]> git.proxmox.com Git - mirror_iproute2.git/blob - ip/iplink_can.c
Merge branch 'master' into net-next
[mirror_iproute2.git] / ip / iplink_can.c
1 /*
2 * iplink_can.c CAN device support
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Wolfgang Grandegger <wg@grandegger.com>
10 */
11
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <string.h>
15
16 #include <linux/can/netlink.h>
17
18 #include "rt_names.h"
19 #include "utils.h"
20 #include "ip_common.h"
21
22 static void print_usage(FILE *f)
23 {
24 fprintf(f,
25 "Usage: ip link set DEVICE type can\n"
26 "\t[ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |\n"
27 "\t[ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1\n \t phase-seg2 PHASE-SEG2 [ sjw SJW ] ]\n"
28 "\n"
29 "\t[ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |\n"
30 "\t[ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1\n \t dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]\n"
31 "\n"
32 "\t[ loopback { on | off } ]\n"
33 "\t[ listen-only { on | off } ]\n"
34 "\t[ triple-sampling { on | off } ]\n"
35 "\t[ one-shot { on | off } ]\n"
36 "\t[ berr-reporting { on | off } ]\n"
37 "\t[ fd { on | off } ]\n"
38 "\t[ fd-non-iso { on | off } ]\n"
39 "\t[ presume-ack { on | off } ]\n"
40 "\n"
41 "\t[ restart-ms TIME-MS ]\n"
42 "\t[ restart ]\n"
43 "\n"
44 "\t[ termination { 0..65535 } ]\n"
45 "\n"
46 "\tWhere: BITRATE := { 1..1000000 }\n"
47 "\t SAMPLE-POINT := { 0.000..0.999 }\n"
48 "\t TQ := { NUMBER }\n"
49 "\t PROP-SEG := { 1..8 }\n"
50 "\t PHASE-SEG1 := { 1..8 }\n"
51 "\t PHASE-SEG2 := { 1..8 }\n"
52 "\t SJW := { 1..4 }\n"
53 "\t RESTART-MS := { 0 | NUMBER }\n"
54 );
55 }
56
57 static void usage(void)
58 {
59 print_usage(stderr);
60 }
61
62 static int get_float(float *val, const char *arg)
63 {
64 float res;
65 char *ptr;
66
67 if (!arg || !*arg)
68 return -1;
69 res = strtof(arg, &ptr);
70 if (!ptr || ptr == arg || *ptr)
71 return -1;
72 *val = res;
73 return 0;
74 }
75
76 static void set_ctrlmode(char *name, char *arg,
77 struct can_ctrlmode *cm, __u32 flags)
78 {
79 if (strcmp(arg, "on") == 0) {
80 cm->flags |= flags;
81 } else if (strcmp(arg, "off") != 0) {
82 fprintf(stderr,
83 "Error: argument of \"%s\" must be \"on\" or \"off\", not \"%s\"\n",
84 name, arg);
85 exit(-1);
86 }
87 cm->mask |= flags;
88 }
89
90 static void print_ctrlmode(FILE *f, __u32 cm)
91 {
92 open_json_array(PRINT_ANY, is_json_context() ? "ctrlmode" : "<");
93 #define _PF(cmflag, cmname) \
94 if (cm & cmflag) { \
95 cm &= ~cmflag; \
96 print_string(PRINT_ANY, NULL, cm ? "%s," : "%s", cmname); \
97 }
98 _PF(CAN_CTRLMODE_LOOPBACK, "LOOPBACK");
99 _PF(CAN_CTRLMODE_LISTENONLY, "LISTEN-ONLY");
100 _PF(CAN_CTRLMODE_3_SAMPLES, "TRIPLE-SAMPLING");
101 _PF(CAN_CTRLMODE_ONE_SHOT, "ONE-SHOT");
102 _PF(CAN_CTRLMODE_BERR_REPORTING, "BERR-REPORTING");
103 _PF(CAN_CTRLMODE_FD, "FD");
104 _PF(CAN_CTRLMODE_FD_NON_ISO, "FD-NON-ISO");
105 _PF(CAN_CTRLMODE_PRESUME_ACK, "PRESUME-ACK");
