]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/xen/interface/xen.h
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-artful-kernel.git] / include / xen / interface / xen.h
1 /******************************************************************************
2 * xen.h
3 *
4 * Guest OS interface to Xen.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Copyright (c) 2004, K A Fraser
25 */
26
27 #ifndef __XEN_PUBLIC_XEN_H__
28 #define __XEN_PUBLIC_XEN_H__
29
30 #include <asm/xen/interface.h>
31
32 /*
33 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
34 */
35
36 /*
37 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
38 * EAX = return value
39 * (argument registers may be clobbered on return)
40 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
41 * RAX = return value
42 * (argument registers not clobbered on return; RCX, R11 are)
43 */
44 #define __HYPERVISOR_set_trap_table 0
45 #define __HYPERVISOR_mmu_update 1
46 #define __HYPERVISOR_set_gdt 2
47 #define __HYPERVISOR_stack_switch 3
48 #define __HYPERVISOR_set_callbacks 4
49 #define __HYPERVISOR_fpu_taskswitch 5
50 #define __HYPERVISOR_sched_op_compat 6
51 #define __HYPERVISOR_platform_op 7
52 #define __HYPERVISOR_set_debugreg 8
53 #define __HYPERVISOR_get_debugreg 9
54 #define __HYPERVISOR_update_descriptor 10
55 #define __HYPERVISOR_memory_op 12
56 #define __HYPERVISOR_multicall 13
57 #define __HYPERVISOR_update_va_mapping 14
58 #define __HYPERVISOR_set_timer_op 15
59 #define __HYPERVISOR_event_channel_op_compat 16
60 #define __HYPERVISOR_xen_version 17
61 #define __HYPERVISOR_console_io 18
62 #define __HYPERVISOR_physdev_op_compat 19
63 #define __HYPERVISOR_grant_table_op 20
64 #define __HYPERVISOR_vm_assist 21
65 #define __HYPERVISOR_update_va_mapping_otherdomain 22
66 #define __HYPERVISOR_iret 23 /* x86 only */
67 #define __HYPERVISOR_vcpu_op 24
68 #define __HYPERVISOR_set_segment_base 25 /* x86/64 only */
69 #define __HYPERVISOR_mmuext_op 26
70 #define __HYPERVISOR_xsm_op 27
71 #define __HYPERVISOR_nmi_op 28
72 #define __HYPERVISOR_sched_op 29
73 #define __HYPERVISOR_callback_op 30
74 #define __HYPERVISOR_xenoprof_op 31
75 #define __HYPERVISOR_event_channel_op 32
76 #define __HYPERVISOR_physdev_op 33
77 #define __HYPERVISOR_hvm_op 34
78 #define __HYPERVISOR_sysctl 35
79 #define __HYPERVISOR_domctl 36
80 #define __HYPERVISOR_kexec_op 37
81 #define __HYPERVISOR_tmem_op 38
82 #define __HYPERVISOR_xc_reserved_op 39 /* reserved for XenClient */
83 #define __HYPERVISOR_xenpmu_op 40
84
85 /* Architecture-specific hypercall definitions. */
86 #define __HYPERVISOR_arch_0 48
87 #define __HYPERVISOR_arch_1 49
88 #define __HYPERVISOR_arch_2 50
89 #define __HYPERVISOR_arch_3 51
90 #define __HYPERVISOR_arch_4 52
91 #define __HYPERVISOR_arch_5 53
92 #define __HYPERVISOR_arch_6 54
93 #define __HYPERVISOR_arch_7 55
94
95 /*
96 * VIRTUAL INTERRUPTS
97 *
98 * Virtual interrupts that a guest OS may receive from Xen.
99 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
100 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
101 * The latter can be allocated only once per guest: they must initially be
102 * allocated to VCPU0 but can subsequently be re-bound.
