]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/uapi/linux/btrfs_tree.h
Merge remote-tracking branch 'mauro-exp/docbook3' into death-to-docbook
[mirror_ubuntu-artful-kernel.git] / include / uapi / linux / btrfs_tree.h
1 #ifndef _BTRFS_CTREE_H_
2 #define _BTRFS_CTREE_H_
3
4 #include <linux/btrfs.h>
5 #include <linux/types.h>
6
7 /*
8 * This header contains the structure definitions and constants used
9 * by file system objects that can be retrieved using
10 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
11 * is needed to describe a leaf node's key or item contents.
12 */
13
14 /* holds pointers to all of the tree roots */
15 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
16
17 /* stores information about which extents are in use, and reference counts */
18 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
19
20 /*
21 * chunk tree stores translations from logical -> physical block numbering
22 * the super block points to the chunk tree
23 */
24 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
25
26 /*
27 * stores information about which areas of a given device are in use.
28 * one per device. The tree of tree roots points to the device tree
29 */
30 #define BTRFS_DEV_TREE_OBJECTID 4ULL
31
32 /* one per subvolume, storing files and directories */
33 #define BTRFS_FS_TREE_OBJECTID 5ULL
34
35 /* directory objectid inside the root tree */
36 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
37
38 /* holds checksums of all the data extents */
39 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
40
41 /* holds quota configuration and tracking */
42 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
43
44 /* for storing items that use the BTRFS_UUID_KEY* types */
45 #define BTRFS_UUID_TREE_OBJECTID 9ULL
46
47 /* tracks free space in block groups. */
48 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
49
50 /* device stats in the device tree */
51 #define BTRFS_DEV_STATS_OBJECTID 0ULL
52
53 /* for storing balance parameters in the root tree */
54 #define BTRFS_BALANCE_OBJECTID -4ULL
55
56 /* orhpan objectid for tracking unlinked/truncated files */
57 #define BTRFS_ORPHAN_OBJECTID -5ULL
58
59 /* does write ahead logging to speed up fsyncs */
60 #define BTRFS_TREE_LOG_OBJECTID -6ULL
61 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
62
63 /* for space balancing */
64 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
65 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
66
67 /*
68 * extent checksums all have this objectid
69 * this allows them to share the logging tree
70 * for fsyncs
71 */
72 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
73
74 /* For storing free space cache */
75 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
76
77 /*
78 * The inode number assigned to the special inode for storing
79 * free ino cache
80 */
81 #define BTRFS_FREE_INO_OBJECTID -12ULL
82
83 /* dummy objectid represents multiple objectids */
84 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
85
86 /*
87 * All files have objectids in this range.
88 */
89 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
90 #define BTRFS_LAST_FREE_OBJECTID -256ULL
91 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
92
93
94 /*
95 * the device items go into the chunk tree. The key is in the form
96 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
97 */
98 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
99
100 #define BTRFS_BTREE_INODE_OBJECTID 1
101
102 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
103
104 #define BTRFS_DEV_REPLACE_DEVID 0ULL
105
106 /*
107 * inode items have the data typically returned from stat and store other
108 * info about object characteristics. There is one for every file and dir in
109 * the FS
110 */
111 #define BTRFS_INODE_ITEM_KEY 1
112 #define BTRFS_INODE_REF_KEY 12
113 #define BTRFS_INODE_EXTREF_KEY 13
114 #define BTRFS_XATTR_ITEM_KEY 24
115 #define BTRFS_ORPHAN_ITEM_KEY 48
116 /* reserve 2-15 close to the inode for later flexibility */
117
118 /*
119 * dir items are the name -> inode pointers in a directory. There is one
120 * for every name in a directory.
121 */
122 #define BTRFS_DIR_LOG_ITEM_KEY 60
123 #define BTRFS_DIR_LOG_INDEX_KEY 72
124 #define BTRFS_DIR_ITEM_KEY 84
125 #define BTRFS_DIR_INDEX_KEY 96
126 /*
127 * extent data is for file data
128 */
129 #define BTRFS_EXTENT_DATA_KEY 108
130
131 /*
132 * extent csums are stored in a separate tree and hold csums for
133 * an entire extent on disk.