106 #undef _PF
107 if (cm)
108 print_hex(PRINT_ANY, NULL, "%x", cm);
109 close_json_array(PRINT_ANY, "> ");
110 }
111
112 static int can_parse_opt(struct link_util *lu, int argc, char **argv,
113 struct nlmsghdr *n)
114 {
115 struct can_bittiming bt = {}, dbt = {};
116 struct can_ctrlmode cm = {0, 0};
117
118 while (argc > 0) {
119 if (matches(*argv, "bitrate") == 0) {
120 NEXT_ARG();
121 if (get_u32(&bt.bitrate, *argv, 0))
122 invarg("invalid \"bitrate\" value\n", *argv);
123 } else if (matches(*argv, "sample-point") == 0) {
124 float sp;
125
126 NEXT_ARG();
127 if (get_float(&sp, *argv))
128 invarg("invalid \"sample-point\" value\n",
129 *argv);
130 bt.sample_point = (__u32)(sp * 1000);
131 } else if (matches(*argv, "tq") == 0) {
132 NEXT_ARG();
133 if (get_u32(&bt.tq, *argv, 0))
134 invarg("invalid \"tq\" value\n", *argv);
135 } else if (matches(*argv, "prop-seg") == 0) {
136 NEXT_ARG();
137 if (get_u32(&bt.prop_seg, *argv, 0))
138 invarg("invalid \"prop-seg\" value\n", *argv);
139 } else if (matches(*argv, "phase-seg1") == 0) {
140 NEXT_ARG();
141 if (get_u32(&bt.phase_seg1, *argv, 0))
142 invarg("invalid \"phase-seg1\" value\n", *argv);
143 } else if (matches(*argv, "phase-seg2") == 0) {
144 NEXT_ARG();
145 if (get_u32(&bt.phase_seg2, *argv, 0))
146 invarg("invalid \"phase-seg2\" value\n", *argv);
147 } else if (matches(*argv, "sjw") == 0) {
148 NEXT_ARG();
149 if (get_u32(&bt.sjw, *argv, 0))
150 invarg("invalid \"sjw\" value\n", *argv);
151 } else if (matches(*argv, "dbitrate") == 0) {
152 NEXT_ARG();
153 if (get_u32(&dbt.bitrate, *argv, 0))
154 invarg("invalid \"dbitrate\" value\n", *argv);
155 } else if (matches(*argv, "dsample-point") == 0) {
156 float sp;
157
158 NEXT_ARG();
159 if (get_float(&sp, *argv))
160 invarg("invalid \"dsample-point\" value\n", *argv);
161 dbt.sample_point = (__u32)(sp * 1000);
162 } else if (matches(*argv, "dtq") == 0) {
163 NEXT_ARG();
164 if (get_u32(&dbt.tq, *argv, 0))
165 invarg("invalid \"dtq\" value\n", *argv);
166 } else if (matches(*argv, "dprop-seg") == 0) {
167 NEXT_ARG();
168 if (get_u32(&dbt.prop_seg, *argv, 0))
169 invarg("invalid \"dprop-seg\" value\n", *argv);
170 } else if (matches(*argv, "dphase-seg1") == 0) {
171 NEXT_ARG();
172 if (get_u32(&dbt.phase_seg1, *argv, 0))
173 invarg("invalid \"dphase-seg1\" value\n", *argv);
174 } else if (matches(*argv, "dphase-seg2") == 0) {
175 NEXT_ARG();
176 if (get_u32(&dbt.phase_seg2, *argv, 0))
177 invarg("invalid \"dphase-seg2\" value\n", *argv);
178 } else if (matches(*argv, "dsjw") == 0) {
179 NEXT_ARG();
180 if (get_u32(&dbt.sjw, *argv, 0))
181 invarg("invalid \"dsjw\" value\n", *argv);
182 } else if (matches(*argv, "loopback") == 0) {
183 NEXT_ARG();
184 set_ctrlmode("loopback", *argv, &cm,
185 CAN_CTRLMODE_LOOPBACK);
186 } else if (matches(*argv, "listen-only") == 0) {
187 NEXT_ARG();
188 set_ctrlmode("listen-only", *argv, &cm,
189 CAN_CTRLMODE_LISTENONLY);