103 */
104 #define VIRQ_TIMER 0 /* V. Timebase update, and/or requested timeout. */
105 #define VIRQ_DEBUG 1 /* V. Request guest to dump debug info. */
106 #define VIRQ_CONSOLE 2 /* G. (DOM0) Bytes received on emergency console. */
107 #define VIRQ_DOM_EXC 3 /* G. (DOM0) Exceptional event for some domain. */
108 #define VIRQ_TBUF 4 /* G. (DOM0) Trace buffer has records available. */
109 #define VIRQ_DEBUGGER 6 /* G. (DOM0) A domain has paused for debugging. */
110 #define VIRQ_XENOPROF 7 /* V. XenOprofile interrupt: new sample available */
111 #define VIRQ_CON_RING 8 /* G. (DOM0) Bytes received on console */
112 #define VIRQ_PCPU_STATE 9 /* G. (DOM0) PCPU state changed */
113 #define VIRQ_MEM_EVENT 10 /* G. (DOM0) A memory event has occured */
114 #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient */
115 #define VIRQ_ENOMEM 12 /* G. (DOM0) Low on heap memory */
116 #define VIRQ_XENPMU 13 /* PMC interrupt */
117
118 /* Architecture-specific VIRQ definitions. */
119 #define VIRQ_ARCH_0 16
120 #define VIRQ_ARCH_1 17
121 #define VIRQ_ARCH_2 18
122 #define VIRQ_ARCH_3 19
123 #define VIRQ_ARCH_4 20
124 #define VIRQ_ARCH_5 21
125 #define VIRQ_ARCH_6 22
126 #define VIRQ_ARCH_7 23
127
128 #define NR_VIRQS 24
129
130 /*
131 * enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[],
132 * unsigned count, unsigned *done_out,
133 * unsigned foreigndom)
134 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
135 * @count is the length of the above array.
136 * @pdone is an output parameter indicating number of completed operations
137 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
138 * hypercall invocation. Can be DOMID_SELF.
139 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
140 * in this hypercall invocation. The value of this field
141 * (x) encodes the PFD as follows:
142 * x == 0 => PFD == DOMID_SELF
143 * x != 0 => PFD == x - 1
144 *
145 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
146 * -------------
147 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
148 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
149 * and the new table entry is valid/present, the mapped frame must belong to
150 * FD. If attempting to map an I/O page then the caller assumes the privilege
151 * of the FD.
152 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
153 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
154 * ptr[:2] -- Machine address of the page-table entry to modify.
155 * val -- Value to write.
156 *
157 * There also certain implicit requirements when using this hypercall. The
158 * pages that make up a pagetable must be mapped read-only in the guest.
159 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
160 * enforces this, and will disallow any pagetable update which will end up
161 * mapping pagetable page RW, and will disallow using any writable page as a
162 * pagetable. In practice it means that when constructing a page table for a
163 * process, thread, etc, we MUST be very dilligient in following these rules:
164 * 1). Start with top-level page (PGD or in Xen language: L4). Fill out
165 * the entries.
166 * 2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
167 * or L2).
168 * 3). Start filling out the PTE table (L1) with the PTE entries. Once
169 * done, make sure to set each of those entries to RO (so writeable bit
170 * is unset). Once that has been completed, set the PMD (L2) for this
171 * PTE table as RO.
172 * 4). When completed with all of the PMD (L2) entries, and all of them have
173 * been set to RO, make sure to set RO the PUD (L3). Do the same
174 * operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
175 * 5). Now before you can use those pages (so setting the cr3), you MUST also
176 * pin them so that the hypervisor can verify the entries. This is done
177 * via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
178 * number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
179 * MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
180 * issued.
181 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
182 * instead use L3.
183 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
184 * hypercall. Also if so desired the OS can also try to write to the PTE
185 * and be trapped by the hypervisor (as the PTE entry is RO).
186 *
187 * To deallocate the pages, the operations are the reverse of the steps
188 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
189 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
190 *
191 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
192 * Updates an entry in the machine->pseudo-physical mapping table.
193 * ptr[:2] -- Machine address within the frame whose mapping to modify.
194 * The frame must belong to the FD, if one is specified.
195 * val -- Value to write into the mapping entry.
196 *
197 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
198 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
199 * with those in @val.
200 *
201 * @val is usually the machine frame number along with some attributes.
202 * The attributes by default follow the architecture defined bits. Meaning that
203 * if this is a X86_64 machine and four page table layout is used, the layout
204 * of val is:
205 * - 63 if set means No execute (NX)
206 * - 46-13 the machine frame number
207 * - 12 available for guest
208 * - 11 available for guest
209 * - 10 available for guest
210 * - 9 available for guest
211 * - 8 global
212 * - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
213 * - 6 dirty
214 * - 5 accessed
215 * - 4 page cached disabled
216 * - 3 page write through
217 * - 2 userspace accessible
218 * - 1 writeable
219 * - 0 present
220 *
221 * The one bits that does not fit with the default layout is the PAGE_PSE
222 * also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
223 * HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
224 * (or 2MB) instead of using the PAGE_PSE bit.