134 */
135 #define BTRFS_EXTENT_CSUM_KEY 128
136
137 /*
138 * root items point to tree roots. They are typically in the root
139 * tree used by the super block to find all the other trees
140 */
141 #define BTRFS_ROOT_ITEM_KEY 132
142
143 /*
144 * root backrefs tie subvols and snapshots to the directory entries that
145 * reference them
146 */
147 #define BTRFS_ROOT_BACKREF_KEY 144
148
149 /*
150 * root refs make a fast index for listing all of the snapshots and
151 * subvolumes referenced by a given root. They point directly to the
152 * directory item in the root that references the subvol
153 */
154 #define BTRFS_ROOT_REF_KEY 156
155
156 /*
157 * extent items are in the extent map tree. These record which blocks
158 * are used, and how many references there are to each block
159 */
160 #define BTRFS_EXTENT_ITEM_KEY 168
161
162 /*
163 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
164 * the length, so we save the level in key->offset instead of the length.
165 */
166 #define BTRFS_METADATA_ITEM_KEY 169
167
168 #define BTRFS_TREE_BLOCK_REF_KEY 176
169
170 #define BTRFS_EXTENT_DATA_REF_KEY 178
171
172 #define BTRFS_EXTENT_REF_V0_KEY 180
173
174 #define BTRFS_SHARED_BLOCK_REF_KEY 182
175
176 #define BTRFS_SHARED_DATA_REF_KEY 184
177
178 /*
179 * block groups give us hints into the extent allocation trees. Which
180 * blocks are free etc etc
181 */
182 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
183
184 /*
185 * Every block group is represented in the free space tree by a free space info
186 * item, which stores some accounting information. It is keyed on
187 * (block_group_start, FREE_SPACE_INFO, block_group_length).
188 */
189 #define BTRFS_FREE_SPACE_INFO_KEY 198
190
191 /*
192 * A free space extent tracks an extent of space that is free in a block group.
193 * It is keyed on (start, FREE_SPACE_EXTENT, length).
194 */
195 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
196
197 /*
198 * When a block group becomes very fragmented, we convert it to use bitmaps
199 * instead of extents. A free space bitmap is keyed on
200 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
201 * (length / sectorsize) bits.
202 */
203 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
204
205 #define BTRFS_DEV_EXTENT_KEY 204
206 #define BTRFS_DEV_ITEM_KEY 216
207 #define BTRFS_CHUNK_ITEM_KEY 228
208
209 /*
210 * Records the overall state of the qgroups.
211 * There's only one instance of this key present,
212 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
213 */
214 #define BTRFS_QGROUP_STATUS_KEY 240
215 /*
216 * Records the currently used space of the qgroup.
217 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
218 */
219 #define BTRFS_QGROUP_INFO_KEY 242
220 /*
221 * Contains the user configured limits for the qgroup.
222 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
223 */
224 #define BTRFS_QGROUP_LIMIT_KEY 244
225 /*
226 * Records the child-parent relationship of qgroups. For
227 * each relation, 2 keys are present:
228 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
229 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
230 */
231 #define BTRFS_QGROUP_RELATION_KEY 246
232
233 /*
234 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
235 */
236 #define BTRFS_BALANCE_ITEM_KEY 248
237
238 /*
239 * The key type for tree items that are stored persistently, but do not need to
240 * exist for extended period of time. The items can exist in any tree.
241 *
242 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
243 *
244 * Existing items:
245 *
246 * - balance status item
247 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
248 */
249 #define BTRFS_TEMPORARY_ITEM_KEY 248
250
251 /*
252 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
253 */
254 #define BTRFS_DEV_STATS_KEY 249
255
256 /*
257 * The key type for tree items that are stored persistently and usually exist
258 * for a long period, eg. filesystem lifetime. The item kinds can be status
259 * information, stats or preference values. The item can exist in any tree.
