]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - ipc/sem.c
Merge tag 'renesas-defconfig-fixes-for-v3.19' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 */
74
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88
89 #include <linux/uaccess.h>
90 #include "util.h"
91
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 int semval; /* current value */
95 int sempid; /* pid of last operation */
96 spinlock_t lock; /* spinlock for fine-grained semtimedop */
97 struct list_head pending_alter; /* pending single-sop operations */
98 /* that alter the semaphore */
99 struct list_head pending_const; /* pending single-sop operations */
100 /* that do not alter the semaphore*/
101 time_t sem_otime; /* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp;
103
104 /* One queue for each sleeping process in the system. */
105 struct sem_queue {
106 struct list_head list; /* queue of pending operations */
107 struct task_struct *sleeper; /* this process */
108 struct sem_undo *undo; /* undo structure */
109 int pid; /* process id of requesting process */
110 int status; /* completion status of operation */
111 struct sembuf *sops; /* array of pending operations */
112 struct sembuf *blocking; /* the operation that blocked */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115 };
116
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120 struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131 };
132
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136 struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140 };
141
142
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
144
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
146
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156 /*
157 * Locking:
158 * sem_undo.id_next,
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
166 */
167
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
172
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 free_ipcs(ns, &sem_ids(ns), freeary);
187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190
191 void __init sem_init(void)
192 {
193 sem_init_ns(&init_ipc_ns);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198
199 /**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225 }
226
227 /**
228 * merge_queues - merge single semop queues into global queue
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236 static void merge_queues(struct sem_array *sma)
237 {
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244 }
245
246 static void sem_rcu_free(struct rcu_head *head)
247 {
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253 }
254
255 /*
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
260 * that a) sem_perm.lock is free and b) complex_count is 0.
261 */
262 static void sem_wait_array(struct sem_array *sma)
263 {
264 int i;
265 struct sem *sem;
266
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
270 */
271 return;
272 }
273
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
277 }
278 }
279
280 /*
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
286 */
287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
289 {
290 struct sem *sem;
291
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
295
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
298 */
299 sem_wait_array(sma);
300 return -1;
301 }
302
303 /*
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
317 */
318 sem = sma->sem_base + sops->sem_num;
319
320 if (sma->complex_count == 0) {
321 /*
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
324 */
325 spin_lock(&sem->lock);
326
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
331
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
335 */
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
339 }
340 }
341 spin_unlock(&sem->lock);
342 }
343
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
346
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
351 */
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
355 } else {
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
358 */
359 sem_wait_array(sma);
360 return -1;
361 }
362 }
363
364 static inline void sem_unlock(struct sem_array *sma, int locknum)
365 {
366 if (locknum == -1) {
367 unmerge_queues(sma);
368 ipc_unlock_object(&sma->sem_perm);
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
372 }
373 }
374
375 /*
376 * sem_lock_(check_) routines are called in the paths where the rwsem
377 * is not held.
378 *
379 * The caller holds the RCU read lock.
380 */
381 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
383 {
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
386
387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
390
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
393
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
396 */
397 if (ipc_valid_object(ipcp))
398 return container_of(ipcp, struct sem_array, sem_perm);
399
400 sem_unlock(sma, *locknum);
401 return ERR_PTR(-EINVAL);
402 }
403
404 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
405 {
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
407
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
410
411 return container_of(ipcp, struct sem_array, sem_perm);
412 }
413
414 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
416 {
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
418
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
421
422 return container_of(ipcp, struct sem_array, sem_perm);
423 }
424
425 static inline void sem_lock_and_putref(struct sem_array *sma)
426 {
427 sem_lock(sma, NULL, -1);
428 ipc_rcu_putref(sma, ipc_rcu_free);
429 }
430
431 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
432 {
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
434 }
435
436 /*
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
441 * * unlinking the queue entry from the pending list
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
451 * performing any operation on the sem array.
452 * * otherwise it must acquire the spinlock and check what's up.
453 *
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
466 *
467 */
468 #define IN_WAKEUP 1
469
470 /**
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
474 *
475 * Called with sem_ids.rwsem held (as a writer)
476 */
477 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
478 {
479 int id;
480 int retval;
481 struct sem_array *sma;
482 int size;
483 key_t key = params->key;
484 int nsems = params->u.nsems;
485 int semflg = params->flg;
486 int i;
487
488 if (!nsems)
489 return -EINVAL;
490 if (ns->used_sems + nsems > ns->sc_semmns)
491 return -ENOSPC;
492
493 size = sizeof(*sma) + nsems * sizeof(struct sem);
494 sma = ipc_rcu_alloc(size);
495 if (!sma)
496 return -ENOMEM;
497
498 memset(sma, 0, size);
499
500 sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 sma->sem_perm.key = key;
502
503 sma->sem_perm.security = NULL;
504 retval = security_sem_alloc(sma);
505 if (retval) {
506 ipc_rcu_putref(sma, ipc_rcu_free);
507 return retval;
508 }
509
510 sma->sem_base = (struct sem *) &sma[1];
511
512 for (i = 0; i < nsems; i++) {
513 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
514 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
515 spin_lock_init(&sma->sem_base[i].lock);
516 }
517
518 sma->complex_count = 0;
519 INIT_LIST_HEAD(&sma->pending_alter);
520 INIT_LIST_HEAD(&sma->pending_const);
521 INIT_LIST_HEAD(&sma->list_id);
522 sma->sem_nsems = nsems;
523 sma->sem_ctime = get_seconds();
524
525 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
526 if (id < 0) {
527 ipc_rcu_putref(sma, sem_rcu_free);
528 return id;
529 }
530 ns->used_sems += nsems;
531
532 sem_unlock(sma, -1);
533 rcu_read_unlock();
534
535 return sma->sem_perm.id;
536 }
537
538
539 /*
540 * Called with sem_ids.rwsem and ipcp locked.