225 *
226 * The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
227 * using it as the Page Attribute Table (PAT) bit - for details on it please
228 * refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
229 * pages instead of using MTRRs.
230 *
231 * The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
232 * PAT4 PAT0
233 * +-----+-----+----+----+----+-----+----+----+
234 * | UC | UC- | WC | WB | UC | UC- | WC | WB | <= Linux
235 * +-----+-----+----+----+----+-----+----+----+
236 * | UC | UC- | WT | WB | UC | UC- | WT | WB | <= BIOS (default when machine boots)
237 * +-----+-----+----+----+----+-----+----+----+
238 * | rsv | rsv | WP | WC | UC | UC- | WT | WB | <= Xen
239 * +-----+-----+----+----+----+-----+----+----+
240 *
241 * The lookup of this index table translates to looking up
242 * Bit 7, Bit 4, and Bit 3 of val entry:
243 *
244 * PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
245 *
246 * If all bits are off, then we are using PAT0. If bit 3 turned on,
247 * then we are using PAT1, if bit 3 and bit 4, then PAT2..
248 *
249 * As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
250 * that if a guest that follows Linux's PAT setup and would like to set Write
251 * Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
252 * set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
253 * caching as:
254 *
255 * WB = none (so PAT0)
256 * WC = PWT (bit 3 on)
257 * UC = PWT | PCD (bit 3 and 4 are on).
258 *
259 * To make it work with Xen, it needs to translate the WC bit as so:
260 *
261 * PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
262 *
263 * And to translate back it would:
264 *
265 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
266 */
267 #define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */
268 #define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */
269 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
270
271 /*
272 * MMU EXTENDED OPERATIONS
273 *
274 * enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[],
275 * unsigned int count,
276 * unsigned int *pdone,
277 * unsigned int foreigndom)
278 */
279 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
280 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
281 * Where the FD has some effect, it is described below.
282 *
283 * cmd: MMUEXT_(UN)PIN_*_TABLE
284 * mfn: Machine frame number to be (un)pinned as a p.t. page.
285 * The frame must belong to the FD, if one is specified.
286 *
287 * cmd: MMUEXT_NEW_BASEPTR
288 * mfn: Machine frame number of new page-table base to install in MMU.
289 *
290 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
291 * mfn: Machine frame number of new page-table base to install in MMU
292 * when in user space.
293 *
294 * cmd: MMUEXT_TLB_FLUSH_LOCAL
295 * No additional arguments. Flushes local TLB.
296 *
297 * cmd: MMUEXT_INVLPG_LOCAL
298 * linear_addr: Linear address to be flushed from the local TLB.
299 *
300 * cmd: MMUEXT_TLB_FLUSH_MULTI
301 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
302 *
303 * cmd: MMUEXT_INVLPG_MULTI
304 * linear_addr: Linear address to be flushed.
305 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
306 *
307 * cmd: MMUEXT_TLB_FLUSH_ALL
308 * No additional arguments. Flushes all VCPUs' TLBs.
309 *
310 * cmd: MMUEXT_INVLPG_ALL
311 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
312 *
313 * cmd: MMUEXT_FLUSH_CACHE
314 * No additional arguments. Writes back and flushes cache contents.
315 *
316 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
317 * No additional arguments. Writes back and flushes cache contents
318 * on all CPUs in the system.
319 *
320 * cmd: MMUEXT_SET_LDT
321 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
322 * nr_ents: Number of entries in LDT.
323 *
324 * cmd: MMUEXT_CLEAR_PAGE
325 * mfn: Machine frame number to be cleared.
326 *
327 * cmd: MMUEXT_COPY_PAGE
328 * mfn: Machine frame number of the destination page.
329 * src_mfn: Machine frame number of the source page.
330 *
331 * cmd: MMUEXT_[UN]MARK_SUPER
332 * mfn: Machine frame number of head of superpage to be [un]marked.