260 *
261 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
262 *
263 * Existing items:
264 *
265 * - device statistics, store IO stats in the device tree, one key for all
266 * stats
267 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
268 */
269 #define BTRFS_PERSISTENT_ITEM_KEY 249
270
271 /*
272 * Persistantly stores the device replace state in the device tree.
273 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
274 */
275 #define BTRFS_DEV_REPLACE_KEY 250
276
277 /*
278 * Stores items that allow to quickly map UUIDs to something else.
279 * These items are part of the filesystem UUID tree.
280 * The key is built like this:
281 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
282 */
283 #if BTRFS_UUID_SIZE != 16
284 #error "UUID items require BTRFS_UUID_SIZE == 16!"
285 #endif
286 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
287 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
288 * received subvols */
289
290 /*
291 * string items are for debugging. They just store a short string of
292 * data in the FS
293 */
294 #define BTRFS_STRING_ITEM_KEY 253
295
296
297
298 /* 32 bytes in various csum fields */
299 #define BTRFS_CSUM_SIZE 32
300
301 /* csum types */
302 #define BTRFS_CSUM_TYPE_CRC32 0
303
304 /*
305 * flags definitions for directory entry item type
306 *
307 * Used by:
308 * struct btrfs_dir_item.type
309 */
310 #define BTRFS_FT_UNKNOWN 0
311 #define BTRFS_FT_REG_FILE 1
312 #define BTRFS_FT_DIR 2
313 #define BTRFS_FT_CHRDEV 3
314 #define BTRFS_FT_BLKDEV 4
315 #define BTRFS_FT_FIFO 5
316 #define BTRFS_FT_SOCK 6
317 #define BTRFS_FT_SYMLINK 7
318 #define BTRFS_FT_XATTR 8
319 #define BTRFS_FT_MAX 9
320
321 /*
322 * The key defines the order in the tree, and so it also defines (optimal)
323 * block layout.
324 *
325 * objectid corresponds to the inode number.
326 *
327 * type tells us things about the object, and is a kind of stream selector.
328 * so for a given inode, keys with type of 1 might refer to the inode data,
329 * type of 2 may point to file data in the btree and type == 3 may point to
330 * extents.
331 *
332 * offset is the starting byte offset for this key in the stream.
333 *
334 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
335 * in cpu native order. Otherwise they are identical and their sizes
336 * should be the same (ie both packed)
337 */
338 struct btrfs_disk_key {
339 __le64 objectid;
340 __u8 type;
341 __le64 offset;
342 } __attribute__ ((__packed__));
343
344 struct btrfs_key {
345 __u64 objectid;
346 __u8 type;
347 __u64 offset;
348 } __attribute__ ((__packed__));
349
350 struct btrfs_dev_item {
351 /* the internal btrfs device id */
352 __le64 devid;
353
354 /* size of the device */
355 __le64 total_bytes;
356
357 /* bytes used */
358 __le64 bytes_used;
359
360 /* optimal io alignment for this device */
361 __le32 io_align;
362
363 /* optimal io width for this device */
364 __le32 io_width;
365
366 /* minimal io size for this device */
367 __le32 sector_size;
368
369 /* type and info about this device */
370 __le64 type;
371
372 /* expected generation for this device */
373 __le64 generation;
374
375 /*
376 * starting byte of this partition on the device,
377 * to allow for stripe alignment in the future
378 */
379 __le64 start_offset;
380
381 /* grouping information for allocation decisions */
382 __le32 dev_group;
383
384 /* seek speed 0-100 where 100 is fastest */
385 __u8 seek_speed;
386
387 /* bandwidth 0-100 where 100 is fastest */
388 __u8 bandwidth;
389
390 /* btrfs generated uuid for this device */
