]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - init/Kconfig
UBUNTU: rebase to v5.14
[mirror_ubuntu-jammy-kernel.git] / init / Kconfig
1 # SPDX-License-Identifier: GPL-2.0-only
2 config CC_VERSION_TEXT
3 string
4 default "$(CC_VERSION_TEXT)"
5 help
6 This is used in unclear ways:
7
8 - Re-run Kconfig when the compiler is updated
9 The 'default' property references the environment variable,
10 CC_VERSION_TEXT so it is recorded in include/config/auto.conf.cmd.
11 When the compiler is updated, Kconfig will be invoked.
12
13 - Ensure full rebuild when the compiler is updated
14 include/linux/compiler-version.h contains this option in the comment
15 line so fixdep adds include/config/CC_VERSION_TEXT into the
16 auto-generated dependency. When the compiler is updated, syncconfig
17 will touch it and then every file will be rebuilt.
18
19 config CC_IS_GCC
20 def_bool $(success,test "$(cc-name)" = GCC)
21
22 config GCC_VERSION
23 int
24 default $(cc-version) if CC_IS_GCC
25 default 0
26
27 config CC_IS_CLANG
28 def_bool $(success,test "$(cc-name)" = Clang)
29
30 config CLANG_VERSION
31 int
32 default $(cc-version) if CC_IS_CLANG
33 default 0
34
35 config AS_IS_GNU
36 def_bool $(success,test "$(as-name)" = GNU)
37
38 config AS_IS_LLVM
39 def_bool $(success,test "$(as-name)" = LLVM)
40
41 config AS_VERSION
42 int
43 # Use clang version if this is the integrated assembler
44 default CLANG_VERSION if AS_IS_LLVM
45 default $(as-version)
46
47 config LD_IS_BFD
48 def_bool $(success,test "$(ld-name)" = BFD)
49
50 config LD_VERSION
51 int
52 default $(ld-version) if LD_IS_BFD
53 default 0
54
55 config LD_IS_LLD
56 def_bool $(success,test "$(ld-name)" = LLD)
57
58 config LLD_VERSION
59 int
60 default $(ld-version) if LD_IS_LLD
61 default 0
62
63 config CC_CAN_LINK
64 bool
65 default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(m64-flag)) if 64BIT
66 default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(m32-flag))
67
68 config CC_CAN_LINK_STATIC
69 bool
70 default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(m64-flag) -static) if 64BIT
71 default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(m32-flag) -static)
72
73 config CC_HAS_ASM_GOTO
74 def_bool $(success,$(srctree)/scripts/gcc-goto.sh $(CC))
75
76 config CC_HAS_ASM_GOTO_OUTPUT
77 depends on CC_HAS_ASM_GOTO
78 def_bool $(success,echo 'int foo(int x) { asm goto ("": "=r"(x) ::: bar); return x; bar: return 0; }' | $(CC) -x c - -c -o /dev/null)
79
80 config TOOLS_SUPPORT_RELR
81 def_bool $(success,env "CC=$(CC)" "LD=$(LD)" "NM=$(NM)" "OBJCOPY=$(OBJCOPY)" $(srctree)/scripts/tools-support-relr.sh)
82
83 config CC_HAS_ASM_INLINE
84 def_bool $(success,echo 'void foo(void) { asm inline (""); }' | $(CC) -x c - -c -o /dev/null)
85
86 config CC_HAS_NO_PROFILE_FN_ATTR
87 def_bool $(success,echo '__attribute__((no_profile_instrument_function)) int x();' | $(CC) -x c - -c -o /dev/null -Werror)
88
89 config CONSTRUCTORS
90 bool
91
92 config IRQ_WORK
93 bool
94
95 config BUILDTIME_TABLE_SORT
96 bool
97
98 config THREAD_INFO_IN_TASK
99 bool
100 help
101 Select this to move thread_info off the stack into task_struct. To
102 make this work, an arch will need to remove all thread_info fields
103 except flags and fix any runtime bugs.
104
105 One subtle change that will be needed is to use try_get_task_stack()
106 and put_task_stack() in save_thread_stack_tsk() and get_wchan().
107
108 menu "General setup"
109
110 config BROKEN
111 bool
112
113 config BROKEN_ON_SMP
114 bool
115 depends on BROKEN || !SMP
116 default y
117
118 config INIT_ENV_ARG_LIMIT
119 int
120 default 32 if !UML
121 default 128 if UML
122 help
123 Maximum of each of the number of arguments and environment
124 variables passed to init from the kernel command line.
125
126 config COMPILE_TEST
127 bool "Compile also drivers which will not load"
128 depends on HAS_IOMEM
129 help
130 Some drivers can be compiled on a different platform than they are
131 intended to be run on. Despite they cannot be loaded there (or even
132 when they load they cannot be used due to missing HW support),
133 developers still, opposing to distributors, might want to build such
134 drivers to compile-test them.
135
136 If you are a developer and want to build everything available, say Y
137 here. If you are a user/distributor, say N here to exclude useless
138 drivers to be distributed.
139
140 config WERROR
141 bool "Compile the kernel with warnings as errors"
142 default COMPILE_TEST
143 help
144 A kernel build should not cause any compiler warnings, and this
145 enables the '-Werror' flag to enforce that rule by default.
146
147 However, if you have a new (or very old) compiler with odd and
148 unusual warnings, or you have some architecture with problems,
149 you may need to disable this config option in order to
150 successfully build the kernel.
151
152 If in doubt, say Y.
153
154 config UAPI_HEADER_TEST
155 bool "Compile test UAPI headers"
156 depends on HEADERS_INSTALL && CC_CAN_LINK
157 help
158 Compile test headers exported to user-space to ensure they are
159 self-contained, i.e. compilable as standalone units.
160
161 If you are a developer or tester and want to ensure the exported
162 headers are self-contained, say Y here. Otherwise, choose N.
163
164 config LOCALVERSION
165 string "Local version - append to kernel release"
166 help
167 Append an extra string to the end of your kernel version.
168 This will show up when you type uname, for example.
169 The string you set here will be appended after the contents of
170 any files with a filename matching localversion* in your
171 object and source tree, in that order. Your total string can
172 be a maximum of 64 characters.
173
174 config LOCALVERSION_AUTO
175 bool "Automatically append version information to the version string"
176 default y
177 depends on !COMPILE_TEST
178 help
179 This will try to automatically determine if the current tree is a
180 release tree by looking for git tags that belong to the current
181 top of tree revision.
182
183 A string of the format -gxxxxxxxx will be added to the localversion
184 if a git-based tree is found. The string generated by this will be
185 appended after any matching localversion* files, and after the value
186 set in CONFIG_LOCALVERSION.
187
188 (The actual string used here is the first eight characters produced
189 by running the command:
190
191 $ git rev-parse --verify HEAD
192
193 which is done within the script "scripts/setlocalversion".)
194
195 config BUILD_SALT
196 string "Build ID Salt"
197 default ""
198 help
199 The build ID is used to link binaries and their debug info. Setting
200 this option will use the value in the calculation of the build id.
201 This is mostly useful for distributions which want to ensure the
202 build is unique between builds. It's safe to leave the default.
203
204 config HAVE_KERNEL_GZIP
205 bool
206
207 config HAVE_KERNEL_BZIP2
208 bool
209
210 config HAVE_KERNEL_LZMA
211 bool
212
213 config HAVE_KERNEL_XZ
214 bool
215
216 config HAVE_KERNEL_LZO
217 bool
218
219 config HAVE_KERNEL_LZ4
220 bool
221
222 config HAVE_KERNEL_ZSTD
223 bool
224
225 config HAVE_KERNEL_UNCOMPRESSED
226 bool
227
228 choice
229 prompt "Kernel compression mode"
230 default KERNEL_GZIP
231 depends on HAVE_KERNEL_GZIP || HAVE_KERNEL_BZIP2 || HAVE_KERNEL_LZMA || HAVE_KERNEL_XZ || HAVE_KERNEL_LZO || HAVE_KERNEL_LZ4 || HAVE_KERNEL_ZSTD || HAVE_KERNEL_UNCOMPRESSED
232 help
233 The linux kernel is a kind of self-extracting executable.
234 Several compression algorithms are available, which differ
235 in efficiency, compression and decompression speed.
236 Compression speed is only relevant when building a kernel.
237 Decompression speed is relevant at each boot.
238
239 If you have any problems with bzip2 or lzma compressed
240 kernels, mail me (Alain Knaff) <alain@knaff.lu>. (An older
241 version of this functionality (bzip2 only), for 2.4, was
242 supplied by Christian Ludwig)
243
244 High compression options are mostly useful for users, who
245 are low on disk space (embedded systems), but for whom ram
246 size matters less.
247
248 If in doubt, select 'gzip'
249
250 config KERNEL_GZIP
251 bool "Gzip"
252 depends on HAVE_KERNEL_GZIP
253 help
254 The old and tried gzip compression. It provides a good balance
255 between compression ratio and decompression speed.
256
257 config KERNEL_BZIP2
258 bool "Bzip2"
259 depends on HAVE_KERNEL_BZIP2
260 help
261 Its compression ratio and speed is intermediate.
262 Decompression speed is slowest among the choices. The kernel
263 size is about 10% smaller with bzip2, in comparison to gzip.
264 Bzip2 uses a large amount of memory. For modern kernels you
265 will need at least 8MB RAM or more for booting.
266
267 config KERNEL_LZMA
268 bool "LZMA"
269 depends on HAVE_KERNEL_LZMA
270 help
271 This compression algorithm's ratio is best. Decompression speed
272 is between gzip and bzip2. Compression is slowest.
273 The kernel size is about 33% smaller with LZMA in comparison to gzip.
274
275 config KERNEL_XZ
276 bool "XZ"
277 depends on HAVE_KERNEL_XZ
278 help
279 XZ uses the LZMA2 algorithm and instruction set specific
280 BCJ filters which can improve compression ratio of executable
281 code. The size of the kernel is about 30% smaller with XZ in
282 comparison to gzip. On architectures for which there is a BCJ
283 filter (i386, x86_64, ARM, IA-64, PowerPC, and SPARC), XZ
284 will create a few percent smaller kernel than plain LZMA.
285
286 The speed is about the same as with LZMA: The decompression
287 speed of XZ is better than that of bzip2 but worse than gzip
288 and LZO. Compression is slow.
289
290 config KERNEL_LZO
291 bool "LZO"
292 depends on HAVE_KERNEL_LZO
293 help
294 Its compression ratio is the poorest among the choices. The kernel
295 size is about 10% bigger than gzip; however its speed
296 (both compression and decompression) is the fastest.
297
298 config KERNEL_LZ4
299 bool "LZ4"
300 depends on HAVE_KERNEL_LZ4
301 help
302 LZ4 is an LZ77-type compressor with a fixed, byte-oriented encoding.
303 A preliminary version of LZ4 de/compression tool is available at
304 <https://code.google.com/p/lz4/>.