190 } else if (matches(*argv, "triple-sampling") == 0) {
191 NEXT_ARG();
192 set_ctrlmode("triple-sampling", *argv, &cm,
193 CAN_CTRLMODE_3_SAMPLES);
194 } else if (matches(*argv, "one-shot") == 0) {
195 NEXT_ARG();
196 set_ctrlmode("one-shot", *argv, &cm,
197 CAN_CTRLMODE_ONE_SHOT);
198 } else if (matches(*argv, "berr-reporting") == 0) {
199 NEXT_ARG();
200 set_ctrlmode("berr-reporting", *argv, &cm,
201 CAN_CTRLMODE_BERR_REPORTING);
202 } else if (matches(*argv, "fd") == 0) {
203 NEXT_ARG();
204 set_ctrlmode("fd", *argv, &cm,
205 CAN_CTRLMODE_FD);
206 } else if (matches(*argv, "fd-non-iso") == 0) {
207 NEXT_ARG();
208 set_ctrlmode("fd-non-iso", *argv, &cm,
209 CAN_CTRLMODE_FD_NON_ISO);
210 } else if (matches(*argv, "presume-ack") == 0) {
211 NEXT_ARG();
212 set_ctrlmode("presume-ack", *argv, &cm,
213 CAN_CTRLMODE_PRESUME_ACK);
214 } else if (matches(*argv, "restart") == 0) {
215 __u32 val = 1;
216
217 addattr32(n, 1024, IFLA_CAN_RESTART, val);
218 } else if (matches(*argv, "restart-ms") == 0) {
219 __u32 val;
220
221 NEXT_ARG();
222 if (get_u32(&val, *argv, 0))
223 invarg("invalid \"restart-ms\" value\n", *argv);
224 addattr32(n, 1024, IFLA_CAN_RESTART_MS, val);
225 } else if (matches(*argv, "termination") == 0) {
226 __u16 val;
227
228 NEXT_ARG();
229 if (get_u16(&val, *argv, 0))
230 invarg("invalid \"termination\" value\n",
231 *argv);
232 addattr16(n, 1024, IFLA_CAN_TERMINATION, val);
233 } else if (matches(*argv, "help") == 0) {
234 usage();
235 return -1;
236 } else {
237 fprintf(stderr, "can: unknown option \"%s\"\n", *argv);
238 usage();
239 return -1;
240 }
241 argc--, argv++;
242 }
243
244 if (bt.bitrate || bt.tq)
245 addattr_l(n, 1024, IFLA_CAN_BITTIMING, &bt, sizeof(bt));
246 if (dbt.bitrate || dbt.tq)
247 addattr_l(n, 1024, IFLA_CAN_DATA_BITTIMING, &dbt, sizeof(dbt));
248 if (cm.mask)
249 addattr_l(n, 1024, IFLA_CAN_CTRLMODE, &cm, sizeof(cm));
250
251 return 0;
252 }
253
254 static const char *can_state_names[CAN_STATE_MAX] = {
255 [CAN_STATE_ERROR_ACTIVE] = "ERROR-ACTIVE",
256 [CAN_STATE_ERROR_WARNING] = "ERROR-WARNING",
257 [CAN_STATE_ERROR_PASSIVE] = "ERROR-PASSIVE",
258 [CAN_STATE_BUS_OFF] = "BUS-OFF",
259 [CAN_STATE_STOPPED] = "STOPPED",
260 [CAN_STATE_SLEEPING] = "SLEEPING"
261 };
262
263 static void can_print_json_timing_min_max(const char *attr, int min, int max)
264 {
265 open_json_object(attr);
266 print_int(PRINT_JSON, "min", NULL, min);
267 print_int(PRINT_JSON, "max", NULL, max);
268 close_json_object();
269 }
270
271 static void can_print_opt(struct link_util *lu, FILE *f, struct rtattr *tb[])
272 {
273 if (!tb)
274 return;
275
276 if (tb[IFLA_CAN_CTRLMODE]) {
277 struct can_ctrlmode *cm = RTA_DATA(tb[IFLA_CAN_CTRLMODE]);
278
279 if (cm->flags)
280 print_ctrlmode(f, cm->flags);
281 }
282
283 if (tb[IFLA_CAN_STATE]) {
284 uint32_t state = rta_getattr_u32(tb[IFLA_CAN_STATE]);
285
286 fprintf(f, "state %s ", state < CAN_STATE_MAX ?
