]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - ipc/mqueue.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / ipc / mqueue.c
1 /*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38
39 #include <net/sock.h>
40 #include "util.h"
41
42 #define MQUEUE_MAGIC 0x19800202
43 #define DIRENT_SIZE 20
44 #define FILENT_SIZE 80
45
46 #define SEND 0
47 #define RECV 1
48
49 #define STATE_NONE 0
50 #define STATE_READY 1
51
52 struct posix_msg_tree_node {
53 struct rb_node rb_node;
54 struct list_head msg_list;
55 int priority;
56 };
57
58 struct ext_wait_queue { /* queue of sleeping tasks */
59 struct task_struct *task;
60 struct list_head list;
61 struct msg_msg *msg; /* ptr of loaded message */
62 int state; /* one of STATE_* values */
63 };
64
65 struct mqueue_inode_info {
66 spinlock_t lock;
67 struct inode vfs_inode;
68 wait_queue_head_t wait_q;
69
70 struct rb_root msg_tree;
71 struct posix_msg_tree_node *node_cache;
72 struct mq_attr attr;
73
74 struct sigevent notify;
75 struct pid *notify_owner;
76 struct user_namespace *notify_user_ns;
77 struct user_struct *user; /* user who created, for accounting */
78 struct sock *notify_sock;
79 struct sk_buff *notify_cookie;
80
81 /* for tasks waiting for free space and messages, respectively */
82 struct ext_wait_queue e_wait_q[2];
83
84 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
85 };
86
87 static const struct inode_operations mqueue_dir_inode_operations;
88 static const struct file_operations mqueue_file_operations;
89 static const struct super_operations mqueue_super_ops;
90 static void remove_notification(struct mqueue_inode_info *info);
91
92 static struct kmem_cache *mqueue_inode_cachep;
93
94 static struct ctl_table_header *mq_sysctl_table;
95
96 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
97 {
98 return container_of(inode, struct mqueue_inode_info, vfs_inode);
99 }
100
101 /*
102 * This routine should be called with the mq_lock held.
103 */
104 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
105 {
106 return get_ipc_ns(inode->i_sb->s_fs_info);
107 }
108
109 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
110 {
111 struct ipc_namespace *ns;
112
113 spin_lock(&mq_lock);
114 ns = __get_ns_from_inode(inode);
115 spin_unlock(&mq_lock);
116 return ns;
117 }
118
119 /* Auxiliary functions to manipulate messages' list */
120 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
121 {
122 struct rb_node **p, *parent = NULL;
123 struct posix_msg_tree_node *leaf;
124
125 p = &info->msg_tree.rb_node;
126 while (*p) {
127 parent = *p;
128 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
129
130 if (likely(leaf->priority == msg->m_type))
131 goto insert_msg;
132 else if (msg->m_type < leaf->priority)
133 p = &(*p)->rb_left;
134 else
135 p = &(*p)->rb_right;
136 }
137 if (info->node_cache) {
138 leaf = info->node_cache;
139 info->node_cache = NULL;
140 } else {
141 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
142 if (!leaf)
143 return -ENOMEM;
144 INIT_LIST_HEAD(&leaf->msg_list);
145 }
146 leaf->priority = msg->m_type;
147 rb_link_node(&leaf->rb_node, parent, p);
148 rb_insert_color(&leaf->rb_node, &info->msg_tree);
149 insert_msg:
150 info->attr.mq_curmsgs++;
151 info->qsize += msg->m_ts;
152 list_add_tail(&msg->m_list, &leaf->msg_list);
153 return 0;
154 }
155
156 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
157 {
158 struct rb_node **p, *parent = NULL;
159 struct posix_msg_tree_node *leaf;
160 struct msg_msg *msg;
161
162 try_again:
163 p = &info->msg_tree.rb_node;
164 while (*p) {
165 parent = *p;
166 /*
167 * During insert, low priorities go to the left and high to the
168 * right. On receive, we want the highest priorities first, so
169 * walk all the way to the right.