305
306 Its compression ratio is worse than LZO. The size of the kernel
307 is about 8% bigger than LZO. But the decompression speed is
308 faster than LZO.
309
310 config KERNEL_ZSTD
311 bool "ZSTD"
312 depends on HAVE_KERNEL_ZSTD
313 help
314 ZSTD is a compression algorithm targeting intermediate compression
315 with fast decompression speed. It will compress better than GZIP and
316 decompress around the same speed as LZO, but slower than LZ4. You
317 will need at least 192 KB RAM or more for booting. The zstd command
318 line tool is required for compression.
319
320 config KERNEL_UNCOMPRESSED
321 bool "None"
322 depends on HAVE_KERNEL_UNCOMPRESSED
323 help
324 Produce uncompressed kernel image. This option is usually not what
325 you want. It is useful for debugging the kernel in slow simulation
326 environments, where decompressing and moving the kernel is awfully
327 slow. This option allows early boot code to skip the decompressor
328 and jump right at uncompressed kernel image.
329
330 endchoice
331
332 config DEFAULT_INIT
333 string "Default init path"
334 default ""
335 help
336 This option determines the default init for the system if no init=
337 option is passed on the kernel command line. If the requested path is
338 not present, we will still then move on to attempting further
339 locations (e.g. /sbin/init, etc). If this is empty, we will just use
340 the fallback list when init= is not passed.
341
342 config DEFAULT_HOSTNAME
343 string "Default hostname"
344 default "(none)"
345 help
346 This option determines the default system hostname before userspace
347 calls sethostname(2). The kernel traditionally uses "(none)" here,
348 but you may wish to use a different default here to make a minimal
349 system more usable with less configuration.
350
351 #
352 # For some reason microblaze and nios2 hard code SWAP=n. Hopefully we can
353 # add proper SWAP support to them, in which case this can be remove.
354 #
355 config ARCH_NO_SWAP
356 bool
357
358 config VERSION_SIGNATURE
359 string "Arbitrary version signature"
360 help
361 This string will be created in a file, /proc/version_signature. It
362 is useful in determining arbitrary data about your kernel. For instance,
363 if you have several kernels of the same version, but need to keep track
364 of a revision of the same kernel, but not affect it's ability to load
365 compatible modules, this is the easiest way to do that.
366
367 config SWAP
368 bool "Support for paging of anonymous memory (swap)"
369 depends on MMU && BLOCK && !ARCH_NO_SWAP
370 default y
371 help
372 This option allows you to choose whether you want to have support
373 for so called swap devices or swap files in your kernel that are
374 used to provide more virtual memory than the actual RAM present
375 in your computer. If unsure say Y.
376
377 config SYSVIPC
378 bool "System V IPC"
379 help
380 Inter Process Communication is a suite of library functions and
381 system calls which let processes (running programs) synchronize and
382 exchange information. It is generally considered to be a good thing,
383 and some programs won't run unless you say Y here. In particular, if
384 you want to run the DOS emulator dosemu under Linux (read the
385 DOSEMU-HOWTO, available from <http://www.tldp.org/docs.html#howto>),
386 you'll need to say Y here.
387
388 You can find documentation about IPC with "info ipc" and also in
389 section 6.4 of the Linux Programmer's Guide, available from
390 <http://www.tldp.org/guides.html>.
391
392 config SYSVIPC_SYSCTL
393 bool
394 depends on SYSVIPC
395 depends on SYSCTL
396 default y
397
398 config POSIX_MQUEUE
399 bool "POSIX Message Queues"
400 depends on NET
401 help
402 POSIX variant of message queues is a part of IPC. In POSIX message
403 queues every message has a priority which decides about succession
404 of receiving it by a process. If you want to compile and run
405 programs written e.g. for Solaris with use of its POSIX message
406 queues (functions mq_*) say Y here.
407
408 POSIX message queues are visible as a filesystem called 'mqueue'
409 and can be mounted somewhere if you want to do filesystem
410 operations on message queues.
411
412 If unsure, say Y.
413
414 config POSIX_MQUEUE_SYSCTL
415 bool
416 depends on POSIX_MQUEUE
417 depends on SYSCTL
418 default y
419
420 config WATCH_QUEUE
421 bool "General notification queue"
422 default n
423 help
424
425 This is a general notification queue for the kernel to pass events to
426 userspace by splicing them into pipes. It can be used in conjunction
427 with watches for key/keyring change notifications and device
428 notifications.
429
430 See Documentation/watch_queue.rst
431
432 config CROSS_MEMORY_ATTACH
433 bool "Enable process_vm_readv/writev syscalls"
434 depends on MMU
435 default y
436 help
437 Enabling this option adds the system calls process_vm_readv and
438 process_vm_writev which allow a process with the correct privileges
439 to directly read from or write to another process' address space.
440 See the man page for more details.
441
442 config USELIB
443 bool "uselib syscall"
444 def_bool ALPHA || M68K || SPARC || X86_32 || IA32_EMULATION
445 help
446 This option enables the uselib syscall, a system call used in the
447 dynamic linker from libc5 and earlier. glibc does not use this
448 system call. If you intend to run programs built on libc5 or
449 earlier, you may need to enable this syscall. Current systems
450 running glibc can safely disable this.
451
452 config AUDIT
453 bool "Auditing support"
454 depends on NET
455 help
456 Enable auditing infrastructure that can be used with another
457 kernel subsystem, such as SELinux (which requires this for
458 logging of avc messages output). System call auditing is included
459 on architectures which support it.
460
461 config HAVE_ARCH_AUDITSYSCALL
462 bool
463
464 config AUDITSYSCALL
465 def_bool y
466 depends on AUDIT && HAVE_ARCH_AUDITSYSCALL
467 select FSNOTIFY
468
469 source "kernel/irq/Kconfig"
470 source "kernel/time/Kconfig"
471 source "kernel/bpf/Kconfig"
472 source "kernel/Kconfig.preempt"
473
474 menu "CPU/Task time and stats accounting"
475
476 config VIRT_CPU_ACCOUNTING
477 bool
478
479 choice
480 prompt "Cputime accounting"
481 default TICK_CPU_ACCOUNTING if !PPC64
482 default VIRT_CPU_ACCOUNTING_NATIVE if PPC64
483
484 # Kind of a stub config for the pure tick based cputime accounting
485 config TICK_CPU_ACCOUNTING
486 bool "Simple tick based cputime accounting"
487 depends on !S390 && !NO_HZ_FULL
488 help
489 This is the basic tick based cputime accounting that maintains
490 statistics about user, system and idle time spent on per jiffies
491 granularity.
492
493 If unsure, say Y.
494
495 config VIRT_CPU_ACCOUNTING_NATIVE
496 bool "Deterministic task and CPU time accounting"
497 depends on HAVE_VIRT_CPU_ACCOUNTING && !NO_HZ_FULL
498 select VIRT_CPU_ACCOUNTING
499 help
500 Select this option to enable more accurate task and CPU time
501 accounting. This is done by reading a CPU counter on each
502 kernel entry and exit and on transitions within the kernel
503 between system, softirq and hardirq state, so there is a
504 small performance impact. In the case of s390 or IBM POWER > 5,
505 this also enables accounting of stolen time on logically-partitioned
506 systems.
507
508 config VIRT_CPU_ACCOUNTING_GEN
509 bool "Full dynticks CPU time accounting"
510 depends on HAVE_CONTEXT_TRACKING
511 depends on HAVE_VIRT_CPU_ACCOUNTING_GEN
512 depends on GENERIC_CLOCKEVENTS
513 select VIRT_CPU_ACCOUNTING
514 select CONTEXT_TRACKING
515 help
516 Select this option to enable task and CPU time accounting on full
517 dynticks systems. This accounting is implemented by watching every
518 kernel-user boundaries using the context tracking subsystem.
519 The accounting is thus performed at the expense of some significant
520 overhead.
521
522 For now this is only useful if you are working on the full
523 dynticks subsystem development.
524
525 If unsure, say N.
526
527 endchoice
528
529 config IRQ_TIME_ACCOUNTING
530 bool "Fine granularity task level IRQ time accounting"
531 depends on HAVE_IRQ_TIME_ACCOUNTING && !VIRT_CPU_ACCOUNTING_NATIVE
532 help
533 Select this option to enable fine granularity task irq time
534 accounting. This is done by reading a timestamp on each
535 transitions between softirq and hardirq state, so there can be a
536 small performance impact.
537
538 If in doubt, say N here.
539
540 config HAVE_SCHED_AVG_IRQ
541 def_bool y
542 depends on IRQ_TIME_ACCOUNTING || PARAVIRT_TIME_ACCOUNTING
543 depends on SMP
544
545 config SCHED_THERMAL_PRESSURE
546 bool
547 default y if ARM && ARM_CPU_TOPOLOGY
548 default y if ARM64
549 depends on SMP
550 depends on CPU_FREQ_THERMAL
551 help
552 Select this option to enable thermal pressure accounting in the
553 scheduler. Thermal pressure is the value conveyed to the scheduler
554 that reflects the reduction in CPU compute capacity resulted from
555 thermal throttling. Thermal throttling occurs when the performance of
556 a CPU is capped due to high operating temperatures.
557
558 If selected, the scheduler will be able to balance tasks accordingly,
559 i.e. put less load on throttled CPUs than on non/less throttled ones.
560
561 This requires the architecture to implement
562 arch_set_thermal_pressure() and arch_scale_thermal_pressure().
563
564 config BSD_PROCESS_ACCT
565 bool "BSD Process Accounting"
566 depends on MULTIUSER
567 help
568 If you say Y here, a user level program will be able to instruct the
569 kernel (via a special system call) to write process accounting
570 information to a file: whenever a process exits, information about
571 that process will be appended to the file by the kernel. The
572 information includes things such as creation time, owning user,
573 command name, memory usage, controlling terminal etc. (the complete
574 list is in the struct acct in <file:include/linux/acct.h>). It is
575 up to the user level program to do useful things with this
576 information. This is generally a good idea, so say Y.
577
578 config BSD_PROCESS_ACCT_V3
579 bool "BSD Process Accounting version 3 file format"
580 depends on BSD_PROCESS_ACCT
581 default n
582 help
583 If you say Y here, the process accounting information is written
584 in a new file format that also logs the process IDs of each
585 process and its parent. Note that this file format is incompatible
586 with previous v0/v1/v2 file formats, so you will need updated tools
587 for processing it. A preliminary version of these tools is available
588 at <http://www.gnu.org/software/acct/>.
589
590 config TASKSTATS
591 bool "Export task/process statistics through netlink"
592 depends on NET
593 depends on MULTIUSER
594 default n
595 help
596 Export selected statistics for tasks/processes through the
597 generic netlink interface. Unlike BSD process accounting, the
598 statistics are available during the lifetime of tasks/processes as
599 responses to commands. Like BSD accounting, they are sent to user
600 space on task exit.
