]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - ipc/sem.c
ia64: fix discontig.c section mismatches
[mirror_ubuntu-hirsute-kernel.git] / ipc / sem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90
91 #include <linux/uaccess.h>
92 #include "util.h"
93
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
104 struct pid *sempid;
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127 } __randomize_layout;
128
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
134 struct pid *pid; /* process id of requesting process */
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
137 struct sembuf *blocking; /* the operation that blocked */
138 int nsops; /* number of operations */
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
141 };
142
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146 struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157 };
158
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162 struct sem_undo_list {
163 refcount_t refcnt;
164 spinlock_t lock;
165 struct list_head list_proc;
166 };
167
168
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
170
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
180 /*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
186
187 /*
188 * Locking:
189 * a) global sem_lock() for read/write
190 * sem_undo.id_next,
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
194 *
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 *
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
220 *
221 * 2) queue.status: (SEM_BARRIER_2)
222 * Initialization is done while holding sem_lock(), so no further barrier is
223 * required.
224 * Setting it to a result code is a RELEASE, this is ensured by both a
225 * smp_store_release() (for case a) and while holding sem_lock()
226 * (for case b).
227 * The AQUIRE when reading the result code without holding sem_lock() is
228 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
229 * (case a above).
230 * Reading the result code while holding sem_lock() needs no further barriers,
231 * the locks inside sem_lock() enforce ordering (case b above)
232 *
233 * 3) current->state:
234 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
235 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
236 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
237 * when holding sem_lock(), no further barriers are required.
238 *
239 * See also ipc/mqueue.c for more details on the covered races.
240 */
241
242 #define sc_semmsl sem_ctls[0]
243 #define sc_semmns sem_ctls[1]
244 #define sc_semopm sem_ctls[2]
245 #define sc_semmni sem_ctls[3]
246
247 void sem_init_ns(struct ipc_namespace *ns)
248 {
249 ns->sc_semmsl = SEMMSL;
250 ns->sc_semmns = SEMMNS;
251 ns->sc_semopm = SEMOPM;
252 ns->sc_semmni = SEMMNI;
253 ns->used_sems = 0;
254 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
255 }
256
257 #ifdef CONFIG_IPC_NS
258 void sem_exit_ns(struct ipc_namespace *ns)
259 {
260 free_ipcs(ns, &sem_ids(ns), freeary);
261 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
262 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
263 }
264 #endif
265
266 void __init sem_init(void)
267 {
268 sem_init_ns(&init_ipc_ns);
269 ipc_init_proc_interface("sysvipc/sem",
270 " key semid perms nsems uid gid cuid cgid otime ctime\n",
271 IPC_SEM_IDS, sysvipc_sem_proc_show);
272 }
273
274 /**
275 * unmerge_queues - unmerge queues, if possible.
276 * @sma: semaphore array
277 *
278 * The function unmerges the wait queues if complex_count is 0.
279 * It must be called prior to dropping the global semaphore array lock.
280 */
281 static void unmerge_queues(struct sem_array *sma)
282 {
283 struct sem_queue *q, *tq;
284
285 /* complex operations still around? */
286 if (sma->complex_count)
287 return;
288 /*
289 * We will switch back to simple mode.
290 * Move all pending operation back into the per-semaphore
291 * queues.
292 */
293 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
294 struct sem *curr;
295 curr = &sma->sems[q->sops[0].sem_num];
296
297 list_add_tail(&q->list, &curr->pending_alter);
298 }
299 INIT_LIST_HEAD(&sma->pending_alter);
300 }
301
302 /**
303 * merge_queues - merge single semop queues into global queue
304 * @sma: semaphore array
305 *
306 * This function merges all per-semaphore queues into the global queue.
307 * It is necessary to achieve FIFO ordering for the pending single-sop
308 * operations when a multi-semop operation must sleep.
309 * Only the alter operations must be moved, the const operations can stay.
310 */
311 static void merge_queues(struct sem_array *sma)
312 {
313 int i;
314 for (i = 0; i < sma->sem_nsems; i++) {
315 struct sem *sem = &sma->sems[i];
316
317 list_splice_init(&sem->pending_alter, &sma->pending_alter);
318 }
319 }
320
321 static void sem_rcu_free(struct rcu_head *head)
322 {
323 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
324 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
325
326 security_sem_free(&sma->sem_perm);
327 kvfree(sma);
328 }
329
330 /*
331 * Enter the mode suitable for non-simple operations:
332 * Caller must own sem_perm.lock.
333 */
334 static void complexmode_enter(struct sem_array *sma)
335 {
336 int i;
337 struct sem *sem;
338
339 if (sma->use_global_lock > 0) {
340 /*
341 * We are already in global lock mode.
342 * Nothing to do, just reset the
343 * counter until we return to simple mode.
344 */
345 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
346 return;
347 }
348 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
349
350 for (i = 0; i < sma->sem_nsems; i++) {
351 sem = &sma->sems[i];
352 spin_lock(&sem->lock);
353 spin_unlock(&sem->lock);
354 }
355 }
356
357 /*
358 * Try to leave the mode that disallows simple operations:
359 * Caller must own sem_perm.lock.
360 */
361 static void complexmode_tryleave(struct sem_array *sma)
362 {
363 if (sma->complex_count) {
364 /* Complex ops are sleeping.
365 * We must stay in complex mode
366 */
367 return;
368 }
369 if (sma->use_global_lock == 1) {
370
371 /* See SEM_BARRIER_1 for purpose/pairing */
372 smp_store_release(&sma->use_global_lock, 0);
373 } else {
374 sma->use_global_lock--;
375 }
376 }
377
378 #define SEM_GLOBAL_LOCK (-1)
379 /*
380 * If the request contains only one semaphore operation, and there are
381 * no complex transactions pending, lock only the semaphore involved.
382 * Otherwise, lock the entire semaphore array, since we either have
383 * multiple semaphores in our own semops, or we need to look at
384 * semaphores from other pending complex operations.
385 */
386 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
387 int nsops)
388 {
389 struct sem *sem;
390 int idx;
391
392 if (nsops != 1) {
393 /* Complex operation - acquire a full lock */
394 ipc_lock_object(&sma->sem_perm);
395
396 /* Prevent parallel simple ops */
397 complexmode_enter(sma);
398 return SEM_GLOBAL_LOCK;
399 }
400
401 /*
402 * Only one semaphore affected - try to optimize locking.
403 * Optimized locking is possible if no complex operation
404 * is either enqueued or processed right now.
405 *
406 * Both facts are tracked by use_global_mode.
407 */
408 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
409 sem = &sma->sems[idx];
410
411 /*
412 * Initial check for use_global_lock. Just an optimization,
413 * no locking, no memory barrier.
414 */
415 if (!sma->use_global_lock) {
416 /*
417 * It appears that no complex operation is around.
418 * Acquire the per-semaphore lock.
419 */
420 spin_lock(&sem->lock);
421
422 /* see SEM_BARRIER_1 for purpose/pairing */
423 if (!smp_load_acquire(&sma->use_global_lock)) {
424 /* fast path successful! */
425 return sops->sem_num;
426 }
427 spin_unlock(&sem->lock);
428 }
429
430 /* slow path: acquire the full lock */
431 ipc_lock_object(&sma->sem_perm);
432
433 if (sma->use_global_lock == 0) {
434 /*
435 * The use_global_lock mode ended while we waited for
436 * sma->sem_perm.lock. Thus we must switch to locking
437 * with sem->lock.
438 * Unlike in the fast path, there is no need to recheck
439 * sma->use_global_lock after we have acquired sem->lock:
440 * We own sma->sem_perm.lock, thus use_global_lock cannot
441 * change.
442 */
443 spin_lock(&sem->lock);
444
445 ipc_unlock_object(&sma->sem_perm);
446 return sops->sem_num;
447 } else {
448 /*
449 * Not a false alarm, thus continue to use the global lock
450 * mode. No need for complexmode_enter(), this was done by
451 * the caller that has set use_global_mode to non-zero.
452 */
453 return SEM_GLOBAL_LOCK;
454 }
455 }
456
457 static inline void sem_unlock(struct sem_array *sma, int locknum)
458 {
459 if (locknum == SEM_GLOBAL_LOCK) {
460 unmerge_queues(sma);
461 complexmode_tryleave(sma);
462 ipc_unlock_object(&sma->sem_perm);
463 } else {
464 struct sem *sem = &sma->sems[locknum];
465 spin_unlock(&sem->lock);
466 }
467 }
468
469 /*
470 * sem_lock_(check_) routines are called in the paths where the rwsem
471 * is not held.