333 */
334 #define MMUEXT_PIN_L1_TABLE 0
335 #define MMUEXT_PIN_L2_TABLE 1
336 #define MMUEXT_PIN_L3_TABLE 2
337 #define MMUEXT_PIN_L4_TABLE 3
338 #define MMUEXT_UNPIN_TABLE 4
339 #define MMUEXT_NEW_BASEPTR 5
340 #define MMUEXT_TLB_FLUSH_LOCAL 6
341 #define MMUEXT_INVLPG_LOCAL 7
342 #define MMUEXT_TLB_FLUSH_MULTI 8
343 #define MMUEXT_INVLPG_MULTI 9
344 #define MMUEXT_TLB_FLUSH_ALL 10
345 #define MMUEXT_INVLPG_ALL 11
346 #define MMUEXT_FLUSH_CACHE 12
347 #define MMUEXT_SET_LDT 13
348 #define MMUEXT_NEW_USER_BASEPTR 15
349 #define MMUEXT_CLEAR_PAGE 16
350 #define MMUEXT_COPY_PAGE 17
351 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
352 #define MMUEXT_MARK_SUPER 19
353 #define MMUEXT_UNMARK_SUPER 20
354
355 #ifndef __ASSEMBLY__
356 struct mmuext_op {
357 unsigned int cmd;
358 union {
359 /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
360 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
361 xen_pfn_t mfn;
362 /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
363 unsigned long linear_addr;
364 } arg1;
365 union {
366 /* SET_LDT */
367 unsigned int nr_ents;
368 /* TLB_FLUSH_MULTI, INVLPG_MULTI */
369 void *vcpumask;
370 /* COPY_PAGE */
371 xen_pfn_t src_mfn;
372 } arg2;
373 };
374 DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
375 #endif
376
377 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
378 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */
379 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */
380 #define UVMF_NONE (0UL<<0) /* No flushing at all. */
381 #define UVMF_TLB_FLUSH (1UL<<0) /* Flush entire TLB(s). */
382 #define UVMF_INVLPG (2UL<<0) /* Flush only one entry. */
383 #define UVMF_FLUSHTYPE_MASK (3UL<<0)
384 #define UVMF_MULTI (0UL<<2) /* Flush subset of TLBs. */
385 #define UVMF_LOCAL (0UL<<2) /* Flush local TLB. */
386 #define UVMF_ALL (1UL<<2) /* Flush all TLBs. */
387
388 /*
389 * Commands to HYPERVISOR_console_io().
390 */
391 #define CONSOLEIO_write 0
392 #define CONSOLEIO_read 1
393
394 /*
395 * Commands to HYPERVISOR_vm_assist().
396 */
397 #define VMASST_CMD_enable 0
398 #define VMASST_CMD_disable 1
399
400 /* x86/32 guests: simulate full 4GB segment limits. */
401 #define VMASST_TYPE_4gb_segments 0
402
403 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
404 #define VMASST_TYPE_4gb_segments_notify 1
405
406 /*
407 * x86 guests: support writes to bottom-level PTEs.
408 * NB1. Page-directory entries cannot be written.
409 * NB2. Guest must continue to remove all writable mappings of PTEs.
410 */
411 #define VMASST_TYPE_writable_pagetables 2
412
413 /* x86/PAE guests: support PDPTs above 4GB. */
414 #define VMASST_TYPE_pae_extended_cr3 3
415
416 /*
417 * x86 guests: Sane behaviour for virtual iopl
418 * - virtual iopl updated from do_iret() hypercalls.
419 * - virtual iopl reported in bounce frames.
420 * - guest kernels assumed to be level 0 for the purpose of iopl checks.
421 */
422 #define VMASST_TYPE_architectural_iopl 4
423
424 /*
425 * All guests: activate update indicator in vcpu_runstate_info
426 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
427 * vcpu_runstate_info during updates of the runstate information.
428 */
429 #define VMASST_TYPE_runstate_update_flag 5
430
431 #define MAX_VMASST_TYPE 5
432
433 #ifndef __ASSEMBLY__
434
435 typedef uint16_t domid_t;
436
437 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
438 #define DOMID_FIRST_RESERVED (0x7FF0U)
439
440 /* DOMID_SELF is used in certain contexts to refer to oneself. */
441 #define DOMID_SELF (0x7FF0U)
442
443 /*
444 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
445 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
446 * is useful to ensure that no mappings to the OS's own heap are accidentally
447 * installed. (e.g., in Linux this could cause havoc as reference counts
448 * aren't adjusted on the I/O-mapping code path).
449 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
450 * be specified by any calling domain.
