]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - ipc/sem.c
UBUNTU: snapcraft.yaml: force image format to Image
[mirror_ubuntu-artful-kernel.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 */
74
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88
89 #include <linux/uaccess.h>
90 #include "util.h"
91
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 int semval; /* current value */
95 int sempid; /* pid of last operation */
96 spinlock_t lock; /* spinlock for fine-grained semtimedop */
97 struct list_head pending_alter; /* pending single-sop operations */
98 /* that alter the semaphore */
99 struct list_head pending_const; /* pending single-sop operations */
100 /* that do not alter the semaphore*/
101 time_t sem_otime; /* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp;
103
104 /* One queue for each sleeping process in the system. */
105 struct sem_queue {
106 struct list_head list; /* queue of pending operations */
107 struct task_struct *sleeper; /* this process */
108 struct sem_undo *undo; /* undo structure */
109 int pid; /* process id of requesting process */
110 int status; /* completion status of operation */
111 struct sembuf *sops; /* array of pending operations */
112 struct sembuf *blocking; /* the operation that blocked */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115 };
116
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120 struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131 };
132
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136 struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140 };
141
142
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
144
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
146
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156 /*
157 * Locking:
158 * a) global sem_lock() for read/write
159 * sem_undo.id_next,
160 * sem_array.complex_count,
161 * sem_array.complex_mode
162 * sem_array.pending{_alter,_const},
163 * sem_array.sem_undo
164 *
165 * b) global or semaphore sem_lock() for read/write:
166 * sem_array.sem_base[i].pending_{const,alter}:
167 * sem_array.complex_mode (for read)
168 *
169 * c) special:
170 * sem_undo_list.list_proc:
171 * * undo_list->lock for write
172 * * rcu for read
173 */
174
175 #define sc_semmsl sem_ctls[0]
176 #define sc_semmns sem_ctls[1]
177 #define sc_semopm sem_ctls[2]
178 #define sc_semmni sem_ctls[3]
179
180 void sem_init_ns(struct ipc_namespace *ns)
181 {
182 ns->sc_semmsl = SEMMSL;
183 ns->sc_semmns = SEMMNS;
184 ns->sc_semopm = SEMOPM;
185 ns->sc_semmni = SEMMNI;
186 ns->used_sems = 0;
187 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
188 }
189
190 #ifdef CONFIG_IPC_NS
191 void sem_exit_ns(struct ipc_namespace *ns)
192 {
193 free_ipcs(ns, &sem_ids(ns), freeary);
194 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
195 }
196 #endif
197
198 void __init sem_init(void)
199 {
200 sem_init_ns(&init_ipc_ns);
201 ipc_init_proc_interface("sysvipc/sem",
202 " key semid perms nsems uid gid cuid cgid otime ctime\n",
203 IPC_SEM_IDS, sysvipc_sem_proc_show);
204 }
205
206 /**
207 * unmerge_queues - unmerge queues, if possible.
208 * @sma: semaphore array
209 *
210 * The function unmerges the wait queues if complex_count is 0.
211 * It must be called prior to dropping the global semaphore array lock.
212 */
213 static void unmerge_queues(struct sem_array *sma)
214 {
215 struct sem_queue *q, *tq;
216
217 /* complex operations still around? */
218 if (sma->complex_count)
219 return;
220 /*
221 * We will switch back to simple mode.
222 * Move all pending operation back into the per-semaphore
223 * queues.
224 */
225 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
226 struct sem *curr;
227 curr = &sma->sem_base[q->sops[0].sem_num];
228
229 list_add_tail(&q->list, &curr->pending_alter);
230 }
231 INIT_LIST_HEAD(&sma->pending_alter);
232 }
233
234 /**
235 * merge_queues - merge single semop queues into global queue
236 * @sma: semaphore array
237 *
238 * This function merges all per-semaphore queues into the global queue.
239 * It is necessary to achieve FIFO ordering for the pending single-sop
240 * operations when a multi-semop operation must sleep.
241 * Only the alter operations must be moved, the const operations can stay.
242 */
243 static void merge_queues(struct sem_array *sma)
244 {
245 int i;
246 for (i = 0; i < sma->sem_nsems; i++) {
247 struct sem *sem = sma->sem_base + i;
248
249 list_splice_init(&sem->pending_alter, &sma->pending_alter);
250 }
251 }
252
253 static void sem_rcu_free(struct rcu_head *head)
254 {
255 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
256 struct sem_array *sma = ipc_rcu_to_struct(p);
257
258 security_sem_free(sma);
259 ipc_rcu_free(head);
260 }
261
262 /*
263 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
264 * are only control barriers.
265 * The code must pair with spin_unlock(&sem->lock) or
266 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
267 *
268 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
269 */
270 #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb()
271
272 /*
273 * Enter the mode suitable for non-simple operations:
274 * Caller must own sem_perm.lock.
275 */
276 static void complexmode_enter(struct sem_array *sma)
277 {
278 int i;
279 struct sem *sem;
280
281 if (sma->complex_mode) {
282 /* We are already in complex_mode. Nothing to do */
283 return;
284 }
285
286 /* We need a full barrier after seting complex_mode:
287 * The write to complex_mode must be visible
288 * before we read the first sem->lock spinlock state.
289 */
290 smp_store_mb(sma->complex_mode, true);
291
292 for (i = 0; i < sma->sem_nsems; i++) {
293 sem = sma->sem_base + i;
294 spin_unlock_wait(&sem->lock);
295 }
296 ipc_smp_acquire__after_spin_is_unlocked();
297 }
298
299 /*
300 * Try to leave the mode that disallows simple operations:
301 * Caller must own sem_perm.lock.
302 */
303 static void complexmode_tryleave(struct sem_array *sma)
304 {
305 if (sma->complex_count) {
306 /* Complex ops are sleeping.
307 * We must stay in complex mode
308 */
309 return;
310 }
311 /*
312 * Immediately after setting complex_mode to false,
313 * a simple op can start. Thus: all memory writes
314 * performed by the current operation must be visible
315 * before we set complex_mode to false.
316 */
317 smp_store_release(&sma->complex_mode, false);
318 }
319
320 #define SEM_GLOBAL_LOCK (-1)
321 /*
322 * If the request contains only one semaphore operation, and there are
323 * no complex transactions pending, lock only the semaphore involved.
324 * Otherwise, lock the entire semaphore array, since we either have
325 * multiple semaphores in our own semops, or we need to look at
326 * semaphores from other pending complex operations.
327 */
328 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
329 int nsops)
330 {
331 struct sem *sem;
332
333 if (nsops != 1) {
334 /* Complex operation - acquire a full lock */
335 ipc_lock_object(&sma->sem_perm);
336
337 /* Prevent parallel simple ops */
338 complexmode_enter(sma);
339 return SEM_GLOBAL_LOCK;
340 }
341
342 /*
343 * Only one semaphore affected - try to optimize locking.
344 * Optimized locking is possible if no complex operation
345 * is either enqueued or processed right now.
346 *
347 * Both facts are tracked by complex_mode.
348 */
349 sem = sma->sem_base + sops->sem_num;
350
351 /*
352 * Initial check for complex_mode. Just an optimization,
353 * no locking, no memory barrier.
354 */
355 if (!sma->complex_mode) {
356 /*
357 * It appears that no complex operation is around.
358 * Acquire the per-semaphore lock.
359 */
360 spin_lock(&sem->lock);
361
362 /*
363 * See 51d7d5205d33
364 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
365 * A full barrier is required: the write of sem->lock
366 * must be visible before the read is executed
367 */
368 smp_mb();
369
370 if (!smp_load_acquire(&sma->complex_mode)) {
371 /* fast path successful! */
372 return sops->sem_num;
373 }
374 spin_unlock(&sem->lock);
375 }
376
377 /* slow path: acquire the full lock */
378 ipc_lock_object(&sma->sem_perm);
379
380 if (sma->complex_count == 0) {
381 /* False alarm:
382 * There is no complex operation, thus we can switch
383 * back to the fast path.
384 */
385 spin_lock(&sem->lock);
386 ipc_unlock_object(&sma->sem_perm);
387 return sops->sem_num;
388 } else {
389 /* Not a false alarm, thus complete the sequence for a
390 * full lock.
