]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - ipc/mqueue.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-zesty-kernel.git] / ipc / mqueue.c
1 /*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38
39 #include <net/sock.h>
40 #include "util.h"
41
42 #define MQUEUE_MAGIC 0x19800202
43 #define DIRENT_SIZE 20
44 #define FILENT_SIZE 80
45
46 #define SEND 0
47 #define RECV 1
48
49 #define STATE_NONE 0
50 #define STATE_READY 1
51
52 struct posix_msg_tree_node {
53 struct rb_node rb_node;
54 struct list_head msg_list;
55 int priority;
56 };
57
58 struct ext_wait_queue { /* queue of sleeping tasks */
59 struct task_struct *task;
60 struct list_head list;
61 struct msg_msg *msg; /* ptr of loaded message */
62 int state; /* one of STATE_* values */
63 };
64
65 struct mqueue_inode_info {
66 spinlock_t lock;
67 struct inode vfs_inode;
68 wait_queue_head_t wait_q;
69
70 struct rb_root msg_tree;
71 struct posix_msg_tree_node *node_cache;
72 struct mq_attr attr;
73
74 struct sigevent notify;
75 struct pid *notify_owner;
76 struct user_namespace *notify_user_ns;
77 struct user_struct *user; /* user who created, for accounting */
78 struct sock *notify_sock;
79 struct sk_buff *notify_cookie;
80
81 /* for tasks waiting for free space and messages, respectively */
82 struct ext_wait_queue e_wait_q[2];
83
84 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
85 };
86
87 static const struct inode_operations mqueue_dir_inode_operations;
88 static const struct file_operations mqueue_file_operations;
89 static const struct super_operations mqueue_super_ops;
90 static void remove_notification(struct mqueue_inode_info *info);
91
92 static struct kmem_cache *mqueue_inode_cachep;
93
94 static struct ctl_table_header *mq_sysctl_table;
95
96 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
97 {
98 return container_of(inode, struct mqueue_inode_info, vfs_inode);
99 }
100
101 /*
102 * This routine should be called with the mq_lock held.
103 */
104 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
105 {
106 return get_ipc_ns(inode->i_sb->s_fs_info);
107 }
108
109 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
110 {
111 struct ipc_namespace *ns;
112
113 spin_lock(&mq_lock);
114 ns = __get_ns_from_inode(inode);
115 spin_unlock(&mq_lock);
116 return ns;
117 }
118
119 /* Auxiliary functions to manipulate messages' list */
120 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
121 {
122 struct rb_node **p, *parent = NULL;
123 struct posix_msg_tree_node *leaf;
124
125 p = &info->msg_tree.rb_node;
126 while (*p) {
127 parent = *p;
128 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
129
130 if (likely(leaf->priority == msg->m_type))
131 goto insert_msg;
132 else if (msg->m_type < leaf->priority)
133 p = &(*p)->rb_left;
134 else
135 p = &(*p)->rb_right;
136 }
137 if (info->node_cache) {
138 leaf = info->node_cache;
139 info->node_cache = NULL;
140 } else {
141 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
142 if (!leaf)
143 return -ENOMEM;
144 INIT_LIST_HEAD(&leaf->msg_list);
145 info->qsize += sizeof(*leaf);
146 }
147 leaf->priority = msg->m_type;
148 rb_link_node(&leaf->rb_node, parent, p);
149 rb_insert_color(&leaf->rb_node, &info->msg_tree);
150 insert_msg:
151 info->attr.mq_curmsgs++;
152 info->qsize += msg->m_ts;
153 list_add_tail(&msg->m_list, &leaf->msg_list);
154 return 0;
155 }
156
157 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
158 {
159 struct rb_node **p, *parent = NULL;
160 struct posix_msg_tree_node *leaf;
161 struct msg_msg *msg;
162
163 try_again:
164 p = &info->msg_tree.rb_node;
165 while (*p) {
166 parent = *p;
167 /*
168 * During insert, low priorities go to the left and high to the
169 * right. On receive, we want the highest priorities first, so
170 * walk all the way to the right.