472 *
473 * The caller holds the RCU read lock.
474 */
475 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
476 {
477 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
478
479 if (IS_ERR(ipcp))
480 return ERR_CAST(ipcp);
481
482 return container_of(ipcp, struct sem_array, sem_perm);
483 }
484
485 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
486 int id)
487 {
488 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
489
490 if (IS_ERR(ipcp))
491 return ERR_CAST(ipcp);
492
493 return container_of(ipcp, struct sem_array, sem_perm);
494 }
495
496 static inline void sem_lock_and_putref(struct sem_array *sma)
497 {
498 sem_lock(sma, NULL, -1);
499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
500 }
501
502 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
503 {
504 ipc_rmid(&sem_ids(ns), &s->sem_perm);
505 }
506
507 static struct sem_array *sem_alloc(size_t nsems)
508 {
509 struct sem_array *sma;
510
511 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
512 return NULL;
513
514 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
515 if (unlikely(!sma))
516 return NULL;
517
518 return sma;
519 }
520
521 /**
522 * newary - Create a new semaphore set
523 * @ns: namespace
524 * @params: ptr to the structure that contains key, semflg and nsems
525 *
526 * Called with sem_ids.rwsem held (as a writer)
527 */
528 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
529 {
530 int retval;
531 struct sem_array *sma;
532 key_t key = params->key;
533 int nsems = params->u.nsems;
534 int semflg = params->flg;
535 int i;
536
537 if (!nsems)
538 return -EINVAL;
539 if (ns->used_sems + nsems > ns->sc_semmns)
540 return -ENOSPC;
541
542 sma = sem_alloc(nsems);
543 if (!sma)
544 return -ENOMEM;
545
546 sma->sem_perm.mode = (semflg & S_IRWXUGO);
547 sma->sem_perm.key = key;
548
549 sma->sem_perm.security = NULL;
550 retval = security_sem_alloc(&sma->sem_perm);
551 if (retval) {
552 kvfree(sma);
553 return retval;
554 }
555
556 for (i = 0; i < nsems; i++) {
557 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
558 INIT_LIST_HEAD(&sma->sems[i].pending_const);
559 spin_lock_init(&sma->sems[i].lock);
560 }
561
562 sma->complex_count = 0;
563 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
564 INIT_LIST_HEAD(&sma->pending_alter);
565 INIT_LIST_HEAD(&sma->pending_const);
566 INIT_LIST_HEAD(&sma->list_id);
567 sma->sem_nsems = nsems;
568 sma->sem_ctime = ktime_get_real_seconds();
569
570 /* ipc_addid() locks sma upon success. */
571 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
572 if (retval < 0) {
573 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
574 return retval;
575 }
576 ns->used_sems += nsems;
577
578 sem_unlock(sma, -1);
579 rcu_read_unlock();
580
581 return sma->sem_perm.id;
582 }
583
584
585 /*
586 * Called with sem_ids.rwsem and ipcp locked.
587 */
588 static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
589 {
590 struct sem_array *sma;
591
592 sma = container_of(ipcp, struct sem_array, sem_perm);
593 if (params->u.nsems > sma->sem_nsems)
594 return -EINVAL;
595
596 return 0;
597 }
598
599 long ksys_semget(key_t key, int nsems, int semflg)
600 {
601 struct ipc_namespace *ns;
602 static const struct ipc_ops sem_ops = {
603 .getnew = newary,
604 .associate = security_sem_associate,
605 .more_checks = sem_more_checks,
606 };
607 struct ipc_params sem_params;
608
609 ns = current->nsproxy->ipc_ns;
610
611 if (nsems < 0 || nsems > ns->sc_semmsl)
612 return -EINVAL;
613
614 sem_params.key = key;
615 sem_params.flg = semflg;
616 sem_params.u.nsems = nsems;
617
618 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
619 }
620
621 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
622 {
623 return ksys_semget(key, nsems, semflg);
624 }
625
626 /**
627 * perform_atomic_semop[_slow] - Attempt to perform semaphore
628 * operations on a given array.
629 * @sma: semaphore array
630 * @q: struct sem_queue that describes the operation
631 *
632 * Caller blocking are as follows, based the value
633 * indicated by the semaphore operation (sem_op):
634 *
635 * (1) >0 never blocks.
636 * (2) 0 (wait-for-zero operation): semval is non-zero.
637 * (3) <0 attempting to decrement semval to a value smaller than zero.
638 *
639 * Returns 0 if the operation was possible.
640 * Returns 1 if the operation is impossible, the caller must sleep.
641 * Returns <0 for error codes.
642 */
643 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
644 {
645 int result, sem_op, nsops;
646 struct pid *pid;
647 struct sembuf *sop;
648 struct sem *curr;
649 struct sembuf *sops;
650 struct sem_undo *un;
651
652 sops = q->sops;
653 nsops = q->nsops;
654 un = q->undo;
655
656 for (sop = sops; sop < sops + nsops; sop++) {
657 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
658 curr = &sma->sems[idx];
659 sem_op = sop->sem_op;
660 result = curr->semval;
661
662 if (!sem_op && result)
663 goto would_block;
664
665 result += sem_op;
666 if (result < 0)
667 goto would_block;
668 if (result > SEMVMX)
669 goto out_of_range;
670
671 if (sop->sem_flg & SEM_UNDO) {
672 int undo = un->semadj[sop->sem_num] - sem_op;
673 /* Exceeding the undo range is an error. */
674 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
675 goto out_of_range;
676 un->semadj[sop->sem_num] = undo;
677 }
678
679 curr->semval = result;
680 }
681
682 sop--;
683 pid = q->pid;
684 while (sop >= sops) {
685 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
686 sop--;
687 }
688
689 return 0;
690
691 out_of_range:
692 result = -ERANGE;
693 goto undo;
694
695 would_block:
696 q->blocking = sop;
697
698 if (sop->sem_flg & IPC_NOWAIT)
699 result = -EAGAIN;
700 else
701 result = 1;
702
703 undo:
704 sop--;
705 while (sop >= sops) {
706 sem_op = sop->sem_op;
707 sma->sems[sop->sem_num].semval -= sem_op;
708 if (sop->sem_flg & SEM_UNDO)
709 un->semadj[sop->sem_num] += sem_op;
710 sop--;
711 }
712
713 return result;
714 }
715
716 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
717 {
718 int result, sem_op, nsops;
719 struct sembuf *sop;
720 struct sem *curr;
721 struct sembuf *sops;
722 struct sem_undo *un;
723
724 sops = q->sops;
725 nsops = q->nsops;
726 un = q->undo;
727
728 if (unlikely(q->dupsop))
729 return perform_atomic_semop_slow(sma, q);
730
731 /*
732 * We scan the semaphore set twice, first to ensure that the entire
733 * operation can succeed, therefore avoiding any pointless writes
734 * to shared memory and having to undo such changes in order to block
735 * until the operations can go through.
736 */
737 for (sop = sops; sop < sops + nsops; sop++) {
738 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
739
740 curr = &sma->sems[idx];
741 sem_op = sop->sem_op;
742 result = curr->semval;
743
744 if (!sem_op && result)
745 goto would_block; /* wait-for-zero */
746
747 result += sem_op;
748 if (result < 0)
749 goto would_block;
750
751 if (result > SEMVMX)
752 return -ERANGE;
753
754 if (sop->sem_flg & SEM_UNDO) {
755 int undo = un->semadj[sop->sem_num] - sem_op;
756
757 /* Exceeding the undo range is an error. */
758 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
759 return -ERANGE;
760 }
761 }
762
763 for (sop = sops; sop < sops + nsops; sop++) {
764 curr = &sma->sems[sop->sem_num];
765 sem_op = sop->sem_op;
766 result = curr->semval;
767
768 if (sop->sem_flg & SEM_UNDO) {
769 int undo = un->semadj[sop->sem_num] - sem_op;
770
771 un->semadj[sop->sem_num] = undo;
772 }
773 curr->semval += sem_op;
774 ipc_update_pid(&curr->sempid, q->pid);
775 }
776
777 return 0;
778
779 would_block:
780 q->blocking = sop;
781 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
782 }
783
784 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
785 struct wake_q_head *wake_q)
786 {
787 get_task_struct(q->sleeper);
788
789 /* see SEM_BARRIER_2 for purpuse/pairing */
790 smp_store_release(&q->status, error);
791
792 wake_q_add_safe(wake_q, q->sleeper);
793 }
794
795 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
796 {
797 list_del(&q->list);
798 if (q->nsops > 1)
799 sma->complex_count--;
800 }
801
802 /** check_restart(sma, q)
803 * @sma: semaphore array
804 * @q: the operation that just completed
805 *
806 * update_queue is O(N^2) when it restarts scanning the whole queue of
807 * waiting operations. Therefore this function checks if the restart is
808 * really necessary. It is called after a previously waiting operation
809 * modified the array.