391 */
392 complexmode_enter(sma);
393 return SEM_GLOBAL_LOCK;
394 }
395 }
396
397 static inline void sem_unlock(struct sem_array *sma, int locknum)
398 {
399 if (locknum == SEM_GLOBAL_LOCK) {
400 unmerge_queues(sma);
401 complexmode_tryleave(sma);
402 ipc_unlock_object(&sma->sem_perm);
403 } else {
404 struct sem *sem = sma->sem_base + locknum;
405 spin_unlock(&sem->lock);
406 }
407 }
408
409 /*
410 * sem_lock_(check_) routines are called in the paths where the rwsem
411 * is not held.
412 *
413 * The caller holds the RCU read lock.
414 */
415 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
416 int id, struct sembuf *sops, int nsops, int *locknum)
417 {
418 struct kern_ipc_perm *ipcp;
419 struct sem_array *sma;
420
421 ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
422 if (IS_ERR(ipcp))
423 return ERR_CAST(ipcp);
424
425 sma = container_of(ipcp, struct sem_array, sem_perm);
426 *locknum = sem_lock(sma, sops, nsops);
427
428 /* ipc_rmid() may have already freed the ID while sem_lock
429 * was spinning: verify that the structure is still valid
430 */
431 if (ipc_valid_object(ipcp))
432 return container_of(ipcp, struct sem_array, sem_perm);
433
434 sem_unlock(sma, *locknum);
435 return ERR_PTR(-EINVAL);
436 }
437
438 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
439 {
440 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
441
442 if (IS_ERR(ipcp))
443 return ERR_CAST(ipcp);
444
445 return container_of(ipcp, struct sem_array, sem_perm);
446 }
447
448 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
449 int id)
450 {
451 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
452
453 if (IS_ERR(ipcp))
454 return ERR_CAST(ipcp);
455
456 return container_of(ipcp, struct sem_array, sem_perm);
457 }
458
459 static inline void sem_lock_and_putref(struct sem_array *sma)
460 {
461 sem_lock(sma, NULL, -1);
462 ipc_rcu_putref(sma, sem_rcu_free);
463 }
464
465 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
466 {
467 ipc_rmid(&sem_ids(ns), &s->sem_perm);
468 }
469
470 /*
471 * Lockless wakeup algorithm:
472 * Without the check/retry algorithm a lockless wakeup is possible:
473 * - queue.status is initialized to -EINTR before blocking.
474 * - wakeup is performed by
475 * * unlinking the queue entry from the pending list
476 * * setting queue.status to IN_WAKEUP
477 * This is the notification for the blocked thread that a
478 * result value is imminent.
479 * * call wake_up_process
480 * * set queue.status to the final value.
481 * - the previously blocked thread checks queue.status:
482 * * if it's IN_WAKEUP, then it must wait until the value changes
483 * * if it's not -EINTR, then the operation was completed by
484 * update_queue. semtimedop can return queue.status without
485 * performing any operation on the sem array.
486 * * otherwise it must acquire the spinlock and check what's up.
487 *
488 * The two-stage algorithm is necessary to protect against the following
489 * races:
490 * - if queue.status is set after wake_up_process, then the woken up idle
491 * thread could race forward and try (and fail) to acquire sma->lock
492 * before update_queue had a chance to set queue.status
493 * - if queue.status is written before wake_up_process and if the
494 * blocked process is woken up by a signal between writing
495 * queue.status and the wake_up_process, then the woken up
496 * process could return from semtimedop and die by calling
497 * sys_exit before wake_up_process is called. Then wake_up_process
498 * will oops, because the task structure is already invalid.
499 * (yes, this happened on s390 with sysv msg).
500 *
501 */
502 #define IN_WAKEUP 1
503
504 /**
505 * newary - Create a new semaphore set
506 * @ns: namespace
507 * @params: ptr to the structure that contains key, semflg and nsems
508 *
509 * Called with sem_ids.rwsem held (as a writer)
510 */
511 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
512 {
513 int id;
514 int retval;
515 struct sem_array *sma;
516 int size;
517 key_t key = params->key;
518 int nsems = params->u.nsems;
519 int semflg = params->flg;
520 int i;
521
522 if (!nsems)
523 return -EINVAL;
524 if (ns->used_sems + nsems > ns->sc_semmns)
525 return -ENOSPC;
526
527 size = sizeof(*sma) + nsems * sizeof(struct sem);
528 sma = ipc_rcu_alloc(size);
529 if (!sma)
530 return -ENOMEM;
531
532 memset(sma, 0, size);
533
534 sma->sem_perm.mode = (semflg & S_IRWXUGO);
535 sma->sem_perm.key = key;
536
537 sma->sem_perm.security = NULL;
538 retval = security_sem_alloc(sma);
539 if (retval) {
540 ipc_rcu_putref(sma, ipc_rcu_free);
541 return retval;
542 }
543
544 sma->sem_base = (struct sem *) &sma[1];
545
546 for (i = 0; i < nsems; i++) {
547 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
548 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
549 spin_lock_init(&sma->sem_base[i].lock);
550 }
551
552 sma->complex_count = 0;
553 sma->complex_mode = true; /* dropped by sem_unlock below */
554 INIT_LIST_HEAD(&sma->pending_alter);
555 INIT_LIST_HEAD(&sma->pending_const);
556 INIT_LIST_HEAD(&sma->list_id);
557 sma->sem_nsems = nsems;
558 sma->sem_ctime = get_seconds();
559
560 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
561 if (id < 0) {
562 ipc_rcu_putref(sma, sem_rcu_free);
563 return id;
564 }
565 ns->used_sems += nsems;
566
567 sem_unlock(sma, -1);
568 rcu_read_unlock();
569
570 return sma->sem_perm.id;
571 }
572
573
574 /*
575 * Called with sem_ids.rwsem and ipcp locked.
576 */
577 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
578 {
579 struct sem_array *sma;
580
581 sma = container_of(ipcp, struct sem_array, sem_perm);
582 return security_sem_associate(sma, semflg);
583 }
584
585 /*
586 * Called with sem_ids.rwsem and ipcp locked.
587 */
588 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
589 struct ipc_params *params)
590 {
591 struct sem_array *sma;
592
593 sma = container_of(ipcp, struct sem_array, sem_perm);
594 if (params->u.nsems > sma->sem_nsems)
595 return -EINVAL;
596
597 return 0;
598 }
599
600 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
601 {
602 struct ipc_namespace *ns;
603 static const struct ipc_ops sem_ops = {
604 .getnew = newary,
605 .associate = sem_security,
606 .more_checks = sem_more_checks,
607 };
608 struct ipc_params sem_params;
609
610 ns = current->nsproxy->ipc_ns;
611
612 if (nsems < 0 || nsems > ns->sc_semmsl)
613 return -EINVAL;
614
615 sem_params.key = key;
616 sem_params.flg = semflg;
617 sem_params.u.nsems = nsems;
618
619 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
620 }
621
622 /**
623 * perform_atomic_semop - Perform (if possible) a semaphore operation
624 * @sma: semaphore array
625 * @q: struct sem_queue that describes the operation
626 *
627 * Returns 0 if the operation was possible.
628 * Returns 1 if the operation is impossible, the caller must sleep.
629 * Negative values are error codes.