170 */
171 p = &(*p)->rb_right;
172 }
173 if (!parent) {
174 if (info->attr.mq_curmsgs) {
175 pr_warn_once("Inconsistency in POSIX message queue, "
176 "no tree element, but supposedly messages "
177 "should exist!\n");
178 info->attr.mq_curmsgs = 0;
179 }
180 return NULL;
181 }
182 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
183 if (unlikely(list_empty(&leaf->msg_list))) {
184 pr_warn_once("Inconsistency in POSIX message queue, "
185 "empty leaf node but we haven't implemented "
186 "lazy leaf delete!\n");
187 rb_erase(&leaf->rb_node, &info->msg_tree);
188 if (info->node_cache) {
189 kfree(leaf);
190 } else {
191 info->node_cache = leaf;
192 }
193 goto try_again;
194 } else {
195 msg = list_first_entry(&leaf->msg_list,
196 struct msg_msg, m_list);
197 list_del(&msg->m_list);
198 if (list_empty(&leaf->msg_list)) {
199 rb_erase(&leaf->rb_node, &info->msg_tree);
200 if (info->node_cache) {
201 kfree(leaf);
202 } else {
203 info->node_cache = leaf;
204 }
205 }
206 }
207 info->attr.mq_curmsgs--;
208 info->qsize -= msg->m_ts;
209 return msg;
210 }
211
212 static struct inode *mqueue_get_inode(struct super_block *sb,
213 struct ipc_namespace *ipc_ns, umode_t mode,
214 struct mq_attr *attr)
215 {
216 struct user_struct *u = current_user();
217 struct inode *inode;
218 int ret = -ENOMEM;
219
220 inode = new_inode(sb);
221 if (!inode)
222 goto err;
223
224 inode->i_ino = get_next_ino();
225 inode->i_mode = mode;
226 inode->i_uid = current_fsuid();
227 inode->i_gid = current_fsgid();
228 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
229
230 if (S_ISREG(mode)) {
231 struct mqueue_inode_info *info;
232 unsigned long mq_bytes, mq_treesize;
233
234 inode->i_fop = &mqueue_file_operations;
235 inode->i_size = FILENT_SIZE;
236 /* mqueue specific info */
237 info = MQUEUE_I(inode);
238 spin_lock_init(&info->lock);
239 init_waitqueue_head(&info->wait_q);
240 INIT_LIST_HEAD(&info->e_wait_q[0].list);
241 INIT_LIST_HEAD(&info->e_wait_q[1].list);
242 info->notify_owner = NULL;
243 info->notify_user_ns = NULL;
244 info->qsize = 0;
245 info->user = NULL; /* set when all is ok */
246 info->msg_tree = RB_ROOT;
247 info->node_cache = NULL;
248 memset(&info->attr, 0, sizeof(info->attr));
249 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
250 ipc_ns->mq_msg_default);
251 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
252 ipc_ns->mq_msgsize_default);
253 if (attr) {
254 info->attr.mq_maxmsg = attr->mq_maxmsg;
255 info->attr.mq_msgsize = attr->mq_msgsize;
256 }
257 /*
258 * We used to allocate a static array of pointers and account
259 * the size of that array as well as one msg_msg struct per
260 * possible message into the queue size. That's no longer
261 * accurate as the queue is now an rbtree and will grow and
262 * shrink depending on usage patterns. We can, however, still
263 * account one msg_msg struct per message, but the nodes are
264 * allocated depending on priority usage, and most programs
265 * only use one, or a handful, of priorities. However, since
266 * this is pinned memory, we need to assume worst case, so
267 * that means the min(mq_maxmsg, max_priorities) * struct
268 * posix_msg_tree_node.
269 */
270 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
271 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
272 sizeof(struct posix_msg_tree_node);
273
274 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
275 info->attr.mq_msgsize);
276
277 spin_lock(&mq_lock);
278 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
279 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
280 spin_unlock(&mq_lock);
281 /* mqueue_evict_inode() releases info->messages */
282 ret = -EMFILE;
283 goto out_inode;
284 }
285 u->mq_bytes += mq_bytes;
286 spin_unlock(&mq_lock);
287
288 /* all is ok */
289 info->user = get_uid(u);
290 } else if (S_ISDIR(mode)) {
291 inc_nlink(inode);
292 /* Some things misbehave if size == 0 on a directory */
293 inode->i_size = 2 * DIRENT_SIZE;
294 inode->i_op = &mqueue_dir_inode_operations;
295 inode->i_fop = &simple_dir_operations;
296 }
297
298 return inode;
299 out_inode:
300 iput(inode);
301 err:
302 return ERR_PTR(ret);
303 }
304
305 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
306 {
307 struct inode *inode;
308 struct ipc_namespace *ns = sb->s_fs_info;
309
310 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
311 sb->s_blocksize = PAGE_SIZE;
312 sb->s_blocksize_bits = PAGE_SHIFT;
313 sb->s_magic = MQUEUE_MAGIC;
314 sb->s_op = &mqueue_super_ops;
315
316 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
317 if (IS_ERR(inode))
318 return PTR_ERR(inode);
319
320 sb->s_root = d_make_root(inode);
321 if (!sb->s_root)
322 return -ENOMEM;
323 return 0;
324 }
325
326 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name,
328 void *data)
329 {
330 struct ipc_namespace *ns;
331 if (flags & MS_KERNMOUNT) {
332 ns = data;
333 data = NULL;
334 } else {
335 ns = current->nsproxy->ipc_ns;
336 }
337 return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
338 }
339
340 static void init_once(void *foo)
341 {
342 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
343
344 inode_init_once(&p->vfs_inode);
345 }
346
347 static struct inode *mqueue_alloc_inode(struct super_block *sb)
348 {
349 struct mqueue_inode_info *ei;
350
351 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
352 if (!ei)
353 return NULL;
354 return &ei->vfs_inode;
355 }
356
357 static void mqueue_i_callback(struct rcu_head *head)
358 {
359 struct inode *inode = container_of(head, struct inode, i_rcu);
360 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
361 }
362
363 static void mqueue_destroy_inode(struct inode *inode)
364 {
365 call_rcu(&inode->i_rcu, mqueue_i_callback);
366 }
367
368 static void mqueue_evict_inode(struct inode *inode)
369 {
370 struct mqueue_inode_info *info;
371 struct user_struct *user;
372 unsigned long mq_bytes, mq_treesize;
373 struct ipc_namespace *ipc_ns;
374 struct msg_msg *msg;
375
376 clear_inode(inode);
377
378 if (S_ISDIR(inode->i_mode))
379 return;
380
381 ipc_ns = get_ns_from_inode(inode);
382 info = MQUEUE_I(inode);
383 spin_lock(&info->lock);
384 while ((msg = msg_get(info)) != NULL)
385 free_msg(msg);
386 kfree(info->node_cache);
387 spin_unlock(&info->lock);
388
389 /* Total amount of bytes accounted for the mqueue */
390 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
391 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
392 sizeof(struct posix_msg_tree_node);
393
394 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
395 info->attr.mq_msgsize);
396
397 user = info->user;
398 if (user) {
399 spin_lock(&mq_lock);
400 user->mq_bytes -= mq_bytes;
401 /*
402 * get_ns_from_inode() ensures that the
403 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
404 * to which we now hold a reference, or it is NULL.