810 * Note that wait-for-zero operations are handled without restart.
811 */
812 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
813 {
814 /* pending complex alter operations are too difficult to analyse */
815 if (!list_empty(&sma->pending_alter))
816 return 1;
817
818 /* we were a sleeping complex operation. Too difficult */
819 if (q->nsops > 1)
820 return 1;
821
822 /* It is impossible that someone waits for the new value:
823 * - complex operations always restart.
824 * - wait-for-zero are handled seperately.
825 * - q is a previously sleeping simple operation that
826 * altered the array. It must be a decrement, because
827 * simple increments never sleep.
828 * - If there are older (higher priority) decrements
829 * in the queue, then they have observed the original
830 * semval value and couldn't proceed. The operation
831 * decremented to value - thus they won't proceed either.
832 */
833 return 0;
834 }
835
836 /**
837 * wake_const_ops - wake up non-alter tasks
838 * @sma: semaphore array.
839 * @semnum: semaphore that was modified.
840 * @wake_q: lockless wake-queue head.
841 *
842 * wake_const_ops must be called after a semaphore in a semaphore array
843 * was set to 0. If complex const operations are pending, wake_const_ops must
844 * be called with semnum = -1, as well as with the number of each modified
845 * semaphore.
846 * The tasks that must be woken up are added to @wake_q. The return code
847 * is stored in q->pid.
848 * The function returns 1 if at least one operation was completed successfully.
849 */
850 static int wake_const_ops(struct sem_array *sma, int semnum,
851 struct wake_q_head *wake_q)
852 {
853 struct sem_queue *q, *tmp;
854 struct list_head *pending_list;
855 int semop_completed = 0;
856
857 if (semnum == -1)
858 pending_list = &sma->pending_const;
859 else
860 pending_list = &sma->sems[semnum].pending_const;
861
862 list_for_each_entry_safe(q, tmp, pending_list, list) {
863 int error = perform_atomic_semop(sma, q);
864
865 if (error > 0)
866 continue;
867 /* operation completed, remove from queue & wakeup */
868 unlink_queue(sma, q);
869
870 wake_up_sem_queue_prepare(q, error, wake_q);
871 if (error == 0)
872 semop_completed = 1;
873 }
874
875 return semop_completed;
876 }
877
878 /**
879 * do_smart_wakeup_zero - wakeup all wait for zero tasks
880 * @sma: semaphore array
881 * @sops: operations that were performed
882 * @nsops: number of operations
883 * @wake_q: lockless wake-queue head
884 *
885 * Checks all required queue for wait-for-zero operations, based
886 * on the actual changes that were performed on the semaphore array.
887 * The function returns 1 if at least one operation was completed successfully.
888 */
889 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
890 int nsops, struct wake_q_head *wake_q)
891 {
892 int i;
893 int semop_completed = 0;
894 int got_zero = 0;
895
896 /* first: the per-semaphore queues, if known */
897 if (sops) {
898 for (i = 0; i < nsops; i++) {
899 int num = sops[i].sem_num;
900
901 if (sma->sems[num].semval == 0) {
902 got_zero = 1;
903 semop_completed |= wake_const_ops(sma, num, wake_q);
904 }
905 }
906 } else {
907 /*
908 * No sops means modified semaphores not known.
909 * Assume all were changed.
910 */
911 for (i = 0; i < sma->sem_nsems; i++) {
912 if (sma->sems[i].semval == 0) {
913 got_zero = 1;
914 semop_completed |= wake_const_ops(sma, i, wake_q);
915 }
916 }
917 }
918 /*
919 * If one of the modified semaphores got 0,
920 * then check the global queue, too.
921 */
922 if (got_zero)
923 semop_completed |= wake_const_ops(sma, -1, wake_q);
924
925 return semop_completed;
926 }
927
928
929 /**
930 * update_queue - look for tasks that can be completed.
931 * @sma: semaphore array.
932 * @semnum: semaphore that was modified.
933 * @wake_q: lockless wake-queue head.
934 *
935 * update_queue must be called after a semaphore in a semaphore array
936 * was modified. If multiple semaphores were modified, update_queue must
937 * be called with semnum = -1, as well as with the number of each modified
938 * semaphore.
939 * The tasks that must be woken up are added to @wake_q. The return code
940 * is stored in q->pid.
941 * The function internally checks if const operations can now succeed.
942 *
943 * The function return 1 if at least one semop was completed successfully.
944 */
945 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
946 {
947 struct sem_queue *q, *tmp;
948 struct list_head *pending_list;
949 int semop_completed = 0;
950
951 if (semnum == -1)
952 pending_list = &sma->pending_alter;
953 else
954 pending_list = &sma->sems[semnum].pending_alter;
955
956 again:
957 list_for_each_entry_safe(q, tmp, pending_list, list) {
958 int error, restart;
959
960 /* If we are scanning the single sop, per-semaphore list of
961 * one semaphore and that semaphore is 0, then it is not
962 * necessary to scan further: simple increments
963 * that affect only one entry succeed immediately and cannot
964 * be in the per semaphore pending queue, and decrements
965 * cannot be successful if the value is already 0.
966 */
967 if (semnum != -1 && sma->sems[semnum].semval == 0)
968 break;
969
970 error = perform_atomic_semop(sma, q);
971
972 /* Does q->sleeper still need to sleep? */
973 if (error > 0)
974 continue;
975
976 unlink_queue(sma, q);
977
978 if (error) {
979 restart = 0;
980 } else {
981 semop_completed = 1;
982 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
983 restart = check_restart(sma, q);
984 }
985
986 wake_up_sem_queue_prepare(q, error, wake_q);
987 if (restart)
988 goto again;
989 }
990 return semop_completed;
991 }
992
993 /**
994 * set_semotime - set sem_otime
995 * @sma: semaphore array
996 * @sops: operations that modified the array, may be NULL
997 *
998 * sem_otime is replicated to avoid cache line trashing.
999 * This function sets one instance to the current time.
1000 */
1001 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1002 {
1003 if (sops == NULL) {
1004 sma->sems[0].sem_otime = ktime_get_real_seconds();
1005 } else {
1006 sma->sems[sops[0].sem_num].sem_otime =
1007 ktime_get_real_seconds();
1008 }
1009 }
1010
1011 /**
1012 * do_smart_update - optimized update_queue
1013 * @sma: semaphore array
1014 * @sops: operations that were performed
1015 * @nsops: number of operations
1016 * @otime: force setting otime
1017 * @wake_q: lockless wake-queue head
1018 *
1019 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1020 * based on the actual changes that were performed on the semaphore array.
1021 * Note that the function does not do the actual wake-up: the caller is
1022 * responsible for calling wake_up_q().
1023 * It is safe to perform this call after dropping all locks.
1024 */
1025 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1026 int otime, struct wake_q_head *wake_q)
1027 {
1028 int i;
1029
1030 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1031
1032 if (!list_empty(&sma->pending_alter)) {
1033 /* semaphore array uses the global queue - just process it. */
1034 otime |= update_queue(sma, -1, wake_q);
1035 } else {
1036 if (!sops) {
1037 /*
1038 * No sops, thus the modified semaphores are not
1039 * known. Check all.
1040 */
1041 for (i = 0; i < sma->sem_nsems; i++)
1042 otime |= update_queue(sma, i, wake_q);
1043 } else {
1044 /*
1045 * Check the semaphores that were increased:
1046 * - No complex ops, thus all sleeping ops are
1047 * decrease.
1048 * - if we decreased the value, then any sleeping
1049 * semaphore ops wont be able to run: If the
1050 * previous value was too small, then the new
1051 * value will be too small, too.
1052 */
1053 for (i = 0; i < nsops; i++) {
1054 if (sops[i].sem_op > 0) {
1055 otime |= update_queue(sma,
1056 sops[i].sem_num, wake_q);
1057 }
1058 }
1059 }
1060 }
1061 if (otime)
1062 set_semotime(sma, sops);
1063 }
1064
1065 /*
1066 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1067 */
1068 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1069 bool count_zero)
1070 {
1071 struct sembuf *sop = q->blocking;
1072
1073 /*
1074 * Linux always (since 0.99.10) reported a task as sleeping on all
1075 * semaphores. This violates SUS, therefore it was changed to the
1076 * standard compliant behavior.