630 */
631 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
632 {
633 int result, sem_op, nsops, pid;
634 struct sembuf *sop;
635 struct sem *curr;
636 struct sembuf *sops;
637 struct sem_undo *un;
638
639 sops = q->sops;
640 nsops = q->nsops;
641 un = q->undo;
642
643 for (sop = sops; sop < sops + nsops; sop++) {
644 curr = sma->sem_base + sop->sem_num;
645 sem_op = sop->sem_op;
646 result = curr->semval;
647
648 if (!sem_op && result)
649 goto would_block;
650
651 result += sem_op;
652 if (result < 0)
653 goto would_block;
654 if (result > SEMVMX)
655 goto out_of_range;
656
657 if (sop->sem_flg & SEM_UNDO) {
658 int undo = un->semadj[sop->sem_num] - sem_op;
659 /* Exceeding the undo range is an error. */
660 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
661 goto out_of_range;
662 un->semadj[sop->sem_num] = undo;
663 }
664
665 curr->semval = result;
666 }
667
668 sop--;
669 pid = q->pid;
670 while (sop >= sops) {
671 sma->sem_base[sop->sem_num].sempid = pid;
672 sop--;
673 }
674
675 return 0;
676
677 out_of_range:
678 result = -ERANGE;
679 goto undo;
680
681 would_block:
682 q->blocking = sop;
683
684 if (sop->sem_flg & IPC_NOWAIT)
685 result = -EAGAIN;
686 else
687 result = 1;
688
689 undo:
690 sop--;
691 while (sop >= sops) {
692 sem_op = sop->sem_op;
693 sma->sem_base[sop->sem_num].semval -= sem_op;
694 if (sop->sem_flg & SEM_UNDO)
695 un->semadj[sop->sem_num] += sem_op;
696 sop--;
697 }
698
699 return result;
700 }
701
702 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
703 * @q: queue entry that must be signaled
704 * @error: Error value for the signal
705 *
706 * Prepare the wake-up of the queue entry q.
707 */
708 static void wake_up_sem_queue_prepare(struct list_head *pt,
709 struct sem_queue *q, int error)
710 {
711 if (list_empty(pt)) {
712 /*
713 * Hold preempt off so that we don't get preempted and have the
714 * wakee busy-wait until we're scheduled back on.
715 */
716 preempt_disable();
717 }
718 q->status = IN_WAKEUP;
719 q->pid = error;
720
721 list_add_tail(&q->list, pt);
722 }
723
724 /**
725 * wake_up_sem_queue_do - do the actual wake-up
726 * @pt: list of tasks to be woken up
727 *
728 * Do the actual wake-up.
729 * The function is called without any locks held, thus the semaphore array
730 * could be destroyed already and the tasks can disappear as soon as the
731 * status is set to the actual return code.
732 */
733 static void wake_up_sem_queue_do(struct list_head *pt)
734 {
735 struct sem_queue *q, *t;
736 int did_something;
737
738 did_something = !list_empty(pt);
739 list_for_each_entry_safe(q, t, pt, list) {
740 wake_up_process(q->sleeper);
741 /* q can disappear immediately after writing q->status. */
742 smp_wmb();
743 q->status = q->pid;
744 }
745 if (did_something)
746 preempt_enable();
747 }
748
749 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
750 {
751 list_del(&q->list);
752 if (q->nsops > 1)
753 sma->complex_count--;
754 }
755
756 /** check_restart(sma, q)
757 * @sma: semaphore array
758 * @q: the operation that just completed
759 *
760 * update_queue is O(N^2) when it restarts scanning the whole queue of
761 * waiting operations. Therefore this function checks if the restart is
762 * really necessary. It is called after a previously waiting operation
763 * modified the array.
764 * Note that wait-for-zero operations are handled without restart.
765 */
766 static int check_restart(struct sem_array *sma, struct sem_queue *q)
767 {
768 /* pending complex alter operations are too difficult to analyse */
769 if (!list_empty(&sma->pending_alter))
770 return 1;
771
772 /* we were a sleeping complex operation. Too difficult */
773 if (q->nsops > 1)
774 return 1;
775
776 /* It is impossible that someone waits for the new value:
777 * - complex operations always restart.
778 * - wait-for-zero are handled seperately.
779 * - q is a previously sleeping simple operation that
780 * altered the array. It must be a decrement, because
781 * simple increments never sleep.
782 * - If there are older (higher priority) decrements
783 * in the queue, then they have observed the original
784 * semval value and couldn't proceed. The operation
785 * decremented to value - thus they won't proceed either.
786 */
787 return 0;
788 }
789
790 /**
791 * wake_const_ops - wake up non-alter tasks
792 * @sma: semaphore array.
793 * @semnum: semaphore that was modified.
794 * @pt: list head for the tasks that must be woken up.
795 *
796 * wake_const_ops must be called after a semaphore in a semaphore array
797 * was set to 0. If complex const operations are pending, wake_const_ops must
798 * be called with semnum = -1, as well as with the number of each modified
799 * semaphore.
800 * The tasks that must be woken up are added to @pt. The return code
801 * is stored in q->pid.
802 * The function returns 1 if at least one operation was completed successfully.
803 */
804 static int wake_const_ops(struct sem_array *sma, int semnum,
805 struct list_head *pt)
806 {
807 struct sem_queue *q;
808 struct list_head *walk;
809 struct list_head *pending_list;
810 int semop_completed = 0;
811
812 if (semnum == -1)
813 pending_list = &sma->pending_const;
814 else
815 pending_list = &sma->sem_base[semnum].pending_const;
816
817 walk = pending_list->next;
818 while (walk != pending_list) {
819 int error;
820
821 q = container_of(walk, struct sem_queue, list);
822 walk = walk->next;
823
824 error = perform_atomic_semop(sma, q);
825
826 if (error <= 0) {
827 /* operation completed, remove from queue & wakeup */
828
829 unlink_queue(sma, q);
830
831 wake_up_sem_queue_prepare(pt, q, error);
832 if (error == 0)
833 semop_completed = 1;
834 }
835 }
836 return semop_completed;
837 }
838
839 /**
840 * do_smart_wakeup_zero - wakeup all wait for zero tasks
841 * @sma: semaphore array
842 * @sops: operations that were performed
843 * @nsops: number of operations
844 * @pt: list head of the tasks that must be woken up.
845 *
846 * Checks all required queue for wait-for-zero operations, based
847 * on the actual changes that were performed on the semaphore array.
848 * The function returns 1 if at least one operation was completed successfully.
849 */
850 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
851 int nsops, struct list_head *pt)
852 {
853 int i;
854 int semop_completed = 0;
855 int got_zero = 0;
856
857 /* first: the per-semaphore queues, if known */
858 if (sops) {
859 for (i = 0; i < nsops; i++) {
860 int num = sops[i].sem_num;
861
862 if (sma->sem_base[num].semval == 0) {
863 got_zero = 1;
864 semop_completed |= wake_const_ops(sma, num, pt);
865 }
866 }
867 } else {
868 /*
869 * No sops means modified semaphores not known.
870 * Assume all were changed.
871 */
872 for (i = 0; i < sma->sem_nsems; i++) {
873 if (sma->sem_base[i].semval == 0) {
874 got_zero = 1;
875 semop_completed |= wake_const_ops(sma, i, pt);
876 }
877 }
878 }
879 /*
880 * If one of the modified semaphores got 0,
881 * then check the global queue, too.
882 */
883 if (got_zero)
884 semop_completed |= wake_const_ops(sma, -1, pt);
885
886 return semop_completed;
887 }
888
889
890 /**
891 * update_queue - look for tasks that can be completed.
892 * @sma: semaphore array.
893 * @semnum: semaphore that was modified.
894 * @pt: list head for the tasks that must be woken up.
895 *
896 * update_queue must be called after a semaphore in a semaphore array
897 * was modified. If multiple semaphores were modified, update_queue must
898 * be called with semnum = -1, as well as with the number of each modified
899 * semaphore.
900 * The tasks that must be woken up are added to @pt. The return code
901 * is stored in q->pid.
902 * The function internally checks if const operations can now succeed.
903 *
904 * The function return 1 if at least one semop was completed successfully.
905 */
906 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
907 {
908 struct sem_queue *q;
909 struct list_head *walk;
910 struct list_head *pending_list;
911 int semop_completed = 0;
912
913 if (semnum == -1)
914 pending_list = &sma->pending_alter;
915 else
916 pending_list = &sma->sem_base[semnum].pending_alter;
917
918 again:
919 walk = pending_list->next;
920 while (walk != pending_list) {
921 int error, restart;
922
923 q = container_of(walk, struct sem_queue, list);
924 walk = walk->next;
925
926 /* If we are scanning the single sop, per-semaphore list of
927 * one semaphore and that semaphore is 0, then it is not
928 * necessary to scan further: simple increments
929 * that affect only one entry succeed immediately and cannot
930 * be in the per semaphore pending queue, and decrements
931 * cannot be successful if the value is already 0.