171 */
172 p = &(*p)->rb_right;
173 }
174 if (!parent) {
175 if (info->attr.mq_curmsgs) {
176 pr_warn_once("Inconsistency in POSIX message queue, "
177 "no tree element, but supposedly messages "
178 "should exist!\n");
179 info->attr.mq_curmsgs = 0;
180 }
181 return NULL;
182 }
183 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
184 if (unlikely(list_empty(&leaf->msg_list))) {
185 pr_warn_once("Inconsistency in POSIX message queue, "
186 "empty leaf node but we haven't implemented "
187 "lazy leaf delete!\n");
188 rb_erase(&leaf->rb_node, &info->msg_tree);
189 if (info->node_cache) {
190 info->qsize -= sizeof(*leaf);
191 kfree(leaf);
192 } else {
193 info->node_cache = leaf;
194 }
195 goto try_again;
196 } else {
197 msg = list_first_entry(&leaf->msg_list,
198 struct msg_msg, m_list);
199 list_del(&msg->m_list);
200 if (list_empty(&leaf->msg_list)) {
201 rb_erase(&leaf->rb_node, &info->msg_tree);
202 if (info->node_cache) {
203 info->qsize -= sizeof(*leaf);
204 kfree(leaf);
205 } else {
206 info->node_cache = leaf;
207 }
208 }
209 }
210 info->attr.mq_curmsgs--;
211 info->qsize -= msg->m_ts;
212 return msg;
213 }
214
215 static struct inode *mqueue_get_inode(struct super_block *sb,
216 struct ipc_namespace *ipc_ns, umode_t mode,
217 struct mq_attr *attr)
218 {
219 struct user_struct *u = current_user();
220 struct inode *inode;
221 int ret = -ENOMEM;
222
223 inode = new_inode(sb);
224 if (!inode)
225 goto err;
226
227 inode->i_ino = get_next_ino();
228 inode->i_mode = mode;
229 inode->i_uid = current_fsuid();
230 inode->i_gid = current_fsgid();
231 inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
232
233 if (S_ISREG(mode)) {
234 struct mqueue_inode_info *info;
235 unsigned long mq_bytes, mq_treesize;
236
237 inode->i_fop = &mqueue_file_operations;
238 inode->i_size = FILENT_SIZE;
239 /* mqueue specific info */
240 info = MQUEUE_I(inode);
241 spin_lock_init(&info->lock);
242 init_waitqueue_head(&info->wait_q);
243 INIT_LIST_HEAD(&info->e_wait_q[0].list);
244 INIT_LIST_HEAD(&info->e_wait_q[1].list);
245 info->notify_owner = NULL;
246 info->notify_user_ns = NULL;
247 info->qsize = 0;
248 info->user = NULL; /* set when all is ok */
249 info->msg_tree = RB_ROOT;
250 info->node_cache = NULL;
251 memset(&info->attr, 0, sizeof(info->attr));
252 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
253 ipc_ns->mq_msg_default);
254 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
255 ipc_ns->mq_msgsize_default);
256 if (attr) {
257 info->attr.mq_maxmsg = attr->mq_maxmsg;
258 info->attr.mq_msgsize = attr->mq_msgsize;
259 }
260 /*
261 * We used to allocate a static array of pointers and account
262 * the size of that array as well as one msg_msg struct per
263 * possible message into the queue size. That's no longer
264 * accurate as the queue is now an rbtree and will grow and
265 * shrink depending on usage patterns. We can, however, still
266 * account one msg_msg struct per message, but the nodes are
267 * allocated depending on priority usage, and most programs
268 * only use one, or a handful, of priorities. However, since
269 * this is pinned memory, we need to assume worst case, so
270 * that means the min(mq_maxmsg, max_priorities) * struct
271 * posix_msg_tree_node.
272 */
273 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
274 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
275 sizeof(struct posix_msg_tree_node);
276
277 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
278 info->attr.mq_msgsize);
279
280 spin_lock(&mq_lock);
281 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
282 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
283 spin_unlock(&mq_lock);
284 /* mqueue_evict_inode() releases info->messages */
285 ret = -EMFILE;
286 goto out_inode;
287 }
288 u->mq_bytes += mq_bytes;
289 spin_unlock(&mq_lock);
290
291 /* all is ok */
292 info->user = get_uid(u);
293 } else if (S_ISDIR(mode)) {
294 inc_nlink(inode);
295 /* Some things misbehave if size == 0 on a directory */
296 inode->i_size = 2 * DIRENT_SIZE;
297 inode->i_op = &mqueue_dir_inode_operations;
298 inode->i_fop = &simple_dir_operations;
299 }
300
301 return inode;
302 out_inode:
303 iput(inode);
304 err:
305 return ERR_PTR(ret);
306 }
307
308 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
309 {
310 struct inode *inode;
311 struct ipc_namespace *ns = data;
312
313 sb->s_blocksize = PAGE_CACHE_SIZE;
314 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
315 sb->s_magic = MQUEUE_MAGIC;
316 sb->s_op = &mqueue_super_ops;
317
318 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
319 if (IS_ERR(inode))
320 return PTR_ERR(inode);
321
322 sb->s_root = d_make_root(inode);
323 if (!sb->s_root)
324 return -ENOMEM;
325 return 0;
326 }
327
328 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
329 int flags, const char *dev_name,
330 void *data)
331 {
332 if (!(flags & MS_KERNMOUNT)) {
333 struct ipc_namespace *ns = current->nsproxy->ipc_ns;
334 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
335 * over the ipc namespace.
336 */
337 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
338 return ERR_PTR(-EPERM);
339
340 data = ns;
341 }
342 return mount_ns(fs_type, flags, data, mqueue_fill_super);
343 }
344
345 static void init_once(void *foo)
346 {
347 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
348
349 inode_init_once(&p->vfs_inode);
350 }
351
352 static struct inode *mqueue_alloc_inode(struct super_block *sb)
353 {
354 struct mqueue_inode_info *ei;
355
356 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
357 if (!ei)
358 return NULL;
359 return &ei->vfs_inode;
360 }
361
362 static void mqueue_i_callback(struct rcu_head *head)
363 {
364 struct inode *inode = container_of(head, struct inode, i_rcu);
365 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
366 }
367
368 static void mqueue_destroy_inode(struct inode *inode)
369 {
370 call_rcu(&inode->i_rcu, mqueue_i_callback);
371 }
372
373 static void mqueue_evict_inode(struct inode *inode)
374 {
375 struct mqueue_inode_info *info;
376 struct user_struct *user;
377 unsigned long mq_bytes, mq_treesize;
378 struct ipc_namespace *ipc_ns;
379 struct msg_msg *msg;
380
381 clear_inode(inode);
382
383 if (S_ISDIR(inode->i_mode))
384 return;
385
386 ipc_ns = get_ns_from_inode(inode);
387 info = MQUEUE_I(inode);
388 spin_lock(&info->lock);
389 while ((msg = msg_get(info)) != NULL)
390 free_msg(msg);
391 kfree(info->node_cache);
392 spin_unlock(&info->lock);
393
394 /* Total amount of bytes accounted for the mqueue */
395 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
396 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
397 sizeof(struct posix_msg_tree_node);
398
399 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
400 info->attr.mq_msgsize);
401
402 user = info->user;
403 if (user) {
404 spin_lock(&mq_lock);
405 user->mq_bytes -= mq_bytes;
406 /*
407 * get_ns_from_inode() ensures that the
408 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
409 * to which we now hold a reference, or it is NULL.