541 */
542 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
543 {
544 struct sem_array *sma;
545
546 sma = container_of(ipcp, struct sem_array, sem_perm);
547 return security_sem_associate(sma, semflg);
548 }
549
550 /*
551 * Called with sem_ids.rwsem and ipcp locked.
552 */
553 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
554 struct ipc_params *params)
555 {
556 struct sem_array *sma;
557
558 sma = container_of(ipcp, struct sem_array, sem_perm);
559 if (params->u.nsems > sma->sem_nsems)
560 return -EINVAL;
561
562 return 0;
563 }
564
565 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
566 {
567 struct ipc_namespace *ns;
568 static const struct ipc_ops sem_ops = {
569 .getnew = newary,
570 .associate = sem_security,
571 .more_checks = sem_more_checks,
572 };
573 struct ipc_params sem_params;
574
575 ns = current->nsproxy->ipc_ns;
576
577 if (nsems < 0 || nsems > ns->sc_semmsl)
578 return -EINVAL;
579
580 sem_params.key = key;
581 sem_params.flg = semflg;
582 sem_params.u.nsems = nsems;
583
584 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
585 }
586
587 /**
588 * perform_atomic_semop - Perform (if possible) a semaphore operation
589 * @sma: semaphore array
590 * @q: struct sem_queue that describes the operation
591 *
592 * Returns 0 if the operation was possible.
593 * Returns 1 if the operation is impossible, the caller must sleep.
594 * Negative values are error codes.
595 */
596 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
597 {
598 int result, sem_op, nsops, pid;
599 struct sembuf *sop;
600 struct sem *curr;
601 struct sembuf *sops;
602 struct sem_undo *un;
603
604 sops = q->sops;
605 nsops = q->nsops;
606 un = q->undo;
607
608 for (sop = sops; sop < sops + nsops; sop++) {
609 curr = sma->sem_base + sop->sem_num;
610 sem_op = sop->sem_op;
611 result = curr->semval;
612
613 if (!sem_op && result)
614 goto would_block;
615
616 result += sem_op;
617 if (result < 0)
618 goto would_block;
619 if (result > SEMVMX)
620 goto out_of_range;
621
622 if (sop->sem_flg & SEM_UNDO) {
623 int undo = un->semadj[sop->sem_num] - sem_op;
624 /* Exceeding the undo range is an error. */
625 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
626 goto out_of_range;
627 un->semadj[sop->sem_num] = undo;
628 }
629
630 curr->semval = result;
631 }
632
633 sop--;
634 pid = q->pid;
635 while (sop >= sops) {
636 sma->sem_base[sop->sem_num].sempid = pid;
637 sop--;
638 }
639
640 return 0;
641
642 out_of_range:
643 result = -ERANGE;
644 goto undo;
645
646 would_block:
647 q->blocking = sop;
648
649 if (sop->sem_flg & IPC_NOWAIT)
650 result = -EAGAIN;
651 else
652 result = 1;
653
654 undo:
655 sop--;
656 while (sop >= sops) {
657 sem_op = sop->sem_op;
658 sma->sem_base[sop->sem_num].semval -= sem_op;
659 if (sop->sem_flg & SEM_UNDO)
660 un->semadj[sop->sem_num] += sem_op;
661 sop--;
662 }
663
664 return result;
665 }
666
667 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
668 * @q: queue entry that must be signaled
669 * @error: Error value for the signal
670 *
671 * Prepare the wake-up of the queue entry q.
672 */
673 static void wake_up_sem_queue_prepare(struct list_head *pt,
674 struct sem_queue *q, int error)
675 {
676 if (list_empty(pt)) {
677 /*
678 * Hold preempt off so that we don't get preempted and have the
679 * wakee busy-wait until we're scheduled back on.
680 */
681 preempt_disable();
682 }
683 q->status = IN_WAKEUP;
684 q->pid = error;
685
686 list_add_tail(&q->list, pt);
687 }
688
689 /**
690 * wake_up_sem_queue_do - do the actual wake-up
691 * @pt: list of tasks to be woken up
692 *
693 * Do the actual wake-up.
694 * The function is called without any locks held, thus the semaphore array
695 * could be destroyed already and the tasks can disappear as soon as the
696 * status is set to the actual return code.