601
602 Say N if unsure.
603
604 config TASK_DELAY_ACCT
605 bool "Enable per-task delay accounting"
606 depends on TASKSTATS
607 select SCHED_INFO
608 help
609 Collect information on time spent by a task waiting for system
610 resources like cpu, synchronous block I/O completion and swapping
611 in pages. Such statistics can help in setting a task's priorities
612 relative to other tasks for cpu, io, rss limits etc.
613
614 Say N if unsure.
615
616 config TASK_XACCT
617 bool "Enable extended accounting over taskstats"
618 depends on TASKSTATS
619 help
620 Collect extended task accounting data and send the data
621 to userland for processing over the taskstats interface.
622
623 Say N if unsure.
624
625 config TASK_IO_ACCOUNTING
626 bool "Enable per-task storage I/O accounting"
627 depends on TASK_XACCT
628 help
629 Collect information on the number of bytes of storage I/O which this
630 task has caused.
631
632 Say N if unsure.
633
634 config PSI
635 bool "Pressure stall information tracking"
636 help
637 Collect metrics that indicate how overcommitted the CPU, memory,
638 and IO capacity are in the system.
639
640 If you say Y here, the kernel will create /proc/pressure/ with the
641 pressure statistics files cpu, memory, and io. These will indicate
642 the share of walltime in which some or all tasks in the system are
643 delayed due to contention of the respective resource.
644
645 In kernels with cgroup support, cgroups (cgroup2 only) will
646 have cpu.pressure, memory.pressure, and io.pressure files,
647 which aggregate pressure stalls for the grouped tasks only.
648
649 For more details see Documentation/accounting/psi.rst.
650
651 Say N if unsure.
652
653 config PSI_DEFAULT_DISABLED
654 bool "Require boot parameter to enable pressure stall information tracking"
655 default n
656 depends on PSI
657 help
658 If set, pressure stall information tracking will be disabled
659 per default but can be enabled through passing psi=1 on the
660 kernel commandline during boot.
661
662 This feature adds some code to the task wakeup and sleep
663 paths of the scheduler. The overhead is too low to affect
664 common scheduling-intense workloads in practice (such as
665 webservers, memcache), but it does show up in artificial
666 scheduler stress tests, such as hackbench.
667
668 If you are paranoid and not sure what the kernel will be
669 used for, say Y.
670
671 Say N if unsure.
672
673 endmenu # "CPU/Task time and stats accounting"
674
675 config CPU_ISOLATION
676 bool "CPU isolation"
677 depends on SMP || COMPILE_TEST
678 default y
679 help
680 Make sure that CPUs running critical tasks are not disturbed by
681 any source of "noise" such as unbound workqueues, timers, kthreads...
682 Unbound jobs get offloaded to housekeeping CPUs. This is driven by
683 the "isolcpus=" boot parameter.
684
685 Say Y if unsure.
686
687 source "kernel/rcu/Kconfig"
688
689 config BUILD_BIN2C
690 bool
691 default n
692
693 config IKCONFIG
694 tristate "Kernel .config support"
695 help
696 This option enables the complete Linux kernel ".config" file
697 contents to be saved in the kernel. It provides documentation
698 of which kernel options are used in a running kernel or in an
699 on-disk kernel. This information can be extracted from the kernel
700 image file with the script scripts/extract-ikconfig and used as
701 input to rebuild the current kernel or to build another kernel.
702 It can also be extracted from a running kernel by reading
703 /proc/config.gz if enabled (below).
704
705 config IKCONFIG_PROC
706 bool "Enable access to .config through /proc/config.gz"
707 depends on IKCONFIG && PROC_FS
708 help
709 This option enables access to the kernel configuration file
710 through /proc/config.gz.
711
712 config IKHEADERS
713 tristate "Enable kernel headers through /sys/kernel/kheaders.tar.xz"
714 depends on SYSFS
715 help
716 This option enables access to the in-kernel headers that are generated during
717 the build process. These can be used to build eBPF tracing programs,
718 or similar programs. If you build the headers as a module, a module called
719 kheaders.ko is built which can be loaded on-demand to get access to headers.
720
721 config LOG_BUF_SHIFT
722 int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
723 range 12 25 if !H8300
724 range 12 19 if H8300
725 default 17
726 depends on PRINTK
727 help
728 Select the minimal kernel log buffer size as a power of 2.
729 The final size is affected by LOG_CPU_MAX_BUF_SHIFT config
730 parameter, see below. Any higher size also might be forced
731 by "log_buf_len" boot parameter.
732
733 Examples:
734 17 => 128 KB
735 16 => 64 KB
736 15 => 32 KB
737 14 => 16 KB
738 13 => 8 KB
739 12 => 4 KB
740
741 config LOG_CPU_MAX_BUF_SHIFT
742 int "CPU kernel log buffer size contribution (13 => 8 KB, 17 => 128KB)"
743 depends on SMP
744 range 0 21
745 default 12 if !BASE_SMALL
746 default 0 if BASE_SMALL
747 depends on PRINTK
748 help
749 This option allows to increase the default ring buffer size
750 according to the number of CPUs. The value defines the contribution
751 of each CPU as a power of 2. The used space is typically only few
752 lines however it might be much more when problems are reported,
753 e.g. backtraces.
754
755 The increased size means that a new buffer has to be allocated and
756 the original static one is unused. It makes sense only on systems
757 with more CPUs. Therefore this value is used only when the sum of
758 contributions is greater than the half of the default kernel ring
759 buffer as defined by LOG_BUF_SHIFT. The default values are set
760 so that more than 16 CPUs are needed to trigger the allocation.
761
762 Also this option is ignored when "log_buf_len" kernel parameter is
763 used as it forces an exact (power of two) size of the ring buffer.
764
765 The number of possible CPUs is used for this computation ignoring
766 hotplugging making the computation optimal for the worst case
767 scenario while allowing a simple algorithm to be used from bootup.
768
769 Examples shift values and their meaning:
770 17 => 128 KB for each CPU
771 16 => 64 KB for each CPU
772 15 => 32 KB for each CPU
773 14 => 16 KB for each CPU
774 13 => 8 KB for each CPU
775 12 => 4 KB for each CPU
776
777 config PRINTK_SAFE_LOG_BUF_SHIFT
778 int "Temporary per-CPU printk log buffer size (12 => 4KB, 13 => 8KB)"
779 range 10 21
780 default 13
781 depends on PRINTK
782 help
783 Select the size of an alternate printk per-CPU buffer where messages
784 printed from usafe contexts are temporary stored. One example would
785 be NMI messages, another one - printk recursion. The messages are
786 copied to the main log buffer in a safe context to avoid a deadlock.
787 The value defines the size as a power of 2.
788
789 Those messages are rare and limited. The largest one is when
790 a backtrace is printed. It usually fits into 4KB. Select
791 8KB if you want to be on the safe side.
792
793 Examples:
794 17 => 128 KB for each CPU
795 16 => 64 KB for each CPU
796 15 => 32 KB for each CPU
797 14 => 16 KB for each CPU
798 13 => 8 KB for each CPU
799 12 => 4 KB for each CPU
800
801 config PRINTK_INDEX
802 bool "Printk indexing debugfs interface"
803 depends on PRINTK && DEBUG_FS
804 help
805 Add support for indexing of all printk formats known at compile time
806 at <debugfs>/printk/index/<module>.
807
808 This can be used as part of maintaining daemons which monitor
809 /dev/kmsg, as it permits auditing the printk formats present in a
810 kernel, allowing detection of cases where monitored printks are
811 changed or no longer present.
812
813 There is no additional runtime cost to printk with this enabled.
814
815 #
816 # Architectures with an unreliable sched_clock() should select this:
817 #
818 config HAVE_UNSTABLE_SCHED_CLOCK
819 bool
820
821 config GENERIC_SCHED_CLOCK
822 bool
823
824 menu "Scheduler features"
825
826 config UCLAMP_TASK
827 bool "Enable utilization clamping for RT/FAIR tasks"
828 depends on CPU_FREQ_GOV_SCHEDUTIL
829 help
830 This feature enables the scheduler to track the clamped utilization
831 of each CPU based on RUNNABLE tasks scheduled on that CPU.
832
833 With this option, the user can specify the min and max CPU
834 utilization allowed for RUNNABLE tasks. The max utilization defines
835 the maximum frequency a task should use while the min utilization
836 defines the minimum frequency it should use.
837
838 Both min and max utilization clamp values are hints to the scheduler,
839 aiming at improving its frequency selection policy, but they do not
840 enforce or grant any specific bandwidth for tasks.
841
842 If in doubt, say N.
843
844 config UCLAMP_BUCKETS_COUNT
845 int "Number of supported utilization clamp buckets"
846 range 5 20
847 default 5
848 depends on UCLAMP_TASK
849 help
850 Defines the number of clamp buckets to use. The range of each bucket
851 will be SCHED_CAPACITY_SCALE/UCLAMP_BUCKETS_COUNT. The higher the
852 number of clamp buckets the finer their granularity and the higher
853 the precision of clamping aggregation and tracking at run-time.
854
855 For example, with the minimum configuration value we will have 5
856 clamp buckets tracking 20% utilization each. A 25% boosted tasks will
857 be refcounted in the [20..39]% bucket and will set the bucket clamp
858 effective value to 25%.
859 If a second 30% boosted task should be co-scheduled on the same CPU,
860 that task will be refcounted in the same bucket of the first task and
861 it will boost the bucket clamp effective value to 30%.
862 The clamp effective value of a bucket is reset to its nominal value
863 (20% in the example above) when there are no more tasks refcounted in
864 that bucket.
865
866 An additional boost/capping margin can be added to some tasks. In the
867 example above the 25% task will be boosted to 30% until it exits the
868 CPU. If that should be considered not acceptable on certain systems,
869 it's always possible to reduce the margin by increasing the number of
870 clamp buckets to trade off used memory for run-time tracking
871 precision.
872
873 If in doubt, use the default value.
874
875 endmenu
876
877 #
878 # For architectures that want to enable the support for NUMA-affine scheduler
879 # balancing logic:
880 #
881 config ARCH_SUPPORTS_NUMA_BALANCING
882 bool
883
884 #
885 # For architectures that prefer to flush all TLBs after a number of pages
886 # are unmapped instead of sending one IPI per page to flush. The architecture
887 # must provide guarantees on what happens if a clean TLB cache entry is
888 # written after the unmap. Details are in mm/rmap.c near the check for
889 # should_defer_flush. The architecture should also consider if the full flush
890 # and the refill costs are offset by the savings of sending fewer IPIs.
891 config ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
892 bool
893
894 config CC_HAS_INT128
895 def_bool !$(cc-option,$(m64-flag) -D__SIZEOF_INT128__=0) && 64BIT
896
897 #
898 # For architectures that know their GCC __int128 support is sound
899 #
900 config ARCH_SUPPORTS_INT128
901 bool
902
903 # For architectures that (ab)use NUMA to represent different memory regions
904 # all cpu-local but of different latencies, such as SuperH.