405 * We can't put it here under mq_lock, though.
406 */
407 if (ipc_ns)
408 ipc_ns->mq_queues_count--;
409 spin_unlock(&mq_lock);
410 free_uid(user);
411 }
412 if (ipc_ns)
413 put_ipc_ns(ipc_ns);
414 }
415
416 static int mqueue_create(struct inode *dir, struct dentry *dentry,
417 umode_t mode, bool excl)
418 {
419 struct inode *inode;
420 struct mq_attr *attr = dentry->d_fsdata;
421 int error;
422 struct ipc_namespace *ipc_ns;
423
424 spin_lock(&mq_lock);
425 ipc_ns = __get_ns_from_inode(dir);
426 if (!ipc_ns) {
427 error = -EACCES;
428 goto out_unlock;
429 }
430
431 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
432 !capable(CAP_SYS_RESOURCE)) {
433 error = -ENOSPC;
434 goto out_unlock;
435 }
436 ipc_ns->mq_queues_count++;
437 spin_unlock(&mq_lock);
438
439 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
440 if (IS_ERR(inode)) {
441 error = PTR_ERR(inode);
442 spin_lock(&mq_lock);
443 ipc_ns->mq_queues_count--;
444 goto out_unlock;
445 }
446
447 put_ipc_ns(ipc_ns);
448 dir->i_size += DIRENT_SIZE;
449 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
450
451 d_instantiate(dentry, inode);
452 dget(dentry);
453 return 0;
454 out_unlock:
455 spin_unlock(&mq_lock);
456 if (ipc_ns)
457 put_ipc_ns(ipc_ns);
458 return error;
459 }
460
461 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
462 {
463 struct inode *inode = d_inode(dentry);
464
465 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
466 dir->i_size -= DIRENT_SIZE;
467 drop_nlink(inode);
468 dput(dentry);
469 return 0;
470 }
471
472 /*
473 * This is routine for system read from queue file.
474 * To avoid mess with doing here some sort of mq_receive we allow
475 * to read only queue size & notification info (the only values
476 * that are interesting from user point of view and aren't accessible
477 * through std routines)
478 */
479 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
480 size_t count, loff_t *off)
481 {
482 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
483 char buffer[FILENT_SIZE];
484 ssize_t ret;
485
486 spin_lock(&info->lock);
487 snprintf(buffer, sizeof(buffer),
488 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
489 info->qsize,
490 info->notify_owner ? info->notify.sigev_notify : 0,
491 (info->notify_owner &&
492 info->notify.sigev_notify == SIGEV_SIGNAL) ?
493 info->notify.sigev_signo : 0,
494 pid_vnr(info->notify_owner));
495 spin_unlock(&info->lock);
496 buffer[sizeof(buffer)-1] = '\0';
497
498 ret = simple_read_from_buffer(u_data, count, off, buffer,
499 strlen(buffer));
500 if (ret <= 0)
501 return ret;
502
503 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
504 return ret;
505 }
506
507 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
508 {
509 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
510
511 spin_lock(&info->lock);
512 if (task_tgid(current) == info->notify_owner)
513 remove_notification(info);
514
515 spin_unlock(&info->lock);
516 return 0;
517 }
518
519 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
520 {
521 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
522 int retval = 0;
523
524 poll_wait(filp, &info->wait_q, poll_tab);
525
526 spin_lock(&info->lock);
527 if (info->attr.mq_curmsgs)
528 retval = POLLIN | POLLRDNORM;
529
530 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
531 retval |= POLLOUT | POLLWRNORM;
532 spin_unlock(&info->lock);
533
534 return retval;
535 }
536
537 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
538 static void wq_add(struct mqueue_inode_info *info, int sr,
539 struct ext_wait_queue *ewp)
540 {
541 struct ext_wait_queue *walk;
542
543 ewp->task = current;
544
545 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
546 if (walk->task->static_prio <= current->static_prio) {
547 list_add_tail(&ewp->list, &walk->list);
548 return;
549 }
550 }
551 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
552 }
553
554 /*
555 * Puts current task to sleep. Caller must hold queue lock. After return
556 * lock isn't held.