1077 * Give the administrators a chance to notice that an application
1078 * might misbehave because it relies on the Linux behavior.
1079 */
1080 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1081 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1082 current->comm, task_pid_nr(current));
1083
1084 if (sop->sem_num != semnum)
1085 return 0;
1086
1087 if (count_zero && sop->sem_op == 0)
1088 return 1;
1089 if (!count_zero && sop->sem_op < 0)
1090 return 1;
1091
1092 return 0;
1093 }
1094
1095 /* The following counts are associated to each semaphore:
1096 * semncnt number of tasks waiting on semval being nonzero
1097 * semzcnt number of tasks waiting on semval being zero
1098 *
1099 * Per definition, a task waits only on the semaphore of the first semop
1100 * that cannot proceed, even if additional operation would block, too.
1101 */
1102 static int count_semcnt(struct sem_array *sma, ushort semnum,
1103 bool count_zero)
1104 {
1105 struct list_head *l;
1106 struct sem_queue *q;
1107 int semcnt;
1108
1109 semcnt = 0;
1110 /* First: check the simple operations. They are easy to evaluate */
1111 if (count_zero)
1112 l = &sma->sems[semnum].pending_const;
1113 else
1114 l = &sma->sems[semnum].pending_alter;
1115
1116 list_for_each_entry(q, l, list) {
1117 /* all task on a per-semaphore list sleep on exactly
1118 * that semaphore
1119 */
1120 semcnt++;
1121 }
1122
1123 /* Then: check the complex operations. */
1124 list_for_each_entry(q, &sma->pending_alter, list) {
1125 semcnt += check_qop(sma, semnum, q, count_zero);
1126 }
1127 if (count_zero) {
1128 list_for_each_entry(q, &sma->pending_const, list) {
1129 semcnt += check_qop(sma, semnum, q, count_zero);
1130 }
1131 }
1132 return semcnt;
1133 }
1134
1135 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1136 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1137 * remains locked on exit.
1138 */
1139 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1140 {
1141 struct sem_undo *un, *tu;
1142 struct sem_queue *q, *tq;
1143 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1144 int i;
1145 DEFINE_WAKE_Q(wake_q);
1146
1147 /* Free the existing undo structures for this semaphore set. */
1148 ipc_assert_locked_object(&sma->sem_perm);
1149 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1150 list_del(&un->list_id);
1151 spin_lock(&un->ulp->lock);
1152 un->semid = -1;
1153 list_del_rcu(&un->list_proc);
1154 spin_unlock(&un->ulp->lock);
1155 kfree_rcu(un, rcu);
1156 }
1157
1158 /* Wake up all pending processes and let them fail with EIDRM. */
1159 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1160 unlink_queue(sma, q);
1161 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1162 }
1163
1164 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1165 unlink_queue(sma, q);
1166 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1167 }
1168 for (i = 0; i < sma->sem_nsems; i++) {
1169 struct sem *sem = &sma->sems[i];
1170 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1171 unlink_queue(sma, q);
1172 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1173 }
1174 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1175 unlink_queue(sma, q);
1176 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1177 }
1178 ipc_update_pid(&sem->sempid, NULL);
1179 }
1180
1181 /* Remove the semaphore set from the IDR */
1182 sem_rmid(ns, sma);
1183 sem_unlock(sma, -1);
1184 rcu_read_unlock();
1185
1186 wake_up_q(&wake_q);
1187 ns->used_sems -= sma->sem_nsems;
1188 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1189 }
1190
1191 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1192 {
1193 switch (version) {
1194 case IPC_64:
1195 return copy_to_user(buf, in, sizeof(*in));
1196 case IPC_OLD:
1197 {
1198 struct semid_ds out;
1199
1200 memset(&out, 0, sizeof(out));
1201
1202 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1203
1204 out.sem_otime = in->sem_otime;
1205 out.sem_ctime = in->sem_ctime;
1206 out.sem_nsems = in->sem_nsems;
1207
1208 return copy_to_user(buf, &out, sizeof(out));
1209 }
1210 default:
1211 return -EINVAL;
1212 }
1213 }
1214
1215 static time64_t get_semotime(struct sem_array *sma)
1216 {
1217 int i;
1218 time64_t res;
1219
1220 res = sma->sems[0].sem_otime;
1221 for (i = 1; i < sma->sem_nsems; i++) {
1222 time64_t to = sma->sems[i].sem_otime;
1223
1224 if (to > res)
1225 res = to;
1226 }
1227 return res;
1228 }
1229
1230 static int semctl_stat(struct ipc_namespace *ns, int semid,
1231 int cmd, struct semid64_ds *semid64)
1232 {
1233 struct sem_array *sma;
1234 time64_t semotime;
1235 int err;
1236
1237 memset(semid64, 0, sizeof(*semid64));
1238
1239 rcu_read_lock();
1240 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1241 sma = sem_obtain_object(ns, semid);
1242 if (IS_ERR(sma)) {
1243 err = PTR_ERR(sma);
1244 goto out_unlock;
1245 }
1246 } else { /* IPC_STAT */
1247 sma = sem_obtain_object_check(ns, semid);
1248 if (IS_ERR(sma)) {
1249 err = PTR_ERR(sma);
1250 goto out_unlock;
1251 }
1252 }
1253
1254 /* see comment for SHM_STAT_ANY */
1255 if (cmd == SEM_STAT_ANY)
1256 audit_ipc_obj(&sma->sem_perm);
1257 else {
1258 err = -EACCES;
1259 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1260 goto out_unlock;
1261 }
1262
1263 err = security_sem_semctl(&sma->sem_perm, cmd);
1264 if (err)
1265 goto out_unlock;
1266
1267 ipc_lock_object(&sma->sem_perm);
1268
1269 if (!ipc_valid_object(&sma->sem_perm)) {
1270 ipc_unlock_object(&sma->sem_perm);
1271 err = -EIDRM;
1272 goto out_unlock;
1273 }
1274
1275 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1276 semotime = get_semotime(sma);
1277 semid64->sem_otime = semotime;
1278 semid64->sem_ctime = sma->sem_ctime;
1279 #ifndef CONFIG_64BIT
1280 semid64->sem_otime_high = semotime >> 32;
1281 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1282 #endif
1283 semid64->sem_nsems = sma->sem_nsems;
1284
1285 if (cmd == IPC_STAT) {
1286 /*
1287 * As defined in SUS:
1288 * Return 0 on success
1289 */
1290 err = 0;
1291 } else {
1292 /*
1293 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1294 * Return the full id, including the sequence number
1295 */
1296 err = sma->sem_perm.id;
1297 }
1298 ipc_unlock_object(&sma->sem_perm);
1299 out_unlock:
1300 rcu_read_unlock();
1301 return err;
1302 }
1303
1304 static int semctl_info(struct ipc_namespace *ns, int semid,
1305 int cmd, void __user *p)
1306 {
1307 struct seminfo seminfo;
1308 int max_idx;
1309 int err;
1310
1311 err = security_sem_semctl(NULL, cmd);
1312 if (err)
1313 return err;
1314
1315 memset(&seminfo, 0, sizeof(seminfo));
1316 seminfo.semmni = ns->sc_semmni;
1317 seminfo.semmns = ns->sc_semmns;
1318 seminfo.semmsl = ns->sc_semmsl;
1319 seminfo.semopm = ns->sc_semopm;
1320 seminfo.semvmx = SEMVMX;
1321 seminfo.semmnu = SEMMNU;
1322 seminfo.semmap = SEMMAP;
1323 seminfo.semume = SEMUME;
