]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - ipc/sem.c
ipc/util.c: use ipc_rcu_putref() for failues in ipc_addid()
[mirror_ubuntu-jammy-kernel.git] / ipc / sem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90
91 #include <linux/uaccess.h>
92 #include "util.h"
93
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
104 struct pid *sempid;
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127 } __randomize_layout;
128
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
134 struct pid *pid; /* process id of requesting process */
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
137 struct sembuf *blocking; /* the operation that blocked */
138 int nsops; /* number of operations */
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
141 };
142
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146 struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157 };
158
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162 struct sem_undo_list {
163 refcount_t refcnt;
164 spinlock_t lock;
165 struct list_head list_proc;
166 };
167
168
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
170
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
180 /*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
186
187 /*
188 * Locking:
189 * a) global sem_lock() for read/write
190 * sem_undo.id_next,
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
194 *
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 * The special case is use_global_lock:
209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210 * using smp_store_release().
211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212 * smp_load_acquire().
213 * Setting it from 0 to non-zero must be ordered with regards to
214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215 * is inside a spin_lock() and after a write from 0 to non-zero a
216 * spin_lock()+spin_unlock() is done.
217 */
218
219 #define sc_semmsl sem_ctls[0]
220 #define sc_semmns sem_ctls[1]
221 #define sc_semopm sem_ctls[2]
222 #define sc_semmni sem_ctls[3]
223
224 int sem_init_ns(struct ipc_namespace *ns)
225 {
226 ns->sc_semmsl = SEMMSL;
227 ns->sc_semmns = SEMMNS;
228 ns->sc_semopm = SEMOPM;
229 ns->sc_semmni = SEMMNI;
230 ns->used_sems = 0;
231 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
232 }
233
234 #ifdef CONFIG_IPC_NS
235 void sem_exit_ns(struct ipc_namespace *ns)
236 {
237 free_ipcs(ns, &sem_ids(ns), freeary);
238 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
239 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
240 }
241 #endif
242
243 int __init sem_init(void)
244 {
245 const int err = sem_init_ns(&init_ipc_ns);
246
247 ipc_init_proc_interface("sysvipc/sem",
248 " key semid perms nsems uid gid cuid cgid otime ctime\n",
249 IPC_SEM_IDS, sysvipc_sem_proc_show);
250 return err;
251 }
252
253 /**
254 * unmerge_queues - unmerge queues, if possible.
255 * @sma: semaphore array
256 *
257 * The function unmerges the wait queues if complex_count is 0.
258 * It must be called prior to dropping the global semaphore array lock.
259 */
260 static void unmerge_queues(struct sem_array *sma)
261 {
262 struct sem_queue *q, *tq;
263
264 /* complex operations still around? */
265 if (sma->complex_count)
266 return;
267 /*
268 * We will switch back to simple mode.
269 * Move all pending operation back into the per-semaphore
270 * queues.
271 */
272 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
273 struct sem *curr;
274 curr = &sma->sems[q->sops[0].sem_num];
275
276 list_add_tail(&q->list, &curr->pending_alter);
277 }
278 INIT_LIST_HEAD(&sma->pending_alter);
279 }
280
281 /**
282 * merge_queues - merge single semop queues into global queue
283 * @sma: semaphore array
284 *
285 * This function merges all per-semaphore queues into the global queue.
286 * It is necessary to achieve FIFO ordering for the pending single-sop
287 * operations when a multi-semop operation must sleep.
288 * Only the alter operations must be moved, the const operations can stay.
289 */
290 static void merge_queues(struct sem_array *sma)
291 {
292 int i;
293 for (i = 0; i < sma->sem_nsems; i++) {
294 struct sem *sem = &sma->sems[i];
295
296 list_splice_init(&sem->pending_alter, &sma->pending_alter);
297 }
298 }
299
300 static void sem_rcu_free(struct rcu_head *head)
301 {
302 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
303 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
304
305 security_sem_free(&sma->sem_perm);
306 kvfree(sma);
307 }
308
309 /*
310 * Enter the mode suitable for non-simple operations:
311 * Caller must own sem_perm.lock.
312 */
313 static void complexmode_enter(struct sem_array *sma)
314 {
315 int i;
316 struct sem *sem;
317
318 if (sma->use_global_lock > 0) {
319 /*
320 * We are already in global lock mode.
321 * Nothing to do, just reset the
322 * counter until we return to simple mode.
323 */
324 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
325 return;
326 }
327 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
328
329 for (i = 0; i < sma->sem_nsems; i++) {
330 sem = &sma->sems[i];
331 spin_lock(&sem->lock);
332 spin_unlock(&sem->lock);
333 }
334 }
335
336 /*
337 * Try to leave the mode that disallows simple operations:
338 * Caller must own sem_perm.lock.
339 */
340 static void complexmode_tryleave(struct sem_array *sma)
341 {
342 if (sma->complex_count) {
343 /* Complex ops are sleeping.
344 * We must stay in complex mode
345 */
346 return;
347 }
348 if (sma->use_global_lock == 1) {
349 /*
350 * Immediately after setting use_global_lock to 0,
351 * a simple op can start. Thus: all memory writes
352 * performed by the current operation must be visible
353 * before we set use_global_lock to 0.
354 */
355 smp_store_release(&sma->use_global_lock, 0);
356 } else {
357 sma->use_global_lock--;
358 }
359 }
360
361 #define SEM_GLOBAL_LOCK (-1)
362 /*
363 * If the request contains only one semaphore operation, and there are
364 * no complex transactions pending, lock only the semaphore involved.
365 * Otherwise, lock the entire semaphore array, since we either have
366 * multiple semaphores in our own semops, or we need to look at
367 * semaphores from other pending complex operations.
368 */
369 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
370 int nsops)
371 {
372 struct sem *sem;
373 int idx;
374
375 if (nsops != 1) {
376 /* Complex operation - acquire a full lock */
377 ipc_lock_object(&sma->sem_perm);
378
379 /* Prevent parallel simple ops */
380 complexmode_enter(sma);
381 return SEM_GLOBAL_LOCK;
382 }
383
384 /*
385 * Only one semaphore affected - try to optimize locking.
386 * Optimized locking is possible if no complex operation
387 * is either enqueued or processed right now.
388 *
389 * Both facts are tracked by use_global_mode.
390 */
391 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
392 sem = &sma->sems[idx];
393
394 /*
395 * Initial check for use_global_lock. Just an optimization,
396 * no locking, no memory barrier.
397 */
398 if (!sma->use_global_lock) {
399 /*
400 * It appears that no complex operation is around.
401 * Acquire the per-semaphore lock.
402 */
403 spin_lock(&sem->lock);
404
405 /* pairs with smp_store_release() */
406 if (!smp_load_acquire(&sma->use_global_lock)) {
407 /* fast path successful! */
408 return sops->sem_num;
409 }
410 spin_unlock(&sem->lock);
411 }
412
413 /* slow path: acquire the full lock */
414 ipc_lock_object(&sma->sem_perm);
415
416 if (sma->use_global_lock == 0) {
417 /*
418 * The use_global_lock mode ended while we waited for
419 * sma->sem_perm.lock. Thus we must switch to locking
420 * with sem->lock.
421 * Unlike in the fast path, there is no need to recheck
422 * sma->use_global_lock after we have acquired sem->lock:
423 * We own sma->sem_perm.lock, thus use_global_lock cannot
424 * change.
425 */
426 spin_lock(&sem->lock);
427
428 ipc_unlock_object(&sma->sem_perm);
429 return sops->sem_num;
430 } else {
431 /*
432 * Not a false alarm, thus continue to use the global lock
433 * mode. No need for complexmode_enter(), this was done by
434 * the caller that has set use_global_mode to non-zero.
435 */
436 return SEM_GLOBAL_LOCK;
437 }
438 }
439
440 static inline void sem_unlock(struct sem_array *sma, int locknum)
441 {
442 if (locknum == SEM_GLOBAL_LOCK) {
443 unmerge_queues(sma);
444 complexmode_tryleave(sma);
445 ipc_unlock_object(&sma->sem_perm);
446 } else {
447 struct sem *sem = &sma->sems[locknum];
448 spin_unlock(&sem->lock);
449 }
450 }
451
452 /*
453 * sem_lock_(check_) routines are called in the paths where the rwsem
454 * is not held.
455 *
456 * The caller holds the RCU read lock.