287 can_state_names[state] : "UNKNOWN");
288 }
289
290 if (tb[IFLA_CAN_BERR_COUNTER]) {
291 struct can_berr_counter *bc =
292 RTA_DATA(tb[IFLA_CAN_BERR_COUNTER]);
293
294 if (is_json_context()) {
295 open_json_object("berr_counter");
296 print_int(PRINT_JSON, "tx", NULL, bc->txerr);
297 print_int(PRINT_JSON, "rx", NULL, bc->rxerr);
298 close_json_object();
299 } else {
300 fprintf(f, "(berr-counter tx %d rx %d) ",
301 bc->txerr, bc->rxerr);
302 }
303 }
304
305 if (tb[IFLA_CAN_RESTART_MS]) {
306 __u32 *restart_ms = RTA_DATA(tb[IFLA_CAN_RESTART_MS]);
307
308 print_int(PRINT_ANY,
309 "restart_ms",
310 "restart-ms %d ",
311 *restart_ms);
312 }
313
314 /* bittiming is irrelevant if fixed bitrate is defined */
315 if (tb[IFLA_CAN_BITTIMING] && !tb[IFLA_CAN_BITRATE_CONST]) {
316 struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]);
317
318 if (is_json_context()) {
319 open_json_object("bittiming");
320 print_int(PRINT_ANY, "bitrate", NULL, bt->bitrate);
321 jsonw_float_field_fmt(get_json_writer(),
322 "sample_point", "%.3f",
323 (float) bt->sample_point / 1000.);
324 print_int(PRINT_ANY, "tq", NULL, bt->tq);
325 print_int(PRINT_ANY, "prop_seg", NULL, bt->prop_seg);
326 print_int(PRINT_ANY, "phase_seg1",
327 NULL, bt->phase_seg1);
328 print_int(PRINT_ANY, "phase_seg2",
329 NULL, bt->phase_seg2);
330 print_int(PRINT_ANY, "sjw", NULL, bt->sjw);
331 close_json_object();
332 } else {
333 fprintf(f, "\n bitrate %d sample-point %.3f ",
334 bt->bitrate, (float) bt->sample_point / 1000.);
335 fprintf(f,
336 "\n tq %d prop-seg %d phase-seg1 %d phase-seg2 %d sjw %d",
337 bt->tq, bt->prop_seg,
338 bt->phase_seg1, bt->phase_seg2,
339 bt->sjw);
340 }
341 }
342
343 /* bittiming const is irrelevant if fixed bitrate is defined */
344 if (tb[IFLA_CAN_BITTIMING_CONST] && !tb[IFLA_CAN_BITRATE_CONST]) {
345 struct can_bittiming_const *btc =
346 RTA_DATA(tb[IFLA_CAN_BITTIMING_CONST]);
347
348 if (is_json_context()) {
349 open_json_object("bittiming_const");
350 print_string(PRINT_JSON, "name", NULL, btc->name);
351 can_print_json_timing_min_max("tseg1",
352 btc->tseg1_min,
353 btc->tseg1_max);
354 can_print_json_timing_min_max("tseg2",
355 btc->tseg2_min,
356 btc->tseg2_max);
357 can_print_json_timing_min_max("sjw", 1, btc->sjw_max);
358 can_print_json_timing_min_max("brp",
359 btc->brp_min,
360 btc->brp_max);
361 print_int(PRINT_JSON, "brp_inc", NULL, btc->brp_inc);
362 close_json_object();
363 } else {
364 fprintf(f, "\n %s: tseg1 %d..%d tseg2 %d..%d "
365 "sjw 1..%d brp %d..%d brp-inc %d",
366 btc->name, btc->tseg1_min, btc->tseg1_max,
367 btc->tseg2_min, btc->tseg2_max, btc->sjw_max,
368 btc->brp_min, btc->brp_max, btc->brp_inc);
369 }
370 }
371
372 if (tb[IFLA_CAN_BITRATE_CONST]) {
373 __u32 *bitrate_const = RTA_DATA(tb[IFLA_CAN_BITRATE_CONST]);
374 int bitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_BITRATE_CONST]) /
375 sizeof(*bitrate_const);
376 int i;
377 __u32 bitrate = 0;
378
379 if (tb[IFLA_CAN_BITTIMING]) {
380 struct can_bittiming *bt =
381 RTA_DATA(tb[IFLA_CAN_BITTIMING]);
382 bitrate = bt->bitrate;
383 }
384
385 if (is_json_context()) {
386 print_uint(PRINT_JSON,