391 __u8 uuid[BTRFS_UUID_SIZE];
392
393 /* uuid of FS who owns this device */
394 __u8 fsid[BTRFS_UUID_SIZE];
395 } __attribute__ ((__packed__));
396
397 struct btrfs_stripe {
398 __le64 devid;
399 __le64 offset;
400 __u8 dev_uuid[BTRFS_UUID_SIZE];
401 } __attribute__ ((__packed__));
402
403 struct btrfs_chunk {
404 /* size of this chunk in bytes */
405 __le64 length;
406
407 /* objectid of the root referencing this chunk */
408 __le64 owner;
409
410 __le64 stripe_len;
411 __le64 type;
412
413 /* optimal io alignment for this chunk */
414 __le32 io_align;
415
416 /* optimal io width for this chunk */
417 __le32 io_width;
418
419 /* minimal io size for this chunk */
420 __le32 sector_size;
421
422 /* 2^16 stripes is quite a lot, a second limit is the size of a single
423 * item in the btree
424 */
425 __le16 num_stripes;
426
427 /* sub stripes only matter for raid10 */
428 __le16 sub_stripes;
429 struct btrfs_stripe stripe;
430 /* additional stripes go here */
431 } __attribute__ ((__packed__));
432
433 #define BTRFS_FREE_SPACE_EXTENT 1
434 #define BTRFS_FREE_SPACE_BITMAP 2
435
436 struct btrfs_free_space_entry {
437 __le64 offset;
438 __le64 bytes;
439 __u8 type;
440 } __attribute__ ((__packed__));
441
442 struct btrfs_free_space_header {
443 struct btrfs_disk_key location;
444 __le64 generation;
445 __le64 num_entries;
446 __le64 num_bitmaps;
447 } __attribute__ ((__packed__));
448
449 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
450 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
451
452 /* Super block flags */
453 /* Errors detected */
454 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
455
456 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
457 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
458
459
460 /*
461 * items in the extent btree are used to record the objectid of the
462 * owner of the block and the number of references
463 */
464
465 struct btrfs_extent_item {
466 __le64 refs;
467 __le64 generation;
468 __le64 flags;
469 } __attribute__ ((__packed__));
470
471 struct btrfs_extent_item_v0 {
472 __le32 refs;
473 } __attribute__ ((__packed__));
474
475
476 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
477 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
478
479 /* following flags only apply to tree blocks */
480
481 /* use full backrefs for extent pointers in the block */
482 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
483
484 /*
485 * this flag is only used internally by scrub and may be changed at any time
486 * it is only declared here to avoid collisions
487 */
488 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
489
490 struct btrfs_tree_block_info {
491 struct btrfs_disk_key key;
492 __u8 level;
493 } __attribute__ ((__packed__));
494
495 struct btrfs_extent_data_ref {
496 __le64 root;
497 __le64 objectid;
498 __le64 offset;
499 __le32 count;
500 } __attribute__ ((__packed__));
501
502 struct btrfs_shared_data_ref {
503 __le32 count;
504 } __attribute__ ((__packed__));
505
506 struct btrfs_extent_inline_ref {
507 __u8 type;
508 __le64 offset;
509 } __attribute__ ((__packed__));
510
511 /* old style backrefs item */
512 struct btrfs_extent_ref_v0 {
513 __le64 root;
514 __le64 generation;
515 __le64 objectid;
516 __le32 count;
517 } __attribute__ ((__packed__));
518
519
520 /* dev extents record free space on individual devices. The owner
521 * field points back to the chunk allocation mapping tree that allocated
522 * the extent. The chunk tree uuid field is a way to double check the owner
523 */
524 struct btrfs_dev_extent {