457 */
458 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
459 {
460 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
461
462 if (IS_ERR(ipcp))
463 return ERR_CAST(ipcp);
464
465 return container_of(ipcp, struct sem_array, sem_perm);
466 }
467
468 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
469 int id)
470 {
471 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
472
473 if (IS_ERR(ipcp))
474 return ERR_CAST(ipcp);
475
476 return container_of(ipcp, struct sem_array, sem_perm);
477 }
478
479 static inline void sem_lock_and_putref(struct sem_array *sma)
480 {
481 sem_lock(sma, NULL, -1);
482 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
483 }
484
485 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
486 {
487 ipc_rmid(&sem_ids(ns), &s->sem_perm);
488 }
489
490 static struct sem_array *sem_alloc(size_t nsems)
491 {
492 struct sem_array *sma;
493 size_t size;
494
495 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
496 return NULL;
497
498 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
499 sma = kvmalloc(size, GFP_KERNEL);
500 if (unlikely(!sma))
501 return NULL;
502
503 memset(sma, 0, size);
504
505 return sma;
506 }
507
508 /**
509 * newary - Create a new semaphore set
510 * @ns: namespace
511 * @params: ptr to the structure that contains key, semflg and nsems
512 *
513 * Called with sem_ids.rwsem held (as a writer)
514 */
515 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
516 {
517 int retval;
518 struct sem_array *sma;
519 key_t key = params->key;
520 int nsems = params->u.nsems;
521 int semflg = params->flg;
522 int i;
523
524 if (!nsems)
525 return -EINVAL;
526 if (ns->used_sems + nsems > ns->sc_semmns)
527 return -ENOSPC;
528
529 sma = sem_alloc(nsems);
530 if (!sma)
531 return -ENOMEM;
532
533 sma->sem_perm.mode = (semflg & S_IRWXUGO);
534 sma->sem_perm.key = key;
535
536 sma->sem_perm.security = NULL;
537 retval = security_sem_alloc(&sma->sem_perm);
538 if (retval) {
539 kvfree(sma);
540 return retval;
541 }
542
543 for (i = 0; i < nsems; i++) {
544 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
545 INIT_LIST_HEAD(&sma->sems[i].pending_const);
546 spin_lock_init(&sma->sems[i].lock);
547 }
548
549 sma->complex_count = 0;
550 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
551 INIT_LIST_HEAD(&sma->pending_alter);
552 INIT_LIST_HEAD(&sma->pending_const);
553 INIT_LIST_HEAD(&sma->list_id);
554 sma->sem_nsems = nsems;
555 sma->sem_ctime = ktime_get_real_seconds();
556
557 /* ipc_addid() locks sma upon success. */
558 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
559 if (retval < 0) {
560 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
561 return retval;
562 }
563 ns->used_sems += nsems;
564
565 sem_unlock(sma, -1);
566 rcu_read_unlock();
567
568 return sma->sem_perm.id;
569 }
570
571
572 /*
573 * Called with sem_ids.rwsem and ipcp locked.
574 */
575 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
576 struct ipc_params *params)
577 {
578 struct sem_array *sma;
579
580 sma = container_of(ipcp, struct sem_array, sem_perm);
581 if (params->u.nsems > sma->sem_nsems)
582 return -EINVAL;
583
584 return 0;
585 }
586
587 long ksys_semget(key_t key, int nsems, int semflg)
588 {
589 struct ipc_namespace *ns;
590 static const struct ipc_ops sem_ops = {
591 .getnew = newary,
592 .associate = security_sem_associate,
593 .more_checks = sem_more_checks,
594 };
595 struct ipc_params sem_params;
596
597 ns = current->nsproxy->ipc_ns;
598
599 if (nsems < 0 || nsems > ns->sc_semmsl)
600 return -EINVAL;
601
602 sem_params.key = key;
603 sem_params.flg = semflg;
604 sem_params.u.nsems = nsems;
605
606 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
607 }
608
609 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
610 {
611 return ksys_semget(key, nsems, semflg);
612 }
613
614 /**
615 * perform_atomic_semop[_slow] - Attempt to perform semaphore
616 * operations on a given array.
617 * @sma: semaphore array
618 * @q: struct sem_queue that describes the operation
619 *
620 * Caller blocking are as follows, based the value
621 * indicated by the semaphore operation (sem_op):
622 *
623 * (1) >0 never blocks.
624 * (2) 0 (wait-for-zero operation): semval is non-zero.
625 * (3) <0 attempting to decrement semval to a value smaller than zero.
626 *
627 * Returns 0 if the operation was possible.
628 * Returns 1 if the operation is impossible, the caller must sleep.
629 * Returns <0 for error codes.
630 */
631 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
632 {
633 int result, sem_op, nsops;
634 struct pid *pid;
635 struct sembuf *sop;
636 struct sem *curr;
637 struct sembuf *sops;
638 struct sem_undo *un;
639
640 sops = q->sops;
641 nsops = q->nsops;
642 un = q->undo;
643
644 for (sop = sops; sop < sops + nsops; sop++) {
645 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
646 curr = &sma->sems[idx];
647 sem_op = sop->sem_op;
648 result = curr->semval;
649
650 if (!sem_op && result)
651 goto would_block;
652
653 result += sem_op;
654 if (result < 0)
655 goto would_block;
656 if (result > SEMVMX)
657 goto out_of_range;
658
659 if (sop->sem_flg & SEM_UNDO) {
660 int undo = un->semadj[sop->sem_num] - sem_op;
661 /* Exceeding the undo range is an error. */
662 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
663 goto out_of_range;
664 un->semadj[sop->sem_num] = undo;
665 }
666
667 curr->semval = result;
668 }
669
670 sop--;
671 pid = q->pid;
672 while (sop >= sops) {
673 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
674 sop--;
675 }
676
677 return 0;
678
679 out_of_range:
680 result = -ERANGE;
681 goto undo;
682
683 would_block:
684 q->blocking = sop;
685
686 if (sop->sem_flg & IPC_NOWAIT)
687 result = -EAGAIN;
688 else
689 result = 1;
690
691 undo:
692 sop--;
693 while (sop >= sops) {
694 sem_op = sop->sem_op;
695 sma->sems[sop->sem_num].semval -= sem_op;
696 if (sop->sem_flg & SEM_UNDO)
697 un->semadj[sop->sem_num] += sem_op;
698 sop--;
699 }
700
701 return result;
702 }
703
704 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
705 {
706 int result, sem_op, nsops;
707 struct sembuf *sop;
708 struct sem *curr;
709 struct sembuf *sops;
710 struct sem_undo *un;
711
712 sops = q->sops;
713 nsops = q->nsops;
714 un = q->undo;
715
716 if (unlikely(q->dupsop))
717 return perform_atomic_semop_slow(sma, q);
718
719 /*
720 * We scan the semaphore set twice, first to ensure that the entire
721 * operation can succeed, therefore avoiding any pointless writes
722 * to shared memory and having to undo such changes in order to block
723 * until the operations can go through.
724 */
725 for (sop = sops; sop < sops + nsops; sop++) {
726 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
727
728 curr = &sma->sems[idx];
729 sem_op = sop->sem_op;
730 result = curr->semval;
731
732 if (!sem_op && result)
733 goto would_block; /* wait-for-zero */
734
735 result += sem_op;
736 if (result < 0)
737 goto would_block;
738
739 if (result > SEMVMX)
740 return -ERANGE;
741
742 if (sop->sem_flg & SEM_UNDO) {
743 int undo = un->semadj[sop->sem_num] - sem_op;
744
745 /* Exceeding the undo range is an error. */
746 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
747 return -ERANGE;
748 }
749 }
750
751 for (sop = sops; sop < sops + nsops; sop++) {
752 curr = &sma->sems[sop->sem_num];
753 sem_op = sop->sem_op;
754 result = curr->semval;
755
756 if (sop->sem_flg & SEM_UNDO) {
757 int undo = un->semadj[sop->sem_num] - sem_op;
758
759 un->semadj[sop->sem_num] = undo;
760 }
761 curr->semval += sem_op;
762 ipc_update_pid(&curr->sempid, q->pid);
763 }
764
765 return 0;
766
767 would_block:
768 q->blocking = sop;
769 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
770 }
771
772 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
773 struct wake_q_head *wake_q)
774 {
775 wake_q_add(wake_q, q->sleeper);
776 /*
777 * Rely on the above implicit barrier, such that we can
778 * ensure that we hold reference to the task before setting
779 * q->status. Otherwise we could race with do_exit if the
780 * task is awoken by an external event before calling
781 * wake_up_process().