410 * We can't put it here under mq_lock, though.
411 */
412 if (ipc_ns)
413 ipc_ns->mq_queues_count--;
414 spin_unlock(&mq_lock);
415 free_uid(user);
416 }
417 if (ipc_ns)
418 put_ipc_ns(ipc_ns);
419 }
420
421 static int mqueue_create(struct inode *dir, struct dentry *dentry,
422 umode_t mode, bool excl)
423 {
424 struct inode *inode;
425 struct mq_attr *attr = dentry->d_fsdata;
426 int error;
427 struct ipc_namespace *ipc_ns;
428
429 spin_lock(&mq_lock);
430 ipc_ns = __get_ns_from_inode(dir);
431 if (!ipc_ns) {
432 error = -EACCES;
433 goto out_unlock;
434 }
435
436 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
437 !capable(CAP_SYS_RESOURCE)) {
438 error = -ENOSPC;
439 goto out_unlock;
440 }
441 ipc_ns->mq_queues_count++;
442 spin_unlock(&mq_lock);
443
444 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
445 if (IS_ERR(inode)) {
446 error = PTR_ERR(inode);
447 spin_lock(&mq_lock);
448 ipc_ns->mq_queues_count--;
449 goto out_unlock;
450 }
451
452 put_ipc_ns(ipc_ns);
453 dir->i_size += DIRENT_SIZE;
454 dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
455
456 d_instantiate(dentry, inode);
457 dget(dentry);
458 return 0;
459 out_unlock:
460 spin_unlock(&mq_lock);
461 if (ipc_ns)
462 put_ipc_ns(ipc_ns);
463 return error;
464 }
465
466 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
467 {
468 struct inode *inode = d_inode(dentry);
469
470 dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
471 dir->i_size -= DIRENT_SIZE;
472 drop_nlink(inode);
473 dput(dentry);
474 return 0;
475 }
476
477 /*
478 * This is routine for system read from queue file.
479 * To avoid mess with doing here some sort of mq_receive we allow
480 * to read only queue size & notification info (the only values
481 * that are interesting from user point of view and aren't accessible
482 * through std routines)
483 */
484 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
485 size_t count, loff_t *off)
486 {
487 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
488 char buffer[FILENT_SIZE];
489 ssize_t ret;
490
491 spin_lock(&info->lock);
492 snprintf(buffer, sizeof(buffer),
493 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
494 info->qsize,
495 info->notify_owner ? info->notify.sigev_notify : 0,
496 (info->notify_owner &&
497 info->notify.sigev_notify == SIGEV_SIGNAL) ?
498 info->notify.sigev_signo : 0,
499 pid_vnr(info->notify_owner));
500 spin_unlock(&info->lock);
501 buffer[sizeof(buffer)-1] = '\0';
502
503 ret = simple_read_from_buffer(u_data, count, off, buffer,
504 strlen(buffer));
505 if (ret <= 0)
506 return ret;
507
508 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
509 return ret;
510 }
511
512 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
513 {
514 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
515
516 spin_lock(&info->lock);
517 if (task_tgid(current) == info->notify_owner)
518 remove_notification(info);
519
520 spin_unlock(&info->lock);
521 return 0;
522 }
523
524 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
525 {
526 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
527 int retval = 0;
528
529 poll_wait(filp, &info->wait_q, poll_tab);
530
531 spin_lock(&info->lock);
532 if (info->attr.mq_curmsgs)
533 retval = POLLIN | POLLRDNORM;
534
535 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
536 retval |= POLLOUT | POLLWRNORM;
537 spin_unlock(&info->lock);
538
539 return retval;
540 }
541
542 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
543 static void wq_add(struct mqueue_inode_info *info, int sr,
544 struct ext_wait_queue *ewp)
545 {
546 struct ext_wait_queue *walk;
547
548 ewp->task = current;
549
550 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
551 if (walk->task->static_prio <= current->static_prio) {
552 list_add_tail(&ewp->list, &walk->list);
553 return;
554 }
555 }
556 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
557 }
558
559 /*
560 * Puts current task to sleep. Caller must hold queue lock. After return
561 * lock isn't held.