1324 down_read(&sem_ids(ns).rwsem);
1325 if (cmd == SEM_INFO) {
1326 seminfo.semusz = sem_ids(ns).in_use;
1327 seminfo.semaem = ns->used_sems;
1328 } else {
1329 seminfo.semusz = SEMUSZ;
1330 seminfo.semaem = SEMAEM;
1331 }
1332 max_idx = ipc_get_maxidx(&sem_ids(ns));
1333 up_read(&sem_ids(ns).rwsem);
1334 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1335 return -EFAULT;
1336 return (max_idx < 0) ? 0 : max_idx;
1337 }
1338
1339 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1340 int val)
1341 {
1342 struct sem_undo *un;
1343 struct sem_array *sma;
1344 struct sem *curr;
1345 int err;
1346 DEFINE_WAKE_Q(wake_q);
1347
1348 if (val > SEMVMX || val < 0)
1349 return -ERANGE;
1350
1351 rcu_read_lock();
1352 sma = sem_obtain_object_check(ns, semid);
1353 if (IS_ERR(sma)) {
1354 rcu_read_unlock();
1355 return PTR_ERR(sma);
1356 }
1357
1358 if (semnum < 0 || semnum >= sma->sem_nsems) {
1359 rcu_read_unlock();
1360 return -EINVAL;
1361 }
1362
1363
1364 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1365 rcu_read_unlock();
1366 return -EACCES;
1367 }
1368
1369 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1370 if (err) {
1371 rcu_read_unlock();
1372 return -EACCES;
1373 }
1374
1375 sem_lock(sma, NULL, -1);
1376
1377 if (!ipc_valid_object(&sma->sem_perm)) {
1378 sem_unlock(sma, -1);
1379 rcu_read_unlock();
1380 return -EIDRM;
1381 }
1382
1383 semnum = array_index_nospec(semnum, sma->sem_nsems);
1384 curr = &sma->sems[semnum];
1385
1386 ipc_assert_locked_object(&sma->sem_perm);
1387 list_for_each_entry(un, &sma->list_id, list_id)
1388 un->semadj[semnum] = 0;
1389
1390 curr->semval = val;
1391 ipc_update_pid(&curr->sempid, task_tgid(current));
1392 sma->sem_ctime = ktime_get_real_seconds();
1393 /* maybe some queued-up processes were waiting for this */
1394 do_smart_update(sma, NULL, 0, 0, &wake_q);
1395 sem_unlock(sma, -1);
1396 rcu_read_unlock();
1397 wake_up_q(&wake_q);
1398 return 0;
1399 }
1400
1401 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1402 int cmd, void __user *p)
1403 {
1404 struct sem_array *sma;
1405 struct sem *curr;
1406 int err, nsems;
1407 ushort fast_sem_io[SEMMSL_FAST];
1408 ushort *sem_io = fast_sem_io;
1409 DEFINE_WAKE_Q(wake_q);
1410
1411 rcu_read_lock();
1412 sma = sem_obtain_object_check(ns, semid);
1413 if (IS_ERR(sma)) {
1414 rcu_read_unlock();
1415 return PTR_ERR(sma);
1416 }
1417
1418 nsems = sma->sem_nsems;
1419
1420 err = -EACCES;
1421 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1422 goto out_rcu_wakeup;
1423
1424 err = security_sem_semctl(&sma->sem_perm, cmd);
1425 if (err)
1426 goto out_rcu_wakeup;
1427
1428 err = -EACCES;
1429 switch (cmd) {
1430 case GETALL:
1431 {
1432 ushort __user *array = p;
1433 int i;
1434
1435 sem_lock(sma, NULL, -1);
1436 if (!ipc_valid_object(&sma->sem_perm)) {
1437 err = -EIDRM;
1438 goto out_unlock;
1439 }
1440 if (nsems > SEMMSL_FAST) {
1441 if (!ipc_rcu_getref(&sma->sem_perm)) {
1442 err = -EIDRM;
1443 goto out_unlock;
1444 }
1445 sem_unlock(sma, -1);
1446 rcu_read_unlock();
1447 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1448 GFP_KERNEL);
1449 if (sem_io == NULL) {
1450 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1451 return -ENOMEM;
1452 }
1453
1454 rcu_read_lock();
1455 sem_lock_and_putref(sma);
1456 if (!ipc_valid_object(&sma->sem_perm)) {
1457 err = -EIDRM;
1458 goto out_unlock;
1459 }
1460 }
1461 for (i = 0; i < sma->sem_nsems; i++)
1462 sem_io[i] = sma->sems[i].semval;
1463 sem_unlock(sma, -1);
1464 rcu_read_unlock();
1465 err = 0;
1466 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1467 err = -EFAULT;
1468 goto out_free;
1469 }
1470 case SETALL:
1471 {
1472 int i;
1473 struct sem_undo *un;
1474
1475 if (!ipc_rcu_getref(&sma->sem_perm)) {
1476 err = -EIDRM;
1477 goto out_rcu_wakeup;
1478 }
1479 rcu_read_unlock();
1480
1481 if (nsems > SEMMSL_FAST) {
1482 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1483 GFP_KERNEL);
1484 if (sem_io == NULL) {
1485 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1486 return -ENOMEM;
1487 }
1488 }
1489
1490 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1491 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1492 err = -EFAULT;
1493 goto out_free;
1494 }
1495
1496 for (i = 0; i < nsems; i++) {
1497 if (sem_io[i] > SEMVMX) {
1498 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1499 err = -ERANGE;
1500 goto out_free;
1501 }
1502 }
1503 rcu_read_lock();
1504 sem_lock_and_putref(sma);
1505 if (!ipc_valid_object(&sma->sem_perm)) {
1506 err = -EIDRM;
1507 goto out_unlock;
1508 }
1509
1510 for (i = 0; i < nsems; i++) {
1511 sma->sems[i].semval = sem_io[i];
1512 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1513 }
1514
1515 ipc_assert_locked_object(&sma->sem_perm);
1516 list_for_each_entry(un, &sma->list_id, list_id) {
1517 for (i = 0; i < nsems; i++)
1518 un->semadj[i] = 0;
1519 }
1520 sma->sem_ctime = ktime_get_real_seconds();
1521 /* maybe some queued-up processes were waiting for this */
1522 do_smart_update(sma, NULL, 0, 0, &wake_q);
1523 err = 0;
1524 goto out_unlock;
1525 }
1526 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1527 }
1528 err = -EINVAL;
1529 if (semnum < 0 || semnum >= nsems)
1530 goto out_rcu_wakeup;
1531
1532 sem_lock(sma, NULL, -1);
1533 if (!ipc_valid_object(&sma->sem_perm)) {
1534 err = -EIDRM;
1535 goto out_unlock;
1536 }
1537
1538 semnum = array_index_nospec(semnum, nsems);
1539 curr = &sma->sems[semnum];
1540
1541 switch (cmd) {
1542 case GETVAL:
1543 err = curr->semval;
1544 goto out_unlock;
1545 case GETPID:
1546 err = pid_vnr(curr->sempid);
1547 goto out_unlock;
1548 case GETNCNT:
1549 err = count_semcnt(sma, semnum, 0);
1550 goto out_unlock;
1551 case GETZCNT:
1552 err = count_semcnt(sma, semnum, 1);
1553 goto out_unlock;
1554 }
1555
1556 out_unlock:
1557 sem_unlock(sma, -1);
1558 out_rcu_wakeup:
1559 rcu_read_unlock();
1560 wake_up_q(&wake_q);
1561 out_free:
1562 if (sem_io != fast_sem_io)
1563 kvfree(sem_io);
1564 return err;
1565 }
1566
1567 static inline unsigned long
1568 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1569 {
1570 switch (version) {
1571 case IPC_64:
1572 if (copy_from_user(out, buf, sizeof(*out)))
1573 return -EFAULT;
1574 return 0;
1575 case IPC_OLD:
1576 {
1577 struct semid_ds tbuf_old;
1578
1579 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1580 return -EFAULT;
1581
1582 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1583 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1584 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1585
1586 return 0;
1587 }
1588 default:
1589 return -EINVAL;
1590 }
1591 }
1592
1593 /*
1594 * This function handles some semctl commands which require the rwsem
1595 * to be held in write mode.
1596 * NOTE: no locks must be held, the rwsem is taken inside this function.