932 */
933 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
934 break;
935
936 error = perform_atomic_semop(sma, q);
937
938 /* Does q->sleeper still need to sleep? */
939 if (error > 0)
940 continue;
941
942 unlink_queue(sma, q);
943
944 if (error) {
945 restart = 0;
946 } else {
947 semop_completed = 1;
948 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
949 restart = check_restart(sma, q);
950 }
951
952 wake_up_sem_queue_prepare(pt, q, error);
953 if (restart)
954 goto again;
955 }
956 return semop_completed;
957 }
958
959 /**
960 * set_semotime - set sem_otime
961 * @sma: semaphore array
962 * @sops: operations that modified the array, may be NULL
963 *
964 * sem_otime is replicated to avoid cache line trashing.
965 * This function sets one instance to the current time.
966 */
967 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
968 {
969 if (sops == NULL) {
970 sma->sem_base[0].sem_otime = get_seconds();
971 } else {
972 sma->sem_base[sops[0].sem_num].sem_otime =
973 get_seconds();
974 }
975 }
976
977 /**
978 * do_smart_update - optimized update_queue
979 * @sma: semaphore array
980 * @sops: operations that were performed
981 * @nsops: number of operations
982 * @otime: force setting otime
983 * @pt: list head of the tasks that must be woken up.
984 *
985 * do_smart_update() does the required calls to update_queue and wakeup_zero,
986 * based on the actual changes that were performed on the semaphore array.
987 * Note that the function does not do the actual wake-up: the caller is
988 * responsible for calling wake_up_sem_queue_do(@pt).
989 * It is safe to perform this call after dropping all locks.
990 */
991 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
992 int otime, struct list_head *pt)
993 {
994 int i;
995
996 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
997
998 if (!list_empty(&sma->pending_alter)) {
999 /* semaphore array uses the global queue - just process it. */
1000 otime |= update_queue(sma, -1, pt);
1001 } else {
1002 if (!sops) {
1003 /*
1004 * No sops, thus the modified semaphores are not
1005 * known. Check all.
1006 */
1007 for (i = 0; i < sma->sem_nsems; i++)
1008 otime |= update_queue(sma, i, pt);
1009 } else {
1010 /*
1011 * Check the semaphores that were increased:
1012 * - No complex ops, thus all sleeping ops are
1013 * decrease.
1014 * - if we decreased the value, then any sleeping
1015 * semaphore ops wont be able to run: If the
1016 * previous value was too small, then the new
1017 * value will be too small, too.
1018 */
1019 for (i = 0; i < nsops; i++) {
1020 if (sops[i].sem_op > 0) {
1021 otime |= update_queue(sma,
1022 sops[i].sem_num, pt);
1023 }
1024 }
1025 }
1026 }
1027 if (otime)
1028 set_semotime(sma, sops);
1029 }
1030
1031 /*
1032 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1033 */
1034 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1035 bool count_zero)
1036 {
1037 struct sembuf *sop = q->blocking;
1038
1039 /*
1040 * Linux always (since 0.99.10) reported a task as sleeping on all
1041 * semaphores. This violates SUS, therefore it was changed to the
1042 * standard compliant behavior.
1043 * Give the administrators a chance to notice that an application
1044 * might misbehave because it relies on the Linux behavior.
1045 */
1046 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1047 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1048 current->comm, task_pid_nr(current));
1049
1050 if (sop->sem_num != semnum)
1051 return 0;
1052
1053 if (count_zero && sop->sem_op == 0)
1054 return 1;
1055 if (!count_zero && sop->sem_op < 0)
1056 return 1;
1057
1058 return 0;
1059 }
1060
1061 /* The following counts are associated to each semaphore:
1062 * semncnt number of tasks waiting on semval being nonzero
1063 * semzcnt number of tasks waiting on semval being zero
1064 *
1065 * Per definition, a task waits only on the semaphore of the first semop
1066 * that cannot proceed, even if additional operation would block, too.
1067 */
1068 static int count_semcnt(struct sem_array *sma, ushort semnum,
1069 bool count_zero)
1070 {
1071 struct list_head *l;
1072 struct sem_queue *q;
1073 int semcnt;
1074
1075 semcnt = 0;
1076 /* First: check the simple operations. They are easy to evaluate */
1077 if (count_zero)
1078 l = &sma->sem_base[semnum].pending_const;
1079 else
1080 l = &sma->sem_base[semnum].pending_alter;
1081
1082 list_for_each_entry(q, l, list) {
1083 /* all task on a per-semaphore list sleep on exactly
1084 * that semaphore
1085 */
1086 semcnt++;
1087 }
1088
1089 /* Then: check the complex operations. */
1090 list_for_each_entry(q, &sma->pending_alter, list) {
1091 semcnt += check_qop(sma, semnum, q, count_zero);
1092 }
1093 if (count_zero) {
1094 list_for_each_entry(q, &sma->pending_const, list) {
1095 semcnt += check_qop(sma, semnum, q, count_zero);
1096 }
1097 }
1098 return semcnt;
1099 }
1100
1101 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1102 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1103 * remains locked on exit.
1104 */
1105 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1106 {
1107 struct sem_undo *un, *tu;
1108 struct sem_queue *q, *tq;
1109 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1110 struct list_head tasks;
1111 int i;
1112
1113 /* Free the existing undo structures for this semaphore set. */
1114 ipc_assert_locked_object(&sma->sem_perm);
1115 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1116 list_del(&un->list_id);
1117 spin_lock(&un->ulp->lock);
1118 un->semid = -1;
1119 list_del_rcu(&un->list_proc);
1120 spin_unlock(&un->ulp->lock);
1121 kfree_rcu(un, rcu);
1122 }
1123
1124 /* Wake up all pending processes and let them fail with EIDRM. */
1125 INIT_LIST_HEAD(&tasks);
1126 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1127 unlink_queue(sma, q);
1128 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1129 }
1130
1131 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1132 unlink_queue(sma, q);
1133 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1134 }
1135 for (i = 0; i < sma->sem_nsems; i++) {
1136 struct sem *sem = sma->sem_base + i;
1137 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1138 unlink_queue(sma, q);
1139 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1140 }
1141 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1142 unlink_queue(sma, q);
1143 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1144 }
1145 }
1146
1147 /* Remove the semaphore set from the IDR */
1148 sem_rmid(ns, sma);
1149 sem_unlock(sma, -1);
1150 rcu_read_unlock();
1151
1152 wake_up_sem_queue_do(&tasks);
1153 ns->used_sems -= sma->sem_nsems;
1154 ipc_rcu_putref(sma, sem_rcu_free);
1155 }
1156
1157 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1158 {
1159 switch (version) {
1160 case IPC_64:
1161 return copy_to_user(buf, in, sizeof(*in));
1162 case IPC_OLD:
1163 {
1164 struct semid_ds out;
1165
1166 memset(&out, 0, sizeof(out));
1167
1168 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1169
1170 out.sem_otime = in->sem_otime;
1171 out.sem_ctime = in->sem_ctime;
1172 out.sem_nsems = in->sem_nsems;
1173
1174 return copy_to_user(buf, &out, sizeof(out));
1175 }
1176 default:
1177 return -EINVAL;
1178 }
1179 }
1180
1181 static time_t get_semotime(struct sem_array *sma)
1182 {
1183 int i;
1184 time_t res;
1185
1186 res = sma->sem_base[0].sem_otime;
1187 for (i = 1; i < sma->sem_nsems; i++) {
1188 time_t to = sma->sem_base[i].sem_otime;
1189
1190 if (to > res)
1191 res = to;
1192 }
1193 return res;
1194 }
1195
1196 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1197 int cmd, int version, void __user *p)
1198 {
1199 int err;
1200 struct sem_array *sma;
1201
1202 switch (cmd) {
1203 case IPC_INFO:
1204 case SEM_INFO:
1205 {
1206 struct seminfo seminfo;
1207 int max_id;
1208
1209 err = security_sem_semctl(NULL, cmd);
1210 if (err)
1211 return err;
1212
1213 memset(&seminfo, 0, sizeof(seminfo));
1214 seminfo.semmni = ns->sc_semmni;
