
4183 * value should be used
4184 */
4185 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
4186 * active connection is initialized
4187 */
4188 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
4189 * active connection is
4190 * established
4191 */
4192 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
4193 * passive connection is
4194 * established
4195 */
4196 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
4197 * needs ECN
4198 */
4199 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
4200 * based on the path and may be
4201 * dependent on the congestion control
4202 * algorithm. In general it indicates
4203 * a congestion threshold. RTTs above
4204 * this indicate congestion
4205 */
4206 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
4207 * Arg1: value of icsk_retransmits
4208 * Arg2: value of icsk_rto
4209 * Arg3: whether RTO has expired
4210 */
4211 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
4212 * Arg1: sequence number of 1st byte
4213 * Arg2: # segments
4214 * Arg3: return value of
4215 * tcp_transmit_skb (0 => success)
4216 */
4217 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
4218 * Arg1: old_state
4219 * Arg2: new_state
4220 */
4221 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
4222 * socket transition to LISTEN state.
4223 */
4224 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT.
4225 */
4226 };
4227
4228 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
4229 * changes between the TCP and BPF versions. Ideally this should never happen.
4230 * If it does, we need to add code to convert them before calling
4231 * the BPF sock_ops function.
4232 */
4233 enum {
4234 BPF_TCP_ESTABLISHED = 1,
4235 BPF_TCP_SYN_SENT,
4236 BPF_TCP_SYN_RECV,
4237 BPF_TCP_FIN_WAIT1,
4238 BPF_TCP_FIN_WAIT2,
4239 BPF_TCP_TIME_WAIT,
4240 BPF_TCP_CLOSE,
4241 BPF_TCP_CLOSE_WAIT,
4242 BPF_TCP_LAST_ACK,
4243 BPF_TCP_LISTEN,
4244 BPF_TCP_CLOSING, /* Now a valid state */
4245 BPF_TCP_NEW_SYN_RECV,
4246
4247 BPF_TCP_MAX_STATES /* Leave at the end! */
4248 };
4249
4250 enum {
4251 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */
4252 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */
4253 };
4254
4255 struct bpf_perf_event_value {
4256 __u64 counter;
4257 __u64 enabled;
4258 __u64 running;
4259 };
4260
4261 enum {
4262 BPF_DEVCG_ACC_MKNOD = (1ULL << 0),
4263 BPF_DEVCG_ACC_READ = (1ULL << 1),
4264 BPF_DEVCG_ACC_WRITE = (1ULL << 2),
4265 };
4266
4267 enum {
4268 BPF_DEVCG_DEV_BLOCK = (1ULL << 0),
4269 BPF_DEVCG_DEV_CHAR = (1ULL << 1),
4270 };
4271
4272 struct bpf_cgroup_dev_ctx {
4273 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
4274 __u32 access_type;
4275 __u32 major;
4276 __u32 minor;
4277 };
4278
4279 struct bpf_raw_tracepoint_args {
4280 __u64 args[0];
4281 };
4282
4283 /* DIRECT: Skip the FIB rules and go to FIB table associated with device
4284 * OUTPUT: Do lookup from egress perspective; default is ingress
4285 */
4286 enum {
4287 BPF_FIB_LOOKUP_DIRECT = (1U << 0),
4288 BPF_FIB_LOOKUP_OUTPUT = (1U << 1),
4289 };
4290
4291 enum {
4292 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
4293 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
4294 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
4295 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
4296 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
4297 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
4298 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
4299 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
4300 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
4301 };
4302
4303 struct bpf_fib_lookup {
4304 /* input: network family for lookup (AF_INET, AF_INET6)
4305 * output: network family of egress nexthop
4306 */
4307 __u8 family;
4308
4309 /* set if lookup is to consider L4 data - e.g., FIB rules */