1597 */
1598 static int semctl_down(struct ipc_namespace *ns, int semid,
1599 int cmd, struct semid64_ds *semid64)
1600 {
1601 struct sem_array *sma;
1602 int err;
1603 struct kern_ipc_perm *ipcp;
1604
1605 down_write(&sem_ids(ns).rwsem);
1606 rcu_read_lock();
1607
1608 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1609 &semid64->sem_perm, 0);
1610 if (IS_ERR(ipcp)) {
1611 err = PTR_ERR(ipcp);
1612 goto out_unlock1;
1613 }
1614
1615 sma = container_of(ipcp, struct sem_array, sem_perm);
1616
1617 err = security_sem_semctl(&sma->sem_perm, cmd);
1618 if (err)
1619 goto out_unlock1;
1620
1621 switch (cmd) {
1622 case IPC_RMID:
1623 sem_lock(sma, NULL, -1);
1624 /* freeary unlocks the ipc object and rcu */
1625 freeary(ns, ipcp);
1626 goto out_up;
1627 case IPC_SET:
1628 sem_lock(sma, NULL, -1);
1629 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1630 if (err)
1631 goto out_unlock0;
1632 sma->sem_ctime = ktime_get_real_seconds();
1633 break;
1634 default:
1635 err = -EINVAL;
1636 goto out_unlock1;
1637 }
1638
1639 out_unlock0:
1640 sem_unlock(sma, -1);
1641 out_unlock1:
1642 rcu_read_unlock();
1643 out_up:
1644 up_write(&sem_ids(ns).rwsem);
1645 return err;
1646 }
1647
1648 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1649 {
1650 struct ipc_namespace *ns;
1651 void __user *p = (void __user *)arg;
1652 struct semid64_ds semid64;
1653 int err;
1654
1655 if (semid < 0)
1656 return -EINVAL;
1657
1658 ns = current->nsproxy->ipc_ns;
1659
1660 switch (cmd) {
1661 case IPC_INFO:
1662 case SEM_INFO:
1663 return semctl_info(ns, semid, cmd, p);
1664 case IPC_STAT:
1665 case SEM_STAT:
1666 case SEM_STAT_ANY:
1667 err = semctl_stat(ns, semid, cmd, &semid64);
1668 if (err < 0)
1669 return err;
1670 if (copy_semid_to_user(p, &semid64, version))
1671 err = -EFAULT;
1672 return err;
1673 case GETALL:
1674 case GETVAL:
1675 case GETPID:
1676 case GETNCNT:
1677 case GETZCNT:
1678 case SETALL:
1679 return semctl_main(ns, semid, semnum, cmd, p);
1680 case SETVAL: {
1681 int val;
1682 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1683 /* big-endian 64bit */
1684 val = arg >> 32;
1685 #else
1686 /* 32bit or little-endian 64bit */
1687 val = arg;
1688 #endif
1689 return semctl_setval(ns, semid, semnum, val);
1690 }
1691 case IPC_SET:
1692 if (copy_semid_from_user(&semid64, p, version))
1693 return -EFAULT;
1694 fallthrough;
1695 case IPC_RMID:
1696 return semctl_down(ns, semid, cmd, &semid64);
1697 default:
1698 return -EINVAL;
1699 }
1700 }
1701
1702 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1703 {
1704 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1705 }
1706
1707 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1708 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1709 {
1710 int version = ipc_parse_version(&cmd);
1711
1712 return ksys_semctl(semid, semnum, cmd, arg, version);
1713 }
1714
1715 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1716 {
1717 return ksys_old_semctl(semid, semnum, cmd, arg);
1718 }
1719 #endif
1720
1721 #ifdef CONFIG_COMPAT
1722
1723 struct compat_semid_ds {
1724 struct compat_ipc_perm sem_perm;
1725 old_time32_t sem_otime;
1726 old_time32_t sem_ctime;
1727 compat_uptr_t sem_base;
1728 compat_uptr_t sem_pending;
1729 compat_uptr_t sem_pending_last;
1730 compat_uptr_t undo;
1731 unsigned short sem_nsems;
1732 };
1733
1734 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1735 int version)
1736 {
1737 memset(out, 0, sizeof(*out));
1738 if (version == IPC_64) {
1739 struct compat_semid64_ds __user *p = buf;
1740 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1741 } else {
1742 struct compat_semid_ds __user *p = buf;
1743 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1744 }
1745 }
1746
1747 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1748 int version)
1749 {
1750 if (version == IPC_64) {
1751 struct compat_semid64_ds v;
1752 memset(&v, 0, sizeof(v));
1753 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1754 v.sem_otime = lower_32_bits(in->sem_otime);
1755 v.sem_otime_high = upper_32_bits(in->sem_otime);
1756 v.sem_ctime = lower_32_bits(in->sem_ctime);
1757 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1758 v.sem_nsems = in->sem_nsems;
1759 return copy_to_user(buf, &v, sizeof(v));
1760 } else {
1761 struct compat_semid_ds v;
1762 memset(&v, 0, sizeof(v));
1763 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1764 v.sem_otime = in->sem_otime;
1765 v.sem_ctime = in->sem_ctime;
1766 v.sem_nsems = in->sem_nsems;
1767 return copy_to_user(buf, &v, sizeof(v));
1768 }
1769 }
1770
1771 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1772 {
1773 void __user *p = compat_ptr(arg);
1774 struct ipc_namespace *ns;
1775 struct semid64_ds semid64;
1776 int err;
1777
1778 ns = current->nsproxy->ipc_ns;
1779
1780 if (semid < 0)
1781 return -EINVAL;
1782
1783 switch (cmd & (~IPC_64)) {
1784 case IPC_INFO:
1785 case SEM_INFO:
1786 return semctl_info(ns, semid, cmd, p);
1787 case IPC_STAT:
1788 case SEM_STAT:
1789 case SEM_STAT_ANY:
1790 err = semctl_stat(ns, semid, cmd, &semid64);
1791 if (err < 0)
1792 return err;
1793 if (copy_compat_semid_to_user(p, &semid64, version))
1794 err = -EFAULT;
1795 return err;
1796 case GETVAL:
1797 case GETPID:
1798 case GETNCNT:
1799 case GETZCNT:
1800 case GETALL:
1801 case SETALL:
1802 return semctl_main(ns, semid, semnum, cmd, p);
1803 case SETVAL:
1804 return semctl_setval(ns, semid, semnum, arg);
1805 case IPC_SET:
1806 if (copy_compat_semid_from_user(&semid64, p, version))
1807 return -EFAULT;
1808 fallthrough;
1809 case IPC_RMID:
1810 return semctl_down(ns, semid, cmd, &semid64);
1811 default:
1812 return -EINVAL;
1813 }
1814 }
1815
1816 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1817 {
1818 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1819 }
1820
1821 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1822 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1823 {
1824 int version = compat_ipc_parse_version(&cmd);
1825
1826 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1827 }
1828
1829 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1830 {
1831 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1832 }
1833 #endif
1834 #endif
1835
1836 /* If the task doesn't already have a undo_list, then allocate one
1837 * here. We guarantee there is only one thread using this undo list,
1838 * and current is THE ONE
1839 *
1840 * If this allocation and assignment succeeds, but later
1841 * portions of this code fail, there is no need to free the sem_undo_list.
1842 * Just let it stay associated with the task, and it'll be freed later
1843 * at exit time.
1844 *
1845 * This can block, so callers must hold no locks.
1846 */
1847 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1848 {
1849 struct sem_undo_list *undo_list;
1850
1851 undo_list = current->sysvsem.undo_list;
1852 if (!undo_list) {
1853 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1854 if (undo_list == NULL)
1855 return -ENOMEM;
1856 spin_lock_init(&undo_list->lock);
1857 refcount_set(&undo_list->refcnt, 1);
1858 INIT_LIST_HEAD(&undo_list->list_proc);
1859
1860 current->sysvsem.undo_list = undo_list;
1861 }
1862 *undo_listp = undo_list;
1863 return 0;
1864 }
1865
1866 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1867 {
1868 struct sem_undo *un;
1869
1870 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1871 spin_is_locked(&ulp->lock)) {
1872 if (un->semid == semid)
1873 return un;
1874 }
1875 return NULL;
1876 }
1877
1878 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1879 {
1880 struct sem_undo *un;
1881
1882 assert_spin_locked(&ulp->lock);
1883
1884 un = __lookup_undo(ulp, semid);
1885 if (un) {
1886 list_del_rcu(&un->list_proc);
1887 list_add_rcu(&un->list_proc, &ulp->list_proc);
1888 }
1889 return un;
1890 }
1891
1892 /**
1893 * find_alloc_undo - lookup (and if not present create) undo array
1894 * @ns: namespace
1895 * @semid: semaphore array id
1896 *
1897 * The function looks up (and if not present creates) the undo structure.
1898 * The size of the undo structure depends on the size of the semaphore
1899 * array, thus the alloc path is not that straightforward.
1900 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1901 * performs a rcu_read_lock().