562 * sr: SEND or RECV
563 */
564 static int wq_sleep(struct mqueue_inode_info *info, int sr,
565 ktime_t *timeout, struct ext_wait_queue *ewp)
566 {
567 int retval;
568 signed long time;
569
570 wq_add(info, sr, ewp);
571
572 for (;;) {
573 __set_current_state(TASK_INTERRUPTIBLE);
574
575 spin_unlock(&info->lock);
576 time = schedule_hrtimeout_range_clock(timeout, 0,
577 HRTIMER_MODE_ABS, CLOCK_REALTIME);
578
579 if (ewp->state == STATE_READY) {
580 retval = 0;
581 goto out;
582 }
583 spin_lock(&info->lock);
584 if (ewp->state == STATE_READY) {
585 retval = 0;
586 goto out_unlock;
587 }
588 if (signal_pending(current)) {
589 retval = -ERESTARTSYS;
590 break;
591 }
592 if (time == 0) {
593 retval = -ETIMEDOUT;
594 break;
595 }
596 }
597 list_del(&ewp->list);
598 out_unlock:
599 spin_unlock(&info->lock);
600 out:
601 return retval;
602 }
603
604 /*
605 * Returns waiting task that should be serviced first or NULL if none exists
606 */
607 static struct ext_wait_queue *wq_get_first_waiter(
608 struct mqueue_inode_info *info, int sr)
609 {
610 struct list_head *ptr;
611
612 ptr = info->e_wait_q[sr].list.prev;
613 if (ptr == &info->e_wait_q[sr].list)
614 return NULL;
615 return list_entry(ptr, struct ext_wait_queue, list);
616 }
617
618
619 static inline void set_cookie(struct sk_buff *skb, char code)
620 {
621 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
622 }
623
624 /*
625 * The next function is only to split too long sys_mq_timedsend
626 */
627 static void __do_notify(struct mqueue_inode_info *info)
628 {
629 /* notification
630 * invoked when there is registered process and there isn't process
631 * waiting synchronously for message AND state of queue changed from
632 * empty to not empty. Here we are sure that no one is waiting
633 * synchronously. */
634 if (info->notify_owner &&
635 info->attr.mq_curmsgs == 1) {
636 struct siginfo sig_i;
637 switch (info->notify.sigev_notify) {
638 case SIGEV_NONE:
639 break;
640 case SIGEV_SIGNAL:
641 /* sends signal */
642
643 sig_i.si_signo = info->notify.sigev_signo;
644 sig_i.si_errno = 0;
645 sig_i.si_code = SI_MESGQ;
646 sig_i.si_value = info->notify.sigev_value;
647 /* map current pid/uid into info->owner's namespaces */
648 rcu_read_lock();
649 sig_i.si_pid = task_tgid_nr_ns(current,
650 ns_of_pid(info->notify_owner));
651 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
652 rcu_read_unlock();
653
654 kill_pid_info(info->notify.sigev_signo,
655 &sig_i, info->notify_owner);
656 break;
657 case SIGEV_THREAD:
658 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
659 netlink_sendskb(info->notify_sock, info->notify_cookie);
660 break;
661 }
662 /* after notification unregisters process */
663 put_pid(info->notify_owner);
664 put_user_ns(info->notify_user_ns);
665 info->notify_owner = NULL;
666 info->notify_user_ns = NULL;
667 }
668 wake_up(&info->wait_q);
669 }
670
671 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
672 ktime_t *expires, struct timespec *ts)
673 {
674 if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
675 return -EFAULT;
676 if (!timespec_valid(ts))
677 return -EINVAL;
678
679 *expires = timespec_to_ktime(*ts);
680 return 0;
681 }
682
683 static void remove_notification(struct mqueue_inode_info *info)
684 {
685 if (info->notify_owner != NULL &&
686 info->notify.sigev_notify == SIGEV_THREAD) {
687 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
688 netlink_sendskb(info->notify_sock, info->notify_cookie);
689 }
690 put_pid(info->notify_owner);
691 put_user_ns(info->notify_user_ns);
692 info->notify_owner = NULL;
693 info->notify_user_ns = NULL;
694 }
695
696 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
697 {
698 int mq_treesize;
699 unsigned long total_size;
700
701 if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
702 return -EINVAL;
703 if (capable(CAP_SYS_RESOURCE)) {
704 if (attr->mq_maxmsg > HARD_MSGMAX ||
705 attr->mq_msgsize > HARD_MSGSIZEMAX)
706 return -EINVAL;
707 } else {
708 if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
709 attr->mq_msgsize > ipc_ns->mq_msgsize_max)
710 return -EINVAL;
711 }
712 /* check for overflow */
713 if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
714 return -EOVERFLOW;
715 mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
716 min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
717 sizeof(struct posix_msg_tree_node);
718 total_size = attr->mq_maxmsg * attr->mq_msgsize;
719 if (total_size + mq_treesize < total_size)
720 return -EOVERFLOW;
721 return 0;
722 }
723
724 /*
725 * Invoked when creating a new queue via sys_mq_open
726 */
727 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
728 struct path *path, int oflag, umode_t mode,
729 struct mq_attr *attr)
730 {
731 const struct cred *cred = current_cred();
732 int ret;
733
734 if (attr) {
735 ret = mq_attr_ok(ipc_ns, attr);
736 if (ret)
737 return ERR_PTR(ret);
738 /* store for use during create */
739 path->dentry->d_fsdata = attr;
740 } else {
741 struct mq_attr def_attr;
742
743 def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
744 ipc_ns->mq_msg_default);
745 def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
746 ipc_ns->mq_msgsize_default);
747 ret = mq_attr_ok(ipc_ns, &def_attr);
748 if (ret)
749 return ERR_PTR(ret);
750 }
751
752 mode &= ~current_umask();
753 ret = vfs_create(dir, path->dentry, mode, true);