557 * sr: SEND or RECV
558 */
559 static int wq_sleep(struct mqueue_inode_info *info, int sr,
560 ktime_t *timeout, struct ext_wait_queue *ewp)
561 __releases(&info->lock)
562 {
563 int retval;
564 signed long time;
565
566 wq_add(info, sr, ewp);
567
568 for (;;) {
569 __set_current_state(TASK_INTERRUPTIBLE);
570
571 spin_unlock(&info->lock);
572 time = schedule_hrtimeout_range_clock(timeout, 0,
573 HRTIMER_MODE_ABS, CLOCK_REALTIME);
574
575 if (ewp->state == STATE_READY) {
576 retval = 0;
577 goto out;
578 }
579 spin_lock(&info->lock);
580 if (ewp->state == STATE_READY) {
581 retval = 0;
582 goto out_unlock;
583 }
584 if (signal_pending(current)) {
585 retval = -ERESTARTSYS;
586 break;
587 }
588 if (time == 0) {
589 retval = -ETIMEDOUT;
590 break;
591 }
592 }
593 list_del(&ewp->list);
594 out_unlock:
595 spin_unlock(&info->lock);
596 out:
597 return retval;
598 }
599
600 /*
601 * Returns waiting task that should be serviced first or NULL if none exists
602 */
603 static struct ext_wait_queue *wq_get_first_waiter(
604 struct mqueue_inode_info *info, int sr)
605 {
606 struct list_head *ptr;
607
608 ptr = info->e_wait_q[sr].list.prev;
609 if (ptr == &info->e_wait_q[sr].list)
610 return NULL;
611 return list_entry(ptr, struct ext_wait_queue, list);
612 }
613
614
615 static inline void set_cookie(struct sk_buff *skb, char code)
616 {
617 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
618 }
619
620 /*
621 * The next function is only to split too long sys_mq_timedsend
622 */
623 static void __do_notify(struct mqueue_inode_info *info)
624 {
625 /* notification
626 * invoked when there is registered process and there isn't process
627 * waiting synchronously for message AND state of queue changed from
628 * empty to not empty. Here we are sure that no one is waiting
629 * synchronously. */
630 if (info->notify_owner &&
631 info->attr.mq_curmsgs == 1) {
632 struct siginfo sig_i;
633 switch (info->notify.sigev_notify) {
634 case SIGEV_NONE:
635 break;
636 case SIGEV_SIGNAL:
637 /* sends signal */
638
639 sig_i.si_signo = info->notify.sigev_signo;
640 sig_i.si_errno = 0;
641 sig_i.si_code = SI_MESGQ;
642 sig_i.si_value = info->notify.sigev_value;
643 /* map current pid/uid into info->owner's namespaces */
644 rcu_read_lock();
645 sig_i.si_pid = task_tgid_nr_ns(current,
646 ns_of_pid(info->notify_owner));
647 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
648 rcu_read_unlock();
649
650 kill_pid_info(info->notify.sigev_signo,
651 &sig_i, info->notify_owner);
652 break;
653 case SIGEV_THREAD:
654 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
655 netlink_sendskb(info->notify_sock, info->notify_cookie);
656 break;
657 }
658 /* after notification unregisters process */
659 put_pid(info->notify_owner);
660 put_user_ns(info->notify_user_ns);
661 info->notify_owner = NULL;
662 info->notify_user_ns = NULL;
663 }
664 wake_up(&info->wait_q);
665 }
666
667 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
668 ktime_t *expires, struct timespec *ts)
669 {
670 if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
671 return -EFAULT;
672 if (!timespec_valid(ts))
673 return -EINVAL;
674
675 *expires = timespec_to_ktime(*ts);
676 return 0;
677 }
678
679 static void remove_notification(struct mqueue_inode_info *info)
680 {
681 if (info->notify_owner != NULL &&
682 info->notify.sigev_notify == SIGEV_THREAD) {
683 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
684 netlink_sendskb(info->notify_sock, info->notify_cookie);
685 }
686 put_pid(info->notify_owner);
687 put_user_ns(info->notify_user_ns);
688 info->notify_owner = NULL;
689 info->notify_user_ns = NULL;
690 }
691
692 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
693 {
694 int mq_treesize;
695 unsigned long total_size;
696
697 if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
698 return -EINVAL;
699 if (capable(CAP_SYS_RESOURCE)) {
700 if (attr->mq_maxmsg > HARD_MSGMAX ||
701 attr->mq_msgsize > HARD_MSGSIZEMAX)
702 return -EINVAL;
703 } else {
704 if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
705 attr->mq_msgsize > ipc_ns->mq_msgsize_max)
706 return -EINVAL;
707 }
708 /* check for overflow */
709 if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
710 return -EOVERFLOW;
711 mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
712 min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
713 sizeof(struct posix_msg_tree_node);
714 total_size = attr->mq_maxmsg * attr->mq_msgsize;
715 if (total_size + mq_treesize < total_size)
716 return -EOVERFLOW;
717 return 0;
718 }
719
720 /*
721 * Invoked when creating a new queue via sys_mq_open
722 */
723 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
724 struct path *path, int oflag, umode_t mode,
725 struct mq_attr *attr)
726 {
727 const struct cred *cred = current_cred();
728 int ret;
729
730 if (attr) {
731 ret = mq_attr_ok(ipc_ns, attr);
732 if (ret)
733 return ERR_PTR(ret);
734 /* store for use during create */
735 path->dentry->d_fsdata = attr;
736 } else {
737 struct mq_attr def_attr;
738
739 def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
740 ipc_ns->mq_msg_default);
741 def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
742 ipc_ns->mq_msgsize_default);
743 ret = mq_attr_ok(ipc_ns, &def_attr);
744 if (ret)
745 return ERR_PTR(ret);
746 }
747
748 mode &= ~current_umask();