1215 seminfo.semmns = ns->sc_semmns;
1216 seminfo.semmsl = ns->sc_semmsl;
1217 seminfo.semopm = ns->sc_semopm;
1218 seminfo.semvmx = SEMVMX;
1219 seminfo.semmnu = SEMMNU;
1220 seminfo.semmap = SEMMAP;
1221 seminfo.semume = SEMUME;
1222 down_read(&sem_ids(ns).rwsem);
1223 if (cmd == SEM_INFO) {
1224 seminfo.semusz = sem_ids(ns).in_use;
1225 seminfo.semaem = ns->used_sems;
1226 } else {
1227 seminfo.semusz = SEMUSZ;
1228 seminfo.semaem = SEMAEM;
1229 }
1230 max_id = ipc_get_maxid(&sem_ids(ns));
1231 up_read(&sem_ids(ns).rwsem);
1232 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1233 return -EFAULT;
1234 return (max_id < 0) ? 0 : max_id;
1235 }
1236 case IPC_STAT:
1237 case SEM_STAT:
1238 {
1239 struct semid64_ds tbuf;
1240 int id = 0;
1241
1242 memset(&tbuf, 0, sizeof(tbuf));
1243
1244 rcu_read_lock();
1245 if (cmd == SEM_STAT) {
1246 sma = sem_obtain_object(ns, semid);
1247 if (IS_ERR(sma)) {
1248 err = PTR_ERR(sma);
1249 goto out_unlock;
1250 }
1251 id = sma->sem_perm.id;
1252 } else {
1253 sma = sem_obtain_object_check(ns, semid);
1254 if (IS_ERR(sma)) {
1255 err = PTR_ERR(sma);
1256 goto out_unlock;
1257 }
1258 }
1259
1260 err = -EACCES;
1261 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1262 goto out_unlock;
1263
1264 err = security_sem_semctl(sma, cmd);
1265 if (err)
1266 goto out_unlock;
1267
1268 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1269 tbuf.sem_otime = get_semotime(sma);
1270 tbuf.sem_ctime = sma->sem_ctime;
1271 tbuf.sem_nsems = sma->sem_nsems;
1272 rcu_read_unlock();
1273 if (copy_semid_to_user(p, &tbuf, version))
1274 return -EFAULT;
1275 return id;
1276 }
1277 default:
1278 return -EINVAL;
1279 }
1280 out_unlock:
1281 rcu_read_unlock();
1282 return err;
1283 }
1284
1285 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1286 unsigned long arg)
1287 {
1288 struct sem_undo *un;
1289 struct sem_array *sma;
1290 struct sem *curr;
1291 int err;
1292 struct list_head tasks;
1293 int val;
1294 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1295 /* big-endian 64bit */
1296 val = arg >> 32;
1297 #else
1298 /* 32bit or little-endian 64bit */
1299 val = arg;
1300 #endif
1301
1302 if (val > SEMVMX || val < 0)
1303 return -ERANGE;
1304
1305 INIT_LIST_HEAD(&tasks);
1306
1307 rcu_read_lock();
1308 sma = sem_obtain_object_check(ns, semid);
1309 if (IS_ERR(sma)) {
1310 rcu_read_unlock();
1311 return PTR_ERR(sma);
1312 }
1313
1314 if (semnum < 0 || semnum >= sma->sem_nsems) {
1315 rcu_read_unlock();
1316 return -EINVAL;
1317 }
1318
1319
1320 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1321 rcu_read_unlock();
1322 return -EACCES;
1323 }
1324
1325 err = security_sem_semctl(sma, SETVAL);
1326 if (err) {
1327 rcu_read_unlock();
1328 return -EACCES;
1329 }
1330
1331 sem_lock(sma, NULL, -1);
1332
1333 if (!ipc_valid_object(&sma->sem_perm)) {
1334 sem_unlock(sma, -1);
1335 rcu_read_unlock();
1336 return -EIDRM;
1337 }
1338
1339 curr = &sma->sem_base[semnum];
1340
1341 ipc_assert_locked_object(&sma->sem_perm);
1342 list_for_each_entry(un, &sma->list_id, list_id)
1343 un->semadj[semnum] = 0;
1344
1345 curr->semval = val;
1346 curr->sempid = task_tgid_vnr(current);
1347 sma->sem_ctime = get_seconds();
1348 /* maybe some queued-up processes were waiting for this */
1349 do_smart_update(sma, NULL, 0, 0, &tasks);
1350 sem_unlock(sma, -1);
1351 rcu_read_unlock();
1352 wake_up_sem_queue_do(&tasks);
1353 return 0;
1354 }
1355
1356 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1357 int cmd, void __user *p)
1358 {
1359 struct sem_array *sma;
1360 struct sem *curr;
1361 int err, nsems;
1362 ushort fast_sem_io[SEMMSL_FAST];
1363 ushort *sem_io = fast_sem_io;
1364 struct list_head tasks;
1365
1366 INIT_LIST_HEAD(&tasks);
1367
1368 rcu_read_lock();
1369 sma = sem_obtain_object_check(ns, semid);
1370 if (IS_ERR(sma)) {
1371 rcu_read_unlock();
1372 return PTR_ERR(sma);
1373 }
1374
1375 nsems = sma->sem_nsems;
1376
1377 err = -EACCES;
1378 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1379 goto out_rcu_wakeup;
1380
1381 err = security_sem_semctl(sma, cmd);
1382 if (err)
1383 goto out_rcu_wakeup;
1384
1385 err = -EACCES;
1386 switch (cmd) {
1387 case GETALL:
1388 {
1389 ushort __user *array = p;
1390 int i;
1391
1392 sem_lock(sma, NULL, -1);
1393 if (!ipc_valid_object(&sma->sem_perm)) {
1394 err = -EIDRM;
1395 goto out_unlock;
1396 }
1397 if (nsems > SEMMSL_FAST) {
1398 if (!ipc_rcu_getref(sma)) {
1399 err = -EIDRM;
1400 goto out_unlock;
1401 }
1402 sem_unlock(sma, -1);
1403 rcu_read_unlock();
1404 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1405 if (sem_io == NULL) {
1406 ipc_rcu_putref(sma, sem_rcu_free);
1407 return -ENOMEM;
1408 }
1409
1410 rcu_read_lock();
1411 sem_lock_and_putref(sma);
1412 if (!ipc_valid_object(&sma->sem_perm)) {
1413 err = -EIDRM;
1414 goto out_unlock;
1415 }
1416 }
1417 for (i = 0; i < sma->sem_nsems; i++)
1418 sem_io[i] = sma->sem_base[i].semval;
1419 sem_unlock(sma, -1);
1420 rcu_read_unlock();
1421 err = 0;
1422 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1423 err = -EFAULT;
1424 goto out_free;
1425 }
1426 case SETALL:
1427 {
1428 int i;
1429 struct sem_undo *un;
1430
1431 if (!ipc_rcu_getref(sma)) {
1432 err = -EIDRM;
1433 goto out_rcu_wakeup;
1434 }
1435 rcu_read_unlock();
1436
1437 if (nsems > SEMMSL_FAST) {
1438 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1439 if (sem_io == NULL) {
1440 ipc_rcu_putref(sma, sem_rcu_free);
1441 return -ENOMEM;
1442 }
1443 }
1444
1445 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1446 ipc_rcu_putref(sma, sem_rcu_free);
1447 err = -EFAULT;
1448 goto out_free;
1449 }
1450
1451 for (i = 0; i < nsems; i++) {
1452 if (sem_io[i] > SEMVMX) {
1453 ipc_rcu_putref(sma, sem_rcu_free);
1454 err = -ERANGE;
1455 goto out_free;
1456 }
1457 }
1458 rcu_read_lock();
1459 sem_lock_and_putref(sma);
1460 if (!ipc_valid_object(&sma->sem_perm)) {
1461 err = -EIDRM;
1462 goto out_unlock;
1463 }
1464
1465 for (i = 0; i < nsems; i++)
1466 sma->sem_base[i].semval = sem_io[i];
1467
1468 ipc_assert_locked_object(&sma->sem_perm);
1469 list_for_each_entry(un, &sma->list_id, list_id) {
1470 for (i = 0; i < nsems; i++)
1471 un->semadj[i] = 0;
1472 }
1473 sma->sem_ctime = get_seconds();
1474 /* maybe some queued-up processes were waiting for this */
1475 do_smart_update(sma, NULL, 0, 0, &tasks);
1476 err = 0;
1477 goto out_unlock;
1478 }
1479 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1480 }
1481 err = -EINVAL;
1482 if (semnum < 0 || semnum >= nsems)
1483 goto out_rcu_wakeup;
1484
1485 sem_lock(sma, NULL, -1);
1486 if (!ipc_valid_object(&sma->sem_perm)) {
1487 err = -EIDRM;
1488 goto out_unlock;
1489 }
1490 curr = &sma->sem_base[semnum];
1491
1492 switch (cmd) {
1493 case GETVAL:
1494 err = curr->semval;
1495 goto out_unlock;
1496 case GETPID:
1497 err = curr->sempid;
1498 goto out_unlock;
1499 case GETNCNT:
1500 err = count_semcnt(sma, semnum, 0);
1501 goto out_unlock;
1502 case GETZCNT:
1503 err = count_semcnt(sma, semnum, 1);
1504 goto out_unlock;
1505 }
1506
1507 out_unlock:
1508 sem_unlock(sma, -1);
1509 out_rcu_wakeup:
1510 rcu_read_unlock();
1511 wake_up_sem_queue_do(&tasks);
1512 out_free:
1513 if (sem_io != fast_sem_io)
1514 ipc_free(sem_io, sizeof(ushort)*nsems);
1515 return err;
1516 }
1517
1518 static inline unsigned long
1519 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1520 {
1521 switch (version) {
1522 case IPC_64:
1523 if (copy_from_user(out, buf, sizeof(*out)))
1524 return -EFAULT;
1525 return 0;
1526 case IPC_OLD:
1527 {
1528 struct semid_ds tbuf_old;
1529
1530 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1531 return -EFAULT;
1532
1533 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1534 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1535 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1536
1537 return 0;
1538 }
1539 default:
1540 return -EINVAL;
1541 }
1542 }
1543
1544 /*
1545 * This function handles some semctl commands which require the rwsem
1546 * to be held in write mode.