754 path->dentry->d_fsdata = NULL;
755 if (ret)
756 return ERR_PTR(ret);
757 return dentry_open(path, oflag, cred);
758 }
759
760 /* Opens existing queue */
761 static struct file *do_open(struct path *path, int oflag)
762 {
763 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
764 MAY_READ | MAY_WRITE };
765 int acc;
766 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
767 return ERR_PTR(-EINVAL);
768 acc = oflag2acc[oflag & O_ACCMODE];
769 if (inode_permission(d_inode(path->dentry), acc))
770 return ERR_PTR(-EACCES);
771 return dentry_open(path, oflag, current_cred());
772 }
773
774 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
775 struct mq_attr __user *, u_attr)
776 {
777 struct path path;
778 struct file *filp;
779 struct filename *name;
780 struct mq_attr attr;
781 int fd, error;
782 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
783 struct vfsmount *mnt = ipc_ns->mq_mnt;
784 struct dentry *root = mnt->mnt_root;
785 int ro;
786
787 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
788 return -EFAULT;
789
790 audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
791
792 if (IS_ERR(name = getname(u_name)))
793 return PTR_ERR(name);
794
795 fd = get_unused_fd_flags(O_CLOEXEC);
796 if (fd < 0)
797 goto out_putname;
798
799 ro = mnt_want_write(mnt); /* we'll drop it in any case */
800 error = 0;
801 mutex_lock(&d_inode(root)->i_mutex);
802 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
803 if (IS_ERR(path.dentry)) {
804 error = PTR_ERR(path.dentry);
805 goto out_putfd;
806 }
807 path.mnt = mntget(mnt);
808
809 if (oflag & O_CREAT) {
810 if (d_really_is_positive(path.dentry)) { /* entry already exists */
811 audit_inode(name, path.dentry, 0);
812 if (oflag & O_EXCL) {
813 error = -EEXIST;
814 goto out;
815 }
816 filp = do_open(&path, oflag);
817 } else {
818 if (ro) {
819 error = ro;
820 goto out;
821 }
822 audit_inode_parent_hidden(name, root);
823 filp = do_create(ipc_ns, d_inode(root),
824 &path, oflag, mode,
825 u_attr ? &attr : NULL);
826 }
827 } else {
828 if (d_really_is_negative(path.dentry)) {
829 error = -ENOENT;
830 goto out;
831 }
832 audit_inode(name, path.dentry, 0);
833 filp = do_open(&path, oflag);
834 }
835
836 if (!IS_ERR(filp))
837 fd_install(fd, filp);
838 else
839 error = PTR_ERR(filp);
840 out:
841 path_put(&path);
842 out_putfd:
843 if (error) {
844 put_unused_fd(fd);
845 fd = error;
846 }
847 mutex_unlock(&d_inode(root)->i_mutex);
848 if (!ro)
849 mnt_drop_write(mnt);
850 out_putname:
851 putname(name);
852 return fd;
853 }
854
855 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
856 {
857 int err;
858 struct filename *name;
859 struct dentry *dentry;
860 struct inode *inode = NULL;
861 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
862 struct vfsmount *mnt = ipc_ns->mq_mnt;
863
864 name = getname(u_name);
865 if (IS_ERR(name))
866 return PTR_ERR(name);
867
868 audit_inode_parent_hidden(name, mnt->mnt_root);
869 err = mnt_want_write(mnt);
870 if (err)
871 goto out_name;
872 mutex_lock_nested(&d_inode(mnt->mnt_root)->i_mutex, I_MUTEX_PARENT);
873 dentry = lookup_one_len(name->name, mnt->mnt_root,
874 strlen(name->name));
875 if (IS_ERR(dentry)) {
876 err = PTR_ERR(dentry);
877 goto out_unlock;
878 }
879
880 inode = d_inode(dentry);
881 if (!inode) {
882 err = -ENOENT;
883 } else {
884 ihold(inode);
885 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
886 }
887 dput(dentry);
888
889 out_unlock:
890 mutex_unlock(&d_inode(mnt->mnt_root)->i_mutex);
891 if (inode)
892 iput(inode);
893 mnt_drop_write(mnt);
894 out_name:
895 putname(name);
896
897 return err;
898 }
899
900 /* Pipelined send and receive functions.
901 *
902 * If a receiver finds no waiting message, then it registers itself in the
903 * list of waiting receivers. A sender checks that list before adding the new
904 * message into the message array. If there is a waiting receiver, then it
905 * bypasses the message array and directly hands the message over to the
906 * receiver. The receiver accepts the message and returns without grabbing the
907 * queue spinlock:
908 *
909 * - Set pointer to message.
910 * - Queue the receiver task for later wakeup (without the info->lock).
911 * - Update its state to STATE_READY. Now the receiver can continue.
912 * - Wake up the process after the lock is dropped. Should the process wake up
913 * before this wakeup (due to a timeout or a signal) it will either see
914 * STATE_READY and continue or acquire the lock to check the state again.
915 *
916 * The same algorithm is used for senders.
917 */
918
919 /* pipelined_send() - send a message directly to the task waiting in
920 * sys_mq_timedreceive() (without inserting message into a queue).
921 */
922 static inline void pipelined_send(struct wake_q_head *wake_q,
923 struct mqueue_inode_info *info,
924 struct msg_msg *message,
925 struct ext_wait_queue *receiver)
926 {
927 receiver->msg = message;
928 list_del(&receiver->list);
929 wake_q_add(wake_q, receiver->task);
930 /*
931 * Rely on the implicit cmpxchg barrier from wake_q_add such
932 * that we can ensure that updating receiver->state is the last
933 * write operation: As once set, the receiver can continue,
934 * and if we don't have the reference count from the wake_q,
935 * yet, at that point we can later have a use-after-free
936 * condition and bogus wakeup.