749 ret = vfs_create(dir, path->dentry, mode, true);
750 path->dentry->d_fsdata = NULL;
751 if (ret)
752 return ERR_PTR(ret);
753 return dentry_open(path, oflag, cred);
754 }
755
756 /* Opens existing queue */
757 static struct file *do_open(struct path *path, int oflag)
758 {
759 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
760 MAY_READ | MAY_WRITE };
761 int acc;
762 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
763 return ERR_PTR(-EINVAL);
764 acc = oflag2acc[oflag & O_ACCMODE];
765 if (inode_permission(d_inode(path->dentry), acc))
766 return ERR_PTR(-EACCES);
767 return dentry_open(path, oflag, current_cred());
768 }
769
770 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
771 struct mq_attr __user *, u_attr)
772 {
773 struct path path;
774 struct file *filp;
775 struct filename *name;
776 struct mq_attr attr;
777 int fd, error;
778 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
779 struct vfsmount *mnt = ipc_ns->mq_mnt;
780 struct dentry *root = mnt->mnt_root;
781 int ro;
782
783 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
784 return -EFAULT;
785
786 audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
787
788 if (IS_ERR(name = getname(u_name)))
789 return PTR_ERR(name);
790
791 fd = get_unused_fd_flags(O_CLOEXEC);
792 if (fd < 0)
793 goto out_putname;
794
795 ro = mnt_want_write(mnt); /* we'll drop it in any case */
796 error = 0;
797 inode_lock(d_inode(root));
798 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
799 if (IS_ERR(path.dentry)) {
800 error = PTR_ERR(path.dentry);
801 goto out_putfd;
802 }
803 path.mnt = mntget(mnt);
804
805 if (oflag & O_CREAT) {
806 if (d_really_is_positive(path.dentry)) { /* entry already exists */
807 audit_inode(name, path.dentry, 0);
808 if (oflag & O_EXCL) {
809 error = -EEXIST;
810 goto out;
811 }
812 filp = do_open(&path, oflag);
813 } else {
814 if (ro) {
815 error = ro;
816 goto out;
817 }
818 audit_inode_parent_hidden(name, root);
819 filp = do_create(ipc_ns, d_inode(root),
820 &path, oflag, mode,
821 u_attr ? &attr : NULL);
822 }
823 } else {
824 if (d_really_is_negative(path.dentry)) {
825 error = -ENOENT;
826 goto out;
827 }
828 audit_inode(name, path.dentry, 0);
829 filp = do_open(&path, oflag);
830 }
831
832 if (!IS_ERR(filp))
833 fd_install(fd, filp);
834 else
835 error = PTR_ERR(filp);
836 out:
837 path_put(&path);
838 out_putfd:
839 if (error) {
840 put_unused_fd(fd);
841 fd = error;
842 }
843 inode_unlock(d_inode(root));
844 if (!ro)
845 mnt_drop_write(mnt);
846 out_putname:
847 putname(name);
848 return fd;
849 }
850
851 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
852 {
853 int err;
854 struct filename *name;
855 struct dentry *dentry;
856 struct inode *inode = NULL;
857 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
858 struct vfsmount *mnt = ipc_ns->mq_mnt;
859
860 name = getname(u_name);
861 if (IS_ERR(name))
862 return PTR_ERR(name);
863
864 audit_inode_parent_hidden(name, mnt->mnt_root);
865 err = mnt_want_write(mnt);
866 if (err)
867 goto out_name;
868 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
869 dentry = lookup_one_len(name->name, mnt->mnt_root,
870 strlen(name->name));
871 if (IS_ERR(dentry)) {
872 err = PTR_ERR(dentry);
873 goto out_unlock;
874 }
875
876 inode = d_inode(dentry);
877 if (!inode) {
878 err = -ENOENT;
879 } else {
880 ihold(inode);
881 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
882 }
883 dput(dentry);
884
885 out_unlock:
886 inode_unlock(d_inode(mnt->mnt_root));
887 if (inode)
888 iput(inode);
889 mnt_drop_write(mnt);
890 out_name:
891 putname(name);
892
893 return err;
894 }
895
896 /* Pipelined send and receive functions.
897 *
898 * If a receiver finds no waiting message, then it registers itself in the
899 * list of waiting receivers. A sender checks that list before adding the new
900 * message into the message array. If there is a waiting receiver, then it
901 * bypasses the message array and directly hands the message over to the
902 * receiver. The receiver accepts the message and returns without grabbing the
903 * queue spinlock:
904 *
905 * - Set pointer to message.
906 * - Queue the receiver task for later wakeup (without the info->lock).
907 * - Update its state to STATE_READY. Now the receiver can continue.
908 * - Wake up the process after the lock is dropped. Should the process wake up
909 * before this wakeup (due to a timeout or a signal) it will either see
910 * STATE_READY and continue or acquire the lock to check the state again.
911 *
912 * The same algorithm is used for senders.
913 */
914
915 /* pipelined_send() - send a message directly to the task waiting in
916 * sys_mq_timedreceive() (without inserting message into a queue).
917 */
918 static inline void pipelined_send(struct wake_q_head *wake_q,
919 struct mqueue_inode_info *info,
920 struct msg_msg *message,
921 struct ext_wait_queue *receiver)
922 {
923 receiver->msg = message;
924 list_del(&receiver->list);
925 wake_q_add(wake_q, receiver->task);
926 /*
927 * Rely on the implicit cmpxchg barrier from wake_q_add such
928 * that we can ensure that updating receiver->state is the last
929 * write operation: As once set, the receiver can continue,
930 * and if we don't have the reference count from the wake_q,
931 * yet, at that point we can later have a use-after-free
932 * condition and bogus wakeup.