782 */
783 WRITE_ONCE(q->status, error);
784 }
785
786 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
787 {
788 list_del(&q->list);
789 if (q->nsops > 1)
790 sma->complex_count--;
791 }
792
793 /** check_restart(sma, q)
794 * @sma: semaphore array
795 * @q: the operation that just completed
796 *
797 * update_queue is O(N^2) when it restarts scanning the whole queue of
798 * waiting operations. Therefore this function checks if the restart is
799 * really necessary. It is called after a previously waiting operation
800 * modified the array.
801 * Note that wait-for-zero operations are handled without restart.
802 */
803 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
804 {
805 /* pending complex alter operations are too difficult to analyse */
806 if (!list_empty(&sma->pending_alter))
807 return 1;
808
809 /* we were a sleeping complex operation. Too difficult */
810 if (q->nsops > 1)
811 return 1;
812
813 /* It is impossible that someone waits for the new value:
814 * - complex operations always restart.
815 * - wait-for-zero are handled seperately.
816 * - q is a previously sleeping simple operation that
817 * altered the array. It must be a decrement, because
818 * simple increments never sleep.
819 * - If there are older (higher priority) decrements
820 * in the queue, then they have observed the original
821 * semval value and couldn't proceed. The operation
822 * decremented to value - thus they won't proceed either.
823 */
824 return 0;
825 }
826
827 /**
828 * wake_const_ops - wake up non-alter tasks
829 * @sma: semaphore array.
830 * @semnum: semaphore that was modified.
831 * @wake_q: lockless wake-queue head.
832 *
833 * wake_const_ops must be called after a semaphore in a semaphore array
834 * was set to 0. If complex const operations are pending, wake_const_ops must
835 * be called with semnum = -1, as well as with the number of each modified
836 * semaphore.
837 * The tasks that must be woken up are added to @wake_q. The return code
838 * is stored in q->pid.
839 * The function returns 1 if at least one operation was completed successfully.
840 */
841 static int wake_const_ops(struct sem_array *sma, int semnum,
842 struct wake_q_head *wake_q)
843 {
844 struct sem_queue *q, *tmp;
845 struct list_head *pending_list;
846 int semop_completed = 0;
847
848 if (semnum == -1)
849 pending_list = &sma->pending_const;
850 else
851 pending_list = &sma->sems[semnum].pending_const;
852
853 list_for_each_entry_safe(q, tmp, pending_list, list) {
854 int error = perform_atomic_semop(sma, q);
855
856 if (error > 0)
857 continue;
858 /* operation completed, remove from queue & wakeup */
859 unlink_queue(sma, q);
860
861 wake_up_sem_queue_prepare(q, error, wake_q);
862 if (error == 0)
863 semop_completed = 1;
864 }
865
866 return semop_completed;
867 }
868
869 /**
870 * do_smart_wakeup_zero - wakeup all wait for zero tasks
871 * @sma: semaphore array
872 * @sops: operations that were performed
873 * @nsops: number of operations
874 * @wake_q: lockless wake-queue head
875 *
876 * Checks all required queue for wait-for-zero operations, based
877 * on the actual changes that were performed on the semaphore array.
878 * The function returns 1 if at least one operation was completed successfully.
879 */
880 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
881 int nsops, struct wake_q_head *wake_q)
882 {
883 int i;
884 int semop_completed = 0;
885 int got_zero = 0;
886
887 /* first: the per-semaphore queues, if known */
888 if (sops) {
889 for (i = 0; i < nsops; i++) {
890 int num = sops[i].sem_num;
891
892 if (sma->sems[num].semval == 0) {
893 got_zero = 1;
894 semop_completed |= wake_const_ops(sma, num, wake_q);
895 }
896 }
897 } else {
898 /*
899 * No sops means modified semaphores not known.
900 * Assume all were changed.
901 */
902 for (i = 0; i < sma->sem_nsems; i++) {
903 if (sma->sems[i].semval == 0) {
904 got_zero = 1;
905 semop_completed |= wake_const_ops(sma, i, wake_q);
906 }
907 }
908 }
909 /*
910 * If one of the modified semaphores got 0,
911 * then check the global queue, too.
912 */
913 if (got_zero)
914 semop_completed |= wake_const_ops(sma, -1, wake_q);
915
916 return semop_completed;
917 }
918
919
920 /**
921 * update_queue - look for tasks that can be completed.
922 * @sma: semaphore array.
923 * @semnum: semaphore that was modified.
924 * @wake_q: lockless wake-queue head.
925 *
926 * update_queue must be called after a semaphore in a semaphore array
927 * was modified. If multiple semaphores were modified, update_queue must
928 * be called with semnum = -1, as well as with the number of each modified
929 * semaphore.
930 * The tasks that must be woken up are added to @wake_q. The return code
931 * is stored in q->pid.
932 * The function internally checks if const operations can now succeed.
933 *
934 * The function return 1 if at least one semop was completed successfully.
935 */
936 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
937 {
938 struct sem_queue *q, *tmp;
939 struct list_head *pending_list;
940 int semop_completed = 0;
941
942 if (semnum == -1)
943 pending_list = &sma->pending_alter;
944 else
945 pending_list = &sma->sems[semnum].pending_alter;
946
947 again:
948 list_for_each_entry_safe(q, tmp, pending_list, list) {
949 int error, restart;
950
951 /* If we are scanning the single sop, per-semaphore list of
952 * one semaphore and that semaphore is 0, then it is not
953 * necessary to scan further: simple increments
954 * that affect only one entry succeed immediately and cannot
955 * be in the per semaphore pending queue, and decrements
956 * cannot be successful if the value is already 0.
957 */
958 if (semnum != -1 && sma->sems[semnum].semval == 0)
959 break;
960
961 error = perform_atomic_semop(sma, q);
962
963 /* Does q->sleeper still need to sleep? */
964 if (error > 0)
965 continue;
966
967 unlink_queue(sma, q);
968
969 if (error) {
970 restart = 0;
971 } else {
972 semop_completed = 1;
973 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
974 restart = check_restart(sma, q);
975 }
976
977 wake_up_sem_queue_prepare(q, error, wake_q);
978 if (restart)
979 goto again;
980 }
981 return semop_completed;
982 }
983
984 /**
985 * set_semotime - set sem_otime
986 * @sma: semaphore array
987 * @sops: operations that modified the array, may be NULL
988 *
989 * sem_otime is replicated to avoid cache line trashing.
990 * This function sets one instance to the current time.
991 */
992 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
993 {
994 if (sops == NULL) {
995 sma->sems[0].sem_otime = ktime_get_real_seconds();
996 } else {
997 sma->sems[sops[0].sem_num].sem_otime =
998 ktime_get_real_seconds();
999 }
1000 }
1001
1002 /**
1003 * do_smart_update - optimized update_queue
1004 * @sma: semaphore array
1005 * @sops: operations that were performed
1006 * @nsops: number of operations
1007 * @otime: force setting otime
1008 * @wake_q: lockless wake-queue head
1009 *
1010 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1011 * based on the actual changes that were performed on the semaphore array.
1012 * Note that the function does not do the actual wake-up: the caller is
1013 * responsible for calling wake_up_q().
1014 * It is safe to perform this call after dropping all locks.
1015 */
1016 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1017 int otime, struct wake_q_head *wake_q)
1018 {
1019 int i;
1020
1021 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1022
1023 if (!list_empty(&sma->pending_alter)) {
1024 /* semaphore array uses the global queue - just process it. */
1025 otime |= update_queue(sma, -1, wake_q);
1026 } else {
1027 if (!sops) {
1028 /*
1029 * No sops, thus the modified semaphores are not
1030 * known. Check all.
1031 */
1032 for (i = 0; i < sma->sem_nsems; i++)
1033 otime |= update_queue(sma, i, wake_q);
1034 } else {
1035 /*
1036 * Check the semaphores that were increased:
1037 * - No complex ops, thus all sleeping ops are
1038 * decrease.
1039 * - if we decreased the value, then any sleeping
1040 * semaphore ops wont be able to run: If the
1041 * previous value was too small, then the new
1042 * value will be too small, too.
1043 */
1044 for (i = 0; i < nsops; i++) {
1045 if (sops[i].sem_op > 0) {
1046 otime |= update_queue(sma,
1047 sops[i].sem_num, wake_q);
1048 }
1049 }
1050 }
1051 }
1052 if (otime)
1053 set_semotime(sma, sops);
1054 }
1055
1056 /*
1057 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1058 */
1059 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1060 bool count_zero)
1061 {
1062 struct sembuf *sop = q->blocking;
1063
1064 /*
1065 * Linux always (since 0.99.10) reported a task as sleeping on all
1066 * semaphores. This violates SUS, therefore it was changed to the
1067 * standard compliant behavior.