905 #
906 config ARCH_WANT_NUMA_VARIABLE_LOCALITY
907 bool
908
909 config NUMA_BALANCING
910 bool "Memory placement aware NUMA scheduler"
911 depends on ARCH_SUPPORTS_NUMA_BALANCING
912 depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
913 depends on SMP && NUMA && MIGRATION
914 help
915 This option adds support for automatic NUMA aware memory/task placement.
916 The mechanism is quite primitive and is based on migrating memory when
917 it has references to the node the task is running on.
918
919 This system will be inactive on UMA systems.
920
921 config NUMA_BALANCING_DEFAULT_ENABLED
922 bool "Automatically enable NUMA aware memory/task placement"
923 default y
924 depends on NUMA_BALANCING
925 help
926 If set, automatic NUMA balancing will be enabled if running on a NUMA
927 machine.
928
929 menuconfig CGROUPS
930 bool "Control Group support"
931 select KERNFS
932 help
933 This option adds support for grouping sets of processes together, for
934 use with process control subsystems such as Cpusets, CFS, memory
935 controls or device isolation.
936 See
937 - Documentation/scheduler/sched-design-CFS.rst (CFS)
938 - Documentation/admin-guide/cgroup-v1/ (features for grouping, isolation
939 and resource control)
940
941 Say N if unsure.
942
943 if CGROUPS
944
945 config PAGE_COUNTER
946 bool
947
948 config MEMCG
949 bool "Memory controller"
950 select PAGE_COUNTER
951 select EVENTFD
952 help
953 Provides control over the memory footprint of tasks in a cgroup.
954
955 config MEMCG_SWAP
956 bool
957 depends on MEMCG && SWAP
958 default y
959
960 config MEMCG_KMEM
961 bool
962 depends on MEMCG && !SLOB
963 default y
964
965 config BLK_CGROUP
966 bool "IO controller"
967 depends on BLOCK
968 default n
969 help
970 Generic block IO controller cgroup interface. This is the common
971 cgroup interface which should be used by various IO controlling
972 policies.
973
974 Currently, CFQ IO scheduler uses it to recognize task groups and
975 control disk bandwidth allocation (proportional time slice allocation)
976 to such task groups. It is also used by bio throttling logic in
977 block layer to implement upper limit in IO rates on a device.
978
979 This option only enables generic Block IO controller infrastructure.
980 One needs to also enable actual IO controlling logic/policy. For
981 enabling proportional weight division of disk bandwidth in CFQ, set
982 CONFIG_BFQ_GROUP_IOSCHED=y; for enabling throttling policy, set
983 CONFIG_BLK_DEV_THROTTLING=y.
984
985 See Documentation/admin-guide/cgroup-v1/blkio-controller.rst for more information.
986
987 config CGROUP_WRITEBACK
988 bool
989 depends on MEMCG && BLK_CGROUP
990 default y
991
992 menuconfig CGROUP_SCHED
993 bool "CPU controller"
994 default n
995 help
996 This feature lets CPU scheduler recognize task groups and control CPU
997 bandwidth allocation to such task groups. It uses cgroups to group
998 tasks.
999
1000 if CGROUP_SCHED
1001 config FAIR_GROUP_SCHED
1002 bool "Group scheduling for SCHED_OTHER"
1003 depends on CGROUP_SCHED
1004 default CGROUP_SCHED
1005
1006 config CFS_BANDWIDTH
1007 bool "CPU bandwidth provisioning for FAIR_GROUP_SCHED"
1008 depends on FAIR_GROUP_SCHED
1009 default n
1010 help
1011 This option allows users to define CPU bandwidth rates (limits) for
1012 tasks running within the fair group scheduler. Groups with no limit
1013 set are considered to be unconstrained and will run with no
1014 restriction.
1015 See Documentation/scheduler/sched-bwc.rst for more information.
1016
1017 config RT_GROUP_SCHED
1018 bool "Group scheduling for SCHED_RR/FIFO"
1019 depends on CGROUP_SCHED
1020 default n
1021 help
1022 This feature lets you explicitly allocate real CPU bandwidth
1023 to task groups. If enabled, it will also make it impossible to
1024 schedule realtime tasks for non-root users until you allocate
1025 realtime bandwidth for them.
1026 See Documentation/scheduler/sched-rt-group.rst for more information.
1027
1028 endif #CGROUP_SCHED
1029
1030 config UCLAMP_TASK_GROUP
1031 bool "Utilization clamping per group of tasks"
1032 depends on CGROUP_SCHED
1033 depends on UCLAMP_TASK
1034 default n
1035 help
1036 This feature enables the scheduler to track the clamped utilization
1037 of each CPU based on RUNNABLE tasks currently scheduled on that CPU.
1038
1039 When this option is enabled, the user can specify a min and max
1040 CPU bandwidth which is allowed for each single task in a group.
1041 The max bandwidth allows to clamp the maximum frequency a task
1042 can use, while the min bandwidth allows to define a minimum
1043 frequency a task will always use.
1044
1045 When task group based utilization clamping is enabled, an eventually
1046 specified task-specific clamp value is constrained by the cgroup
1047 specified clamp value. Both minimum and maximum task clamping cannot
1048 be bigger than the corresponding clamping defined at task group level.
1049
1050 If in doubt, say N.
1051
1052 config CGROUP_PIDS
1053 bool "PIDs controller"
1054 help
1055 Provides enforcement of process number limits in the scope of a
1056 cgroup. Any attempt to fork more processes than is allowed in the
1057 cgroup will fail. PIDs are fundamentally a global resource because it
1058 is fairly trivial to reach PID exhaustion before you reach even a
1059 conservative kmemcg limit. As a result, it is possible to grind a
1060 system to halt without being limited by other cgroup policies. The
1061 PIDs controller is designed to stop this from happening.
1062
1063 It should be noted that organisational operations (such as attaching
1064 to a cgroup hierarchy) will *not* be blocked by the PIDs controller,
1065 since the PIDs limit only affects a process's ability to fork, not to
1066 attach to a cgroup.
1067
1068 config CGROUP_RDMA
1069 bool "RDMA controller"
1070 help
1071 Provides enforcement of RDMA resources defined by IB stack.
1072 It is fairly easy for consumers to exhaust RDMA resources, which
1073 can result into resource unavailability to other consumers.
1074 RDMA controller is designed to stop this from happening.
1075 Attaching processes with active RDMA resources to the cgroup
1076 hierarchy is allowed even if can cross the hierarchy's limit.
1077
1078 config CGROUP_FREEZER
1079 bool "Freezer controller"
1080 help
1081 Provides a way to freeze and unfreeze all tasks in a
1082 cgroup.
1083
1084 This option affects the ORIGINAL cgroup interface. The cgroup2 memory
1085 controller includes important in-kernel memory consumers per default.
1086
1087 If you're using cgroup2, say N.
1088
1089 config CGROUP_HUGETLB
1090 bool "HugeTLB controller"
1091 depends on HUGETLB_PAGE
1092 select PAGE_COUNTER
1093 default n
1094 help
1095 Provides a cgroup controller for HugeTLB pages.
1096 When you enable this, you can put a per cgroup limit on HugeTLB usage.
1097 The limit is enforced during page fault. Since HugeTLB doesn't
1098 support page reclaim, enforcing the limit at page fault time implies
1099 that, the application will get SIGBUS signal if it tries to access
1100 HugeTLB pages beyond its limit. This requires the application to know
1101 beforehand how much HugeTLB pages it would require for its use. The
1102 control group is tracked in the third page lru pointer. This means
1103 that we cannot use the controller with huge page less than 3 pages.
1104
1105 config CPUSETS
1106 bool "Cpuset controller"
1107 depends on SMP
1108 help
1109 This option will let you create and manage CPUSETs which
1110 allow dynamically partitioning a system into sets of CPUs and
1111 Memory Nodes and assigning tasks to run only within those sets.
1112 This is primarily useful on large SMP or NUMA systems.
1113
1114 Say N if unsure.
1115
1116 config PROC_PID_CPUSET
1117 bool "Include legacy /proc/<pid>/cpuset file"
1118 depends on CPUSETS
1119 default y
1120
1121 config CGROUP_DEVICE
1122 bool "Device controller"
1123 help
1124 Provides a cgroup controller implementing whitelists for
1125 devices which a process in the cgroup can mknod or open.
1126
1127 config CGROUP_CPUACCT
1128 bool "Simple CPU accounting controller"
1129 help
1130 Provides a simple controller for monitoring the
1131 total CPU consumed by the tasks in a cgroup.
1132
1133 config CGROUP_PERF
1134 bool "Perf controller"
1135 depends on PERF_EVENTS
1136 help
1137 This option extends the perf per-cpu mode to restrict monitoring
1138 to threads which belong to the cgroup specified and run on the
1139 designated cpu. Or this can be used to have cgroup ID in samples
1140 so that it can monitor performance events among cgroups.
1141
1142 Say N if unsure.
1143
1144 config CGROUP_BPF
1145 bool "Support for eBPF programs attached to cgroups"
1146 depends on BPF_SYSCALL
1147 select SOCK_CGROUP_DATA
1148 help
1149 Allow attaching eBPF programs to a cgroup using the bpf(2)
1150 syscall command BPF_PROG_ATTACH.
1151
1152 In which context these programs are accessed depends on the type
1153 of attachment. For instance, programs that are attached using
1154 BPF_CGROUP_INET_INGRESS will be executed on the ingress path of
1155 inet sockets.
1156
1157 config CGROUP_MISC
1158 bool "Misc resource controller"
1159 default n
1160 help
1161 Provides a controller for miscellaneous resources on a host.
1162
1163 Miscellaneous scalar resources are the resources on the host system
1164 which cannot be abstracted like the other cgroups. This controller
1165 tracks and limits the miscellaneous resources used by a process
1166 attached to a cgroup hierarchy.
1167
1168 For more information, please check misc cgroup section in
1169 /Documentation/admin-guide/cgroup-v2.rst.
1170
1171 config CGROUP_DEBUG
1172 bool "Debug controller"
1173 default n
1174 depends on DEBUG_KERNEL
1175 help
1176 This option enables a simple controller that exports
1177 debugging information about the cgroups framework. This
1178 controller is for control cgroup debugging only. Its
1179 interfaces are not stable.
1180
1181 Say N.
1182
1183 config SOCK_CGROUP_DATA
1184 bool
1185 default n
1186
1187 endif # CGROUPS
1188
1189 menuconfig NAMESPACES
1190 bool "Namespaces support" if EXPERT
1191 depends on MULTIUSER
1192 default !EXPERT
1193 help
1194 Provides the way to make tasks work with different objects using
1195 the same id. For example same IPC id may refer to different objects
1196 or same user id or pid may refer to different tasks when used in
1197 different namespaces.