1547 * NOTE: no locks must be held, the rwsem is taken inside this function.
1548 */
1549 static int semctl_down(struct ipc_namespace *ns, int semid,
1550 int cmd, int version, void __user *p)
1551 {
1552 struct sem_array *sma;
1553 int err;
1554 struct semid64_ds semid64;
1555 struct kern_ipc_perm *ipcp;
1556
1557 if (cmd == IPC_SET) {
1558 if (copy_semid_from_user(&semid64, p, version))
1559 return -EFAULT;
1560 }
1561
1562 down_write(&sem_ids(ns).rwsem);
1563 rcu_read_lock();
1564
1565 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1566 &semid64.sem_perm, 0);
1567 if (IS_ERR(ipcp)) {
1568 err = PTR_ERR(ipcp);
1569 goto out_unlock1;
1570 }
1571
1572 sma = container_of(ipcp, struct sem_array, sem_perm);
1573
1574 err = security_sem_semctl(sma, cmd);
1575 if (err)
1576 goto out_unlock1;
1577
1578 switch (cmd) {
1579 case IPC_RMID:
1580 sem_lock(sma, NULL, -1);
1581 /* freeary unlocks the ipc object and rcu */
1582 freeary(ns, ipcp);
1583 goto out_up;
1584 case IPC_SET:
1585 sem_lock(sma, NULL, -1);
1586 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1587 if (err)
1588 goto out_unlock0;
1589 sma->sem_ctime = get_seconds();
1590 break;
1591 default:
1592 err = -EINVAL;
1593 goto out_unlock1;
1594 }
1595
1596 out_unlock0:
1597 sem_unlock(sma, -1);
1598 out_unlock1:
1599 rcu_read_unlock();
1600 out_up:
1601 up_write(&sem_ids(ns).rwsem);
1602 return err;
1603 }
1604
1605 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1606 {
1607 int version;
1608 struct ipc_namespace *ns;
1609 void __user *p = (void __user *)arg;
1610
1611 if (semid < 0)
1612 return -EINVAL;
1613
1614 version = ipc_parse_version(&cmd);
1615 ns = current->nsproxy->ipc_ns;
1616
1617 switch (cmd) {
1618 case IPC_INFO:
1619 case SEM_INFO:
1620 case IPC_STAT:
1621 case SEM_STAT:
1622 return semctl_nolock(ns, semid, cmd, version, p);
1623 case GETALL:
1624 case GETVAL:
1625 case GETPID:
1626 case GETNCNT:
1627 case GETZCNT:
1628 case SETALL:
1629 return semctl_main(ns, semid, semnum, cmd, p);
1630 case SETVAL:
1631 return semctl_setval(ns, semid, semnum, arg);
1632 case IPC_RMID:
1633 case IPC_SET:
1634 return semctl_down(ns, semid, cmd, version, p);
1635 default:
1636 return -EINVAL;
1637 }
1638 }
1639
1640 /* If the task doesn't already have a undo_list, then allocate one
1641 * here. We guarantee there is only one thread using this undo list,
1642 * and current is THE ONE
1643 *
1644 * If this allocation and assignment succeeds, but later
1645 * portions of this code fail, there is no need to free the sem_undo_list.
1646 * Just let it stay associated with the task, and it'll be freed later
1647 * at exit time.
1648 *
1649 * This can block, so callers must hold no locks.
1650 */
1651 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1652 {
1653 struct sem_undo_list *undo_list;
1654
1655 undo_list = current->sysvsem.undo_list;
1656 if (!undo_list) {
1657 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1658 if (undo_list == NULL)
1659 return -ENOMEM;
1660 spin_lock_init(&undo_list->lock);
1661 atomic_set(&undo_list->refcnt, 1);
1662 INIT_LIST_HEAD(&undo_list->list_proc);
1663
1664 current->sysvsem.undo_list = undo_list;
1665 }
1666 *undo_listp = undo_list;
1667 return 0;
1668 }
1669
1670 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1671 {
1672 struct sem_undo *un;
1673
1674 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1675 if (un->semid == semid)
1676 return un;
1677 }
1678 return NULL;
1679 }
1680
1681 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1682 {
1683 struct sem_undo *un;
1684
1685 assert_spin_locked(&ulp->lock);
1686
1687 un = __lookup_undo(ulp, semid);
1688 if (un) {
1689 list_del_rcu(&un->list_proc);
1690 list_add_rcu(&un->list_proc, &ulp->list_proc);
1691 }
1692 return un;
1693 }
1694
1695 /**
1696 * find_alloc_undo - lookup (and if not present create) undo array
1697 * @ns: namespace
1698 * @semid: semaphore array id
1699 *
1700 * The function looks up (and if not present creates) the undo structure.
1701 * The size of the undo structure depends on the size of the semaphore
1702 * array, thus the alloc path is not that straightforward.
1703 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1704 * performs a rcu_read_lock().
1705 */
1706 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1707 {
1708 struct sem_array *sma;
1709 struct sem_undo_list *ulp;
1710 struct sem_undo *un, *new;
1711 int nsems, error;
1712
1713 error = get_undo_list(&ulp);
1714 if (error)
1715 return ERR_PTR(error);
1716
1717 rcu_read_lock();
1718 spin_lock(&ulp->lock);
1719 un = lookup_undo(ulp, semid);
1720 spin_unlock(&ulp->lock);
1721 if (likely(un != NULL))
1722 goto out;
1723
1724 /* no undo structure around - allocate one. */
1725 /* step 1: figure out the size of the semaphore array */
1726 sma = sem_obtain_object_check(ns, semid);
1727 if (IS_ERR(sma)) {
1728 rcu_read_unlock();
1729 return ERR_CAST(sma);
1730 }
1731
1732 nsems = sma->sem_nsems;
1733 if (!ipc_rcu_getref(sma)) {
1734 rcu_read_unlock();
1735 un = ERR_PTR(-EIDRM);
1736 goto out;
1737 }
1738 rcu_read_unlock();
1739
1740 /* step 2: allocate new undo structure */
1741 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1742 if (!new) {
1743 ipc_rcu_putref(sma, sem_rcu_free);
1744 return ERR_PTR(-ENOMEM);
1745 }
1746
1747 /* step 3: Acquire the lock on semaphore array */
1748 rcu_read_lock();
1749 sem_lock_and_putref(sma);
1750 if (!ipc_valid_object(&sma->sem_perm)) {
1751 sem_unlock(sma, -1);
1752 rcu_read_unlock();
1753 kfree(new);
1754 un = ERR_PTR(-EIDRM);
1755 goto out;
1756 }
1757 spin_lock(&ulp->lock);
1758
1759 /*
1760 * step 4: check for races: did someone else allocate the undo struct?