697 */
698 static void wake_up_sem_queue_do(struct list_head *pt)
699 {
700 struct sem_queue *q, *t;
701 int did_something;
702
703 did_something = !list_empty(pt);
704 list_for_each_entry_safe(q, t, pt, list) {
705 wake_up_process(q->sleeper);
706 /* q can disappear immediately after writing q->status. */
707 smp_wmb();
708 q->status = q->pid;
709 }
710 if (did_something)
711 preempt_enable();
712 }
713
714 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
715 {
716 list_del(&q->list);
717 if (q->nsops > 1)
718 sma->complex_count--;
719 }
720
721 /** check_restart(sma, q)
722 * @sma: semaphore array
723 * @q: the operation that just completed
724 *
725 * update_queue is O(N^2) when it restarts scanning the whole queue of
726 * waiting operations. Therefore this function checks if the restart is
727 * really necessary. It is called after a previously waiting operation
728 * modified the array.
729 * Note that wait-for-zero operations are handled without restart.
730 */
731 static int check_restart(struct sem_array *sma, struct sem_queue *q)
732 {
733 /* pending complex alter operations are too difficult to analyse */
734 if (!list_empty(&sma->pending_alter))
735 return 1;
736
737 /* we were a sleeping complex operation. Too difficult */
738 if (q->nsops > 1)
739 return 1;
740
741 /* It is impossible that someone waits for the new value:
742 * - complex operations always restart.
743 * - wait-for-zero are handled seperately.
744 * - q is a previously sleeping simple operation that
745 * altered the array. It must be a decrement, because
746 * simple increments never sleep.
747 * - If there are older (higher priority) decrements
748 * in the queue, then they have observed the original
749 * semval value and couldn't proceed. The operation
750 * decremented to value - thus they won't proceed either.
751 */
752 return 0;
753 }
754
755 /**
756 * wake_const_ops - wake up non-alter tasks
757 * @sma: semaphore array.
758 * @semnum: semaphore that was modified.
759 * @pt: list head for the tasks that must be woken up.
760 *
761 * wake_const_ops must be called after a semaphore in a semaphore array
762 * was set to 0. If complex const operations are pending, wake_const_ops must
763 * be called with semnum = -1, as well as with the number of each modified
764 * semaphore.
765 * The tasks that must be woken up are added to @pt. The return code
766 * is stored in q->pid.
767 * The function returns 1 if at least one operation was completed successfully.
768 */
769 static int wake_const_ops(struct sem_array *sma, int semnum,
770 struct list_head *pt)
771 {
772 struct sem_queue *q;
773 struct list_head *walk;
774 struct list_head *pending_list;
775 int semop_completed = 0;
776
777 if (semnum == -1)
778 pending_list = &sma->pending_const;
779 else
780 pending_list = &sma->sem_base[semnum].pending_const;
781
782 walk = pending_list->next;
783 while (walk != pending_list) {
784 int error;
785
786 q = container_of(walk, struct sem_queue, list);
787 walk = walk->next;
788
789 error = perform_atomic_semop(sma, q);
790
791 if (error <= 0) {
792 /* operation completed, remove from queue & wakeup */
793
794 unlink_queue(sma, q);
795
796 wake_up_sem_queue_prepare(pt, q, error);
797 if (error == 0)
798 semop_completed = 1;
799 }
800 }
801 return semop_completed;
802 }
803
804 /**
805 * do_smart_wakeup_zero - wakeup all wait for zero tasks
806 * @sma: semaphore array
807 * @sops: operations that were performed
808 * @nsops: number of operations
809 * @pt: list head of the tasks that must be woken up.
810 *
811 * Checks all required queue for wait-for-zero operations, based
812 * on the actual changes that were performed on the semaphore array.
813 * The function returns 1 if at least one operation was completed successfully.
814 */
815 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
816 int nsops, struct list_head *pt)
817 {
818 int i;
819 int semop_completed = 0;
820 int got_zero = 0;
821
822 /* first: the per-semaphore queues, if known */
823 if (sops) {
824 for (i = 0; i < nsops; i++) {
825 int num = sops[i].sem_num;
826
827 if (sma->sem_base[num].semval == 0) {
828 got_zero = 1;
829 semop_completed |= wake_const_ops(sma, num, pt);
830 }
831 }
832 } else {
833 /*
834 * No sops means modified semaphores not known.
835 * Assume all were changed.
836 */
837 for (i = 0; i < sma->sem_nsems; i++) {
838 if (sma->sem_base[i].semval == 0) {
839 got_zero = 1;
840 semop_completed |= wake_const_ops(sma, i, pt);
841 }
842 }
843 }
844 /*
845 * If one of the modified semaphores got 0,
846 * then check the global queue, too.
847 */
848 if (got_zero)
849 semop_completed |= wake_const_ops(sma, -1, pt);
850
851 return semop_completed;
852 }
853
854
855 /**
856 * update_queue - look for tasks that can be completed.
857 * @sma: semaphore array.
858 * @semnum: semaphore that was modified.
859 * @pt: list head for the tasks that must be woken up.
860 *
861 * update_queue must be called after a semaphore in a semaphore array
862 * was modified. If multiple semaphores were modified, update_queue must
863 * be called with semnum = -1, as well as with the number of each modified
864 * semaphore.
865 * The tasks that must be woken up are added to @pt. The return code
866 * is stored in q->pid.