451 */
452 #define DOMID_IO (0x7FF1U)
453
454 /*
455 * DOMID_XEN is used to allow privileged domains to map restricted parts of
456 * Xen's heap space (e.g., the machine_to_phys table).
457 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
458 * the caller is privileged.
459 */
460 #define DOMID_XEN (0x7FF2U)
461
462 /* DOMID_COW is used as the owner of sharable pages */
463 #define DOMID_COW (0x7FF3U)
464
465 /* DOMID_INVALID is used to identify pages with unknown owner. */
466 #define DOMID_INVALID (0x7FF4U)
467
468 /* Idle domain. */
469 #define DOMID_IDLE (0x7FFFU)
470
471 /*
472 * Send an array of these to HYPERVISOR_mmu_update().
473 * NB. The fields are natural pointer/address size for this architecture.
474 */
475 struct mmu_update {
476 uint64_t ptr; /* Machine address of PTE. */
477 uint64_t val; /* New contents of PTE. */
478 };
479 DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
480
481 /*
482 * Send an array of these to HYPERVISOR_multicall().
483 * NB. The fields are logically the natural register size for this
484 * architecture. In cases where xen_ulong_t is larger than this then
485 * any unused bits in the upper portion must be zero.
486 */
487 struct multicall_entry {
488 xen_ulong_t op;
489 xen_long_t result;
490 xen_ulong_t args[6];
491 };
492 DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
493
494 struct vcpu_time_info {
495 /*
496 * Updates to the following values are preceded and followed
497 * by an increment of 'version'. The guest can therefore
498 * detect updates by looking for changes to 'version'. If the
499 * least-significant bit of the version number is set then an
500 * update is in progress and the guest must wait to read a
501 * consistent set of values. The correct way to interact with
502 * the version number is similar to Linux's seqlock: see the
503 * implementations of read_seqbegin/read_seqretry.
504 */
505 uint32_t version;
506 uint32_t pad0;
507 uint64_t tsc_timestamp; /* TSC at last update of time vals. */
508 uint64_t system_time; /* Time, in nanosecs, since boot. */
509 /*
510 * Current system time:
511 * system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
512 * CPU frequency (Hz):
513 * ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
514 */
515 uint32_t tsc_to_system_mul;
516 int8_t tsc_shift;
517 int8_t pad1[3];
518 }; /* 32 bytes */
519
520 struct vcpu_info {
521 /*
522 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
523 * a pending notification for a particular VCPU. It is then cleared
524 * by the guest OS /before/ checking for pending work, thus avoiding
525 * a set-and-check race. Note that the mask is only accessed by Xen
526 * on the CPU that is currently hosting the VCPU. This means that the
527 * pending and mask flags can be updated by the guest without special
528 * synchronisation (i.e., no need for the x86 LOCK prefix).
529 * This may seem suboptimal because if the pending flag is set by
530 * a different CPU then an IPI may be scheduled even when the mask
531 * is set. However, note:
532 * 1. The task of 'interrupt holdoff' is covered by the per-event-
533 * channel mask bits. A 'noisy' event that is continually being
534 * triggered can be masked at source at this very precise
535 * granularity.
536 * 2. The main purpose of the per-VCPU mask is therefore to restrict
537 * reentrant execution: whether for concurrency control, or to
538 * prevent unbounded stack usage. Whatever the purpose, we expect
539 * that the mask will be asserted only for short periods at a time,
540 * and so the likelihood of a 'spurious' IPI is suitably small.
541 * The mask is read before making an event upcall to the guest: a
542 * non-zero mask therefore guarantees that the VCPU will not receive
543 * an upcall activation. The mask is cleared when the VCPU requests
544 * to block: this avoids wakeup-waiting races.
545 */
546 uint8_t evtchn_upcall_pending;
547 uint8_t evtchn_upcall_mask;
548 xen_ulong_t evtchn_pending_sel;
549 struct arch_vcpu_info arch;
550 struct pvclock_vcpu_time_info time;
551 }; /* 64 bytes (x86) */
552
553 /*
554 * Xen/kernel shared data -- pointer provided in start_info.
555 * NB. We expect that this struct is smaller than a page.