933 */
934 receiver->state = STATE_READY;
935 }
936
937 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
938 * gets its message and put to the queue (we have one free place for sure). */
939 static inline void pipelined_receive(struct wake_q_head *wake_q,
940 struct mqueue_inode_info *info)
941 {
942 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
943
944 if (!sender) {
945 /* for poll */
946 wake_up_interruptible(&info->wait_q);
947 return;
948 }
949 if (msg_insert(sender->msg, info))
950 return;
951
952 list_del(&sender->list);
953 wake_q_add(wake_q, sender->task);
954 sender->state = STATE_READY;
955 }
956
957 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
958 size_t, msg_len, unsigned int, msg_prio,
959 const struct timespec __user *, u_abs_timeout)
960 {
961 struct fd f;
962 struct inode *inode;
963 struct ext_wait_queue wait;
964 struct ext_wait_queue *receiver;
965 struct msg_msg *msg_ptr;
966 struct mqueue_inode_info *info;
967 ktime_t expires, *timeout = NULL;
968 struct timespec ts;
969 struct posix_msg_tree_node *new_leaf = NULL;
970 int ret = 0;
971 DEFINE_WAKE_Q(wake_q);
972
973 if (u_abs_timeout) {
974 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
975 if (res)
976 return res;
977 timeout = &expires;
978 }
979
980 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
981 return -EINVAL;
982
983 audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
984
985 f = fdget(mqdes);
986 if (unlikely(!f.file)) {
987 ret = -EBADF;
988 goto out;
989 }
990
991 inode = file_inode(f.file);
992 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
993 ret = -EBADF;
994 goto out_fput;
995 }
996 info = MQUEUE_I(inode);
997 audit_file(f.file);
998
999 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1000 ret = -EBADF;
1001 goto out_fput;
1002 }
1003
1004 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1005 ret = -EMSGSIZE;
1006 goto out_fput;
1007 }
1008
1009 /* First try to allocate memory, before doing anything with
1010 * existing queues. */
1011 msg_ptr = load_msg(u_msg_ptr, msg_len);
1012 if (IS_ERR(msg_ptr)) {
1013 ret = PTR_ERR(msg_ptr);
1014 goto out_fput;
1015 }
1016 msg_ptr->m_ts = msg_len;
1017 msg_ptr->m_type = msg_prio;
1018
1019 /*
1020 * msg_insert really wants us to have a valid, spare node struct so
1021 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1022 * fall back to that if necessary.
1023 */
1024 if (!info->node_cache)
1025 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1026
1027 spin_lock(&info->lock);
1028
1029 if (!info->node_cache && new_leaf) {
1030 /* Save our speculative allocation into the cache */
1031 INIT_LIST_HEAD(&new_leaf->msg_list);
1032 info->node_cache = new_leaf;
1033 new_leaf = NULL;
1034 } else {
1035 kfree(new_leaf);
1036 }
1037
1038 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1039 if (f.file->f_flags & O_NONBLOCK) {
1040 ret = -EAGAIN;
1041 } else {
1042 wait.task = current;
1043 wait.msg = (void *) msg_ptr;
1044 wait.state = STATE_NONE;
1045 ret = wq_sleep(info, SEND, timeout, &wait);
1046 /*
1047 * wq_sleep must be called with info->lock held, and
1048 * returns with the lock released
1049 */
1050 goto out_free;
1051 }
1052 } else {
1053 receiver = wq_get_first_waiter(info, RECV);
1054 if (receiver) {
1055 pipelined_send(&wake_q, info, msg_ptr, receiver);
1056 } else {
1057 /* adds message to the queue */
1058 ret = msg_insert(msg_ptr, info);
1059 if (ret)
1060 goto out_unlock;
1061 __do_notify(info);
1062 }
1063 inode->i_atime = inode->i_mtime = inode->i_ctime =
1064 current_time(inode);
1065 }
1066 out_unlock:
1067 spin_unlock(&info->lock);
1068 wake_up_q(&wake_q);
1069 out_free:
1070 if (ret)
1071 free_msg(msg_ptr);
1072 out_fput:
1073 fdput(f);
1074 out:
1075 return ret;
1076 }
1077
1078 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1079 size_t, msg_len, unsigned int __user *, u_msg_prio,
1080 const struct timespec __user *, u_abs_timeout)
1081 {
1082 ssize_t ret;
1083 struct msg_msg *msg_ptr;
1084 struct fd f;
1085 struct inode *inode;
1086 struct mqueue_inode_info *info;
1087 struct ext_wait_queue wait;
1088 ktime_t expires, *timeout = NULL;
1089 struct timespec ts;
1090 struct posix_msg_tree_node *new_leaf = NULL;
1091
1092 if (u_abs_timeout) {
1093 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1094 if (res)
1095 return res;
1096 timeout = &expires;
1097 }
1098
1099 audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1100
1101 f = fdget(mqdes);
1102 if (unlikely(!f.file)) {
1103 ret = -EBADF;
1104 goto out;
1105 }
1106
1107 inode = file_inode(f.file);
1108 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1109 ret = -EBADF;
1110 goto out_fput;
1111 }
1112 info = MQUEUE_I(inode);
1113 audit_file(f.file);
1114
1115 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1116 ret = -EBADF;
1117 goto out_fput;
1118 }
1119
1120 /* checks if buffer is big enough */
1121 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1122 ret = -EMSGSIZE;
1123 goto out_fput;
1124 }
1125
1126 /*
1127 * msg_insert really wants us to have a valid, spare node struct so
1128 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1129 * fall back to that if necessary.