937 */
938 receiver->state = STATE_READY;
939 }
940
941 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
942 * gets its message and put to the queue (we have one free place for sure). */
943 static inline void pipelined_receive(struct wake_q_head *wake_q,
944 struct mqueue_inode_info *info)
945 {
946 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
947
948 if (!sender) {
949 /* for poll */
950 wake_up_interruptible(&info->wait_q);
951 return;
952 }
953 if (msg_insert(sender->msg, info))
954 return;
955
956 list_del(&sender->list);
957 wake_q_add(wake_q, sender->task);
958 sender->state = STATE_READY;
959 }
960
961 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
962 size_t, msg_len, unsigned int, msg_prio,
963 const struct timespec __user *, u_abs_timeout)
964 {
965 struct fd f;
966 struct inode *inode;
967 struct ext_wait_queue wait;
968 struct ext_wait_queue *receiver;
969 struct msg_msg *msg_ptr;
970 struct mqueue_inode_info *info;
971 ktime_t expires, *timeout = NULL;
972 struct timespec ts;
973 struct posix_msg_tree_node *new_leaf = NULL;
974 int ret = 0;
975 WAKE_Q(wake_q);
976
977 if (u_abs_timeout) {
978 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
979 if (res)
980 return res;
981 timeout = &expires;
982 }
983
984 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
985 return -EINVAL;
986
987 audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
988
989 f = fdget(mqdes);
990 if (unlikely(!f.file)) {
991 ret = -EBADF;
992 goto out;
993 }
994
995 inode = file_inode(f.file);
996 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
997 ret = -EBADF;
998 goto out_fput;
999 }
1000 info = MQUEUE_I(inode);
1001 audit_file(f.file);
1002
1003 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1004 ret = -EBADF;
1005 goto out_fput;
1006 }
1007
1008 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1009 ret = -EMSGSIZE;
1010 goto out_fput;
1011 }
1012
1013 /* First try to allocate memory, before doing anything with
1014 * existing queues. */
1015 msg_ptr = load_msg(u_msg_ptr, msg_len);
1016 if (IS_ERR(msg_ptr)) {
1017 ret = PTR_ERR(msg_ptr);
1018 goto out_fput;
1019 }
1020 msg_ptr->m_ts = msg_len;
1021 msg_ptr->m_type = msg_prio;
1022
1023 /*
1024 * msg_insert really wants us to have a valid, spare node struct so
1025 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1026 * fall back to that if necessary.
1027 */
1028 if (!info->node_cache)
1029 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1030
1031 spin_lock(&info->lock);
1032
1033 if (!info->node_cache && new_leaf) {
1034 /* Save our speculative allocation into the cache */
1035 INIT_LIST_HEAD(&new_leaf->msg_list);
1036 info->node_cache = new_leaf;
1037 info->qsize += sizeof(*new_leaf);
1038 new_leaf = NULL;
1039 } else {
1040 kfree(new_leaf);
1041 }
1042
1043 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1044 if (f.file->f_flags & O_NONBLOCK) {
1045 ret = -EAGAIN;
1046 } else {
1047 wait.task = current;
1048 wait.msg = (void *) msg_ptr;
1049 wait.state = STATE_NONE;
1050 ret = wq_sleep(info, SEND, timeout, &wait);
1051 /*
1052 * wq_sleep must be called with info->lock held, and
1053 * returns with the lock released
1054 */
1055 goto out_free;
1056 }
1057 } else {
1058 receiver = wq_get_first_waiter(info, RECV);
1059 if (receiver) {
1060 pipelined_send(&wake_q, info, msg_ptr, receiver);
1061 } else {
1062 /* adds message to the queue */
1063 ret = msg_insert(msg_ptr, info);
1064 if (ret)
1065 goto out_unlock;
1066 __do_notify(info);
1067 }
1068 inode->i_atime = inode->i_mtime = inode->i_ctime =
1069 CURRENT_TIME;
1070 }
1071 out_unlock:
1072 spin_unlock(&info->lock);
1073 wake_up_q(&wake_q);
1074 out_free:
1075 if (ret)
1076 free_msg(msg_ptr);
1077 out_fput:
1078 fdput(f);
1079 out:
1080 return ret;
1081 }
1082
1083 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1084 size_t, msg_len, unsigned int __user *, u_msg_prio,
1085 const struct timespec __user *, u_abs_timeout)
1086 {
1087 ssize_t ret;
1088 struct msg_msg *msg_ptr;
1089 struct fd f;
1090 struct inode *inode;
1091 struct mqueue_inode_info *info;
1092 struct ext_wait_queue wait;
1093 ktime_t expires, *timeout = NULL;
1094 struct timespec ts;
1095 struct posix_msg_tree_node *new_leaf = NULL;
1096
1097 if (u_abs_timeout) {
1098 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1099 if (res)
1100 return res;
1101 timeout = &expires;
1102 }
1103
1104 audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1105
1106 f = fdget(mqdes);
1107 if (unlikely(!f.file)) {
1108 ret = -EBADF;
1109 goto out;
1110 }
1111
1112 inode = file_inode(f.file);
1113 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1114 ret = -EBADF;
1115 goto out_fput;
1116 }
1117 info = MQUEUE_I(inode);
1118 audit_file(f.file);
1119
1120 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1121 ret = -EBADF;
1122 goto out_fput;
1123 }
1124
1125 /* checks if buffer is big enough */
1126 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1127 ret = -EMSGSIZE;
1128 goto out_fput;
1129 }
1130
1131 /*
1132 * msg_insert really wants us to have a valid, spare node struct so
1133 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1134 * fall back to that if necessary.