1068 * Give the administrators a chance to notice that an application
1069 * might misbehave because it relies on the Linux behavior.
1070 */
1071 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1072 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1073 current->comm, task_pid_nr(current));
1074
1075 if (sop->sem_num != semnum)
1076 return 0;
1077
1078 if (count_zero && sop->sem_op == 0)
1079 return 1;
1080 if (!count_zero && sop->sem_op < 0)
1081 return 1;
1082
1083 return 0;
1084 }
1085
1086 /* The following counts are associated to each semaphore:
1087 * semncnt number of tasks waiting on semval being nonzero
1088 * semzcnt number of tasks waiting on semval being zero
1089 *
1090 * Per definition, a task waits only on the semaphore of the first semop
1091 * that cannot proceed, even if additional operation would block, too.
1092 */
1093 static int count_semcnt(struct sem_array *sma, ushort semnum,
1094 bool count_zero)
1095 {
1096 struct list_head *l;
1097 struct sem_queue *q;
1098 int semcnt;
1099
1100 semcnt = 0;
1101 /* First: check the simple operations. They are easy to evaluate */
1102 if (count_zero)
1103 l = &sma->sems[semnum].pending_const;
1104 else
1105 l = &sma->sems[semnum].pending_alter;
1106
1107 list_for_each_entry(q, l, list) {
1108 /* all task on a per-semaphore list sleep on exactly
1109 * that semaphore
1110 */
1111 semcnt++;
1112 }
1113
1114 /* Then: check the complex operations. */
1115 list_for_each_entry(q, &sma->pending_alter, list) {
1116 semcnt += check_qop(sma, semnum, q, count_zero);
1117 }
1118 if (count_zero) {
1119 list_for_each_entry(q, &sma->pending_const, list) {
1120 semcnt += check_qop(sma, semnum, q, count_zero);
1121 }
1122 }
1123 return semcnt;
1124 }
1125
1126 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1127 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1128 * remains locked on exit.
1129 */
1130 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1131 {
1132 struct sem_undo *un, *tu;
1133 struct sem_queue *q, *tq;
1134 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1135 int i;
1136 DEFINE_WAKE_Q(wake_q);
1137
1138 /* Free the existing undo structures for this semaphore set. */
1139 ipc_assert_locked_object(&sma->sem_perm);
1140 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1141 list_del(&un->list_id);
1142 spin_lock(&un->ulp->lock);
1143 un->semid = -1;
1144 list_del_rcu(&un->list_proc);
1145 spin_unlock(&un->ulp->lock);
1146 kfree_rcu(un, rcu);
1147 }
1148
1149 /* Wake up all pending processes and let them fail with EIDRM. */
1150 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1151 unlink_queue(sma, q);
1152 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1153 }
1154
1155 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1156 unlink_queue(sma, q);
1157 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1158 }
1159 for (i = 0; i < sma->sem_nsems; i++) {
1160 struct sem *sem = &sma->sems[i];
1161 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1162 unlink_queue(sma, q);
1163 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1164 }
1165 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1166 unlink_queue(sma, q);
1167 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1168 }
1169 ipc_update_pid(&sem->sempid, NULL);
1170 }
1171
1172 /* Remove the semaphore set from the IDR */
1173 sem_rmid(ns, sma);
1174 sem_unlock(sma, -1);
1175 rcu_read_unlock();
1176
1177 wake_up_q(&wake_q);
1178 ns->used_sems -= sma->sem_nsems;
1179 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1180 }
1181
1182 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1183 {
1184 switch (version) {
1185 case IPC_64:
1186 return copy_to_user(buf, in, sizeof(*in));
1187 case IPC_OLD:
1188 {
1189 struct semid_ds out;
1190
1191 memset(&out, 0, sizeof(out));
1192
1193 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1194
1195 out.sem_otime = in->sem_otime;
1196 out.sem_ctime = in->sem_ctime;
1197 out.sem_nsems = in->sem_nsems;
1198
1199 return copy_to_user(buf, &out, sizeof(out));
1200 }
1201 default:
1202 return -EINVAL;
1203 }
1204 }
1205
1206 static time64_t get_semotime(struct sem_array *sma)
1207 {
1208 int i;
1209 time64_t res;
1210
1211 res = sma->sems[0].sem_otime;
1212 for (i = 1; i < sma->sem_nsems; i++) {
1213 time64_t to = sma->sems[i].sem_otime;
1214
1215 if (to > res)
1216 res = to;
1217 }
1218 return res;
1219 }
1220
1221 static int semctl_stat(struct ipc_namespace *ns, int semid,
1222 int cmd, struct semid64_ds *semid64)
1223 {
1224 struct sem_array *sma;
1225 time64_t semotime;
1226 int err;
1227
1228 memset(semid64, 0, sizeof(*semid64));
1229
1230 rcu_read_lock();
1231 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1232 sma = sem_obtain_object(ns, semid);
1233 if (IS_ERR(sma)) {
1234 err = PTR_ERR(sma);
1235 goto out_unlock;
1236 }
1237 } else { /* IPC_STAT */
1238 sma = sem_obtain_object_check(ns, semid);
1239 if (IS_ERR(sma)) {
1240 err = PTR_ERR(sma);
1241 goto out_unlock;
1242 }
1243 }
1244
1245 /* see comment for SHM_STAT_ANY */
1246 if (cmd == SEM_STAT_ANY)
1247 audit_ipc_obj(&sma->sem_perm);
1248 else {
1249 err = -EACCES;
1250 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1251 goto out_unlock;
1252 }
1253
1254 err = security_sem_semctl(&sma->sem_perm, cmd);
1255 if (err)
1256 goto out_unlock;
1257
1258 ipc_lock_object(&sma->sem_perm);
1259
1260 if (!ipc_valid_object(&sma->sem_perm)) {
1261 ipc_unlock_object(&sma->sem_perm);
1262 err = -EIDRM;
1263 goto out_unlock;
1264 }
1265
1266 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1267 semotime = get_semotime(sma);
1268 semid64->sem_otime = semotime;
1269 semid64->sem_ctime = sma->sem_ctime;
1270 #ifndef CONFIG_64BIT
1271 semid64->sem_otime_high = semotime >> 32;
1272 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1273 #endif
1274 semid64->sem_nsems = sma->sem_nsems;
1275
1276 if (cmd == IPC_STAT) {
1277 /*
1278 * As defined in SUS:
1279 * Return 0 on success
1280 */
1281 err = 0;
1282 } else {
1283 /*
1284 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1285 * Return the full id, including the sequence number
1286 */
1287 err = sma->sem_perm.id;
1288 }
1289 ipc_unlock_object(&sma->sem_perm);
1290 out_unlock:
1291 rcu_read_unlock();
1292 return err;
1293 }
1294
1295 static int semctl_info(struct ipc_namespace *ns, int semid,
1296 int cmd, void __user *p)
1297 {
1298 struct seminfo seminfo;
1299 int max_id;
1300 int err;
1301
1302 err = security_sem_semctl(NULL, cmd);
1303 if (err)
1304 return err;
1305
1306 memset(&seminfo, 0, sizeof(seminfo));
1307 seminfo.semmni = ns->sc_semmni;
1308 seminfo.semmns = ns->sc_semmns;
1309 seminfo.semmsl = ns->sc_semmsl;
1310 seminfo.semopm = ns->sc_semopm;
1311 seminfo.semvmx = SEMVMX;
1312 seminfo.semmnu = SEMMNU;
1313 seminfo.semmap = SEMMAP;
1314 seminfo.semume = SEMUME;