1130 */
1131 if (!info->node_cache)
1132 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1133
1134 spin_lock(&info->lock);
1135
1136 if (!info->node_cache && new_leaf) {
1137 /* Save our speculative allocation into the cache */
1138 INIT_LIST_HEAD(&new_leaf->msg_list);
1139 info->node_cache = new_leaf;
1140 } else {
1141 kfree(new_leaf);
1142 }
1143
1144 if (info->attr.mq_curmsgs == 0) {
1145 if (f.file->f_flags & O_NONBLOCK) {
1146 spin_unlock(&info->lock);
1147 ret = -EAGAIN;
1148 } else {
1149 wait.task = current;
1150 wait.state = STATE_NONE;
1151 ret = wq_sleep(info, RECV, timeout, &wait);
1152 msg_ptr = wait.msg;
1153 }
1154 } else {
1155 DEFINE_WAKE_Q(wake_q);
1156
1157 msg_ptr = msg_get(info);
1158
1159 inode->i_atime = inode->i_mtime = inode->i_ctime =
1160 current_time(inode);
1161
1162 /* There is now free space in queue. */
1163 pipelined_receive(&wake_q, info);
1164 spin_unlock(&info->lock);
1165 wake_up_q(&wake_q);
1166 ret = 0;
1167 }
1168 if (ret == 0) {
1169 ret = msg_ptr->m_ts;
1170
1171 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1172 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1173 ret = -EFAULT;
1174 }
1175 free_msg(msg_ptr);
1176 }
1177 out_fput:
1178 fdput(f);
1179 out:
1180 return ret;
1181 }
1182
1183 /*
1184 * Notes: the case when user wants us to deregister (with NULL as pointer)
1185 * and he isn't currently owner of notification, will be silently discarded.
1186 * It isn't explicitly defined in the POSIX.
1187 */
1188 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1189 const struct sigevent __user *, u_notification)
1190 {
1191 int ret;
1192 struct fd f;
1193 struct sock *sock;
1194 struct inode *inode;
1195 struct sigevent notification;
1196 struct mqueue_inode_info *info;
1197 struct sk_buff *nc;
1198
1199 if (u_notification) {
1200 if (copy_from_user(&notification, u_notification,
1201 sizeof(struct sigevent)))
1202 return -EFAULT;
1203 }
1204
1205 audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1206
1207 nc = NULL;
1208 sock = NULL;
1209 if (u_notification != NULL) {
1210 if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1211 notification.sigev_notify != SIGEV_SIGNAL &&
1212 notification.sigev_notify != SIGEV_THREAD))
1213 return -EINVAL;
1214 if (notification.sigev_notify == SIGEV_SIGNAL &&
1215 !valid_signal(notification.sigev_signo)) {
1216 return -EINVAL;
1217 }
1218 if (notification.sigev_notify == SIGEV_THREAD) {
1219 long timeo;
1220
1221 /* create the notify skb */
1222 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1223 if (!nc) {
1224 ret = -ENOMEM;
1225 goto out;
1226 }
1227 if (copy_from_user(nc->data,
1228 notification.sigev_value.sival_ptr,
1229 NOTIFY_COOKIE_LEN)) {
1230 ret = -EFAULT;
1231 goto out;
1232 }
1233
1234 /* TODO: add a header? */
1235 skb_put(nc, NOTIFY_COOKIE_LEN);
1236 /* and attach it to the socket */
1237 retry:
1238 f = fdget(notification.sigev_signo);
1239 if (!f.file) {
1240 ret = -EBADF;
1241 goto out;
1242 }
1243 sock = netlink_getsockbyfilp(f.file);
1244 fdput(f);
1245 if (IS_ERR(sock)) {
1246 ret = PTR_ERR(sock);
1247 sock = NULL;
1248 goto out;
1249 }
1250
1251 timeo = MAX_SCHEDULE_TIMEOUT;
1252 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1253 if (ret == 1)
1254 goto retry;
1255 if (ret) {
1256 sock = NULL;
1257 nc = NULL;
1258 goto out;
1259 }
1260 }
1261 }
1262
1263 f = fdget(mqdes);
1264 if (!f.file) {
1265 ret = -EBADF;
1266 goto out;
1267 }
1268
1269 inode = file_inode(f.file);
1270 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1271 ret = -EBADF;
1272 goto out_fput;
1273 }
1274 info = MQUEUE_I(inode);
1275
1276 ret = 0;
1277 spin_lock(&info->lock);
1278 if (u_notification == NULL) {
1279 if (info->notify_owner == task_tgid(current)) {
1280 remove_notification(info);
1281 inode->i_atime = inode->i_ctime = current_time(inode);
1282 }
1283 } else if (info->notify_owner != NULL) {
1284 ret = -EBUSY;
1285 } else {
1286 switch (notification.sigev_notify) {
1287 case SIGEV_NONE:
1288 info->notify.sigev_notify = SIGEV_NONE;
1289 break;
1290 case SIGEV_THREAD:
1291 info->notify_sock = sock;
1292 info->notify_cookie = nc;
1293 sock = NULL;
1294 nc = NULL;
1295 info->notify.sigev_notify = SIGEV_THREAD;
1296 break;
1297 case SIGEV_SIGNAL:
1298 info->notify.sigev_signo = notification.sigev_signo;