387 "bittiming_bitrate",
388 NULL, bitrate);
389 open_json_array(PRINT_JSON, "bitrate_const");
390 for (i = 0; i < bitrate_cnt; ++i)
391 print_uint(PRINT_JSON, NULL, NULL,
392 bitrate_const[i]);
393 close_json_array(PRINT_JSON, NULL);
394 } else {
395 fprintf(f, "\n bitrate %u", bitrate);
396 fprintf(f, "\n [");
397
398 for (i = 0; i < bitrate_cnt - 1; ++i) {
399 /* This will keep lines below 80 signs */
400 if (!(i % 6) && i)
401 fprintf(f, "\n ");
402
403 fprintf(f, "%8u, ", bitrate_const[i]);
404 }
405
406 if (!(i % 6) && i)
407 fprintf(f, "\n ");
408 fprintf(f, "%8u ]", bitrate_const[i]);
409 }
410 }
411
412 /* data bittiming is irrelevant if fixed bitrate is defined */
413 if (tb[IFLA_CAN_DATA_BITTIMING] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) {
414 struct can_bittiming *dbt =
415 RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
416
417 if (is_json_context()) {
418 open_json_object("data_bittiming");
419 print_int(PRINT_JSON, "bitrate", NULL, dbt->bitrate);
420 jsonw_float_field_fmt(get_json_writer(),
421 "sample_point",
422 "%.3f",
423 (float) dbt->sample_point / 1000.);
424 print_int(PRINT_JSON, "tq", NULL, dbt->tq);
425 print_int(PRINT_JSON, "prop_seg", NULL, dbt->prop_seg);
426 print_int(PRINT_JSON, "phase_seg1",
427 NULL, dbt->phase_seg1);
428 print_int(PRINT_JSON, "phase_seg2",
429 NULL, dbt->phase_seg2);
430 print_int(PRINT_JSON, "sjw", NULL, dbt->sjw);
431 close_json_object();
432 } else {
433 fprintf(f, "\n dbitrate %d dsample-point %.3f ",
434 dbt->bitrate,
435 (float) dbt->sample_point / 1000.);
436 fprintf(f, "\n dtq %d dprop-seg %d dphase-seg1 %d "
437 "dphase-seg2 %d dsjw %d",
438 dbt->tq, dbt->prop_seg, dbt->phase_seg1,
439 dbt->phase_seg2, dbt->sjw);
440 }
441 }
442
443 /* data bittiming const is irrelevant if fixed bitrate is defined */
444 if (tb[IFLA_CAN_DATA_BITTIMING_CONST] &&
445 !tb[IFLA_CAN_DATA_BITRATE_CONST]) {
446 struct can_bittiming_const *dbtc =
447 RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING_CONST]);
448
449 if (is_json_context()) {
450 open_json_object("data_bittiming_const");
451 print_string(PRINT_JSON, "name", NULL, dbtc->name);
452 can_print_json_timing_min_max("tseg1",
453 dbtc->tseg1_min,
454 dbtc->tseg1_max);
455 can_print_json_timing_min_max("tseg2",
456 dbtc->tseg2_min,
457 dbtc->tseg2_max);
458 can_print_json_timing_min_max("sjw", 1, dbtc->sjw_max);
459 can_print_json_timing_min_max("brp",
460 dbtc->brp_min,
461 dbtc->brp_max);
462
463 print_int(PRINT_JSON, "brp_inc", NULL, dbtc->brp_inc);
464 close_json_object();
465 } else {
466 fprintf(f, "\n %s: dtseg1 %d..%d dtseg2 %d..%d "
467 "dsjw 1..%d dbrp %d..%d dbrp-inc %d",
468 dbtc->name, dbtc->tseg1_min, dbtc->tseg1_max,
469 dbtc->tseg2_min, dbtc->tseg2_max, dbtc->sjw_max,
470 dbtc->brp_min, dbtc->brp_max, dbtc->brp_inc);
471 }
472 }
473
474 if (tb[IFLA_CAN_DATA_BITRATE_CONST]) {
475 __u32 *dbitrate_const =
476 RTA_DATA(tb[IFLA_CAN_DATA_BITRATE_CONST]);
477 int dbitrate_cnt =
478 RTA_PAYLOAD(tb[IFLA_CAN_DATA_BITRATE_CONST]) /
479 sizeof(*dbitrate_const);
480 int i;
481 __u32 dbitrate = 0;
482
483 if (tb[IFLA_CAN_DATA_BITTIMING]) {