1315 down_read(&sem_ids(ns).rwsem);
1316 if (cmd == SEM_INFO) {
1317 seminfo.semusz = sem_ids(ns).in_use;
1318 seminfo.semaem = ns->used_sems;
1319 } else {
1320 seminfo.semusz = SEMUSZ;
1321 seminfo.semaem = SEMAEM;
1322 }
1323 max_id = ipc_get_maxid(&sem_ids(ns));
1324 up_read(&sem_ids(ns).rwsem);
1325 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1326 return -EFAULT;
1327 return (max_id < 0) ? 0 : max_id;
1328 }
1329
1330 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1331 int val)
1332 {
1333 struct sem_undo *un;
1334 struct sem_array *sma;
1335 struct sem *curr;
1336 int err;
1337 DEFINE_WAKE_Q(wake_q);
1338
1339 if (val > SEMVMX || val < 0)
1340 return -ERANGE;
1341
1342 rcu_read_lock();
1343 sma = sem_obtain_object_check(ns, semid);
1344 if (IS_ERR(sma)) {
1345 rcu_read_unlock();
1346 return PTR_ERR(sma);
1347 }
1348
1349 if (semnum < 0 || semnum >= sma->sem_nsems) {
1350 rcu_read_unlock();
1351 return -EINVAL;
1352 }
1353
1354
1355 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1356 rcu_read_unlock();
1357 return -EACCES;
1358 }
1359
1360 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1361 if (err) {
1362 rcu_read_unlock();
1363 return -EACCES;
1364 }
1365
1366 sem_lock(sma, NULL, -1);
1367
1368 if (!ipc_valid_object(&sma->sem_perm)) {
1369 sem_unlock(sma, -1);
1370 rcu_read_unlock();
1371 return -EIDRM;
1372 }
1373
1374 semnum = array_index_nospec(semnum, sma->sem_nsems);
1375 curr = &sma->sems[semnum];
1376
1377 ipc_assert_locked_object(&sma->sem_perm);
1378 list_for_each_entry(un, &sma->list_id, list_id)
1379 un->semadj[semnum] = 0;
1380
1381 curr->semval = val;
1382 ipc_update_pid(&curr->sempid, task_tgid(current));
1383 sma->sem_ctime = ktime_get_real_seconds();
1384 /* maybe some queued-up processes were waiting for this */
1385 do_smart_update(sma, NULL, 0, 0, &wake_q);
1386 sem_unlock(sma, -1);
1387 rcu_read_unlock();
1388 wake_up_q(&wake_q);
1389 return 0;
1390 }
1391
1392 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1393 int cmd, void __user *p)
1394 {
1395 struct sem_array *sma;
1396 struct sem *curr;
1397 int err, nsems;
1398 ushort fast_sem_io[SEMMSL_FAST];
1399 ushort *sem_io = fast_sem_io;
1400 DEFINE_WAKE_Q(wake_q);
1401
1402 rcu_read_lock();
1403 sma = sem_obtain_object_check(ns, semid);
1404 if (IS_ERR(sma)) {
1405 rcu_read_unlock();
1406 return PTR_ERR(sma);
1407 }
1408
1409 nsems = sma->sem_nsems;
1410
1411 err = -EACCES;
1412 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1413 goto out_rcu_wakeup;
1414
1415 err = security_sem_semctl(&sma->sem_perm, cmd);
1416 if (err)
1417 goto out_rcu_wakeup;
1418
1419 err = -EACCES;
1420 switch (cmd) {
1421 case GETALL:
1422 {
1423 ushort __user *array = p;
1424 int i;
1425
1426 sem_lock(sma, NULL, -1);
1427 if (!ipc_valid_object(&sma->sem_perm)) {
1428 err = -EIDRM;
1429 goto out_unlock;
1430 }
1431 if (nsems > SEMMSL_FAST) {
1432 if (!ipc_rcu_getref(&sma->sem_perm)) {
1433 err = -EIDRM;
1434 goto out_unlock;
1435 }
1436 sem_unlock(sma, -1);
1437 rcu_read_unlock();
1438 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1439 GFP_KERNEL);
1440 if (sem_io == NULL) {
1441 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1442 return -ENOMEM;
1443 }
1444
1445 rcu_read_lock();
1446 sem_lock_and_putref(sma);
1447 if (!ipc_valid_object(&sma->sem_perm)) {
1448 err = -EIDRM;
1449 goto out_unlock;
1450 }
1451 }
1452 for (i = 0; i < sma->sem_nsems; i++)
1453 sem_io[i] = sma->sems[i].semval;
1454 sem_unlock(sma, -1);
1455 rcu_read_unlock();
1456 err = 0;
1457 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1458 err = -EFAULT;
1459 goto out_free;
1460 }
1461 case SETALL:
1462 {
1463 int i;
1464 struct sem_undo *un;
1465
1466 if (!ipc_rcu_getref(&sma->sem_perm)) {
1467 err = -EIDRM;
1468 goto out_rcu_wakeup;
1469 }
1470 rcu_read_unlock();
1471
1472 if (nsems > SEMMSL_FAST) {
1473 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1474 GFP_KERNEL);
1475 if (sem_io == NULL) {
1476 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1477 return -ENOMEM;
1478 }
1479 }
1480
1481 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1482 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1483 err = -EFAULT;
1484 goto out_free;
1485 }
1486
1487 for (i = 0; i < nsems; i++) {
1488 if (sem_io[i] > SEMVMX) {
1489 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1490 err = -ERANGE;
1491 goto out_free;
1492 }
1493 }
1494 rcu_read_lock();
1495 sem_lock_and_putref(sma);
1496 if (!ipc_valid_object(&sma->sem_perm)) {
1497 err = -EIDRM;
1498 goto out_unlock;
1499 }
1500
1501 for (i = 0; i < nsems; i++) {
1502 sma->sems[i].semval = sem_io[i];
1503 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1504 }
1505
1506 ipc_assert_locked_object(&sma->sem_perm);
1507 list_for_each_entry(un, &sma->list_id, list_id) {
1508 for (i = 0; i < nsems; i++)
1509 un->semadj[i] = 0;
1510 }
1511 sma->sem_ctime = ktime_get_real_seconds();
1512 /* maybe some queued-up processes were waiting for this */
1513 do_smart_update(sma, NULL, 0, 0, &wake_q);
1514 err = 0;
1515 goto out_unlock;
1516 }
1517 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1518 }
1519 err = -EINVAL;
1520 if (semnum < 0 || semnum >= nsems)
1521 goto out_rcu_wakeup;
1522
1523 sem_lock(sma, NULL, -1);
1524 if (!ipc_valid_object(&sma->sem_perm)) {
1525 err = -EIDRM;
1526 goto out_unlock;
1527 }
1528
1529 semnum = array_index_nospec(semnum, nsems);
1530 curr = &sma->sems[semnum];
1531
1532 switch (cmd) {
1533 case GETVAL:
1534 err = curr->semval;
1535 goto out_unlock;
1536 case GETPID:
1537 err = pid_vnr(curr->sempid);
1538 goto out_unlock;
1539 case GETNCNT:
1540 err = count_semcnt(sma, semnum, 0);
1541 goto out_unlock;
1542 case GETZCNT:
1543 err = count_semcnt(sma, semnum, 1);
1544 goto out_unlock;
1545 }
1546
1547 out_unlock:
1548 sem_unlock(sma, -1);
1549 out_rcu_wakeup:
1550 rcu_read_unlock();
1551 wake_up_q(&wake_q);
1552 out_free:
1553 if (sem_io != fast_sem_io)
1554 kvfree(sem_io);
1555 return err;
1556 }
1557
1558 static inline unsigned long
1559 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1560 {
1561 switch (version) {
1562 case IPC_64:
1563 if (copy_from_user(out, buf, sizeof(*out)))
1564 return -EFAULT;
1565 return 0;
1566 case IPC_OLD:
1567 {
1568 struct semid_ds tbuf_old;
1569
1570 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1571 return -EFAULT;
1572
1573 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1574 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1575 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1576
1577 return 0;
1578 }
1579 default:
1580 return -EINVAL;
1581 }
1582 }
1583
1584 /*
1585 * This function handles some semctl commands which require the rwsem
1586 * to be held in write mode.
1587 * NOTE: no locks must be held, the rwsem is taken inside this function.