1198
1199 if NAMESPACES
1200
1201 config UTS_NS
1202 bool "UTS namespace"
1203 default y
1204 help
1205 In this namespace tasks see different info provided with the
1206 uname() system call
1207
1208 config TIME_NS
1209 bool "TIME namespace"
1210 depends on GENERIC_VDSO_TIME_NS
1211 default y
1212 help
1213 In this namespace boottime and monotonic clocks can be set.
1214 The time will keep going with the same pace.
1215
1216 config IPC_NS
1217 bool "IPC namespace"
1218 depends on (SYSVIPC || POSIX_MQUEUE)
1219 default y
1220 help
1221 In this namespace tasks work with IPC ids which correspond to
1222 different IPC objects in different namespaces.
1223
1224 config USER_NS
1225 bool "User namespace"
1226 default n
1227 help
1228 This allows containers, i.e. vservers, to use user namespaces
1229 to provide different user info for different servers.
1230
1231 When user namespaces are enabled in the kernel it is
1232 recommended that the MEMCG option also be enabled and that
1233 user-space use the memory control groups to limit the amount
1234 of memory a memory unprivileged users can use.
1235
1236 If unsure, say N.
1237
1238 config PID_NS
1239 bool "PID Namespaces"
1240 default y
1241 help
1242 Support process id namespaces. This allows having multiple
1243 processes with the same pid as long as they are in different
1244 pid namespaces. This is a building block of containers.
1245
1246 config NET_NS
1247 bool "Network namespace"
1248 depends on NET
1249 default y
1250 help
1251 Allow user space to create what appear to be multiple instances
1252 of the network stack.
1253
1254 endif # NAMESPACES
1255
1256 config CHECKPOINT_RESTORE
1257 bool "Checkpoint/restore support"
1258 select PROC_CHILDREN
1259 select KCMP
1260 default n
1261 help
1262 Enables additional kernel features in a sake of checkpoint/restore.
1263 In particular it adds auxiliary prctl codes to setup process text,
1264 data and heap segment sizes, and a few additional /proc filesystem
1265 entries.
1266
1267 If unsure, say N here.
1268
1269 config SCHED_AUTOGROUP
1270 bool "Automatic process group scheduling"
1271 select CGROUPS
1272 select CGROUP_SCHED
1273 select FAIR_GROUP_SCHED
1274 help
1275 This option optimizes the scheduler for common desktop workloads by
1276 automatically creating and populating task groups. This separation
1277 of workloads isolates aggressive CPU burners (like build jobs) from
1278 desktop applications. Task group autogeneration is currently based
1279 upon task session.
1280
1281 config SYSFS_DEPRECATED
1282 bool "Enable deprecated sysfs features to support old userspace tools"
1283 depends on SYSFS
1284 default n
1285 help
1286 This option adds code that switches the layout of the "block" class
1287 devices, to not show up in /sys/class/block/, but only in
1288 /sys/block/.
1289
1290 This switch is only active when the sysfs.deprecated=1 boot option is
1291 passed or the SYSFS_DEPRECATED_V2 option is set.
1292
1293 This option allows new kernels to run on old distributions and tools,
1294 which might get confused by /sys/class/block/. Since 2007/2008 all
1295 major distributions and tools handle this just fine.
1296
1297 Recent distributions and userspace tools after 2009/2010 depend on
1298 the existence of /sys/class/block/, and will not work with this
1299 option enabled.
1300
1301 Only if you are using a new kernel on an old distribution, you might
1302 need to say Y here.
1303
1304 config SYSFS_DEPRECATED_V2
1305 bool "Enable deprecated sysfs features by default"
1306 default n
1307 depends on SYSFS
1308 depends on SYSFS_DEPRECATED
1309 help
1310 Enable deprecated sysfs by default.
1311
1312 See the CONFIG_SYSFS_DEPRECATED option for more details about this
1313 option.
1314
1315 Only if you are using a new kernel on an old distribution, you might
1316 need to say Y here. Even then, odds are you would not need it
1317 enabled, you can always pass the boot option if absolutely necessary.
1318
1319 config RELAY
1320 bool "Kernel->user space relay support (formerly relayfs)"
1321 select IRQ_WORK
1322 help
1323 This option enables support for relay interface support in
1324 certain file systems (such as debugfs).
1325 It is designed to provide an efficient mechanism for tools and
1326 facilities to relay large amounts of data from kernel space to
1327 user space.
1328
1329 If unsure, say N.
1330
1331 config BLK_DEV_INITRD
1332 bool "Initial RAM filesystem and RAM disk (initramfs/initrd) support"
1333 help
1334 The initial RAM filesystem is a ramfs which is loaded by the
1335 boot loader (loadlin or lilo) and that is mounted as root
1336 before the normal boot procedure. It is typically used to
1337 load modules needed to mount the "real" root file system,
1338 etc. See <file:Documentation/admin-guide/initrd.rst> for details.
1339
1340 If RAM disk support (BLK_DEV_RAM) is also included, this
1341 also enables initial RAM disk (initrd) support and adds
1342 15 Kbytes (more on some other architectures) to the kernel size.
1343
1344 If unsure say Y.
1345
1346 if BLK_DEV_INITRD
1347
1348 source "usr/Kconfig"
1349
1350 endif
1351
1352 config BOOT_CONFIG
1353 bool "Boot config support"
1354 select BLK_DEV_INITRD
1355 help
1356 Extra boot config allows system admin to pass a config file as
1357 complemental extension of kernel cmdline when booting.
1358 The boot config file must be attached at the end of initramfs
1359 with checksum, size and magic word.
1360 See <file:Documentation/admin-guide/bootconfig.rst> for details.
1361
1362 If unsure, say Y.
1363
1364 choice
1365 prompt "Compiler optimization level"
1366 default CC_OPTIMIZE_FOR_PERFORMANCE
1367
1368 config CC_OPTIMIZE_FOR_PERFORMANCE
1369 bool "Optimize for performance (-O2)"
1370 help
1371 This is the default optimization level for the kernel, building
1372 with the "-O2" compiler flag for best performance and most
1373 helpful compile-time warnings.
1374
1375 config CC_OPTIMIZE_FOR_PERFORMANCE_O3
1376 bool "Optimize more for performance (-O3)"
1377 depends on ARC
1378 help
1379 Choosing this option will pass "-O3" to your compiler to optimize
1380 the kernel yet more for performance.
1381
1382 config CC_OPTIMIZE_FOR_SIZE
1383 bool "Optimize for size (-Os)"
1384 help
1385 Choosing this option will pass "-Os" to your compiler resulting
1386 in a smaller kernel.
1387
1388 endchoice
1389
1390 config HAVE_LD_DEAD_CODE_DATA_ELIMINATION
1391 bool
1392 help
1393 This requires that the arch annotates or otherwise protects
1394 its external entry points from being discarded. Linker scripts
1395 must also merge .text.*, .data.*, and .bss.* correctly into
1396 output sections. Care must be taken not to pull in unrelated
1397 sections (e.g., '.text.init'). Typically '.' in section names
1398 is used to distinguish them from label names / C identifiers.
1399
1400 config LD_DEAD_CODE_DATA_ELIMINATION
1401 bool "Dead code and data elimination (EXPERIMENTAL)"
1402 depends on HAVE_LD_DEAD_CODE_DATA_ELIMINATION
1403 depends on EXPERT
1404 depends on $(cc-option,-ffunction-sections -fdata-sections)
1405 depends on $(ld-option,--gc-sections)
1406 help
1407 Enable this if you want to do dead code and data elimination with
1408 the linker by compiling with -ffunction-sections -fdata-sections,
1409 and linking with --gc-sections.
1410
1411 This can reduce on disk and in-memory size of the kernel
1412 code and static data, particularly for small configs and
1413 on small systems. This has the possibility of introducing
1414 silently broken kernel if the required annotations are not
1415 present. This option is not well tested yet, so use at your
1416 own risk.
1417
1418 config LD_ORPHAN_WARN
1419 def_bool y
1420 depends on ARCH_WANT_LD_ORPHAN_WARN
1421 depends on !LD_IS_LLD || LLD_VERSION >= 110000
1422 depends on $(ld-option,--orphan-handling=warn)
1423
1424 config SYSCTL
1425 bool
1426
1427 config HAVE_UID16
1428 bool
1429
1430 config SYSCTL_EXCEPTION_TRACE
1431 bool
1432 help
1433 Enable support for /proc/sys/debug/exception-trace.
1434
1435 config SYSCTL_ARCH_UNALIGN_NO_WARN
1436 bool
1437 help
1438 Enable support for /proc/sys/kernel/ignore-unaligned-usertrap
1439 Allows arch to define/use @no_unaligned_warning to possibly warn
1440 about unaligned access emulation going on under the hood.
1441
1442 config SYSCTL_ARCH_UNALIGN_ALLOW
1443 bool
1444 help
1445 Enable support for /proc/sys/kernel/unaligned-trap
1446 Allows arches to define/use @unaligned_enabled to runtime toggle
1447 the unaligned access emulation.
1448 see arch/parisc/kernel/unaligned.c for reference
1449
1450 config HAVE_PCSPKR_PLATFORM
1451 bool
1452
1453 # interpreter that classic socket filters depend on
1454 config BPF
1455 bool
1456
1457 menuconfig EXPERT
1458 bool "Configure standard kernel features (expert users)"
1459 # Unhide debug options, to make the on-by-default options visible
1460 select DEBUG_KERNEL
1461 help
1462 This option allows certain base kernel options and settings
1463 to be disabled or tweaked. This is for specialized
1464 environments which can tolerate a "non-standard" kernel.
1465 Only use this if you really know what you are doing.
1466
1467 config UID16
1468 bool "Enable 16-bit UID system calls" if EXPERT
1469 depends on HAVE_UID16 && MULTIUSER
1470 default y
1471 help
1472 This enables the legacy 16-bit UID syscall wrappers.
1473
1474 config MULTIUSER
1475 bool "Multiple users, groups and capabilities support" if EXPERT
1476 default y
1477 help
1478 This option enables support for non-root users, groups and
1479 capabilities.
1480
1481 If you say N here, all processes will run with UID 0, GID 0, and all
1482 possible capabilities. Saying N here also compiles out support for
1483 system calls related to UIDs, GIDs, and capabilities, such as setuid,
1484 setgid, and capset.
1485
1486 If unsure, say Y here.
1487
1488 config SGETMASK_SYSCALL
1489 bool "sgetmask/ssetmask syscalls support" if EXPERT
1490 def_bool PARISC || M68K || PPC || MIPS || X86 || SPARC || MICROBLAZE || SUPERH
1491 help
1492 sys_sgetmask and sys_ssetmask are obsolete system calls
1493 no longer supported in libc but still enabled by default in some
1494 architectures.
1495
1496 If unsure, leave the default option here.
1497
1498 config SYSFS_SYSCALL
1499 bool "Sysfs syscall support" if EXPERT
1500 default y
1501 help
1502 sys_sysfs is an obsolete system call no longer supported in libc.