867 * The function internally checks if const operations can now succeed.
868 *
869 * The function return 1 if at least one semop was completed successfully.
870 */
871 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
872 {
873 struct sem_queue *q;
874 struct list_head *walk;
875 struct list_head *pending_list;
876 int semop_completed = 0;
877
878 if (semnum == -1)
879 pending_list = &sma->pending_alter;
880 else
881 pending_list = &sma->sem_base[semnum].pending_alter;
882
883 again:
884 walk = pending_list->next;
885 while (walk != pending_list) {
886 int error, restart;
887
888 q = container_of(walk, struct sem_queue, list);
889 walk = walk->next;
890
891 /* If we are scanning the single sop, per-semaphore list of
892 * one semaphore and that semaphore is 0, then it is not
893 * necessary to scan further: simple increments
894 * that affect only one entry succeed immediately and cannot
895 * be in the per semaphore pending queue, and decrements
896 * cannot be successful if the value is already 0.
897 */
898 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
899 break;
900
901 error = perform_atomic_semop(sma, q);
902
903 /* Does q->sleeper still need to sleep? */
904 if (error > 0)
905 continue;
906
907 unlink_queue(sma, q);
908
909 if (error) {
910 restart = 0;
911 } else {
912 semop_completed = 1;
913 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
914 restart = check_restart(sma, q);
915 }
916
917 wake_up_sem_queue_prepare(pt, q, error);
918 if (restart)
919 goto again;
920 }
921 return semop_completed;
922 }
923
924 /**
925 * set_semotime - set sem_otime
926 * @sma: semaphore array
927 * @sops: operations that modified the array, may be NULL
928 *
929 * sem_otime is replicated to avoid cache line trashing.
930 * This function sets one instance to the current time.
931 */
932 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
933 {
934 if (sops == NULL) {
935 sma->sem_base[0].sem_otime = get_seconds();
936 } else {
937 sma->sem_base[sops[0].sem_num].sem_otime =
938 get_seconds();
939 }
940 }
941
942 /**
943 * do_smart_update - optimized update_queue
944 * @sma: semaphore array
945 * @sops: operations that were performed
946 * @nsops: number of operations
947 * @otime: force setting otime
948 * @pt: list head of the tasks that must be woken up.
949 *
950 * do_smart_update() does the required calls to update_queue and wakeup_zero,
951 * based on the actual changes that were performed on the semaphore array.
952 * Note that the function does not do the actual wake-up: the caller is
953 * responsible for calling wake_up_sem_queue_do(@pt).
954 * It is safe to perform this call after dropping all locks.
955 */
956 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
957 int otime, struct list_head *pt)
958 {
959 int i;
960
961 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
962
963 if (!list_empty(&sma->pending_alter)) {
964 /* semaphore array uses the global queue - just process it. */
965 otime |= update_queue(sma, -1, pt);
966 } else {
967 if (!sops) {
968 /*
969 * No sops, thus the modified semaphores are not
970 * known. Check all.
971 */
972 for (i = 0; i < sma->sem_nsems; i++)
973 otime |= update_queue(sma, i, pt);
974 } else {
975 /*
976 * Check the semaphores that were increased:
977 * - No complex ops, thus all sleeping ops are
978 * decrease.
979 * - if we decreased the value, then any sleeping
980 * semaphore ops wont be able to run: If the
981 * previous value was too small, then the new
982 * value will be too small, too.
983 */
984 for (i = 0; i < nsops; i++) {
985 if (sops[i].sem_op > 0) {
986 otime |= update_queue(sma,
987 sops[i].sem_num, pt);
988 }
989 }
990 }
991 }
992 if (otime)
993 set_semotime(sma, sops);
994 }
995
996 /*
997 * check_qop: Test if a queued operation sleeps on the semaphore semnum
998 */
999 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1000 bool count_zero)
1001 {
1002 struct sembuf *sop = q->blocking;
1003
1004 /*
1005 * Linux always (since 0.99.10) reported a task as sleeping on all
1006 * semaphores. This violates SUS, therefore it was changed to the
1007 * standard compliant behavior.
1008 * Give the administrators a chance to notice that an application
1009 * might misbehave because it relies on the Linux behavior.
1010 */
1011 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1012 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1013 current->comm, task_pid_nr(current));
1014
1015 if (sop->sem_num != semnum)
1016 return 0;
1017
1018 if (count_zero && sop->sem_op == 0)
1019 return 1;
1020 if (!count_zero && sop->sem_op < 0)
1021 return 1;
1022
1023 return 0;
1024 }
1025
1026 /* The following counts are associated to each semaphore:
1027 * semncnt number of tasks waiting on semval being nonzero
1028 * semzcnt number of tasks waiting on semval being zero
1029 *
1030 * Per definition, a task waits only on the semaphore of the first semop
1031 * that cannot proceed, even if additional operation would block, too.