1588 */
1589 static int semctl_down(struct ipc_namespace *ns, int semid,
1590 int cmd, struct semid64_ds *semid64)
1591 {
1592 struct sem_array *sma;
1593 int err;
1594 struct kern_ipc_perm *ipcp;
1595
1596 down_write(&sem_ids(ns).rwsem);
1597 rcu_read_lock();
1598
1599 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1600 &semid64->sem_perm, 0);
1601 if (IS_ERR(ipcp)) {
1602 err = PTR_ERR(ipcp);
1603 goto out_unlock1;
1604 }
1605
1606 sma = container_of(ipcp, struct sem_array, sem_perm);
1607
1608 err = security_sem_semctl(&sma->sem_perm, cmd);
1609 if (err)
1610 goto out_unlock1;
1611
1612 switch (cmd) {
1613 case IPC_RMID:
1614 sem_lock(sma, NULL, -1);
1615 /* freeary unlocks the ipc object and rcu */
1616 freeary(ns, ipcp);
1617 goto out_up;
1618 case IPC_SET:
1619 sem_lock(sma, NULL, -1);
1620 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1621 if (err)
1622 goto out_unlock0;
1623 sma->sem_ctime = ktime_get_real_seconds();
1624 break;
1625 default:
1626 err = -EINVAL;
1627 goto out_unlock1;
1628 }
1629
1630 out_unlock0:
1631 sem_unlock(sma, -1);
1632 out_unlock1:
1633 rcu_read_unlock();
1634 out_up:
1635 up_write(&sem_ids(ns).rwsem);
1636 return err;
1637 }
1638
1639 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1640 {
1641 int version;
1642 struct ipc_namespace *ns;
1643 void __user *p = (void __user *)arg;
1644 struct semid64_ds semid64;
1645 int err;
1646
1647 if (semid < 0)
1648 return -EINVAL;
1649
1650 version = ipc_parse_version(&cmd);
1651 ns = current->nsproxy->ipc_ns;
1652
1653 switch (cmd) {
1654 case IPC_INFO:
1655 case SEM_INFO:
1656 return semctl_info(ns, semid, cmd, p);
1657 case IPC_STAT:
1658 case SEM_STAT:
1659 case SEM_STAT_ANY:
1660 err = semctl_stat(ns, semid, cmd, &semid64);
1661 if (err < 0)
1662 return err;
1663 if (copy_semid_to_user(p, &semid64, version))
1664 err = -EFAULT;
1665 return err;
1666 case GETALL:
1667 case GETVAL:
1668 case GETPID:
1669 case GETNCNT:
1670 case GETZCNT:
1671 case SETALL:
1672 return semctl_main(ns, semid, semnum, cmd, p);
1673 case SETVAL: {
1674 int val;
1675 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1676 /* big-endian 64bit */
1677 val = arg >> 32;
1678 #else
1679 /* 32bit or little-endian 64bit */
1680 val = arg;
1681 #endif
1682 return semctl_setval(ns, semid, semnum, val);
1683 }
1684 case IPC_SET:
1685 if (copy_semid_from_user(&semid64, p, version))
1686 return -EFAULT;
1687 case IPC_RMID:
1688 return semctl_down(ns, semid, cmd, &semid64);
1689 default:
1690 return -EINVAL;
1691 }
1692 }
1693
1694 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1695 {
1696 return ksys_semctl(semid, semnum, cmd, arg);
1697 }
1698
1699 #ifdef CONFIG_COMPAT
1700
1701 struct compat_semid_ds {
1702 struct compat_ipc_perm sem_perm;
1703 compat_time_t sem_otime;
1704 compat_time_t sem_ctime;
1705 compat_uptr_t sem_base;
1706 compat_uptr_t sem_pending;
1707 compat_uptr_t sem_pending_last;
1708 compat_uptr_t undo;
1709 unsigned short sem_nsems;
1710 };
1711
1712 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1713 int version)
1714 {
1715 memset(out, 0, sizeof(*out));
1716 if (version == IPC_64) {
1717 struct compat_semid64_ds __user *p = buf;
1718 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1719 } else {
1720 struct compat_semid_ds __user *p = buf;
1721 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1722 }
1723 }
1724
1725 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1726 int version)
1727 {
1728 if (version == IPC_64) {
1729 struct compat_semid64_ds v;
1730 memset(&v, 0, sizeof(v));
1731 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1732 v.sem_otime = lower_32_bits(in->sem_otime);
1733 v.sem_otime_high = upper_32_bits(in->sem_otime);
1734 v.sem_ctime = lower_32_bits(in->sem_ctime);
1735 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1736 v.sem_nsems = in->sem_nsems;
1737 return copy_to_user(buf, &v, sizeof(v));
1738 } else {
1739 struct compat_semid_ds v;
1740 memset(&v, 0, sizeof(v));
1741 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1742 v.sem_otime = in->sem_otime;
1743 v.sem_ctime = in->sem_ctime;
1744 v.sem_nsems = in->sem_nsems;
1745 return copy_to_user(buf, &v, sizeof(v));
1746 }
1747 }
1748
1749 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1750 {
1751 void __user *p = compat_ptr(arg);
1752 struct ipc_namespace *ns;
1753 struct semid64_ds semid64;
1754 int version = compat_ipc_parse_version(&cmd);
1755 int err;
1756
1757 ns = current->nsproxy->ipc_ns;
1758
1759 if (semid < 0)
1760 return -EINVAL;
1761
1762 switch (cmd & (~IPC_64)) {
1763 case IPC_INFO:
1764 case SEM_INFO:
1765 return semctl_info(ns, semid, cmd, p);
1766 case IPC_STAT:
1767 case SEM_STAT:
1768 case SEM_STAT_ANY:
1769 err = semctl_stat(ns, semid, cmd, &semid64);
1770 if (err < 0)
1771 return err;
1772 if (copy_compat_semid_to_user(p, &semid64, version))
1773 err = -EFAULT;
1774 return err;
1775 case GETVAL:
1776 case GETPID:
1777 case GETNCNT:
1778 case GETZCNT:
1779 case GETALL:
1780 case SETALL:
1781 return semctl_main(ns, semid, semnum, cmd, p);
1782 case SETVAL:
1783 return semctl_setval(ns, semid, semnum, arg);
1784 case IPC_SET:
1785 if (copy_compat_semid_from_user(&semid64, p, version))
1786 return -EFAULT;
1787 /* fallthru */
1788 case IPC_RMID:
1789 return semctl_down(ns, semid, cmd, &semid64);
1790 default:
1791 return -EINVAL;
1792 }
1793 }
1794
1795 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1796 {
1797 return compat_ksys_semctl(semid, semnum, cmd, arg);
1798 }
1799 #endif
1800
1801 /* If the task doesn't already have a undo_list, then allocate one
1802 * here. We guarantee there is only one thread using this undo list,
1803 * and current is THE ONE
1804 *
1805 * If this allocation and assignment succeeds, but later
1806 * portions of this code fail, there is no need to free the sem_undo_list.
1807 * Just let it stay associated with the task, and it'll be freed later
1808 * at exit time.
1809 *
1810 * This can block, so callers must hold no locks.
1811 */
1812 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1813 {
1814 struct sem_undo_list *undo_list;
1815
1816 undo_list = current->sysvsem.undo_list;
1817 if (!undo_list) {
1818 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1819 if (undo_list == NULL)
1820 return -ENOMEM;
1821 spin_lock_init(&undo_list->lock);
1822 refcount_set(&undo_list->refcnt, 1);
1823 INIT_LIST_HEAD(&undo_list->list_proc);
1824
1825 current->sysvsem.undo_list = undo_list;
1826 }
1827 *undo_listp = undo_list;
1828 return 0;
1829 }
1830
1831 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1832 {
1833 struct sem_undo *un;
1834
1835 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1836 if (un->semid == semid)
1837 return un;
1838 }
1839 return NULL;
1840 }
1841
1842 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1843 {
1844 struct sem_undo *un;
1845
1846 assert_spin_locked(&ulp->lock);
1847
1848 un = __lookup_undo(ulp, semid);
1849 if (un) {
1850 list_del_rcu(&un->list_proc);
1851 list_add_rcu(&un->list_proc, &ulp->list_proc);
1852 }
1853 return un;
1854 }
1855
1856 /**
1857 * find_alloc_undo - lookup (and if not present create) undo array
1858 * @ns: namespace
1859 * @semid: semaphore array id
1860 *
1861 * The function looks up (and if not present creates) the undo structure.
1862 * The size of the undo structure depends on the size of the semaphore
1863 * array, thus the alloc path is not that straightforward.
1864 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1865 * performs a rcu_read_lock().
1866 */
1867 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1868 {
1869 struct sem_array *sma;
1870 struct sem_undo_list *ulp;
1871 struct sem_undo *un, *new;
1872 int nsems, error;
1873
1874 error = get_undo_list(&ulp);
1875 if (error)
1876 return ERR_PTR(error);
1877
1878 rcu_read_lock();
1879 spin_lock(&ulp->lock);
1880 un = lookup_undo(ulp, semid);
1881 spin_unlock(&ulp->lock);
1882 if (likely(un != NULL))
1883 goto out;
1884
1885 /* no undo structure around - allocate one. */
1886 /* step 1: figure out the size of the semaphore array */
1887 sma = sem_obtain_object_check(ns, semid);
1888 if (IS_ERR(sma)) {
1889 rcu_read_unlock();
1890 return ERR_CAST(sma);
1891 }
1892
1893 nsems = sma->sem_nsems;
1894 if (!ipc_rcu_getref(&sma->sem_perm)) {
1895 rcu_read_unlock();
1896 un = ERR_PTR(-EIDRM);
1897 goto out;
1898 }
1899 rcu_read_unlock();
1900
1901 /* step 2: allocate new undo structure */
1902 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1903 if (!new) {
1904 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1905 return ERR_PTR(-ENOMEM);
1906 }
1907
1908 /* step 3: Acquire the lock on semaphore array */
1909 rcu_read_lock();
1910 sem_lock_and_putref(sma);
1911 if (!ipc_valid_object(&sma->sem_perm)) {
1912 sem_unlock(sma, -1);
1913 rcu_read_unlock();
1914 kfree(new);
1915 un = ERR_PTR(-EIDRM);
1916 goto out;
1917 }
1918 spin_lock(&ulp->lock);
1919
1920 /*
1921 * step 4: check for races: did someone else allocate the undo struct?