1902 */
1903 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1904 {
1905 struct sem_array *sma;
1906 struct sem_undo_list *ulp;
1907 struct sem_undo *un, *new;
1908 int nsems, error;
1909
1910 error = get_undo_list(&ulp);
1911 if (error)
1912 return ERR_PTR(error);
1913
1914 rcu_read_lock();
1915 spin_lock(&ulp->lock);
1916 un = lookup_undo(ulp, semid);
1917 spin_unlock(&ulp->lock);
1918 if (likely(un != NULL))
1919 goto out;
1920
1921 /* no undo structure around - allocate one. */
1922 /* step 1: figure out the size of the semaphore array */
1923 sma = sem_obtain_object_check(ns, semid);
1924 if (IS_ERR(sma)) {
1925 rcu_read_unlock();
1926 return ERR_CAST(sma);
1927 }
1928
1929 nsems = sma->sem_nsems;
1930 if (!ipc_rcu_getref(&sma->sem_perm)) {
1931 rcu_read_unlock();
1932 un = ERR_PTR(-EIDRM);
1933 goto out;
1934 }
1935 rcu_read_unlock();
1936
1937 /* step 2: allocate new undo structure */
1938 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1939 if (!new) {
1940 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1941 return ERR_PTR(-ENOMEM);
1942 }
1943
1944 /* step 3: Acquire the lock on semaphore array */
1945 rcu_read_lock();
1946 sem_lock_and_putref(sma);
1947 if (!ipc_valid_object(&sma->sem_perm)) {
1948 sem_unlock(sma, -1);
1949 rcu_read_unlock();
1950 kfree(new);
1951 un = ERR_PTR(-EIDRM);
1952 goto out;
1953 }
1954 spin_lock(&ulp->lock);
1955
1956 /*
1957 * step 4: check for races: did someone else allocate the undo struct?
1958 */
1959 un = lookup_undo(ulp, semid);
1960 if (un) {
1961 kfree(new);
1962 goto success;
1963 }
1964 /* step 5: initialize & link new undo structure */
1965 new->semadj = (short *) &new[1];
1966 new->ulp = ulp;
1967 new->semid = semid;
1968 assert_spin_locked(&ulp->lock);
1969 list_add_rcu(&new->list_proc, &ulp->list_proc);
1970 ipc_assert_locked_object(&sma->sem_perm);
1971 list_add(&new->list_id, &sma->list_id);
1972 un = new;
1973
1974 success:
1975 spin_unlock(&ulp->lock);
1976 sem_unlock(sma, -1);
1977 out:
1978 return un;
1979 }
1980
1981 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1982 unsigned nsops, const struct timespec64 *timeout)
1983 {
1984 int error = -EINVAL;
1985 struct sem_array *sma;
1986 struct sembuf fast_sops[SEMOPM_FAST];
1987 struct sembuf *sops = fast_sops, *sop;
1988 struct sem_undo *un;
1989 int max, locknum;
1990 bool undos = false, alter = false, dupsop = false;
1991 struct sem_queue queue;
1992 unsigned long dup = 0, jiffies_left = 0;
1993 struct ipc_namespace *ns;
1994
1995 ns = current->nsproxy->ipc_ns;
1996
1997 if (nsops < 1 || semid < 0)
1998 return -EINVAL;
1999 if (nsops > ns->sc_semopm)
2000 return -E2BIG;
2001 if (nsops > SEMOPM_FAST) {
2002 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2003 if (sops == NULL)
2004 return -ENOMEM;
2005 }
2006
2007 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2008 error = -EFAULT;
2009 goto out_free;
2010 }
2011
2012 if (timeout) {
2013 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2014 timeout->tv_nsec >= 1000000000L) {
2015 error = -EINVAL;
2016 goto out_free;
2017 }
2018 jiffies_left = timespec64_to_jiffies(timeout);
2019 }
2020
2021 max = 0;
2022 for (sop = sops; sop < sops + nsops; sop++) {
2023 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2024
2025 if (sop->sem_num >= max)
2026 max = sop->sem_num;
2027 if (sop->sem_flg & SEM_UNDO)
2028 undos = true;
2029 if (dup & mask) {
2030 /*
2031 * There was a previous alter access that appears
2032 * to have accessed the same semaphore, thus use
2033 * the dupsop logic. "appears", because the detection
2034 * can only check % BITS_PER_LONG.
2035 */
2036 dupsop = true;
2037 }
2038 if (sop->sem_op != 0) {
2039 alter = true;
2040 dup |= mask;
2041 }
2042 }
2043
2044 if (undos) {
2045 /* On success, find_alloc_undo takes the rcu_read_lock */
2046 un = find_alloc_undo(ns, semid);
2047 if (IS_ERR(un)) {
2048 error = PTR_ERR(un);
2049 goto out_free;
2050 }
2051 } else {
2052 un = NULL;
2053 rcu_read_lock();
2054 }
2055
2056 sma = sem_obtain_object_check(ns, semid);
2057 if (IS_ERR(sma)) {
2058 rcu_read_unlock();
2059 error = PTR_ERR(sma);
2060 goto out_free;
2061 }
2062
2063 error = -EFBIG;
2064 if (max >= sma->sem_nsems) {
2065 rcu_read_unlock();
2066 goto out_free;
2067 }
2068
2069 error = -EACCES;
2070 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2071 rcu_read_unlock();
2072 goto out_free;
2073 }
2074
2075 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2076 if (error) {
2077 rcu_read_unlock();
2078 goto out_free;
2079 }
2080
2081 error = -EIDRM;
2082 locknum = sem_lock(sma, sops, nsops);
2083 /*
2084 * We eventually might perform the following check in a lockless
2085 * fashion, considering ipc_valid_object() locking constraints.
2086 * If nsops == 1 and there is no contention for sem_perm.lock, then
2087 * only a per-semaphore lock is held and it's OK to proceed with the
2088 * check below. More details on the fine grained locking scheme
2089 * entangled here and why it's RMID race safe on comments at sem_lock()
2090 */
2091 if (!ipc_valid_object(&sma->sem_perm))
2092 goto out_unlock_free;
2093 /*
2094 * semid identifiers are not unique - find_alloc_undo may have
2095 * allocated an undo structure, it was invalidated by an RMID
2096 * and now a new array with received the same id. Check and fail.
2097 * This case can be detected checking un->semid. The existence of
2098 * "un" itself is guaranteed by rcu.
2099 */
2100 if (un && un->semid == -1)
2101 goto out_unlock_free;
2102
2103 queue.sops = sops;
2104 queue.nsops = nsops;
2105 queue.undo = un;
2106 queue.pid = task_tgid(current);
2107 queue.alter = alter;
2108 queue.dupsop = dupsop;
2109
2110 error = perform_atomic_semop(sma, &queue);
2111 if (error == 0) { /* non-blocking succesfull path */
2112 DEFINE_WAKE_Q(wake_q);
2113
2114 /*
2115 * If the operation was successful, then do
2116 * the required updates.
2117 */
2118 if (alter)
2119 do_smart_update(sma, sops, nsops, 1, &wake_q);
2120 else
2121 set_semotime(sma, sops);
2122
2123 sem_unlock(sma, locknum);
2124 rcu_read_unlock();
2125 wake_up_q(&wake_q);
2126
2127 goto out_free;
2128 }
2129 if (error < 0) /* non-blocking error path */
2130 goto out_unlock_free;
2131
2132 /*
2133 * We need to sleep on this operation, so we put the current
2134 * task into the pending queue and go to sleep.
2135 */
2136 if (nsops == 1) {
2137 struct sem *curr;
2138 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2139 curr = &sma->sems[idx];
2140
2141 if (alter) {
2142 if (sma->complex_count) {
2143 list_add_tail(&queue.list,
2144 &sma->pending_alter);
2145 } else {
2146
2147 list_add_tail(&queue.list,
2148 &curr->pending_alter);
2149 }
2150 } else {
2151 list_add_tail(&queue.list, &curr->pending_const);
2152 }
2153 } else {
2154 if (!sma->complex_count)
2155 merge_queues(sma);
2156
2157 if (alter)
2158 list_add_tail(&queue.list, &sma->pending_alter);
2159 else
2160 list_add_tail(&queue.list, &sma->pending_const);
2161
2162 sma->complex_count++;
2163 }
2164
2165 do {
2166 /* memory ordering ensured by the lock in sem_lock() */
2167 WRITE_ONCE(queue.status, -EINTR);
2168 queue.sleeper = current;
2169
2170 /* memory ordering is ensured by the lock in sem_lock() */
2171 __set_current_state(TASK_INTERRUPTIBLE);
2172 sem_unlock(sma, locknum);
2173 rcu_read_unlock();
2174
2175 if (timeout)
2176 jiffies_left = schedule_timeout(jiffies_left);
2177 else
2178 schedule();
2179
2180 /*
2181 * fastpath: the semop has completed, either successfully or
2182 * not, from the syscall pov, is quite irrelevant to us at this
2183 * point; we're done.
2184 *
2185 * We _do_ care, nonetheless, about being awoken by a signal or
2186 * spuriously. The queue.status is checked again in the
2187 * slowpath (aka after taking sem_lock), such that we can detect
2188 * scenarios where we were awakened externally, during the
2189 * window between wake_q_add() and wake_up_q().