4310 __u8 l4_protocol;
4311 __be16 sport;
4312 __be16 dport;
4313
4314 /* total length of packet from network header - used for MTU check */
4315 __u16 tot_len;
4316
4317 /* input: L3 device index for lookup
4318 * output: device index from FIB lookup
4319 */
4320 __u32 ifindex;
4321
4322 union {
4323 /* inputs to lookup */
4324 __u8 tos; /* AF_INET */
4325 __be32 flowinfo; /* AF_INET6, flow_label + priority */
4326
4327 /* output: metric of fib result (IPv4/IPv6 only) */
4328 __u32 rt_metric;
4329 };
4330
4331 union {
4332 __be32 ipv4_src;
4333 __u32 ipv6_src[4]; /* in6_addr; network order */
4334 };
4335
4336 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
4337 * network header. output: bpf_fib_lookup sets to gateway address
4338 * if FIB lookup returns gateway route
4339 */
4340 union {
4341 __be32 ipv4_dst;
4342 __u32 ipv6_dst[4]; /* in6_addr; network order */
4343 };
4344
4345 /* output */
4346 __be16 h_vlan_proto;
4347 __be16 h_vlan_TCI;
4348 __u8 smac[6]; /* ETH_ALEN */
4349 __u8 dmac[6]; /* ETH_ALEN */
4350 };
4351
4352 enum bpf_task_fd_type {
4353 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
4354 BPF_FD_TYPE_TRACEPOINT, /* tp name */
4355 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
4356 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
4357 BPF_FD_TYPE_UPROBE, /* filename + offset */
4358 BPF_FD_TYPE_URETPROBE, /* filename + offset */
4359 };
4360
4361 enum {
4362 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0),
4363 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1),
4364 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2),
4365 };
4366
4367 struct bpf_flow_keys {
4368 __u16 nhoff;
4369 __u16 thoff;
4370 __u16 addr_proto; /* ETH_P_* of valid addrs */
4371 __u8 is_frag;
4372 __u8 is_first_frag;
4373 __u8 is_encap;
4374 __u8 ip_proto;
4375 __be16 n_proto;
4376 __be16 sport;
4377 __be16 dport;
4378 union {
4379 struct {
4380 __be32 ipv4_src;
4381 __be32 ipv4_dst;
4382 };
4383 struct {
4384 __u32 ipv6_src[4]; /* in6_addr; network order */
4385 __u32 ipv6_dst[4]; /* in6_addr; network order */
4386 };
4387 };
4388 __u32 flags;
4389 __be32 flow_label;
4390 };
4391
4392 struct bpf_func_info {
4393 __u32 insn_off;
4394 __u32 type_id;
4395 };
4396
4397 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
4398 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
4399
4400 struct bpf_line_info {
4401 __u32 insn_off;
4402 __u32 file_name_off;
4403 __u32 line_off;
4404 __u32 line_col;
4405 };
4406
4407 struct bpf_spin_lock {
4408 __u32 val;
4409 };
4410
4411 struct bpf_sysctl {
4412 __u32 write; /* Sysctl is being read (= 0) or written (= 1).
4413 * Allows 1,2,4-byte read, but no write.
4414 */
4415 __u32 file_pos; /* Sysctl file position to read from, write to.
4416 * Allows 1,2,4-byte read an 4-byte write.
4417 */
4418 };
4419
4420 struct bpf_sockopt {
4421 __bpf_md_ptr(struct bpf_sock *, sk);
4422 __bpf_md_ptr(void *, optval);
4423 __bpf_md_ptr(void *, optval_end);
4424
4425 __s32 level;
4426 __s32 optname;
4427 __s32 optlen;
4428 __s32 retval;
4429 };
4430
4431 struct bpf_pidns_info {
4432 __u32 pid;
4433 __u32 tgid;
4434 };
4435
4436 /* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
4437 struct bpf_sk_lookup {
4438 __bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
4439
4440 __u32 family; /* Protocol family (AF_INET, AF_INET6) */
4441 __u32 protocol; /* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
4442 __u32 remote_ip4; /* Network byte order */
4443 __u32 remote_ip6[4]; /* Network byte order */
4444 __u32 remote_port; /* Network byte order */
4445 __u32 local_ip4; /* Network byte order */
4446 __u32 local_ip6[4]; /* Network byte order */
4447 __u32 local_port; /* Host byte order */
4448 };
4449
4450 #endif /* _UAPI__LINUX_BPF_H__ */