1922 */
1923 un = lookup_undo(ulp, semid);
1924 if (un) {
1925 kfree(new);
1926 goto success;
1927 }
1928 /* step 5: initialize & link new undo structure */
1929 new->semadj = (short *) &new[1];
1930 new->ulp = ulp;
1931 new->semid = semid;
1932 assert_spin_locked(&ulp->lock);
1933 list_add_rcu(&new->list_proc, &ulp->list_proc);
1934 ipc_assert_locked_object(&sma->sem_perm);
1935 list_add(&new->list_id, &sma->list_id);
1936 un = new;
1937
1938 success:
1939 spin_unlock(&ulp->lock);
1940 sem_unlock(sma, -1);
1941 out:
1942 return un;
1943 }
1944
1945 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1946 unsigned nsops, const struct timespec64 *timeout)
1947 {
1948 int error = -EINVAL;
1949 struct sem_array *sma;
1950 struct sembuf fast_sops[SEMOPM_FAST];
1951 struct sembuf *sops = fast_sops, *sop;
1952 struct sem_undo *un;
1953 int max, locknum;
1954 bool undos = false, alter = false, dupsop = false;
1955 struct sem_queue queue;
1956 unsigned long dup = 0, jiffies_left = 0;
1957 struct ipc_namespace *ns;
1958
1959 ns = current->nsproxy->ipc_ns;
1960
1961 if (nsops < 1 || semid < 0)
1962 return -EINVAL;
1963 if (nsops > ns->sc_semopm)
1964 return -E2BIG;
1965 if (nsops > SEMOPM_FAST) {
1966 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
1967 if (sops == NULL)
1968 return -ENOMEM;
1969 }
1970
1971 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1972 error = -EFAULT;
1973 goto out_free;
1974 }
1975
1976 if (timeout) {
1977 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1978 timeout->tv_nsec >= 1000000000L) {
1979 error = -EINVAL;
1980 goto out_free;
1981 }
1982 jiffies_left = timespec64_to_jiffies(timeout);
1983 }
1984
1985 max = 0;
1986 for (sop = sops; sop < sops + nsops; sop++) {
1987 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1988
1989 if (sop->sem_num >= max)
1990 max = sop->sem_num;
1991 if (sop->sem_flg & SEM_UNDO)
1992 undos = true;
1993 if (dup & mask) {
1994 /*
1995 * There was a previous alter access that appears
1996 * to have accessed the same semaphore, thus use
1997 * the dupsop logic. "appears", because the detection
1998 * can only check % BITS_PER_LONG.
1999 */
2000 dupsop = true;
2001 }
2002 if (sop->sem_op != 0) {
2003 alter = true;
2004 dup |= mask;
2005 }
2006 }
2007
2008 if (undos) {
2009 /* On success, find_alloc_undo takes the rcu_read_lock */
2010 un = find_alloc_undo(ns, semid);
2011 if (IS_ERR(un)) {
2012 error = PTR_ERR(un);
2013 goto out_free;
2014 }
2015 } else {
2016 un = NULL;
2017 rcu_read_lock();
2018 }
2019
2020 sma = sem_obtain_object_check(ns, semid);
2021 if (IS_ERR(sma)) {
2022 rcu_read_unlock();
2023 error = PTR_ERR(sma);
2024 goto out_free;
2025 }
2026
2027 error = -EFBIG;
2028 if (max >= sma->sem_nsems) {
2029 rcu_read_unlock();
2030 goto out_free;
2031 }
2032
2033 error = -EACCES;
2034 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2035 rcu_read_unlock();
2036 goto out_free;
2037 }
2038
2039 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2040 if (error) {
2041 rcu_read_unlock();
2042 goto out_free;
2043 }
2044
2045 error = -EIDRM;
2046 locknum = sem_lock(sma, sops, nsops);
2047 /*
2048 * We eventually might perform the following check in a lockless
2049 * fashion, considering ipc_valid_object() locking constraints.
2050 * If nsops == 1 and there is no contention for sem_perm.lock, then
2051 * only a per-semaphore lock is held and it's OK to proceed with the
2052 * check below. More details on the fine grained locking scheme
2053 * entangled here and why it's RMID race safe on comments at sem_lock()
2054 */
2055 if (!ipc_valid_object(&sma->sem_perm))
2056 goto out_unlock_free;
2057 /*
2058 * semid identifiers are not unique - find_alloc_undo may have
2059 * allocated an undo structure, it was invalidated by an RMID
2060 * and now a new array with received the same id. Check and fail.
2061 * This case can be detected checking un->semid. The existence of
2062 * "un" itself is guaranteed by rcu.
2063 */
2064 if (un && un->semid == -1)
2065 goto out_unlock_free;
2066
2067 queue.sops = sops;
2068 queue.nsops = nsops;
2069 queue.undo = un;
2070 queue.pid = task_tgid(current);
2071 queue.alter = alter;
2072 queue.dupsop = dupsop;
2073
2074 error = perform_atomic_semop(sma, &queue);
2075 if (error == 0) { /* non-blocking succesfull path */
2076 DEFINE_WAKE_Q(wake_q);
2077
2078 /*
2079 * If the operation was successful, then do
2080 * the required updates.
2081 */
2082 if (alter)
2083 do_smart_update(sma, sops, nsops, 1, &wake_q);
2084 else
2085 set_semotime(sma, sops);
2086
2087 sem_unlock(sma, locknum);
2088 rcu_read_unlock();
2089 wake_up_q(&wake_q);
2090
2091 goto out_free;
2092 }
2093 if (error < 0) /* non-blocking error path */
2094 goto out_unlock_free;
2095
2096 /*
2097 * We need to sleep on this operation, so we put the current
2098 * task into the pending queue and go to sleep.
2099 */
2100 if (nsops == 1) {
2101 struct sem *curr;
2102 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2103 curr = &sma->sems[idx];
2104
2105 if (alter) {
2106 if (sma->complex_count) {
2107 list_add_tail(&queue.list,
2108 &sma->pending_alter);
2109 } else {
2110
2111 list_add_tail(&queue.list,
2112 &curr->pending_alter);
2113 }
2114 } else {
2115 list_add_tail(&queue.list, &curr->pending_const);
2116 }
2117 } else {
2118 if (!sma->complex_count)
2119 merge_queues(sma);
2120
2121 if (alter)
2122 list_add_tail(&queue.list, &sma->pending_alter);
2123 else
2124 list_add_tail(&queue.list, &sma->pending_const);
2125
2126 sma->complex_count++;
2127 }
2128
2129 do {
2130 WRITE_ONCE(queue.status, -EINTR);
2131 queue.sleeper = current;
2132
2133 __set_current_state(TASK_INTERRUPTIBLE);
2134 sem_unlock(sma, locknum);
2135 rcu_read_unlock();
2136
2137 if (timeout)
2138 jiffies_left = schedule_timeout(jiffies_left);
2139 else
2140 schedule();
2141
2142 /*
2143 * fastpath: the semop has completed, either successfully or
2144 * not, from the syscall pov, is quite irrelevant to us at this
2145 * point; we're done.
2146 *
2147 * We _do_ care, nonetheless, about being awoken by a signal or
2148 * spuriously. The queue.status is checked again in the
2149 * slowpath (aka after taking sem_lock), such that we can detect
2150 * scenarios where we were awakened externally, during the
2151 * window between wake_q_add() and wake_up_q().
2152 */
2153 error = READ_ONCE(queue.status);
2154 if (error != -EINTR) {
2155 /*
2156 * User space could assume that semop() is a memory
2157 * barrier: Without the mb(), the cpu could
2158 * speculatively read in userspace stale data that was
2159 * overwritten by the previous owner of the semaphore.