1503 Note that disabling this option is more secure but might break
1504 compatibility with some systems.
1505
1506 If unsure say Y here.
1507
1508 config FHANDLE
1509 bool "open by fhandle syscalls" if EXPERT
1510 select EXPORTFS
1511 default y
1512 help
1513 If you say Y here, a user level program will be able to map
1514 file names to handle and then later use the handle for
1515 different file system operations. This is useful in implementing
1516 userspace file servers, which now track files using handles instead
1517 of names. The handle would remain the same even if file names
1518 get renamed. Enables open_by_handle_at(2) and name_to_handle_at(2)
1519 syscalls.
1520
1521 config POSIX_TIMERS
1522 bool "Posix Clocks & timers" if EXPERT
1523 default y
1524 help
1525 This includes native support for POSIX timers to the kernel.
1526 Some embedded systems have no use for them and therefore they
1527 can be configured out to reduce the size of the kernel image.
1528
1529 When this option is disabled, the following syscalls won't be
1530 available: timer_create, timer_gettime: timer_getoverrun,
1531 timer_settime, timer_delete, clock_adjtime, getitimer,
1532 setitimer, alarm. Furthermore, the clock_settime, clock_gettime,
1533 clock_getres and clock_nanosleep syscalls will be limited to
1534 CLOCK_REALTIME, CLOCK_MONOTONIC and CLOCK_BOOTTIME only.
1535
1536 If unsure say y.
1537
1538 config PRINTK
1539 default y
1540 bool "Enable support for printk" if EXPERT
1541 select IRQ_WORK
1542 help
1543 This option enables normal printk support. Removing it
1544 eliminates most of the message strings from the kernel image
1545 and makes the kernel more or less silent. As this makes it
1546 very difficult to diagnose system problems, saying N here is
1547 strongly discouraged.
1548
1549 config BUG
1550 bool "BUG() support" if EXPERT
1551 default y
1552 help
1553 Disabling this option eliminates support for BUG and WARN, reducing
1554 the size of your kernel image and potentially quietly ignoring
1555 numerous fatal conditions. You should only consider disabling this
1556 option for embedded systems with no facilities for reporting errors.
1557 Just say Y.
1558
1559 config ELF_CORE
1560 depends on COREDUMP
1561 default y
1562 bool "Enable ELF core dumps" if EXPERT
1563 help
1564 Enable support for generating core dumps. Disabling saves about 4k.
1565
1566
1567 config PCSPKR_PLATFORM
1568 bool "Enable PC-Speaker support" if EXPERT
1569 depends on HAVE_PCSPKR_PLATFORM
1570 select I8253_LOCK
1571 default y
1572 help
1573 This option allows to disable the internal PC-Speaker
1574 support, saving some memory.
1575
1576 config BASE_FULL
1577 default y
1578 bool "Enable full-sized data structures for core" if EXPERT
1579 help
1580 Disabling this option reduces the size of miscellaneous core
1581 kernel data structures. This saves memory on small machines,
1582 but may reduce performance.
1583
1584 config FUTEX
1585 bool "Enable futex support" if EXPERT
1586 default y
1587 imply RT_MUTEXES
1588 help
1589 Disabling this option will cause the kernel to be built without
1590 support for "fast userspace mutexes". The resulting kernel may not
1591 run glibc-based applications correctly.
1592
1593 config FUTEX_PI
1594 bool
1595 depends on FUTEX && RT_MUTEXES
1596 default y
1597
1598 config HAVE_FUTEX_CMPXCHG
1599 bool
1600 depends on FUTEX
1601 help
1602 Architectures should select this if futex_atomic_cmpxchg_inatomic()
1603 is implemented and always working. This removes a couple of runtime
1604 checks.
1605
1606 config EPOLL
1607 bool "Enable eventpoll support" if EXPERT
1608 default y
1609 help
1610 Disabling this option will cause the kernel to be built without
1611 support for epoll family of system calls.
1612
1613 config SIGNALFD
1614 bool "Enable signalfd() system call" if EXPERT
1615 default y
1616 help
1617 Enable the signalfd() system call that allows to receive signals
1618 on a file descriptor.
1619
1620 If unsure, say Y.
1621
1622 config TIMERFD
1623 bool "Enable timerfd() system call" if EXPERT
1624 default y
1625 help
1626 Enable the timerfd() system call that allows to receive timer
1627 events on a file descriptor.
1628
1629 If unsure, say Y.
1630
1631 config EVENTFD
1632 bool "Enable eventfd() system call" if EXPERT
1633 default y
1634 help
1635 Enable the eventfd() system call that allows to receive both
1636 kernel notification (ie. KAIO) or userspace notifications.
1637
1638 If unsure, say Y.
1639
1640 config SHMEM
1641 bool "Use full shmem filesystem" if EXPERT
1642 default y
1643 depends on MMU
1644 help
1645 The shmem is an internal filesystem used to manage shared memory.
1646 It is backed by swap and manages resource limits. It is also exported
1647 to userspace as tmpfs if TMPFS is enabled. Disabling this
1648 option replaces shmem and tmpfs with the much simpler ramfs code,
1649 which may be appropriate on small systems without swap.
1650
1651 config AIO
1652 bool "Enable AIO support" if EXPERT
1653 default y
1654 help
1655 This option enables POSIX asynchronous I/O which may by used
1656 by some high performance threaded applications. Disabling
1657 this option saves about 7k.
1658
1659 config IO_URING
1660 bool "Enable IO uring support" if EXPERT
1661 select IO_WQ
1662 default y
1663 help
1664 This option enables support for the io_uring interface, enabling
1665 applications to submit and complete IO through submission and
1666 completion rings that are shared between the kernel and application.
1667
1668 config ADVISE_SYSCALLS
1669 bool "Enable madvise/fadvise syscalls" if EXPERT
1670 default y
1671 help
1672 This option enables the madvise and fadvise syscalls, used by
1673 applications to advise the kernel about their future memory or file
1674 usage, improving performance. If building an embedded system where no
1675 applications use these syscalls, you can disable this option to save
1676 space.
1677
1678 config HAVE_ARCH_USERFAULTFD_WP
1679 bool
1680 help
1681 Arch has userfaultfd write protection support
1682
1683 config HAVE_ARCH_USERFAULTFD_MINOR
1684 bool
1685 help
1686 Arch has userfaultfd minor fault support
1687
1688 config MEMBARRIER
1689 bool "Enable membarrier() system call" if EXPERT
1690 default y
1691 help
1692 Enable the membarrier() system call that allows issuing memory
1693 barriers across all running threads, which can be used to distribute
1694 the cost of user-space memory barriers asymmetrically by transforming
1695 pairs of memory barriers into pairs consisting of membarrier() and a
1696 compiler barrier.
1697
1698 If unsure, say Y.
1699
1700 config KALLSYMS
1701 bool "Load all symbols for debugging/ksymoops" if EXPERT
1702 default y
1703 help
1704 Say Y here to let the kernel print out symbolic crash information and
1705 symbolic stack backtraces. This increases the size of the kernel
1706 somewhat, as all symbols have to be loaded into the kernel image.
1707
1708 config KALLSYMS_ALL
1709 bool "Include all symbols in kallsyms"
1710 depends on DEBUG_KERNEL && KALLSYMS
1711 help
1712 Normally kallsyms only contains the symbols of functions for nicer
1713 OOPS messages and backtraces (i.e., symbols from the text and inittext
1714 sections). This is sufficient for most cases. And only in very rare
1715 cases (e.g., when a debugger is used) all symbols are required (e.g.,
1716 names of variables from the data sections, etc).
1717
1718 This option makes sure that all symbols are loaded into the kernel
1719 image (i.e., symbols from all sections) in cost of increased kernel
1720 size (depending on the kernel configuration, it may be 300KiB or
1721 something like this).
1722
1723 Say N unless you really need all symbols.
1724
1725 config KALLSYMS_ABSOLUTE_PERCPU
1726 bool
1727 depends on KALLSYMS
1728 default X86_64 && SMP
1729
1730 config KALLSYMS_BASE_RELATIVE
1731 bool
1732 depends on KALLSYMS
1733 default !IA64
1734 help
1735 Instead of emitting them as absolute values in the native word size,
1736 emit the symbol references in the kallsyms table as 32-bit entries,
1737 each containing a relative value in the range [base, base + U32_MAX]
1738 or, when KALLSYMS_ABSOLUTE_PERCPU is in effect, each containing either
1739 an absolute value in the range [0, S32_MAX] or a relative value in the
1740 range [base, base + S32_MAX], where base is the lowest relative symbol
1741 address encountered in the image.
1742
1743 On 64-bit builds, this reduces the size of the address table by 50%,
1744 but more importantly, it results in entries whose values are build
1745 time constants, and no relocation pass is required at runtime to fix
1746 up the entries based on the runtime load address of the kernel.
1747
1748 # end of the "standard kernel features (expert users)" menu
1749
1750 # syscall, maps, verifier
1751
1752 config USERFAULTFD
1753 bool "Enable userfaultfd() system call"
1754 depends on MMU
1755 help
1756 Enable the userfaultfd() system call that allows to intercept and
1757 handle page faults in userland.
1758
1759 config ARCH_HAS_MEMBARRIER_CALLBACKS
1760 bool
1761
1762 config ARCH_HAS_MEMBARRIER_SYNC_CORE
1763 bool
1764
1765 config KCMP
1766 bool "Enable kcmp() system call" if EXPERT
1767 help
1768 Enable the kernel resource comparison system call. It provides
1769 user-space with the ability to compare two processes to see if they
1770 share a common resource, such as a file descriptor or even virtual
1771 memory space.
1772
1773 If unsure, say N.
1774
1775 config RSEQ
1776 bool "Enable rseq() system call" if EXPERT
1777 default y
1778 depends on HAVE_RSEQ
1779 select MEMBARRIER
1780 help
1781 Enable the restartable sequences system call. It provides a
1782 user-space cache for the current CPU number value, which
1783 speeds up getting the current CPU number from user-space,
1784 as well as an ABI to speed up user-space operations on
1785 per-CPU data.
1786
1787 If unsure, say Y.
1788
1789 config DEBUG_RSEQ
1790 default n
1791 bool "Enabled debugging of rseq() system call" if EXPERT
1792 depends on RSEQ && DEBUG_KERNEL
1793 help
1794 Enable extra debugging checks for the rseq system call.
1795
1796 If unsure, say N.
1797
1798 config EMBEDDED
1799 bool "Embedded system"
1800 select EXPERT
1801 help
1802 This option should be enabled if compiling the kernel for
1803 an embedded system so certain expert options are available
1804 for configuration.
1805
1806 config HAVE_PERF_EVENTS
1807 bool
1808 help
1809 See tools/perf/design.txt for details.
1810
1811 config PERF_USE_VMALLOC
1812 bool
1813 help
1814 See tools/perf/design.txt for details
1815
1816 config PC104
1817 bool "PC/104 support" if EXPERT
1818 help
1819 Expose PC/104 form factor device drivers and options available for
1820 selection and configuration. Enable this option if your target
1821 machine has a PC/104 bus.