2190 */
2191 error = READ_ONCE(queue.status);
2192 if (error != -EINTR) {
2193 /* see SEM_BARRIER_2 for purpose/pairing */
2194 smp_acquire__after_ctrl_dep();
2195 goto out_free;
2196 }
2197
2198 rcu_read_lock();
2199 locknum = sem_lock(sma, sops, nsops);
2200
2201 if (!ipc_valid_object(&sma->sem_perm))
2202 goto out_unlock_free;
2203
2204 /*
2205 * No necessity for any barrier: We are protect by sem_lock()
2206 */
2207 error = READ_ONCE(queue.status);
2208
2209 /*
2210 * If queue.status != -EINTR we are woken up by another process.
2211 * Leave without unlink_queue(), but with sem_unlock().
2212 */
2213 if (error != -EINTR)
2214 goto out_unlock_free;
2215
2216 /*
2217 * If an interrupt occurred we have to clean up the queue.
2218 */
2219 if (timeout && jiffies_left == 0)
2220 error = -EAGAIN;
2221 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2222
2223 unlink_queue(sma, &queue);
2224
2225 out_unlock_free:
2226 sem_unlock(sma, locknum);
2227 rcu_read_unlock();
2228 out_free:
2229 if (sops != fast_sops)
2230 kvfree(sops);
2231 return error;
2232 }
2233
2234 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2235 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2236 {
2237 if (timeout) {
2238 struct timespec64 ts;
2239 if (get_timespec64(&ts, timeout))
2240 return -EFAULT;
2241 return do_semtimedop(semid, tsops, nsops, &ts);
2242 }
2243 return do_semtimedop(semid, tsops, nsops, NULL);
2244 }
2245
2246 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2247 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2248 {
2249 return ksys_semtimedop(semid, tsops, nsops, timeout);
2250 }
2251
2252 #ifdef CONFIG_COMPAT_32BIT_TIME
2253 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2254 unsigned int nsops,
2255 const struct old_timespec32 __user *timeout)
2256 {
2257 if (timeout) {
2258 struct timespec64 ts;
2259 if (get_old_timespec32(&ts, timeout))
2260 return -EFAULT;
2261 return do_semtimedop(semid, tsems, nsops, &ts);
2262 }
2263 return do_semtimedop(semid, tsems, nsops, NULL);
2264 }
2265
2266 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2267 unsigned int, nsops,
2268 const struct old_timespec32 __user *, timeout)
2269 {
2270 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2271 }
2272 #endif
2273
2274 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2275 unsigned, nsops)
2276 {
2277 return do_semtimedop(semid, tsops, nsops, NULL);
2278 }
2279
2280 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2281 * parent and child tasks.
2282 */
2283
2284 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2285 {
2286 struct sem_undo_list *undo_list;
2287 int error;
2288
2289 if (clone_flags & CLONE_SYSVSEM) {
2290 error = get_undo_list(&undo_list);
2291 if (error)
2292 return error;
2293 refcount_inc(&undo_list->refcnt);
2294 tsk->sysvsem.undo_list = undo_list;
2295 } else
2296 tsk->sysvsem.undo_list = NULL;
2297
2298 return 0;
2299 }
2300
2301 /*
2302 * add semadj values to semaphores, free undo structures.
2303 * undo structures are not freed when semaphore arrays are destroyed
2304 * so some of them may be out of date.
2305 * IMPLEMENTATION NOTE: There is some confusion over whether the
2306 * set of adjustments that needs to be done should be done in an atomic
2307 * manner or not. That is, if we are attempting to decrement the semval
2308 * should we queue up and wait until we can do so legally?
2309 * The original implementation attempted to do this (queue and wait).
2310 * The current implementation does not do so. The POSIX standard
2311 * and SVID should be consulted to determine what behavior is mandated.
2312 */
2313 void exit_sem(struct task_struct *tsk)
2314 {
2315 struct sem_undo_list *ulp;
2316
2317 ulp = tsk->sysvsem.undo_list;
2318 if (!ulp)
2319 return;
2320 tsk->sysvsem.undo_list = NULL;
2321
2322 if (!refcount_dec_and_test(&ulp->refcnt))
2323 return;
2324
2325 for (;;) {
2326 struct sem_array *sma;
2327 struct sem_undo *un;
2328 int semid, i;
2329 DEFINE_WAKE_Q(wake_q);
2330
2331 cond_resched();
2332
2333 rcu_read_lock();
2334 un = list_entry_rcu(ulp->list_proc.next,
2335 struct sem_undo, list_proc);
2336 if (&un->list_proc == &ulp->list_proc) {
2337 /*
2338 * We must wait for freeary() before freeing this ulp,
2339 * in case we raced with last sem_undo. There is a small
2340 * possibility where we exit while freeary() didn't
2341 * finish unlocking sem_undo_list.
2342 */
2343 spin_lock(&ulp->lock);
2344 spin_unlock(&ulp->lock);
2345 rcu_read_unlock();
2346 break;
2347 }
2348 spin_lock(&ulp->lock);
2349 semid = un->semid;
2350 spin_unlock(&ulp->lock);
2351
2352 /* exit_sem raced with IPC_RMID, nothing to do */
2353 if (semid == -1) {
2354 rcu_read_unlock();
2355 continue;
2356 }
2357
2358 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2359 /* exit_sem raced with IPC_RMID, nothing to do */
2360 if (IS_ERR(sma)) {
2361 rcu_read_unlock();
2362 continue;
2363 }
2364
2365 sem_lock(sma, NULL, -1);
2366 /* exit_sem raced with IPC_RMID, nothing to do */
2367 if (!ipc_valid_object(&sma->sem_perm)) {
2368 sem_unlock(sma, -1);
2369 rcu_read_unlock();
2370 continue;
2371 }
2372 un = __lookup_undo(ulp, semid);
2373 if (un == NULL) {
2374 /* exit_sem raced with IPC_RMID+semget() that created
2375 * exactly the same semid. Nothing to do.
2376 */
2377 sem_unlock(sma, -1);
2378 rcu_read_unlock();
2379 continue;
2380 }
2381
2382 /* remove un from the linked lists */
2383 ipc_assert_locked_object(&sma->sem_perm);
2384 list_del(&un->list_id);
2385
2386 spin_lock(&ulp->lock);
2387 list_del_rcu(&un->list_proc);
2388 spin_unlock(&ulp->lock);
2389
2390 /* perform adjustments registered in un */
2391 for (i = 0; i < sma->sem_nsems; i++) {
2392 struct sem *semaphore = &sma->sems[i];
2393 if (un->semadj[i]) {
2394 semaphore->semval += un->semadj[i];
2395 /*
2396 * Range checks of the new semaphore value,
2397 * not defined by sus:
2398 * - Some unices ignore the undo entirely
2399 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2400 * - some cap the value (e.g. FreeBSD caps
2401 * at 0, but doesn't enforce SEMVMX)
2402 *
2403 * Linux caps the semaphore value, both at 0
2404 * and at SEMVMX.
2405 *
2406 * Manfred <manfred@colorfullife.com>
2407 */
2408 if (semaphore->semval < 0)
2409 semaphore->semval = 0;
2410 if (semaphore->semval > SEMVMX)
2411 semaphore->semval = SEMVMX;
2412 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2413 }
2414 }
2415 /* maybe some queued-up processes were waiting for this */
2416 do_smart_update(sma, NULL, 0, 1, &wake_q);
2417 sem_unlock(sma, -1);
2418 rcu_read_unlock();
2419 wake_up_q(&wake_q);
2420
2421 kfree_rcu(un, rcu);
2422 }
2423 kfree(ulp);
2424 }
2425
2426 #ifdef CONFIG_PROC_FS
2427 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2428 {
2429 struct user_namespace *user_ns = seq_user_ns(s);
2430 struct kern_ipc_perm *ipcp = it;
2431 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2432 time64_t sem_otime;
2433
2434 /*
2435 * The proc interface isn't aware of sem_lock(), it calls
2436 * ipc_lock_object() directly (in sysvipc_find_ipc).
2437 * In order to stay compatible with sem_lock(), we must
2438 * enter / leave complex_mode.
2439 */
2440 complexmode_enter(sma);
2441
2442 sem_otime = get_semotime(sma);
2443
2444 seq_printf(s,
2445 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2446 sma->sem_perm.key,
2447 sma->sem_perm.id,
2448 sma->sem_perm.mode,
2449 sma->sem_nsems,
2450 from_kuid_munged(user_ns, sma->sem_perm.uid),
2451 from_kgid_munged(user_ns, sma->sem_perm.gid),
2452 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2453 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2454 sem_otime,
2455 sma->sem_ctime);
2456
2457 complexmode_tryleave(sma);
2458
2459 return 0;
2460 }
2461 #endif