2160 */
2161 smp_mb();
2162 goto out_free;
2163 }
2164
2165 rcu_read_lock();
2166 locknum = sem_lock(sma, sops, nsops);
2167
2168 if (!ipc_valid_object(&sma->sem_perm))
2169 goto out_unlock_free;
2170
2171 error = READ_ONCE(queue.status);
2172
2173 /*
2174 * If queue.status != -EINTR we are woken up by another process.
2175 * Leave without unlink_queue(), but with sem_unlock().
2176 */
2177 if (error != -EINTR)
2178 goto out_unlock_free;
2179
2180 /*
2181 * If an interrupt occurred we have to clean up the queue.
2182 */
2183 if (timeout && jiffies_left == 0)
2184 error = -EAGAIN;
2185 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2186
2187 unlink_queue(sma, &queue);
2188
2189 out_unlock_free:
2190 sem_unlock(sma, locknum);
2191 rcu_read_unlock();
2192 out_free:
2193 if (sops != fast_sops)
2194 kvfree(sops);
2195 return error;
2196 }
2197
2198 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2199 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2200 {
2201 if (timeout) {
2202 struct timespec64 ts;
2203 if (get_timespec64(&ts, timeout))
2204 return -EFAULT;
2205 return do_semtimedop(semid, tsops, nsops, &ts);
2206 }
2207 return do_semtimedop(semid, tsops, nsops, NULL);
2208 }
2209
2210 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2211 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2212 {
2213 return ksys_semtimedop(semid, tsops, nsops, timeout);
2214 }
2215
2216 #ifdef CONFIG_COMPAT_32BIT_TIME
2217 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2218 unsigned int nsops,
2219 const struct compat_timespec __user *timeout)
2220 {
2221 if (timeout) {
2222 struct timespec64 ts;
2223 if (compat_get_timespec64(&ts, timeout))
2224 return -EFAULT;
2225 return do_semtimedop(semid, tsems, nsops, &ts);
2226 }
2227 return do_semtimedop(semid, tsems, nsops, NULL);
2228 }
2229
2230 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2231 unsigned int, nsops,
2232 const struct compat_timespec __user *, timeout)
2233 {
2234 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2235 }
2236 #endif
2237
2238 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2239 unsigned, nsops)
2240 {
2241 return do_semtimedop(semid, tsops, nsops, NULL);
2242 }
2243
2244 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2245 * parent and child tasks.
2246 */
2247
2248 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2249 {
2250 struct sem_undo_list *undo_list;
2251 int error;
2252
2253 if (clone_flags & CLONE_SYSVSEM) {
2254 error = get_undo_list(&undo_list);
2255 if (error)
2256 return error;
2257 refcount_inc(&undo_list->refcnt);
2258 tsk->sysvsem.undo_list = undo_list;
2259 } else
2260 tsk->sysvsem.undo_list = NULL;
2261
2262 return 0;
2263 }
2264
2265 /*
2266 * add semadj values to semaphores, free undo structures.
2267 * undo structures are not freed when semaphore arrays are destroyed
2268 * so some of them may be out of date.
2269 * IMPLEMENTATION NOTE: There is some confusion over whether the
2270 * set of adjustments that needs to be done should be done in an atomic
2271 * manner or not. That is, if we are attempting to decrement the semval
2272 * should we queue up and wait until we can do so legally?
2273 * The original implementation attempted to do this (queue and wait).
2274 * The current implementation does not do so. The POSIX standard
2275 * and SVID should be consulted to determine what behavior is mandated.
2276 */
2277 void exit_sem(struct task_struct *tsk)
2278 {
2279 struct sem_undo_list *ulp;
2280
2281 ulp = tsk->sysvsem.undo_list;
2282 if (!ulp)
2283 return;
2284 tsk->sysvsem.undo_list = NULL;
2285
2286 if (!refcount_dec_and_test(&ulp->refcnt))
2287 return;
2288
2289 for (;;) {
2290 struct sem_array *sma;
2291 struct sem_undo *un;
2292 int semid, i;
2293 DEFINE_WAKE_Q(wake_q);
2294
2295 cond_resched();
2296
2297 rcu_read_lock();
2298 un = list_entry_rcu(ulp->list_proc.next,
2299 struct sem_undo, list_proc);
2300 if (&un->list_proc == &ulp->list_proc) {
2301 /*
2302 * We must wait for freeary() before freeing this ulp,
2303 * in case we raced with last sem_undo. There is a small
2304 * possibility where we exit while freeary() didn't
2305 * finish unlocking sem_undo_list.
2306 */
2307 spin_lock(&ulp->lock);
2308 spin_unlock(&ulp->lock);
2309 rcu_read_unlock();
2310 break;
2311 }
2312 spin_lock(&ulp->lock);
2313 semid = un->semid;
2314 spin_unlock(&ulp->lock);
2315
2316 /* exit_sem raced with IPC_RMID, nothing to do */
2317 if (semid == -1) {
2318 rcu_read_unlock();
2319 continue;
2320 }
2321
2322 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2323 /* exit_sem raced with IPC_RMID, nothing to do */
2324 if (IS_ERR(sma)) {
2325 rcu_read_unlock();
2326 continue;
2327 }
2328
2329 sem_lock(sma, NULL, -1);
2330 /* exit_sem raced with IPC_RMID, nothing to do */
2331 if (!ipc_valid_object(&sma->sem_perm)) {
2332 sem_unlock(sma, -1);
2333 rcu_read_unlock();
2334 continue;
2335 }
2336 un = __lookup_undo(ulp, semid);
2337 if (un == NULL) {
2338 /* exit_sem raced with IPC_RMID+semget() that created
2339 * exactly the same semid. Nothing to do.
2340 */
2341 sem_unlock(sma, -1);
2342 rcu_read_unlock();
2343 continue;
2344 }
2345
2346 /* remove un from the linked lists */
2347 ipc_assert_locked_object(&sma->sem_perm);
2348 list_del(&un->list_id);
2349
2350 /* we are the last process using this ulp, acquiring ulp->lock
2351 * isn't required. Besides that, we are also protected against
2352 * IPC_RMID as we hold sma->sem_perm lock now
2353 */
2354 list_del_rcu(&un->list_proc);
2355
2356 /* perform adjustments registered in un */
2357 for (i = 0; i < sma->sem_nsems; i++) {
2358 struct sem *semaphore = &sma->sems[i];
2359 if (un->semadj[i]) {
2360 semaphore->semval += un->semadj[i];
2361 /*
2362 * Range checks of the new semaphore value,
2363 * not defined by sus:
2364 * - Some unices ignore the undo entirely
2365 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2366 * - some cap the value (e.g. FreeBSD caps
2367 * at 0, but doesn't enforce SEMVMX)
2368 *
2369 * Linux caps the semaphore value, both at 0
2370 * and at SEMVMX.
2371 *
2372 * Manfred <manfred@colorfullife.com>
2373 */
2374 if (semaphore->semval < 0)
2375 semaphore->semval = 0;
2376 if (semaphore->semval > SEMVMX)
2377 semaphore->semval = SEMVMX;
2378 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2379 }
2380 }
2381 /* maybe some queued-up processes were waiting for this */
2382 do_smart_update(sma, NULL, 0, 1, &wake_q);
2383 sem_unlock(sma, -1);
2384 rcu_read_unlock();
2385 wake_up_q(&wake_q);
2386
2387 kfree_rcu(un, rcu);
2388 }
2389 kfree(ulp);
2390 }
2391
2392 #ifdef CONFIG_PROC_FS
2393 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2394 {
2395 struct user_namespace *user_ns = seq_user_ns(s);
2396 struct kern_ipc_perm *ipcp = it;
2397 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2398 time64_t sem_otime;
2399
2400 /*
2401 * The proc interface isn't aware of sem_lock(), it calls
2402 * ipc_lock_object() directly (in sysvipc_find_ipc).
2403 * In order to stay compatible with sem_lock(), we must
2404 * enter / leave complex_mode.
2405 */
2406 complexmode_enter(sma);
2407
2408 sem_otime = get_semotime(sma);
2409
2410 seq_printf(s,
2411 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2412 sma->sem_perm.key,
2413 sma->sem_perm.id,
2414 sma->sem_perm.mode,
2415 sma->sem_nsems,
2416 from_kuid_munged(user_ns, sma->sem_perm.uid),
2417 from_kgid_munged(user_ns, sma->sem_perm.gid),
2418 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2419 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2420 sem_otime,
2421 sma->sem_ctime);
2422
2423 complexmode_tryleave(sma);
2424
2425 return 0;
2426 }
2427 #endif