1032 */
1033 static int count_semcnt(struct sem_array *sma, ushort semnum,
1034 bool count_zero)
1035 {
1036 struct list_head *l;
1037 struct sem_queue *q;
1038 int semcnt;
1039
1040 semcnt = 0;
1041 /* First: check the simple operations. They are easy to evaluate */
1042 if (count_zero)
1043 l = &sma->sem_base[semnum].pending_const;
1044 else
1045 l = &sma->sem_base[semnum].pending_alter;
1046
1047 list_for_each_entry(q, l, list) {
1048 /* all task on a per-semaphore list sleep on exactly
1049 * that semaphore
1050 */
1051 semcnt++;
1052 }
1053
1054 /* Then: check the complex operations. */
1055 list_for_each_entry(q, &sma->pending_alter, list) {
1056 semcnt += check_qop(sma, semnum, q, count_zero);
1057 }
1058 if (count_zero) {
1059 list_for_each_entry(q, &sma->pending_const, list) {
1060 semcnt += check_qop(sma, semnum, q, count_zero);
1061 }
1062 }
1063 return semcnt;
1064 }
1065
1066 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1067 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1068 * remains locked on exit.
1069 */
1070 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1071 {
1072 struct sem_undo *un, *tu;
1073 struct sem_queue *q, *tq;
1074 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1075 struct list_head tasks;
1076 int i;
1077
1078 /* Free the existing undo structures for this semaphore set. */
1079 ipc_assert_locked_object(&sma->sem_perm);
1080 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1081 list_del(&un->list_id);
1082 spin_lock(&un->ulp->lock);
1083 un->semid = -1;
1084 list_del_rcu(&un->list_proc);
1085 spin_unlock(&un->ulp->lock);
1086 kfree_rcu(un, rcu);
1087 }
1088
1089 /* Wake up all pending processes and let them fail with EIDRM. */
1090 INIT_LIST_HEAD(&tasks);
1091 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1092 unlink_queue(sma, q);
1093 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1094 }
1095
1096 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1097 unlink_queue(sma, q);
1098 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1099 }
1100 for (i = 0; i < sma->sem_nsems; i++) {
1101 struct sem *sem = sma->sem_base + i;
1102 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1103 unlink_queue(sma, q);
1104 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1105 }
1106 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1107 unlink_queue(sma, q);
1108 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1109 }
1110 }
1111
1112 /* Remove the semaphore set from the IDR */
1113 sem_rmid(ns, sma);
1114 sem_unlock(sma, -1);
1115 rcu_read_unlock();
1116
1117 wake_up_sem_queue_do(&tasks);
1118 ns->used_sems -= sma->sem_nsems;
1119 ipc_rcu_putref(sma, sem_rcu_free);
1120 }
1121
1122 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1123 {
1124 switch (version) {
1125 case IPC_64:
1126 return copy_to_user(buf, in, sizeof(*in));
1127 case IPC_OLD:
1128 {
1129 struct semid_ds out;
1130
1131 memset(&out, 0, sizeof(out));
1132
1133 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1134
1135 out.sem_otime = in->sem_otime;
1136 out.sem_ctime = in->sem_ctime;
1137 out.sem_nsems = in->sem_nsems;
1138
1139 return copy_to_user(buf, &out, sizeof(out));
1140 }
1141 default:
1142 return -EINVAL;
1143 }
1144 }
1145
1146 static time_t get_semotime(struct sem_array *sma)
1147 {
1148 int i;
1149 time_t res;
1150
1151 res = sma->sem_base[0].sem_otime;
1152 for (i = 1; i < sma->sem_nsems; i++) {
1153 time_t to = sma->sem_base[i].sem_otime;
1154
1155 if (to > res)
1156 res = to;
1157 }
1158 return res;
1159 }
1160
1161 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1162 int cmd, int version, void __user *p)
1163 {
1164 int err;
1165 struct sem_array *sma;
1166
1167 switch (cmd) {
1168 case IPC_INFO:
1169 case SEM_INFO:
1170 {
1171 struct seminfo seminfo;
1172 int max_id;
1173
1174 err = security_sem_semctl(NULL, cmd);
1175 if (err)
1176 return err;
1177
1178 memset(&seminfo, 0, sizeof(seminfo));
1179 seminfo.semmni = ns->sc_semmni;
1180 seminfo.semmns = ns->sc_semmns;