1822
1823 menu "Kernel Performance Events And Counters"
1824
1825 config PERF_EVENTS
1826 bool "Kernel performance events and counters"
1827 default y if PROFILING
1828 depends on HAVE_PERF_EVENTS
1829 select IRQ_WORK
1830 select SRCU
1831 help
1832 Enable kernel support for various performance events provided
1833 by software and hardware.
1834
1835 Software events are supported either built-in or via the
1836 use of generic tracepoints.
1837
1838 Most modern CPUs support performance events via performance
1839 counter registers. These registers count the number of certain
1840 types of hw events: such as instructions executed, cachemisses
1841 suffered, or branches mis-predicted - without slowing down the
1842 kernel or applications. These registers can also trigger interrupts
1843 when a threshold number of events have passed - and can thus be
1844 used to profile the code that runs on that CPU.
1845
1846 The Linux Performance Event subsystem provides an abstraction of
1847 these software and hardware event capabilities, available via a
1848 system call and used by the "perf" utility in tools/perf/. It
1849 provides per task and per CPU counters, and it provides event
1850 capabilities on top of those.
1851
1852 Say Y if unsure.
1853
1854 config DEBUG_PERF_USE_VMALLOC
1855 default n
1856 bool "Debug: use vmalloc to back perf mmap() buffers"
1857 depends on PERF_EVENTS && DEBUG_KERNEL && !PPC
1858 select PERF_USE_VMALLOC
1859 help
1860 Use vmalloc memory to back perf mmap() buffers.
1861
1862 Mostly useful for debugging the vmalloc code on platforms
1863 that don't require it.
1864
1865 Say N if unsure.
1866
1867 endmenu
1868
1869 config VM_EVENT_COUNTERS
1870 default y
1871 bool "Enable VM event counters for /proc/vmstat" if EXPERT
1872 help
1873 VM event counters are needed for event counts to be shown.
1874 This option allows the disabling of the VM event counters
1875 on EXPERT systems. /proc/vmstat will only show page counts
1876 if VM event counters are disabled.
1877
1878 config SLUB_DEBUG
1879 default y
1880 bool "Enable SLUB debugging support" if EXPERT
1881 depends on SLUB && SYSFS
1882 help
1883 SLUB has extensive debug support features. Disabling these can
1884 result in significant savings in code size. This also disables
1885 SLUB sysfs support. /sys/slab will not exist and there will be
1886 no support for cache validation etc.
1887
1888 config COMPAT_BRK
1889 bool "Disable heap randomization"
1890 default y
1891 help
1892 Randomizing heap placement makes heap exploits harder, but it
1893 also breaks ancient binaries (including anything libc5 based).
1894 This option changes the bootup default to heap randomization
1895 disabled, and can be overridden at runtime by setting
1896 /proc/sys/kernel/randomize_va_space to 2.
1897
1898 On non-ancient distros (post-2000 ones) N is usually a safe choice.
1899
1900 choice
1901 prompt "Choose SLAB allocator"
1902 default SLUB
1903 help
1904 This option allows to select a slab allocator.
1905
1906 config SLAB
1907 bool "SLAB"
1908 select HAVE_HARDENED_USERCOPY_ALLOCATOR
1909 help
1910 The regular slab allocator that is established and known to work
1911 well in all environments. It organizes cache hot objects in
1912 per cpu and per node queues.
1913
1914 config SLUB
1915 bool "SLUB (Unqueued Allocator)"
1916 select HAVE_HARDENED_USERCOPY_ALLOCATOR
1917 help
1918 SLUB is a slab allocator that minimizes cache line usage
1919 instead of managing queues of cached objects (SLAB approach).
1920 Per cpu caching is realized using slabs of objects instead
1921 of queues of objects. SLUB can use memory efficiently
1922 and has enhanced diagnostics. SLUB is the default choice for
1923 a slab allocator.
1924
1925 config SLOB
1926 depends on EXPERT
1927 bool "SLOB (Simple Allocator)"
1928 help
1929 SLOB replaces the stock allocator with a drastically simpler
1930 allocator. SLOB is generally more space efficient but
1931 does not perform as well on large systems.
1932
1933 endchoice
1934
1935 config SLAB_MERGE_DEFAULT
1936 bool "Allow slab caches to be merged"
1937 default y
1938 help
1939 For reduced kernel memory fragmentation, slab caches can be
1940 merged when they share the same size and other characteristics.
1941 This carries a risk of kernel heap overflows being able to
1942 overwrite objects from merged caches (and more easily control
1943 cache layout), which makes such heap attacks easier to exploit
1944 by attackers. By keeping caches unmerged, these kinds of exploits
1945 can usually only damage objects in the same cache. To disable
1946 merging at runtime, "slab_nomerge" can be passed on the kernel
1947 command line.
1948
1949 config SLAB_FREELIST_RANDOM
1950 bool "Randomize slab freelist"
1951 depends on SLAB || SLUB
1952 help
1953 Randomizes the freelist order used on creating new pages. This
1954 security feature reduces the predictability of the kernel slab
1955 allocator against heap overflows.
1956
1957 config SLAB_FREELIST_HARDENED
1958 bool "Harden slab freelist metadata"
1959 depends on SLAB || SLUB
1960 help
1961 Many kernel heap attacks try to target slab cache metadata and
1962 other infrastructure. This options makes minor performance
1963 sacrifices to harden the kernel slab allocator against common
1964 freelist exploit methods. Some slab implementations have more
1965 sanity-checking than others. This option is most effective with
1966 CONFIG_SLUB.
1967
1968 config SHUFFLE_PAGE_ALLOCATOR
1969 bool "Page allocator randomization"
1970 default SLAB_FREELIST_RANDOM && ACPI_NUMA
1971 help
1972 Randomization of the page allocator improves the average
1973 utilization of a direct-mapped memory-side-cache. See section
1974 5.2.27 Heterogeneous Memory Attribute Table (HMAT) in the ACPI
1975 6.2a specification for an example of how a platform advertises
1976 the presence of a memory-side-cache. There are also incidental
1977 security benefits as it reduces the predictability of page
1978 allocations to compliment SLAB_FREELIST_RANDOM, but the
1979 default granularity of shuffling on the "MAX_ORDER - 1" i.e,
1980 10th order of pages is selected based on cache utilization
1981 benefits on x86.
1982
1983 While the randomization improves cache utilization it may
1984 negatively impact workloads on platforms without a cache. For
1985 this reason, by default, the randomization is enabled only
1986 after runtime detection of a direct-mapped memory-side-cache.
1987 Otherwise, the randomization may be force enabled with the
1988 'page_alloc.shuffle' kernel command line parameter.
1989
1990 Say Y if unsure.
1991
1992 config SLUB_CPU_PARTIAL
1993 default y
1994 depends on SLUB && SMP
1995 bool "SLUB per cpu partial cache"
1996 help
1997 Per cpu partial caches accelerate objects allocation and freeing
1998 that is local to a processor at the price of more indeterminism
1999 in the latency of the free. On overflow these caches will be cleared
2000 which requires the taking of locks that may cause latency spikes.
2001 Typically one would choose no for a realtime system.
2002
2003 config MMAP_ALLOW_UNINITIALIZED
2004 bool "Allow mmapped anonymous memory to be uninitialized"
2005 depends on EXPERT && !MMU
2006 default n
2007 help
2008 Normally, and according to the Linux spec, anonymous memory obtained
2009 from mmap() has its contents cleared before it is passed to
2010 userspace. Enabling this config option allows you to request that
2011 mmap() skip that if it is given an MAP_UNINITIALIZED flag, thus
2012 providing a huge performance boost. If this option is not enabled,
2013 then the flag will be ignored.
2014
2015 This is taken advantage of by uClibc's malloc(), and also by
2016 ELF-FDPIC binfmt's brk and stack allocator.
2017
2018 Because of the obvious security issues, this option should only be
2019 enabled on embedded devices where you control what is run in
2020 userspace. Since that isn't generally a problem on no-MMU systems,
2021 it is normally safe to say Y here.
2022
2023 See Documentation/admin-guide/mm/nommu-mmap.rst for more information.
2024
2025 config SYSTEM_DATA_VERIFICATION
2026 def_bool n
2027 select SYSTEM_TRUSTED_KEYRING
2028 select KEYS
2029 select CRYPTO
2030 select CRYPTO_RSA
2031 select ASYMMETRIC_KEY_TYPE
2032 select ASYMMETRIC_PUBLIC_KEY_SUBTYPE
2033 select ASN1
2034 select OID_REGISTRY
2035 select X509_CERTIFICATE_PARSER
2036 select PKCS7_MESSAGE_PARSER
2037 help
2038 Provide PKCS#7 message verification using the contents of the system
2039 trusted keyring to provide public keys. This then can be used for
2040 module verification, kexec image verification and firmware blob
2041 verification.
2042
2043 config PROFILING
2044 bool "Profiling support"
2045 help
2046 Say Y here to enable the extended profiling support mechanisms used
2047 by profilers.
2048
2049 #
2050 # Place an empty function call at each tracepoint site. Can be
2051 # dynamically changed for a probe function.
2052 #
2053 config TRACEPOINTS
2054 bool
2055
2056 endmenu # General setup
2057
2058 source "arch/Kconfig"
2059
2060 config RT_MUTEXES
2061 bool
2062
2063 config BASE_SMALL
2064 int
2065 default 0 if BASE_FULL
2066 default 1 if !BASE_FULL
2067
2068 config MODULE_SIG_FORMAT
2069 def_bool n
2070 select SYSTEM_DATA_VERIFICATION
2071
2072 menuconfig MODULES
2073 bool "Enable loadable module support"
2074 modules
2075 help
2076 Kernel modules are small pieces of compiled code which can
2077 be inserted in the running kernel, rather than being
2078 permanently built into the kernel. You use the "modprobe"
2079 tool to add (and sometimes remove) them. If you say Y here,
2080 many parts of the kernel can be built as modules (by
2081 answering M instead of Y where indicated): this is most
2082 useful for infrequently used options which are not required
2083 for booting. For more information, see the man pages for
2084 modprobe, lsmod, modinfo, insmod and rmmod.
2085
2086 If you say Y here, you will need to run "make
2087 modules_install" to put the modules under /lib/modules/
2088 where modprobe can find them (you may need to be root to do
2089 this).
2090
2091 If unsure, say Y.
2092
2093 if MODULES
2094
2095 config MODULE_FORCE_LOAD
2096 bool "Forced module loading"
2097 default n
2098 help
2099 Allow loading of modules without version information (ie. modprobe
2100 --force). Forced module loading sets the 'F' (forced) taint flag and
2101 is usually a really bad idea.