1135 */
1136 if (!info->node_cache)
1137 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1138
1139 spin_lock(&info->lock);
1140
1141 if (!info->node_cache && new_leaf) {
1142 /* Save our speculative allocation into the cache */
1143 INIT_LIST_HEAD(&new_leaf->msg_list);
1144 info->node_cache = new_leaf;
1145 info->qsize += sizeof(*new_leaf);
1146 } else {
1147 kfree(new_leaf);
1148 }
1149
1150 if (info->attr.mq_curmsgs == 0) {
1151 if (f.file->f_flags & O_NONBLOCK) {
1152 spin_unlock(&info->lock);
1153 ret = -EAGAIN;
1154 } else {
1155 wait.task = current;
1156 wait.state = STATE_NONE;
1157 ret = wq_sleep(info, RECV, timeout, &wait);
1158 msg_ptr = wait.msg;
1159 }
1160 } else {
1161 WAKE_Q(wake_q);
1162
1163 msg_ptr = msg_get(info);
1164
1165 inode->i_atime = inode->i_mtime = inode->i_ctime =
1166 CURRENT_TIME;
1167
1168 /* There is now free space in queue. */
1169 pipelined_receive(&wake_q, info);
1170 spin_unlock(&info->lock);
1171 wake_up_q(&wake_q);
1172 ret = 0;
1173 }
1174 if (ret == 0) {
1175 ret = msg_ptr->m_ts;
1176
1177 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1178 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1179 ret = -EFAULT;
1180 }
1181 free_msg(msg_ptr);
1182 }
1183 out_fput:
1184 fdput(f);
1185 out:
1186 return ret;
1187 }
1188
1189 /*
1190 * Notes: the case when user wants us to deregister (with NULL as pointer)
1191 * and he isn't currently owner of notification, will be silently discarded.
1192 * It isn't explicitly defined in the POSIX.
1193 */
1194 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1195 const struct sigevent __user *, u_notification)
1196 {
1197 int ret;
1198 struct fd f;
1199 struct sock *sock;
1200 struct inode *inode;
1201 struct sigevent notification;
1202 struct mqueue_inode_info *info;
1203 struct sk_buff *nc;
1204
1205 if (u_notification) {
1206 if (copy_from_user(&notification, u_notification,
1207 sizeof(struct sigevent)))
1208 return -EFAULT;
1209 }
1210
1211 audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1212
1213 nc = NULL;
1214 sock = NULL;
1215 if (u_notification != NULL) {
1216 if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1217 notification.sigev_notify != SIGEV_SIGNAL &&
1218 notification.sigev_notify != SIGEV_THREAD))
1219 return -EINVAL;
1220 if (notification.sigev_notify == SIGEV_SIGNAL &&
1221 !valid_signal(notification.sigev_signo)) {
1222 return -EINVAL;
1223 }
1224 if (notification.sigev_notify == SIGEV_THREAD) {
1225 long timeo;
1226
1227 /* create the notify skb */
1228 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1229 if (!nc) {
1230 ret = -ENOMEM;
1231 goto out;
1232 }
1233 if (copy_from_user(nc->data,
1234 notification.sigev_value.sival_ptr,
1235 NOTIFY_COOKIE_LEN)) {
1236 ret = -EFAULT;
1237 goto out;
1238 }
1239
1240 /* TODO: add a header? */
1241 skb_put(nc, NOTIFY_COOKIE_LEN);
1242 /* and attach it to the socket */
1243 retry:
1244 f = fdget(notification.sigev_signo);
1245 if (!f.file) {
1246 ret = -EBADF;
1247 goto out;
1248 }
1249 sock = netlink_getsockbyfilp(f.file);
1250 fdput(f);
1251 if (IS_ERR(sock)) {
1252 ret = PTR_ERR(sock);
1253 sock = NULL;
1254 goto out;
1255 }
1256
1257 timeo = MAX_SCHEDULE_TIMEOUT;
1258 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1259 if (ret == 1)
1260 goto retry;
1261 if (ret) {
1262 sock = NULL;
1263 nc = NULL;
1264 goto out;
1265 }
1266 }
1267 }
1268
1269 f = fdget(mqdes);
1270 if (!f.file) {
1271 ret = -EBADF;
1272 goto out;
1273 }
1274
1275 inode = file_inode(f.file);
1276 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1277 ret = -EBADF;
1278 goto out_fput;
1279 }
1280 info = MQUEUE_I(inode);
1281
1282 ret = 0;
1283 spin_lock(&info->lock);
1284 if (u_notification == NULL) {
1285 if (info->notify_owner == task_tgid(current)) {
1286 remove_notification(info);
1287 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1288 }
1289 } else if (info->notify_owner != NULL) {
1290 ret = -EBUSY;
1291 } else {
1292 switch (notification.sigev_notify) {
1293 case SIGEV_NONE:
1294 info->notify.sigev_notify = SIGEV_NONE;
1295 break;
1296 case SIGEV_THREAD:
1297 info->notify_sock = sock;
1298 info->notify_cookie = nc;
1299 sock = NULL;
1300 nc = NULL;
1301 info->notify.sigev_notify = SIGEV_THREAD;
1302 break;
1303 case SIGEV_SIGNAL:
1304 info->notify.sigev_signo = notification.sigev_signo;