556 */
557 struct shared_info {
558 struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
559
560 /*
561 * A domain can create "event channels" on which it can send and receive
562 * asynchronous event notifications. There are three classes of event that
563 * are delivered by this mechanism:
564 * 1. Bi-directional inter- and intra-domain connections. Domains must
565 * arrange out-of-band to set up a connection (usually by allocating
566 * an unbound 'listener' port and avertising that via a storage service
567 * such as xenstore).
568 * 2. Physical interrupts. A domain with suitable hardware-access
569 * privileges can bind an event-channel port to a physical interrupt
570 * source.
571 * 3. Virtual interrupts ('events'). A domain can bind an event-channel
572 * port to a virtual interrupt source, such as the virtual-timer
573 * device or the emergency console.
574 *
575 * Event channels are addressed by a "port index". Each channel is
576 * associated with two bits of information:
577 * 1. PENDING -- notifies the domain that there is a pending notification
578 * to be processed. This bit is cleared by the guest.
579 * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
580 * will cause an asynchronous upcall to be scheduled. This bit is only
581 * updated by the guest. It is read-only within Xen. If a channel
582 * becomes pending while the channel is masked then the 'edge' is lost
583 * (i.e., when the channel is unmasked, the guest must manually handle
584 * pending notifications as no upcall will be scheduled by Xen).
585 *
586 * To expedite scanning of pending notifications, any 0->1 pending
587 * transition on an unmasked channel causes a corresponding bit in a
588 * per-vcpu selector word to be set. Each bit in the selector covers a
589 * 'C long' in the PENDING bitfield array.
590 */
591 xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
592 xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
593
594 /*
595 * Wallclock time: updated only by control software. Guests should base
596 * their gettimeofday() syscall on this wallclock-base value.
597 */
598 struct pvclock_wall_clock wc;
599
600 struct arch_shared_info arch;
601
602 };
603
604 /*
605 * Start-of-day memory layout
606 *
607 * 1. The domain is started within contiguous virtual-memory region.
608 * 2. The contiguous region begins and ends on an aligned 4MB boundary.
609 * 3. This the order of bootstrap elements in the initial virtual region:
610 * a. relocated kernel image
611 * b. initial ram disk [mod_start, mod_len]
612 * (may be omitted)
613 * c. list of allocated page frames [mfn_list, nr_pages]
614 * (unless relocated due to XEN_ELFNOTE_INIT_P2M)
615 * d. start_info_t structure [register ESI (x86)]
616 * in case of dom0 this page contains the console info, too
617 * e. unless dom0: xenstore ring page
618 * f. unless dom0: console ring page
619 * g. bootstrap page tables [pt_base, CR3 (x86)]
620 * h. bootstrap stack [register ESP (x86)]
621 * 4. Bootstrap elements are packed together, but each is 4kB-aligned.
622 * 5. The list of page frames forms a contiguous 'pseudo-physical' memory
623 * layout for the domain. In particular, the bootstrap virtual-memory
624 * region is a 1:1 mapping to the first section of the pseudo-physical map.
625 * 6. All bootstrap elements are mapped read-writable for the guest OS. The
626 * only exception is the bootstrap page table, which is mapped read-only.
627 * 7. There is guaranteed to be at least 512kB padding after the final
628 * bootstrap element. If necessary, the bootstrap virtual region is
629 * extended by an extra 4MB to ensure this.
630 */
631
632 #define MAX_GUEST_CMDLINE 1024
633 struct start_info {
634 /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */
635 char magic[32]; /* "xen-<version>-<platform>". */
636 unsigned long nr_pages; /* Total pages allocated to this domain. */
637 unsigned long shared_info; /* MACHINE address of shared info struct. */
638 uint32_t flags; /* SIF_xxx flags. */
639 xen_pfn_t store_mfn; /* MACHINE page number of shared page. */
640 uint32_t store_evtchn; /* Event channel for store communication. */
641 union {
642 struct {
643 xen_pfn_t mfn; /* MACHINE page number of console page. */
644 uint32_t evtchn; /* Event channel for console page. */
645 } domU;
646 struct {
647 uint32_t info_off; /* Offset of console_info struct. */
648 uint32_t info_size; /* Size of console_info struct from start.*/
649 } dom0;
650 } console;
651 /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */
652 unsigned long pt_base; /* VIRTUAL address of page directory. */
653 unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */
654 unsigned long mfn_list; /* VIRTUAL address of page-frame list. */
655 unsigned long mod_start; /* VIRTUAL address of pre-loaded module. */
656 unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
657 int8_t cmd_line[MAX_GUEST_CMDLINE];
658 /* The pfn range here covers both page table and p->m table frames. */
659 unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table. */
660 unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table. */
661 };
662
663 /* These flags are passed in the 'flags' field of start_info_t. */
664 #define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */
665 #define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */
666 #define SIF_MULTIBOOT_MOD (1<<2) /* Is mod_start a multiboot module? */
667 #define SIF_MOD_START_PFN (1<<3) /* Is mod_start a PFN? */
668 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
669 /* P->M making the 3 level tree obsolete? */
670 #define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */
671
672 /*
673 * A multiboot module is a package containing modules very similar to a
674 * multiboot module array. The only differences are:
675 * - the array of module descriptors is by convention simply at the beginning
676 * of the multiboot module,
677 * - addresses in the module descriptors are based on the beginning of the
678 * multiboot module,
679 * - the number of modules is determined by a termination descriptor that has
680 * mod_start == 0.