1181 seminfo.semmsl = ns->sc_semmsl;
1182 seminfo.semopm = ns->sc_semopm;
1183 seminfo.semvmx = SEMVMX;
1184 seminfo.semmnu = SEMMNU;
1185 seminfo.semmap = SEMMAP;
1186 seminfo.semume = SEMUME;
1187 down_read(&sem_ids(ns).rwsem);
1188 if (cmd == SEM_INFO) {
1189 seminfo.semusz = sem_ids(ns).in_use;
1190 seminfo.semaem = ns->used_sems;
1191 } else {
1192 seminfo.semusz = SEMUSZ;
1193 seminfo.semaem = SEMAEM;
1194 }
1195 max_id = ipc_get_maxid(&sem_ids(ns));
1196 up_read(&sem_ids(ns).rwsem);
1197 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1198 return -EFAULT;
1199 return (max_id < 0) ? 0 : max_id;
1200 }
1201 case IPC_STAT:
1202 case SEM_STAT:
1203 {
1204 struct semid64_ds tbuf;
1205 int id = 0;
1206
1207 memset(&tbuf, 0, sizeof(tbuf));
1208
1209 rcu_read_lock();
1210 if (cmd == SEM_STAT) {
1211 sma = sem_obtain_object(ns, semid);
1212 if (IS_ERR(sma)) {
1213 err = PTR_ERR(sma);
1214 goto out_unlock;
1215 }
1216 id = sma->sem_perm.id;
1217 } else {
1218 sma = sem_obtain_object_check(ns, semid);
1219 if (IS_ERR(sma)) {
1220 err = PTR_ERR(sma);
1221 goto out_unlock;
1222 }
1223 }
1224
1225 err = -EACCES;
1226 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1227 goto out_unlock;
1228
1229 err = security_sem_semctl(sma, cmd);
1230 if (err)
1231 goto out_unlock;
1232
1233 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1234 tbuf.sem_otime = get_semotime(sma);
1235 tbuf.sem_ctime = sma->sem_ctime;
1236 tbuf.sem_nsems = sma->sem_nsems;
1237 rcu_read_unlock();
1238 if (copy_semid_to_user(p, &tbuf, version))
1239 return -EFAULT;
1240 return id;
1241 }
1242 default:
1243 return -EINVAL;
1244 }
1245 out_unlock:
1246 rcu_read_unlock();
1247 return err;
1248 }
1249
1250 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1251 unsigned long arg)
1252 {
1253 struct sem_undo *un;
1254 struct sem_array *sma;
1255 struct sem *curr;
1256 int err;
1257 struct list_head tasks;
1258 int val;
1259 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1260 /* big-endian 64bit */
1261 val = arg >> 32;
1262 #else
1263 /* 32bit or little-endian 64bit */
1264 val = arg;
1265 #endif
1266
1267 if (val > SEMVMX || val < 0)
1268 return -ERANGE;
1269
1270 INIT_LIST_HEAD(&tasks);
1271
1272 rcu_read_lock();
1273 sma = sem_obtain_object_check(ns, semid);
1274 if (IS_ERR(sma)) {
1275 rcu_read_unlock();
1276 return PTR_ERR(sma);
1277 }
1278
1279 if (semnum < 0 || semnum >= sma->sem_nsems) {
1280 rcu_read_unlock();
1281 return -EINVAL;
1282 }
1283
1284
1285 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1286 rcu_read_unlock();
1287 return -EACCES;
1288 }
1289
1290 err = security_sem_semctl(sma, SETVAL);
1291 if (err) {
1292 rcu_read_unlock();
1293 return -EACCES;
1294 }
1295
1296 sem_lock(sma, NULL, -1);
1297
1298 if (!ipc_valid_object(&sma->sem_perm)) {
1299 sem_unlock(sma, -1);
1300 rcu_read_unlock();
1301 return -EIDRM;
1302 }
1303
1304 curr = &sma->sem_base[semnum];
1305
1306 ipc_assert_locked_object(&sma->sem_perm);
1307 list_for_each_entry(un, &sma->list_id, list_id)
1308 un->semadj[semnum] = 0;
1309
1310 curr->semval = val;
1311 curr->sempid = task_tgid_vnr(current);
1312 sma->sem_ctime = get_seconds();
1313 /* maybe some queued-up processes were waiting for this */
1314 do_smart_update(sma, NULL, 0, 0, &tasks);
1315 sem_unlock(sma, -1);
1316 rcu_read_unlock();
1317 wake_up_sem_queue_do(&tasks);
1318 return 0;
1319 }
1320
1321 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1322 int cmd, void __user *p)
1323 {
1324 struct sem_array *sma;
1325 struct sem *curr;
1326 int err, nsems;
1327 ushort fast_sem_io[SEMMSL_FAST];
1328 ushort *sem_io = fast_sem_io;
1329 struct list_head tasks;
1330
1331 INIT_LIST_HEAD(&tasks);
1332
1333 rcu_read_lock();
1334 sma = sem_obtain_object_check(ns, semid);
1335 if (IS_ERR(sma)) {
1336 rcu_read_unlock();
1337 return PTR_ERR(sma);
1338 }
1339
1340 nsems = sma->sem_nsems;
1341
1342 err = -EACCES;
1343 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1344 goto out_rcu_wakeup;
1345
1346 err = security_sem_semctl(sma, cmd);