525 __le64 chunk_tree;
526 __le64 chunk_objectid;
527 __le64 chunk_offset;
528 __le64 length;
529 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
530 } __attribute__ ((__packed__));
531
532 struct btrfs_inode_ref {
533 __le64 index;
534 __le16 name_len;
535 /* name goes here */
536 } __attribute__ ((__packed__));
537
538 struct btrfs_inode_extref {
539 __le64 parent_objectid;
540 __le64 index;
541 __le16 name_len;
542 __u8 name[0];
543 /* name goes here */
544 } __attribute__ ((__packed__));
545
546 struct btrfs_timespec {
547 __le64 sec;
548 __le32 nsec;
549 } __attribute__ ((__packed__));
550
551 struct btrfs_inode_item {
552 /* nfs style generation number */
553 __le64 generation;
554 /* transid that last touched this inode */
555 __le64 transid;
556 __le64 size;
557 __le64 nbytes;
558 __le64 block_group;
559 __le32 nlink;
560 __le32 uid;
561 __le32 gid;
562 __le32 mode;
563 __le64 rdev;
564 __le64 flags;
565
566 /* modification sequence number for NFS */
567 __le64 sequence;
568
569 /*
570 * a little future expansion, for more than this we can
571 * just grow the inode item and version it
572 */
573 __le64 reserved[4];
574 struct btrfs_timespec atime;
575 struct btrfs_timespec ctime;
576 struct btrfs_timespec mtime;
577 struct btrfs_timespec otime;
578 } __attribute__ ((__packed__));
579
580 struct btrfs_dir_log_item {
581 __le64 end;
582 } __attribute__ ((__packed__));
583
584 struct btrfs_dir_item {
585 struct btrfs_disk_key location;
586 __le64 transid;
587 __le16 data_len;
588 __le16 name_len;
589 __u8 type;
590 } __attribute__ ((__packed__));
591
592 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
593
594 /*
595 * Internal in-memory flag that a subvolume has been marked for deletion but
596 * still visible as a directory
597 */
598 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
599
600 struct btrfs_root_item {
601 struct btrfs_inode_item inode;
602 __le64 generation;
603 __le64 root_dirid;
604 __le64 bytenr;
605 __le64 byte_limit;
606 __le64 bytes_used;
607 __le64 last_snapshot;
608 __le64 flags;
609 __le32 refs;
610 struct btrfs_disk_key drop_progress;
611 __u8 drop_level;
612 __u8 level;
613
614 /*
615 * The following fields appear after subvol_uuids+subvol_times
616 * were introduced.
617 */
618
619 /*
620 * This generation number is used to test if the new fields are valid
621 * and up to date while reading the root item. Every time the root item
622 * is written out, the "generation" field is copied into this field. If
623 * anyone ever mounted the fs with an older kernel, we will have
624 * mismatching generation values here and thus must invalidate the
625 * new fields. See btrfs_update_root and btrfs_find_last_root for
626 * details.
627 * the offset of generation_v2 is also used as the start for the memset
628 * when invalidating the fields.
629 */
630 __le64 generation_v2;
631 __u8 uuid[BTRFS_UUID_SIZE];
632 __u8 parent_uuid[BTRFS_UUID_SIZE];
633 __u8 received_uuid[BTRFS_UUID_SIZE];
634 __le64 ctransid; /* updated when an inode changes */
635 __le64 otransid; /* trans when created */
636 __le64 stransid; /* trans when sent. non-zero for received subvol */
637 __le64 rtransid; /* trans when received. non-zero for received subvol */
638 struct btrfs_timespec ctime;
639 struct btrfs_timespec otime;
640 struct btrfs_timespec stime;
641 struct btrfs_timespec rtime;
642 __le64 reserved[8]; /* for future */
643 } __attribute__ ((__packed__));
644
645 /*
646 * this is used for both forward and backward root refs
647 */
648 struct btrfs_root_ref {