484 struct can_bittiming *dbt =
485 RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
486 dbitrate = dbt->bitrate;
487 }
488
489 if (is_json_context()) {
490 print_uint(PRINT_JSON, "data_bittiming_bitrate",
491 NULL, dbitrate);
492 open_json_array(PRINT_JSON, "data_bitrate_const");
493 for (i = 0; i < dbitrate_cnt; ++i)
494 print_uint(PRINT_JSON, NULL, NULL,
495 dbitrate_const[i]);
496 close_json_array(PRINT_JSON, NULL);
497 } else {
498 fprintf(f, "\n dbitrate %u", dbitrate);
499 fprintf(f, "\n [");
500
501 for (i = 0; i < dbitrate_cnt - 1; ++i) {
502 /* This will keep lines below 80 signs */
503 if (!(i % 6) && i)
504 fprintf(f, "\n ");
505
506 fprintf(f, "%8u, ", dbitrate_const[i]);
507 }
508
509 if (!(i % 6) && i)
510 fprintf(f, "\n ");
511 fprintf(f, "%8u ]", dbitrate_const[i]);
512 }
513 }
514
515 if (tb[IFLA_CAN_TERMINATION_CONST] && tb[IFLA_CAN_TERMINATION]) {
516 __u16 *trm = RTA_DATA(tb[IFLA_CAN_TERMINATION]);
517 __u16 *trm_const = RTA_DATA(tb[IFLA_CAN_TERMINATION_CONST]);
518 int trm_cnt = RTA_PAYLOAD(tb[IFLA_CAN_TERMINATION_CONST]) /
519 sizeof(*trm_const);
520 int i;
521
522 if (is_json_context()) {
523 print_hu(PRINT_JSON, "termination", NULL, *trm);
524 open_json_array(PRINT_JSON, "termination_const");
525 for (i = 0; i < trm_cnt; ++i)
526 print_hu(PRINT_JSON, NULL, NULL, trm_const[i]);
527 close_json_array(PRINT_JSON, NULL);
528 } else {
529 fprintf(f, "\n termination %hu [ ", *trm);
530
531 for (i = 0; i < trm_cnt - 1; ++i)
532 fprintf(f, "%hu, ", trm_const[i]);
533
534 fprintf(f, "%hu ]", trm_const[i]);
535 }
536 }
537
538 if (tb[IFLA_CAN_CLOCK]) {
539 struct can_clock *clock = RTA_DATA(tb[IFLA_CAN_CLOCK]);
540
541 print_int(PRINT_ANY,
542 "clock",
543 "\n clock %d",
544 clock->freq);
545 }
546
547 }
548
549 static void can_print_xstats(struct link_util *lu,
550 FILE *f, struct rtattr *xstats)
551 {
552 struct can_device_stats *stats;
553
554 if (xstats && RTA_PAYLOAD(xstats) == sizeof(*stats)) {
555 stats = RTA_DATA(xstats);
556
557 if (is_json_context()) {
558 print_int(PRINT_JSON, "restarts",
559 NULL, stats->restarts);
560 print_int(PRINT_JSON, "bus_error",
561 NULL, stats->bus_error);
562 print_int(PRINT_JSON, "arbitration_lost",
563 NULL, stats->arbitration_lost);
564 print_int(PRINT_JSON, "error_warning",
565 NULL, stats->error_warning);
566 print_int(PRINT_JSON, "error_passive",
567 NULL, stats->error_passive);
568 print_int(PRINT_JSON, "bus_off", NULL, stats->bus_off);
569 } else {
570 fprintf(f, "\n re-started bus-errors arbit-lost "
571 "error-warn error-pass bus-off");
572 fprintf(f, "\n %-10d %-10d %-10d %-10d %-10d %-10d",
573 stats->restarts, stats->bus_error,
574 stats->arbitration_lost, stats->error_warning,
575 stats->error_passive, stats->bus_off);
576 }
577 }
578 }
579
580 static void can_print_help(struct link_util *lu, int argc, char **argv,
581 FILE *f)
582 {
583 print_usage(f);
584 }
585
586 struct link_util can_link_util = {
587 .id = "can",
588 .maxattr = IFLA_CAN_MAX,
589 .parse_opt = can_parse_opt,
590 .print_opt = can_print_opt,
591 .print_xstats = can_print_xstats,
592 .print_help = can_print_help,
593 };