681 *
682 * This permits to both build it statically and reference it in a configuration
683 * file, and let the PV guest easily rebase the addresses to virtual addresses
684 * and at the same time count the number of modules.
685 */
686 struct xen_multiboot_mod_list {
687 /* Address of first byte of the module */
688 uint32_t mod_start;
689 /* Address of last byte of the module (inclusive) */
690 uint32_t mod_end;
691 /* Address of zero-terminated command line */
692 uint32_t cmdline;
693 /* Unused, must be zero */
694 uint32_t pad;
695 };
696 /*
697 * The console structure in start_info.console.dom0
698 *
699 * This structure includes a variety of information required to
700 * have a working VGA/VESA console.
701 */
702 struct dom0_vga_console_info {
703 uint8_t video_type;
704 #define XEN_VGATYPE_TEXT_MODE_3 0x03
705 #define XEN_VGATYPE_VESA_LFB 0x23
706 #define XEN_VGATYPE_EFI_LFB 0x70
707
708 union {
709 struct {
710 /* Font height, in pixels. */
711 uint16_t font_height;
712 /* Cursor location (column, row). */
713 uint16_t cursor_x, cursor_y;
714 /* Number of rows and columns (dimensions in characters). */
715 uint16_t rows, columns;
716 } text_mode_3;
717
718 struct {
719 /* Width and height, in pixels. */
720 uint16_t width, height;
721 /* Bytes per scan line. */
722 uint16_t bytes_per_line;
723 /* Bits per pixel. */
724 uint16_t bits_per_pixel;
725 /* LFB physical address, and size (in units of 64kB). */
726 uint32_t lfb_base;
727 uint32_t lfb_size;
728 /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
729 uint8_t red_pos, red_size;
730 uint8_t green_pos, green_size;
731 uint8_t blue_pos, blue_size;
732 uint8_t rsvd_pos, rsvd_size;
733
734 /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
735 uint32_t gbl_caps;
736 /* Mode attributes (offset 0x0, VESA command 0x4f01). */
737 uint16_t mode_attrs;
738 } vesa_lfb;
739 } u;
740 };
741
742 typedef uint64_t cpumap_t;
743
744 typedef uint8_t xen_domain_handle_t[16];
745
746 /* Turn a plain number into a C unsigned long constant. */
747 #define __mk_unsigned_long(x) x ## UL
748 #define mk_unsigned_long(x) __mk_unsigned_long(x)
749
750 #define TMEM_SPEC_VERSION 1
751
752 struct tmem_op {
753 uint32_t cmd;
754 int32_t pool_id;
755 union {
756 struct { /* for cmd == TMEM_NEW_POOL */
757 uint64_t uuid[2];
758 uint32_t flags;
759 } new;
760 struct {
761 uint64_t oid[3];
762 uint32_t index;
763 uint32_t tmem_offset;
764 uint32_t pfn_offset;
765 uint32_t len;
766 GUEST_HANDLE(void) gmfn; /* guest machine page frame */
767 } gen;
768 } u;
769 };
770
771 DEFINE_GUEST_HANDLE(u64);
772
773 #else /* __ASSEMBLY__ */
774
775 /* In assembly code we cannot use C numeric constant suffixes. */
776 #define mk_unsigned_long(x) x
777
778 #endif /* !__ASSEMBLY__ */
779
780 #endif /* __XEN_PUBLIC_XEN_H__ */