1761 */
1762 un = lookup_undo(ulp, semid);
1763 if (un) {
1764 kfree(new);
1765 goto success;
1766 }
1767 /* step 5: initialize & link new undo structure */
1768 new->semadj = (short *) &new[1];
1769 new->ulp = ulp;
1770 new->semid = semid;
1771 assert_spin_locked(&ulp->lock);
1772 list_add_rcu(&new->list_proc, &ulp->list_proc);
1773 ipc_assert_locked_object(&sma->sem_perm);
1774 list_add(&new->list_id, &sma->list_id);
1775 un = new;
1776
1777 success:
1778 spin_unlock(&ulp->lock);
1779 sem_unlock(sma, -1);
1780 out:
1781 return un;
1782 }
1783
1784
1785 /**
1786 * get_queue_result - retrieve the result code from sem_queue
1787 * @q: Pointer to queue structure
1788 *
1789 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1790 * q->status, then we must loop until the value is replaced with the final
1791 * value: This may happen if a task is woken up by an unrelated event (e.g.
1792 * signal) and in parallel the task is woken up by another task because it got
1793 * the requested semaphores.
1794 *
1795 * The function can be called with or without holding the semaphore spinlock.
1796 */
1797 static int get_queue_result(struct sem_queue *q)
1798 {
1799 int error;
1800
1801 error = q->status;
1802 while (unlikely(error == IN_WAKEUP)) {
1803 cpu_relax();
1804 error = q->status;
1805 }
1806
1807 return error;
1808 }
1809
1810 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1811 unsigned, nsops, const struct timespec __user *, timeout)
1812 {
1813 int error = -EINVAL;
1814 struct sem_array *sma;
1815 struct sembuf fast_sops[SEMOPM_FAST];
1816 struct sembuf *sops = fast_sops, *sop;
1817 struct sem_undo *un;
1818 int undos = 0, alter = 0, max, locknum;
1819 struct sem_queue queue;
1820 unsigned long jiffies_left = 0;
1821 struct ipc_namespace *ns;
1822 struct list_head tasks;
1823
1824 ns = current->nsproxy->ipc_ns;
1825
1826 if (nsops < 1 || semid < 0)
1827 return -EINVAL;
1828 if (nsops > ns->sc_semopm)
1829 return -E2BIG;
1830 if (nsops > SEMOPM_FAST) {
1831 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1832 if (sops == NULL)
1833 return -ENOMEM;
1834 }
1835 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1836 error = -EFAULT;
1837 goto out_free;
1838 }
1839 if (timeout) {
1840 struct timespec _timeout;
1841 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1842 error = -EFAULT;
1843 goto out_free;
1844 }
1845 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1846 _timeout.tv_nsec >= 1000000000L) {
1847 error = -EINVAL;
1848 goto out_free;
1849 }
1850 jiffies_left = timespec_to_jiffies(&_timeout);
1851 }
1852 max = 0;
1853 for (sop = sops; sop < sops + nsops; sop++) {
1854 if (sop->sem_num >= max)
1855 max = sop->sem_num;
1856 if (sop->sem_flg & SEM_UNDO)
1857 undos = 1;
1858 if (sop->sem_op != 0)
1859 alter = 1;
1860 }
1861
1862 INIT_LIST_HEAD(&tasks);
1863
1864 if (undos) {
1865 /* On success, find_alloc_undo takes the rcu_read_lock */
1866 un = find_alloc_undo(ns, semid);
1867 if (IS_ERR(un)) {
1868 error = PTR_ERR(un);
1869 goto out_free;
1870 }
1871 } else {
1872 un = NULL;
1873 rcu_read_lock();
1874 }
1875
1876 sma = sem_obtain_object_check(ns, semid);
1877 if (IS_ERR(sma)) {
1878 rcu_read_unlock();
1879 error = PTR_ERR(sma);
1880 goto out_free;
1881 }
1882
1883 error = -EFBIG;
1884 if (max >= sma->sem_nsems)
1885 goto out_rcu_wakeup;
1886
1887 error = -EACCES;
1888 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1889 goto out_rcu_wakeup;
1890
1891 error = security_sem_semop(sma, sops, nsops, alter);
1892 if (error)
1893 goto out_rcu_wakeup;
1894
1895 error = -EIDRM;
1896 locknum = sem_lock(sma, sops, nsops);
1897 /*
1898 * We eventually might perform the following check in a lockless
1899 * fashion, considering ipc_valid_object() locking constraints.
1900 * If nsops == 1 and there is no contention for sem_perm.lock, then
1901 * only a per-semaphore lock is held and it's OK to proceed with the
1902 * check below. More details on the fine grained locking scheme
1903 * entangled here and why it's RMID race safe on comments at sem_lock()
1904 */
1905 if (!ipc_valid_object(&sma->sem_perm))
1906 goto out_unlock_free;
1907 /*
1908 * semid identifiers are not unique - find_alloc_undo may have
1909 * allocated an undo structure, it was invalidated by an RMID
1910 * and now a new array with received the same id. Check and fail.
1911 * This case can be detected checking un->semid. The existence of
1912 * "un" itself is guaranteed by rcu.
1913 */
1914 if (un && un->semid == -1)
1915 goto out_unlock_free;
1916
1917 queue.sops = sops;
1918 queue.nsops = nsops;
1919 queue.undo = un;
1920 queue.pid = task_tgid_vnr(current);
1921 queue.alter = alter;
1922
1923 error = perform_atomic_semop(sma, &queue);
1924 if (error == 0) {
1925 /* If the operation was successful, then do
1926 * the required updates.
1927 */
1928 if (alter)
1929 do_smart_update(sma, sops, nsops, 1, &tasks);
1930 else
1931 set_semotime(sma, sops);
1932 }
1933 if (error <= 0)
1934 goto out_unlock_free;
1935
1936 /* We need to sleep on this operation, so we put the current
1937 * task into the pending queue and go to sleep.
1938 */
1939
1940 if (nsops == 1) {
1941 struct sem *curr;
1942 curr = &sma->sem_base[sops->sem_num];
1943
1944 if (alter) {
1945 if (sma->complex_count) {
1946 list_add_tail(&queue.list,
1947 &sma->pending_alter);
1948 } else {
1949
1950 list_add_tail(&queue.list,
1951 &curr->pending_alter);
1952 }
1953 } else {
1954 list_add_tail(&queue.list, &curr->pending_const);
1955 }
1956 } else {
1957 if (!sma->complex_count)
1958 merge_queues(sma);
1959
1960 if (alter)
1961 list_add_tail(&queue.list, &sma->pending_alter);
1962 else
1963 list_add_tail(&queue.list, &sma->pending_const);
1964
1965 sma->complex_count++;
1966 }
1967
1968 queue.status = -EINTR;
1969 queue.sleeper = current;
1970
1971 sleep_again:
1972 __set_current_state(TASK_INTERRUPTIBLE);
1973 sem_unlock(sma, locknum);
1974 rcu_read_unlock();
1975
1976 if (timeout)
1977 jiffies_left = schedule_timeout(jiffies_left);
1978 else
1979 schedule();
1980
1981 error = get_queue_result(&queue);
1982
1983 if (error != -EINTR) {
1984 /* fast path: update_queue already obtained all requested
1985 * resources.
1986 * Perform a smp_mb(): User space could assume that semop()
1987 * is a memory barrier: Without the mb(), the cpu could
1988 * speculatively read in user space stale data that was
1989 * overwritten by the previous owner of the semaphore.