2102
2103 config MODULE_UNLOAD
2104 bool "Module unloading"
2105 help
2106 Without this option you will not be able to unload any
2107 modules (note that some modules may not be unloadable
2108 anyway), which makes your kernel smaller, faster
2109 and simpler. If unsure, say Y.
2110
2111 config MODULE_FORCE_UNLOAD
2112 bool "Forced module unloading"
2113 depends on MODULE_UNLOAD
2114 help
2115 This option allows you to force a module to unload, even if the
2116 kernel believes it is unsafe: the kernel will remove the module
2117 without waiting for anyone to stop using it (using the -f option to
2118 rmmod). This is mainly for kernel developers and desperate users.
2119 If unsure, say N.
2120
2121 config MODVERSIONS
2122 bool "Module versioning support"
2123 help
2124 Usually, you have to use modules compiled with your kernel.
2125 Saying Y here makes it sometimes possible to use modules
2126 compiled for different kernels, by adding enough information
2127 to the modules to (hopefully) spot any changes which would
2128 make them incompatible with the kernel you are running. If
2129 unsure, say N.
2130
2131 config ASM_MODVERSIONS
2132 bool
2133 default HAVE_ASM_MODVERSIONS && MODVERSIONS
2134 help
2135 This enables module versioning for exported symbols also from
2136 assembly. This can be enabled only when the target architecture
2137 supports it.
2138
2139 config MODULE_REL_CRCS
2140 bool
2141 depends on MODVERSIONS
2142
2143 config MODULE_SRCVERSION_ALL
2144 bool "Source checksum for all modules"
2145 help
2146 Modules which contain a MODULE_VERSION get an extra "srcversion"
2147 field inserted into their modinfo section, which contains a
2148 sum of the source files which made it. This helps maintainers
2149 see exactly which source was used to build a module (since
2150 others sometimes change the module source without updating
2151 the version). With this option, such a "srcversion" field
2152 will be created for all modules. If unsure, say N.
2153
2154 config MODULE_SIG
2155 bool "Module signature verification"
2156 select MODULE_SIG_FORMAT
2157 help
2158 Check modules for valid signatures upon load: the signature
2159 is simply appended to the module. For more information see
2160 <file:Documentation/admin-guide/module-signing.rst>.
2161
2162 Note that this option adds the OpenSSL development packages as a
2163 kernel build dependency so that the signing tool can use its crypto
2164 library.
2165
2166 You should enable this option if you wish to use either
2167 CONFIG_SECURITY_LOCKDOWN_LSM or lockdown functionality imposed via
2168 another LSM - otherwise unsigned modules will be loadable regardless
2169 of the lockdown policy.
2170
2171 !!!WARNING!!! If you enable this option, you MUST make sure that the
2172 module DOES NOT get stripped after being signed. This includes the
2173 debuginfo strip done by some packagers (such as rpmbuild) and
2174 inclusion into an initramfs that wants the module size reduced.
2175
2176 config MODULE_SIG_FORCE
2177 bool "Require modules to be validly signed"
2178 depends on MODULE_SIG
2179 help
2180 Reject unsigned modules or signed modules for which we don't have a
2181 key. Without this, such modules will simply taint the kernel.
2182
2183 config MODULE_SIG_ALL
2184 bool "Automatically sign all modules"
2185 default y
2186 depends on MODULE_SIG || IMA_APPRAISE_MODSIG
2187 help
2188 Sign all modules during make modules_install. Without this option,
2189 modules must be signed manually, using the scripts/sign-file tool.
2190
2191 comment "Do not forget to sign required modules with scripts/sign-file"
2192 depends on MODULE_SIG_FORCE && !MODULE_SIG_ALL
2193
2194 choice
2195 prompt "Which hash algorithm should modules be signed with?"
2196 depends on MODULE_SIG || IMA_APPRAISE_MODSIG
2197 help
2198 This determines which sort of hashing algorithm will be used during
2199 signature generation. This algorithm _must_ be built into the kernel
2200 directly so that signature verification can take place. It is not
2201 possible to load a signed module containing the algorithm to check
2202 the signature on that module.
2203
2204 config MODULE_SIG_SHA1
2205 bool "Sign modules with SHA-1"
2206 select CRYPTO_SHA1
2207
2208 config MODULE_SIG_SHA224
2209 bool "Sign modules with SHA-224"
2210 select CRYPTO_SHA256
2211
2212 config MODULE_SIG_SHA256
2213 bool "Sign modules with SHA-256"
2214 select CRYPTO_SHA256
2215
2216 config MODULE_SIG_SHA384
2217 bool "Sign modules with SHA-384"
2218 select CRYPTO_SHA512
2219
2220 config MODULE_SIG_SHA512
2221 bool "Sign modules with SHA-512"
2222 select CRYPTO_SHA512
2223
2224 endchoice
2225
2226 config MODULE_SIG_HASH
2227 string
2228 depends on MODULE_SIG || IMA_APPRAISE_MODSIG
2229 default "sha1" if MODULE_SIG_SHA1
2230 default "sha224" if MODULE_SIG_SHA224
2231 default "sha256" if MODULE_SIG_SHA256
2232 default "sha384" if MODULE_SIG_SHA384
2233 default "sha512" if MODULE_SIG_SHA512
2234
2235 choice
2236 prompt "Module compression mode"
2237 help
2238 This option allows you to choose the algorithm which will be used to
2239 compress modules when 'make modules_install' is run. (or, you can
2240 choose to not compress modules at all.)
2241
2242 External modules will also be compressed in the same way during the
2243 installation.
2244
2245 For modules inside an initrd or initramfs, it's more efficient to
2246 compress the whole initrd or initramfs instead.
2247
2248 This is fully compatible with signed modules.
2249
2250 Please note that the tool used to load modules needs to support the
2251 corresponding algorithm. module-init-tools MAY support gzip, and kmod
2252 MAY support gzip, xz and zstd.
2253
2254 Your build system needs to provide the appropriate compression tool
2255 to compress the modules.
2256
2257 If in doubt, select 'None'.
2258
2259 config MODULE_COMPRESS_NONE
2260 bool "None"
2261 help
2262 Do not compress modules. The installed modules are suffixed
2263 with .ko.
2264
2265 config MODULE_COMPRESS_GZIP
2266 bool "GZIP"
2267 help
2268 Compress modules with GZIP. The installed modules are suffixed
2269 with .ko.gz.
2270
2271 config MODULE_COMPRESS_XZ
2272 bool "XZ"
2273 help
2274 Compress modules with XZ. The installed modules are suffixed
2275 with .ko.xz.
2276
2277 config MODULE_COMPRESS_ZSTD
2278 bool "ZSTD"
2279 help
2280 Compress modules with ZSTD. The installed modules are suffixed
2281 with .ko.zst.
2282
2283 endchoice
2284
2285 config MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
2286 bool "Allow loading of modules with missing namespace imports"
2287 help
2288 Symbols exported with EXPORT_SYMBOL_NS*() are considered exported in
2289 a namespace. A module that makes use of a symbol exported with such a
2290 namespace is required to import the namespace via MODULE_IMPORT_NS().
2291 There is no technical reason to enforce correct namespace imports,
2292 but it creates consistency between symbols defining namespaces and
2293 users importing namespaces they make use of. This option relaxes this
2294 requirement and lifts the enforcement when loading a module.
2295
2296 If unsure, say N.
2297
2298 config MODPROBE_PATH
2299 string "Path to modprobe binary"
2300 default "/sbin/modprobe"
2301 help
2302 When kernel code requests a module, it does so by calling
2303 the "modprobe" userspace utility. This option allows you to
2304 set the path where that binary is found. This can be changed
2305 at runtime via the sysctl file
2306 /proc/sys/kernel/modprobe. Setting this to the empty string
2307 removes the kernel's ability to request modules (but
2308 userspace can still load modules explicitly).
2309
2310 config TRIM_UNUSED_KSYMS
2311 bool "Trim unused exported kernel symbols" if EXPERT
2312 depends on !COMPILE_TEST
2313 help
2314 The kernel and some modules make many symbols available for
2315 other modules to use via EXPORT_SYMBOL() and variants. Depending
2316 on the set of modules being selected in your kernel configuration,
2317 many of those exported symbols might never be used.
2318
2319 This option allows for unused exported symbols to be dropped from
2320 the build. In turn, this provides the compiler more opportunities
2321 (especially when using LTO) for optimizing the code and reducing
2322 binary size. This might have some security advantages as well.
2323
2324 If unsure, or if you need to build out-of-tree modules, say N.
2325
2326 config UNUSED_KSYMS_WHITELIST
2327 string "Whitelist of symbols to keep in ksymtab"
2328 depends on TRIM_UNUSED_KSYMS
2329 help
2330 By default, all unused exported symbols will be un-exported from the
2331 build when TRIM_UNUSED_KSYMS is selected.
2332
2333 UNUSED_KSYMS_WHITELIST allows to whitelist symbols that must be kept
2334 exported at all times, even in absence of in-tree users. The value to
2335 set here is the path to a text file containing the list of symbols,
2336 one per line. The path can be absolute, or relative to the kernel
2337 source tree.
2338
2339 endif # MODULES
2340
2341 config MODULES_TREE_LOOKUP
2342 def_bool y
2343 depends on PERF_EVENTS || TRACING || CFI_CLANG
2344
2345 config INIT_ALL_POSSIBLE
2346 bool
2347 help
2348 Back when each arch used to define their own cpu_online_mask and
2349 cpu_possible_mask, some of them chose to initialize cpu_possible_mask
2350 with all 1s, and others with all 0s. When they were centralised,
2351 it was better to provide this option than to break all the archs
2352 and have several arch maintainers pursuing me down dark alleys.
2353
2354 source "block/Kconfig"
2355
2356 config PREEMPT_NOTIFIERS
2357 bool
2358
2359 config PADATA
2360 depends on SMP
2361 bool
2362
2363 config ASN1
2364 tristate
2365 help
2366 Build a simple ASN.1 grammar compiler that produces a bytecode output
2367 that can be interpreted by the ASN.1 stream decoder and used to
2368 inform it as to what tags are to be expected in a stream and what
2369 functions to call on what tags.
2370
2371 source "kernel/Kconfig.locks"
2372
2373 config ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
2374 bool
2375
2376 config ARCH_HAS_SYNC_CORE_BEFORE_USERMODE
2377 bool
2378
2379 # It may be useful for an architecture to override the definitions of the
2380 # SYSCALL_DEFINE() and __SYSCALL_DEFINEx() macros in <linux/syscalls.h>
2381 # and the COMPAT_ variants in <linux/compat.h>, in particular to use a
2382 # different calling convention for syscalls. They can also override the
2383 # macros for not-implemented syscalls in kernel/sys_ni.c and
2384 # kernel/time/posix-stubs.c. All these overrides need to be available in
2385 # <asm/syscall_wrapper.h>.
2386 config ARCH_HAS_SYSCALL_WRAPPER
2387 def_bool n