649 __le64 dirid;
650 __le64 sequence;
651 __le16 name_len;
652 } __attribute__ ((__packed__));
653
654 struct btrfs_disk_balance_args {
655 /*
656 * profiles to operate on, single is denoted by
657 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
658 */
659 __le64 profiles;
660
661 /*
662 * usage filter
663 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
664 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
665 */
666 union {
667 __le64 usage;
668 struct {
669 __le32 usage_min;
670 __le32 usage_max;
671 };
672 };
673
674 /* devid filter */
675 __le64 devid;
676
677 /* devid subset filter [pstart..pend) */
678 __le64 pstart;
679 __le64 pend;
680
681 /* btrfs virtual address space subset filter [vstart..vend) */
682 __le64 vstart;
683 __le64 vend;
684
685 /*
686 * profile to convert to, single is denoted by
687 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
688 */
689 __le64 target;
690
691 /* BTRFS_BALANCE_ARGS_* */
692 __le64 flags;
693
694 /*
695 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
696 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
697 * and maximum
698 */
699 union {
700 __le64 limit;
701 struct {
702 __le32 limit_min;
703 __le32 limit_max;
704 };
705 };
706
707 /*
708 * Process chunks that cross stripes_min..stripes_max devices,
709 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
710 */
711 __le32 stripes_min;
712 __le32 stripes_max;
713
714 __le64 unused[6];
715 } __attribute__ ((__packed__));
716
717 /*
718 * store balance parameters to disk so that balance can be properly
719 * resumed after crash or unmount
720 */
721 struct btrfs_balance_item {
722 /* BTRFS_BALANCE_* */
723 __le64 flags;
724
725 struct btrfs_disk_balance_args data;
726 struct btrfs_disk_balance_args meta;
727 struct btrfs_disk_balance_args sys;
728
729 __le64 unused[4];
730 } __attribute__ ((__packed__));
731
732 #define BTRFS_FILE_EXTENT_INLINE 0
733 #define BTRFS_FILE_EXTENT_REG 1
734 #define BTRFS_FILE_EXTENT_PREALLOC 2
735
736 struct btrfs_file_extent_item {
737 /*
738 * transaction id that created this extent
739 */
740 __le64 generation;
741 /*
742 * max number of bytes to hold this extent in ram
743 * when we split a compressed extent we can't know how big
744 * each of the resulting pieces will be. So, this is
745 * an upper limit on the size of the extent in ram instead of
746 * an exact limit.
747 */
748 __le64 ram_bytes;
749
750 /*
751 * 32 bits for the various ways we might encode the data,
752 * including compression and encryption. If any of these
753 * are set to something a given disk format doesn't understand
754 * it is treated like an incompat flag for reading and writing,
755 * but not for stat.
756 */
757 __u8 compression;
758 __u8 encryption;
759 __le16 other_encoding; /* spare for later use */
760
761 /* are we inline data or a real extent? */
762 __u8 type;
763
764 /*
765 * disk space consumed by the extent, checksum blocks are included
766 * in these numbers
767 *
768 * At this offset in the structure, the inline extent data start.
769 */
770 __le64 disk_bytenr;
771 __le64 disk_num_bytes;
772 /*
773 * the logical offset in file blocks (no csums)
774 * this extent record is for. This allows a file extent to point
775 * into the middle of an existing extent on disk, sharing it
776 * between two snapshots (useful if some bytes in the middle of the
777 * extent have changed
778 */
779 __le64 offset;
780 /*
781 * the logical number of file blocks (no csums included). This
782 * always reflects the size uncompressed and without encoding.