1990 */
1991 smp_mb();
1992
1993 goto out_free;
1994 }
1995
1996 rcu_read_lock();
1997 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1998
1999 /*
2000 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
2001 */
2002 error = get_queue_result(&queue);
2003
2004 /*
2005 * wake_up_sem_queue_do operates on queue without locking, so we
2006 * need a barrier here to order our read of queue.status and the
2007 * subsequent reuse of queue (queue is on the stack so will be
2008 * most likely reused in the next function call).
2009 */
2010 smp_mb();
2011
2012 /*
2013 * Array removed? If yes, leave without sem_unlock().
2014 */
2015 if (IS_ERR(sma)) {
2016 rcu_read_unlock();
2017 goto out_free;
2018 }
2019
2020
2021 /*
2022 * If queue.status != -EINTR we are woken up by another process.
2023 * Leave without unlink_queue(), but with sem_unlock().
2024 */
2025 if (error != -EINTR)
2026 goto out_unlock_free;
2027
2028 /*
2029 * If an interrupt occurred we have to clean up the queue
2030 */
2031 if (timeout && jiffies_left == 0)
2032 error = -EAGAIN;
2033
2034 /*
2035 * If the wakeup was spurious, just retry
2036 */
2037 if (error == -EINTR && !signal_pending(current))
2038 goto sleep_again;
2039
2040 unlink_queue(sma, &queue);
2041
2042 out_unlock_free:
2043 sem_unlock(sma, locknum);
2044 out_rcu_wakeup:
2045 rcu_read_unlock();
2046 wake_up_sem_queue_do(&tasks);
2047 out_free:
2048 if (sops != fast_sops)
2049 kfree(sops);
2050 return error;
2051 }
2052
2053 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2054 unsigned, nsops)
2055 {
2056 return sys_semtimedop(semid, tsops, nsops, NULL);
2057 }
2058
2059 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2060 * parent and child tasks.
2061 */
2062
2063 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2064 {
2065 struct sem_undo_list *undo_list;
2066 int error;
2067
2068 if (clone_flags & CLONE_SYSVSEM) {
2069 error = get_undo_list(&undo_list);
2070 if (error)
2071 return error;
2072 atomic_inc(&undo_list->refcnt);
2073 tsk->sysvsem.undo_list = undo_list;
2074 } else
2075 tsk->sysvsem.undo_list = NULL;
2076
2077 return 0;
2078 }
2079
2080 /*
2081 * add semadj values to semaphores, free undo structures.
2082 * undo structures are not freed when semaphore arrays are destroyed
2083 * so some of them may be out of date.
2084 * IMPLEMENTATION NOTE: There is some confusion over whether the
2085 * set of adjustments that needs to be done should be done in an atomic
2086 * manner or not. That is, if we are attempting to decrement the semval
2087 * should we queue up and wait until we can do so legally?
2088 * The original implementation attempted to do this (queue and wait).
2089 * The current implementation does not do so. The POSIX standard
2090 * and SVID should be consulted to determine what behavior is mandated.
2091 */
2092 void exit_sem(struct task_struct *tsk)
2093 {
2094 struct sem_undo_list *ulp;
2095
2096 ulp = tsk->sysvsem.undo_list;
2097 if (!ulp)
2098 return;
2099 tsk->sysvsem.undo_list = NULL;
2100
2101 if (!atomic_dec_and_test(&ulp->refcnt))
2102 return;
2103
2104 for (;;) {
2105 struct sem_array *sma;
2106 struct sem_undo *un;
2107 struct list_head tasks;
2108 int semid, i;
2109
2110 rcu_read_lock();
2111 un = list_entry_rcu(ulp->list_proc.next,
2112 struct sem_undo, list_proc);
2113 if (&un->list_proc == &ulp->list_proc) {
2114 /*
2115 * We must wait for freeary() before freeing this ulp,
2116 * in case we raced with last sem_undo. There is a small
2117 * possibility where we exit while freeary() didn't
2118 * finish unlocking sem_undo_list.
2119 */
2120 spin_unlock_wait(&ulp->lock);
2121 rcu_read_unlock();
2122 break;
2123 }
2124 spin_lock(&ulp->lock);
2125 semid = un->semid;
2126 spin_unlock(&ulp->lock);
2127
2128 /* exit_sem raced with IPC_RMID, nothing to do */
2129 if (semid == -1) {
2130 rcu_read_unlock();
2131 continue;
2132 }
2133
2134 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2135 /* exit_sem raced with IPC_RMID, nothing to do */
2136 if (IS_ERR(sma)) {
2137 rcu_read_unlock();
2138 continue;
2139 }
2140
2141 sem_lock(sma, NULL, -1);
2142 /* exit_sem raced with IPC_RMID, nothing to do */
2143 if (!ipc_valid_object(&sma->sem_perm)) {
2144 sem_unlock(sma, -1);
2145 rcu_read_unlock();
2146 continue;
2147 }
2148 un = __lookup_undo(ulp, semid);
2149 if (un == NULL) {
2150 /* exit_sem raced with IPC_RMID+semget() that created
2151 * exactly the same semid. Nothing to do.
2152 */
2153 sem_unlock(sma, -1);
2154 rcu_read_unlock();
2155 continue;
2156 }
2157
2158 /* remove un from the linked lists */
2159 ipc_assert_locked_object(&sma->sem_perm);
2160 list_del(&un->list_id);
2161
2162 /* we are the last process using this ulp, acquiring ulp->lock
2163 * isn't required. Besides that, we are also protected against
2164 * IPC_RMID as we hold sma->sem_perm lock now
2165 */
2166 list_del_rcu(&un->list_proc);
2167
2168 /* perform adjustments registered in un */
2169 for (i = 0; i < sma->sem_nsems; i++) {
2170 struct sem *semaphore = &sma->sem_base[i];
2171 if (un->semadj[i]) {
2172 semaphore->semval += un->semadj[i];
2173 /*
2174 * Range checks of the new semaphore value,
2175 * not defined by sus:
2176 * - Some unices ignore the undo entirely
2177 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2178 * - some cap the value (e.g. FreeBSD caps
2179 * at 0, but doesn't enforce SEMVMX)
2180 *
2181 * Linux caps the semaphore value, both at 0
2182 * and at SEMVMX.
2183 *
2184 * Manfred <manfred@colorfullife.com>
2185 */
2186 if (semaphore->semval < 0)
2187 semaphore->semval = 0;
2188 if (semaphore->semval > SEMVMX)
2189 semaphore->semval = SEMVMX;
2190 semaphore->sempid = task_tgid_vnr(current);
2191 }
2192 }
2193 /* maybe some queued-up processes were waiting for this */
2194 INIT_LIST_HEAD(&tasks);
2195 do_smart_update(sma, NULL, 0, 1, &tasks);
2196 sem_unlock(sma, -1);
2197 rcu_read_unlock();
2198 wake_up_sem_queue_do(&tasks);
2199
2200 kfree_rcu(un, rcu);
2201 }
2202 kfree(ulp);
2203 }
2204
2205 #ifdef CONFIG_PROC_FS
2206 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2207 {
2208 struct user_namespace *user_ns = seq_user_ns(s);
2209 struct sem_array *sma = it;
2210 time_t sem_otime;
2211
2212 /*
2213 * The proc interface isn't aware of sem_lock(), it calls
2214 * ipc_lock_object() directly (in sysvipc_find_ipc).
2215 * In order to stay compatible with sem_lock(), we must
2216 * enter / leave complex_mode.
2217 */
2218 complexmode_enter(sma);
2219
2220 sem_otime = get_semotime(sma);
2221
2222 seq_printf(s,
2223 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2224 sma->sem_perm.key,
2225 sma->sem_perm.id,
2226 sma->sem_perm.mode,
2227 sma->sem_nsems,
2228 from_kuid_munged(user_ns, sma->sem_perm.uid),
2229 from_kgid_munged(user_ns, sma->sem_perm.gid),
2230 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2231 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2232 sem_otime,
2233 sma->sem_ctime);
2234
2235 complexmode_tryleave(sma);
2236
2237 return 0;
2238 }
2239 #endif