1347 if (err)
1348 goto out_rcu_wakeup;
1349
1350 err = -EACCES;
1351 switch (cmd) {
1352 case GETALL:
1353 {
1354 ushort __user *array = p;
1355 int i;
1356
1357 sem_lock(sma, NULL, -1);
1358 if (!ipc_valid_object(&sma->sem_perm)) {
1359 err = -EIDRM;
1360 goto out_unlock;
1361 }
1362 if (nsems > SEMMSL_FAST) {
1363 if (!ipc_rcu_getref(sma)) {
1364 err = -EIDRM;
1365 goto out_unlock;
1366 }
1367 sem_unlock(sma, -1);
1368 rcu_read_unlock();
1369 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1370 if (sem_io == NULL) {
1371 ipc_rcu_putref(sma, ipc_rcu_free);
1372 return -ENOMEM;
1373 }
1374
1375 rcu_read_lock();
1376 sem_lock_and_putref(sma);
1377 if (!ipc_valid_object(&sma->sem_perm)) {
1378 err = -EIDRM;
1379 goto out_unlock;
1380 }
1381 }
1382 for (i = 0; i < sma->sem_nsems; i++)
1383 sem_io[i] = sma->sem_base[i].semval;
1384 sem_unlock(sma, -1);
1385 rcu_read_unlock();
1386 err = 0;
1387 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1388 err = -EFAULT;
1389 goto out_free;
1390 }
1391 case SETALL:
1392 {
1393 int i;
1394 struct sem_undo *un;
1395
1396 if (!ipc_rcu_getref(sma)) {
1397 err = -EIDRM;
1398 goto out_rcu_wakeup;
1399 }
1400 rcu_read_unlock();
1401
1402 if (nsems > SEMMSL_FAST) {
1403 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1404 if (sem_io == NULL) {
1405 ipc_rcu_putref(sma, ipc_rcu_free);
1406 return -ENOMEM;
1407 }
1408 }
1409
1410 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1411 ipc_rcu_putref(sma, ipc_rcu_free);
1412 err = -EFAULT;
1413 goto out_free;
1414 }
1415
1416 for (i = 0; i < nsems; i++) {
1417 if (sem_io[i] > SEMVMX) {
1418 ipc_rcu_putref(sma, ipc_rcu_free);
1419 err = -ERANGE;
1420 goto out_free;
1421 }
1422 }
1423 rcu_read_lock();
1424 sem_lock_and_putref(sma);
1425 if (!ipc_valid_object(&sma->sem_perm)) {
1426 err = -EIDRM;
1427 goto out_unlock;
1428 }
1429
1430 for (i = 0; i < nsems; i++)
1431 sma->sem_base[i].semval = sem_io[i];
1432
1433 ipc_assert_locked_object(&sma->sem_perm);
1434 list_for_each_entry(un, &sma->list_id, list_id) {
1435 for (i = 0; i < nsems; i++)
1436 un->semadj[i] = 0;
1437 }
1438 sma->sem_ctime = get_seconds();
1439 /* maybe some queued-up processes were waiting for this */
1440 do_smart_update(sma, NULL, 0, 0, &tasks);
1441 err = 0;
1442 goto out_unlock;
1443 }
1444 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1445 }
1446 err = -EINVAL;
1447 if (semnum < 0 || semnum >= nsems)
1448 goto out_rcu_wakeup;
1449
1450 sem_lock(sma, NULL, -1);
1451 if (!ipc_valid_object(&sma->sem_perm)) {
1452 err = -EIDRM;
1453 goto out_unlock;
1454 }
1455 curr = &sma->sem_base[semnum];
1456
1457 switch (cmd) {
1458 case GETVAL:
1459 err = curr->semval;
1460 goto out_unlock;
1461 case GETPID:
1462 err = curr->sempid;
1463 goto out_unlock;
1464 case GETNCNT:
1465 err = count_semcnt(sma, semnum, 0);
1466 goto out_unlock;
1467 case GETZCNT:
1468 err = count_semcnt(sma, semnum, 1);
1469 goto out_unlock;
1470 }
1471
1472 out_unlock:
1473 sem_unlock(sma, -1);
1474 out_rcu_wakeup:
1475 rcu_read_unlock();
1476 wake_up_sem_queue_do(&tasks);
1477 out_free:
1478 if (sem_io != fast_sem_io)
1479 ipc_free(sem_io, sizeof(ushort)*nsems);
1480 return err;
1481 }
1482
1483 static inline unsigned long
1484 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1485 {
1486 switch (version) {
1487 case IPC_64:
1488 if (copy_from_user(out, buf, sizeof(*out)))
1489 return -EFAULT;
1490 return 0;
1491 case IPC_OLD:
1492 {
1493 struct semid_ds tbuf_old;
1494
1495 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1496 return -EFAULT;
1497
1498 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1499 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1500 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1501
1502 return 0;
1503 }
1504 default:
1505 return -EINVAL;
1506 }
1507 }
1508
1509 /*
1510 * This function handles some semctl commands which require the rwsem
1511 * to be held in write mode.
1512 * NOTE: no locks must be held, the rwsem is taken inside this function.