783 */
784 __le64 num_bytes;
785
786 } __attribute__ ((__packed__));
787
788 struct btrfs_csum_item {
789 __u8 csum;
790 } __attribute__ ((__packed__));
791
792 struct btrfs_dev_stats_item {
793 /*
794 * grow this item struct at the end for future enhancements and keep
795 * the existing values unchanged
796 */
797 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
798 } __attribute__ ((__packed__));
799
800 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
801 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
802 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
803 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
804 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
805 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
806 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
807
808 struct btrfs_dev_replace_item {
809 /*
810 * grow this item struct at the end for future enhancements and keep
811 * the existing values unchanged
812 */
813 __le64 src_devid;
814 __le64 cursor_left;
815 __le64 cursor_right;
816 __le64 cont_reading_from_srcdev_mode;
817
818 __le64 replace_state;
819 __le64 time_started;
820 __le64 time_stopped;
821 __le64 num_write_errors;
822 __le64 num_uncorrectable_read_errors;
823 } __attribute__ ((__packed__));
824
825 /* different types of block groups (and chunks) */
826 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
827 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
828 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
829 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
830 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
831 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
832 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
833 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
834 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
835 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
836 BTRFS_SPACE_INFO_GLOBAL_RSV)
837
838 enum btrfs_raid_types {
839 BTRFS_RAID_RAID10,
840 BTRFS_RAID_RAID1,
841 BTRFS_RAID_DUP,
842 BTRFS_RAID_RAID0,
843 BTRFS_RAID_SINGLE,
844 BTRFS_RAID_RAID5,
845 BTRFS_RAID_RAID6,
846 BTRFS_NR_RAID_TYPES
847 };
848
849 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
850 BTRFS_BLOCK_GROUP_SYSTEM | \
851 BTRFS_BLOCK_GROUP_METADATA)
852
853 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
854 BTRFS_BLOCK_GROUP_RAID1 | \
855 BTRFS_BLOCK_GROUP_RAID5 | \
856 BTRFS_BLOCK_GROUP_RAID6 | \
857 BTRFS_BLOCK_GROUP_DUP | \
858 BTRFS_BLOCK_GROUP_RAID10)
859 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
860 BTRFS_BLOCK_GROUP_RAID6)
861
862 /*
863 * We need a bit for restriper to be able to tell when chunks of type
864 * SINGLE are available. This "extended" profile format is used in
865 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
866 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
867 * to avoid remappings between two formats in future.
868 */
869 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
870
871 /*
872 * A fake block group type that is used to communicate global block reserve
873 * size to userspace via the SPACE_INFO ioctl.
874 */
875 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
876
877 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
878 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
879
880 static inline __u64 chunk_to_extended(__u64 flags)
881 {
882 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
883 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
884
885 return flags;
886 }
887 static inline __u64 extended_to_chunk(__u64 flags)
888 {
889 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
890 }
891
892 struct btrfs_block_group_item {
893 __le64 used;
894 __le64 chunk_objectid;
895 __le64 flags;
896 } __attribute__ ((__packed__));
897
898 struct btrfs_free_space_info {
899 __le32 extent_count;
900 __le32 flags;
901 } __attribute__ ((__packed__));
902
903 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
904
905 #define BTRFS_QGROUP_LEVEL_SHIFT 48
906 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
907 {
908 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
909 }
910
911 /*
912 * is subvolume quota turned on?
913 */
914 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
915 /*
916 * RESCAN is set during the initialization phase
917 */
918 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
919 /*
920 * Some qgroup entries are known to be out of date,
921 * either because the configuration has changed in a way that
922 * makes a rescan necessary, or because the fs has been mounted
923 * with a non-qgroup-aware version.
924 * Turning qouta off and on again makes it inconsistent, too.
925 */
926 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
927
928 #define BTRFS_QGROUP_STATUS_VERSION 1
929
930 struct btrfs_qgroup_status_item {
931 __le64 version;
932 /*
933 * the generation is updated during every commit. As older
934 * versions of btrfs are not aware of qgroups, it will be
935 * possible to detect inconsistencies by checking the
936 * generation on mount time
937 */
938 __le64 generation;
939
940 /* flag definitions see above */
941 __le64 flags;
942
943 /*
944 * only used during scanning to record the progress
945 * of the scan. It contains a logical address
946 */
947 __le64 rescan;
948 } __attribute__ ((__packed__));
949
950 struct btrfs_qgroup_info_item {
951 __le64 generation;
952 __le64 rfer;
953 __le64 rfer_cmpr;
954 __le64 excl;
955 __le64 excl_cmpr;
956 } __attribute__ ((__packed__));
957
958 struct btrfs_qgroup_limit_item {
959 /*
960 * only updated when any of the other values change
961 */
962 __le64 flags;
963 __le64 max_rfer;
964 __le64 max_excl;
965 __le64 rsv_rfer;
966 __le64 rsv_excl;
967 } __attribute__ ((__packed__));
968
969 #endif /* _BTRFS_CTREE_H_ */