1305 info->notify.sigev_value = notification.sigev_value;
1306 info->notify.sigev_notify = SIGEV_SIGNAL;
1307 break;
1308 }
1309
1310 info->notify_owner = get_pid(task_tgid(current));
1311 info->notify_user_ns = get_user_ns(current_user_ns());
1312 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1313 }
1314 spin_unlock(&info->lock);
1315 out_fput:
1316 fdput(f);
1317 out:
1318 if (sock)
1319 netlink_detachskb(sock, nc);
1320 else if (nc)
1321 dev_kfree_skb(nc);
1322
1323 return ret;
1324 }
1325
1326 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1327 const struct mq_attr __user *, u_mqstat,
1328 struct mq_attr __user *, u_omqstat)
1329 {
1330 int ret;
1331 struct mq_attr mqstat, omqstat;
1332 struct fd f;
1333 struct inode *inode;
1334 struct mqueue_inode_info *info;
1335
1336 if (u_mqstat != NULL) {
1337 if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1338 return -EFAULT;
1339 if (mqstat.mq_flags & (~O_NONBLOCK))
1340 return -EINVAL;
1341 }
1342
1343 f = fdget(mqdes);
1344 if (!f.file) {
1345 ret = -EBADF;
1346 goto out;
1347 }
1348
1349 inode = file_inode(f.file);
1350 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1351 ret = -EBADF;
1352 goto out_fput;
1353 }
1354 info = MQUEUE_I(inode);
1355
1356 spin_lock(&info->lock);
1357
1358 omqstat = info->attr;
1359 omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1360 if (u_mqstat) {
1361 audit_mq_getsetattr(mqdes, &mqstat);
1362 spin_lock(&f.file->f_lock);
1363 if (mqstat.mq_flags & O_NONBLOCK)
1364 f.file->f_flags |= O_NONBLOCK;
1365 else
1366 f.file->f_flags &= ~O_NONBLOCK;
1367 spin_unlock(&f.file->f_lock);
1368
1369 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1370 }
1371
1372 spin_unlock(&info->lock);
1373
1374 ret = 0;
1375 if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1376 sizeof(struct mq_attr)))
1377 ret = -EFAULT;
1378
1379 out_fput:
1380 fdput(f);
1381 out:
1382 return ret;
1383 }
1384
1385 static const struct inode_operations mqueue_dir_inode_operations = {
1386 .lookup = simple_lookup,
1387 .create = mqueue_create,
1388 .unlink = mqueue_unlink,
1389 };
1390
1391 static const struct file_operations mqueue_file_operations = {
1392 .flush = mqueue_flush_file,
1393 .poll = mqueue_poll_file,
1394 .read = mqueue_read_file,
1395 .llseek = default_llseek,
1396 };
1397
1398 static const struct super_operations mqueue_super_ops = {
1399 .alloc_inode = mqueue_alloc_inode,
1400 .destroy_inode = mqueue_destroy_inode,
1401 .evict_inode = mqueue_evict_inode,
1402 .statfs = simple_statfs,
1403 };
1404
1405 static struct file_system_type mqueue_fs_type = {
1406 .name = "mqueue",
1407 .mount = mqueue_mount,
1408 .kill_sb = kill_litter_super,
1409 .fs_flags = FS_USERNS_MOUNT,
1410 };
1411
1412 int mq_init_ns(struct ipc_namespace *ns)
1413 {
1414 ns->mq_queues_count = 0;
1415 ns->mq_queues_max = DFLT_QUEUESMAX;
1416 ns->mq_msg_max = DFLT_MSGMAX;
1417 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1418 ns->mq_msg_default = DFLT_MSG;
1419 ns->mq_msgsize_default = DFLT_MSGSIZE;
1420
1421 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1422 if (IS_ERR(ns->mq_mnt)) {
1423 int err = PTR_ERR(ns->mq_mnt);
1424 ns->mq_mnt = NULL;
1425 return err;
1426 }
1427 return 0;
1428 }
1429
1430 void mq_clear_sbinfo(struct ipc_namespace *ns)
1431 {
1432 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1433 }
1434
1435 void mq_put_mnt(struct ipc_namespace *ns)
1436 {
1437 kern_unmount(ns->mq_mnt);
1438 }
1439
1440 static int __init init_mqueue_fs(void)
1441 {
1442 int error;
1443
1444 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1445 sizeof(struct mqueue_inode_info), 0,
1446 SLAB_HWCACHE_ALIGN, init_once);
1447 if (mqueue_inode_cachep == NULL)
1448 return -ENOMEM;
1449
1450 /* ignore failures - they are not fatal */
1451 mq_sysctl_table = mq_register_sysctl_table();
1452
1453 error = register_filesystem(&mqueue_fs_type);
1454 if (error)
1455 goto out_sysctl;
1456
1457 spin_lock_init(&mq_lock);
1458
1459 error = mq_init_ns(&init_ipc_ns);
1460 if (error)
1461 goto out_filesystem;
1462
1463 return 0;
1464
1465 out_filesystem:
1466 unregister_filesystem(&mqueue_fs_type);
1467 out_sysctl:
1468 if (mq_sysctl_table)
1469 unregister_sysctl_table(mq_sysctl_table);
1470 kmem_cache_destroy(mqueue_inode_cachep);
1471 return error;
1472 }
1473
1474 device_initcall(init_mqueue_fs);