1299 info->notify.sigev_value = notification.sigev_value;
1300 info->notify.sigev_notify = SIGEV_SIGNAL;
1301 break;
1302 }
1303
1304 info->notify_owner = get_pid(task_tgid(current));
1305 info->notify_user_ns = get_user_ns(current_user_ns());
1306 inode->i_atime = inode->i_ctime = current_time(inode);
1307 }
1308 spin_unlock(&info->lock);
1309 out_fput:
1310 fdput(f);
1311 out:
1312 if (sock)
1313 netlink_detachskb(sock, nc);
1314 else if (nc)
1315 dev_kfree_skb(nc);
1316
1317 return ret;
1318 }
1319
1320 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1321 const struct mq_attr __user *, u_mqstat,
1322 struct mq_attr __user *, u_omqstat)
1323 {
1324 int ret;
1325 struct mq_attr mqstat, omqstat;
1326 struct fd f;
1327 struct inode *inode;
1328 struct mqueue_inode_info *info;
1329
1330 if (u_mqstat != NULL) {
1331 if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1332 return -EFAULT;
1333 if (mqstat.mq_flags & (~O_NONBLOCK))
1334 return -EINVAL;
1335 }
1336
1337 f = fdget(mqdes);
1338 if (!f.file) {
1339 ret = -EBADF;
1340 goto out;
1341 }
1342
1343 inode = file_inode(f.file);
1344 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1345 ret = -EBADF;
1346 goto out_fput;
1347 }
1348 info = MQUEUE_I(inode);
1349
1350 spin_lock(&info->lock);
1351
1352 omqstat = info->attr;
1353 omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1354 if (u_mqstat) {
1355 audit_mq_getsetattr(mqdes, &mqstat);
1356 spin_lock(&f.file->f_lock);
1357 if (mqstat.mq_flags & O_NONBLOCK)
1358 f.file->f_flags |= O_NONBLOCK;
1359 else
1360 f.file->f_flags &= ~O_NONBLOCK;
1361 spin_unlock(&f.file->f_lock);
1362
1363 inode->i_atime = inode->i_ctime = current_time(inode);
1364 }
1365
1366 spin_unlock(&info->lock);
1367
1368 ret = 0;
1369 if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1370 sizeof(struct mq_attr)))
1371 ret = -EFAULT;
1372
1373 out_fput:
1374 fdput(f);
1375 out:
1376 return ret;
1377 }
1378
1379 static const struct inode_operations mqueue_dir_inode_operations = {
1380 .lookup = simple_lookup,
1381 .create = mqueue_create,
1382 .unlink = mqueue_unlink,
1383 };
1384
1385 static const struct file_operations mqueue_file_operations = {
1386 .flush = mqueue_flush_file,
1387 .poll = mqueue_poll_file,
1388 .read = mqueue_read_file,
1389 .llseek = default_llseek,
1390 };
1391
1392 static const struct super_operations mqueue_super_ops = {
1393 .alloc_inode = mqueue_alloc_inode,
1394 .destroy_inode = mqueue_destroy_inode,
1395 .evict_inode = mqueue_evict_inode,
1396 .statfs = simple_statfs,
1397 };
1398
1399 static struct file_system_type mqueue_fs_type = {
1400 .name = "mqueue",
1401 .mount = mqueue_mount,
1402 .kill_sb = kill_litter_super,
1403 .fs_flags = FS_USERNS_MOUNT,
1404 };
1405
1406 int mq_init_ns(struct ipc_namespace *ns)
1407 {
1408 ns->mq_queues_count = 0;
1409 ns->mq_queues_max = DFLT_QUEUESMAX;
1410 ns->mq_msg_max = DFLT_MSGMAX;
1411 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1412 ns->mq_msg_default = DFLT_MSG;
1413 ns->mq_msgsize_default = DFLT_MSGSIZE;
1414
1415 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1416 if (IS_ERR(ns->mq_mnt)) {
1417 int err = PTR_ERR(ns->mq_mnt);
1418 ns->mq_mnt = NULL;
1419 return err;
1420 }
1421 return 0;
1422 }
1423
1424 void mq_clear_sbinfo(struct ipc_namespace *ns)
1425 {
1426 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1427 }
1428
1429 void mq_put_mnt(struct ipc_namespace *ns)
1430 {
1431 kern_unmount(ns->mq_mnt);
1432 }
1433
1434 static int __init init_mqueue_fs(void)
1435 {
1436 int error;
1437
1438 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1439 sizeof(struct mqueue_inode_info), 0,
1440 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1441 if (mqueue_inode_cachep == NULL)
1442 return -ENOMEM;
1443
1444 /* ignore failures - they are not fatal */
1445 mq_sysctl_table = mq_register_sysctl_table();
1446
1447 error = register_filesystem(&mqueue_fs_type);
1448 if (error)
1449 goto out_sysctl;
1450
1451 spin_lock_init(&mq_lock);
1452
1453 error = mq_init_ns(&init_ipc_ns);
1454 if (error)
1455 goto out_filesystem;
1456
1457 return 0;
1458
1459 out_filesystem:
1460 unregister_filesystem(&mqueue_fs_type);
1461 out_sysctl:
1462 if (mq_sysctl_table)
1463 unregister_sysctl_table(mq_sysctl_table);
1464 kmem_cache_destroy(mqueue_inode_cachep);
1465 return error;
1466 }
1467
1468 device_initcall(init_mqueue_fs);