1513 */
1514 static int semctl_down(struct ipc_namespace *ns, int semid,
1515 int cmd, int version, void __user *p)
1516 {
1517 struct sem_array *sma;
1518 int err;
1519 struct semid64_ds semid64;
1520 struct kern_ipc_perm *ipcp;
1521
1522 if (cmd == IPC_SET) {
1523 if (copy_semid_from_user(&semid64, p, version))
1524 return -EFAULT;
1525 }
1526
1527 down_write(&sem_ids(ns).rwsem);
1528 rcu_read_lock();
1529
1530 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1531 &semid64.sem_perm, 0);
1532 if (IS_ERR(ipcp)) {
1533 err = PTR_ERR(ipcp);
1534 goto out_unlock1;
1535 }
1536
1537 sma = container_of(ipcp, struct sem_array, sem_perm);
1538
1539 err = security_sem_semctl(sma, cmd);
1540 if (err)
1541 goto out_unlock1;
1542
1543 switch (cmd) {
1544 case IPC_RMID:
1545 sem_lock(sma, NULL, -1);
1546 /* freeary unlocks the ipc object and rcu */
1547 freeary(ns, ipcp);
1548 goto out_up;
1549 case IPC_SET:
1550 sem_lock(sma, NULL, -1);
1551 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1552 if (err)
1553 goto out_unlock0;
1554 sma->sem_ctime = get_seconds();
1555 break;
1556 default:
1557 err = -EINVAL;
1558 goto out_unlock1;
1559 }
1560
1561 out_unlock0:
1562 sem_unlock(sma, -1);
1563 out_unlock1:
1564 rcu_read_unlock();
1565 out_up:
1566 up_write(&sem_ids(ns).rwsem);
1567 return err;
1568 }
1569
1570 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1571 {
1572 int version;
1573 struct ipc_namespace *ns;
1574 void __user *p = (void __user *)arg;
1575
1576 if (semid < 0)
1577 return -EINVAL;
1578
1579 version = ipc_parse_version(&cmd);
1580 ns = current->nsproxy->ipc_ns;
1581
1582 switch (cmd) {
1583 case IPC_INFO:
1584 case SEM_INFO:
1585 case IPC_STAT:
1586 case SEM_STAT:
1587 return semctl_nolock(ns, semid, cmd, version, p);
1588 case GETALL:
1589 case GETVAL:
1590 case GETPID:
1591 case GETNCNT:
1592 case GETZCNT:
1593 case SETALL:
1594 return semctl_main(ns, semid, semnum, cmd, p);
1595 case SETVAL:
1596 return semctl_setval(ns, semid, semnum, arg);
1597 case IPC_RMID:
1598 case IPC_SET:
1599 return semctl_down(ns, semid, cmd, version, p);
1600 default:
1601 return -EINVAL;
1602 }
1603 }
1604
1605 /* If the task doesn't already have a undo_list, then allocate one
1606 * here. We guarantee there is only one thread using this undo list,
1607 * and current is THE ONE
1608 *
1609 * If this allocation and assignment succeeds, but later
1610 * portions of this code fail, there is no need to free the sem_undo_list.
1611 * Just let it stay associated with the task, and it'll be freed later
1612 * at exit time.
1613 *
1614 * This can block, so callers must hold no locks.
1615 */
1616 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1617 {
1618 struct sem_undo_list *undo_list;
1619
1620 undo_list = current->sysvsem.undo_list;
1621 if (!undo_list) {
1622 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1623 if (undo_list == NULL)
1624 return -ENOMEM;
1625 spin_lock_init(&undo_list->lock);
1626 atomic_set(&undo_list->refcnt, 1);
1627 INIT_LIST_HEAD(&undo_list->list_proc);
1628
1629 current->sysvsem.undo_list = undo_list;
1630 }
1631 *undo_listp = undo_list;
1632 return 0;
1633 }
1634
1635 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1636 {
1637 struct sem_undo *un;
1638
1639 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1640 if (un->semid == semid)
1641 return un;
1642 }
1643 return NULL;
1644 }
1645
1646 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1647 {
1648 struct sem_undo *un;
1649
1650 assert_spin_locked(&ulp->lock);
1651
1652 un = __lookup_undo(ulp, semid);
1653 if (un) {
1654 list_del_rcu(&un->list_proc);
1655 list_add_rcu(&un->list_proc, &ulp->list_proc);
1656 }
1657 return un;
1658 }
1659
1660 /**
1661 * find_alloc_undo - lookup (and if not present create) undo array
1662 * @ns: namespace
1663 * @semid: semaphore array id
1664 *
1665 * The function looks up (and if not present creates) the undo structure.
1666 * The size of the undo structure depends on the size of the semaphore
1667 * array, thus the alloc path is not that straightforward.
1668 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1669 * performs a rcu_read_lock().
1670 */
1671 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1672 {
1673 struct sem_array *sma;
1674 struct sem_undo_list *ulp;
1675 struct sem_undo *un, *new;
1676 int nsems, error;
1677
1678 error = get_undo_list(&ulp);
1679 if (error)
1680 return ERR_PTR(error);
1681
1682 rcu_read_lock();
1683 spin_lock(&ulp->lock);
1684 un = lookup_undo(ulp, semid);
1685 spin_unlock(&ulp->lock);
1686 if (likely(un != NULL))
1687 goto out;
1688
1689 /* no undo structure around - allocate one. */
1690 /* step 1: figure out the size of the semaphore array */
1691 sma = sem_obtain_object_check(ns, semid);
1692 if (IS_ERR(sma)) {
1693 rcu_read_unlock();
1694 return ERR_CAST(sma);
1695 }
1696
1697 nsems = sma->sem_nsems;
1698 if (!ipc_rcu_getref(sma)) {
1699 rcu_read_unlock();
1700 un = ERR_PTR(-EIDRM);
1701 goto out;
1702 }
1703 rcu_read_unlock();
1704
1705 /* step 2: allocate new undo structure */
1706 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1707 if (!new) {
1708 ipc_rcu_putref(sma, ipc_rcu_free);
1709 return ERR_PTR(-ENOMEM);
1710 }
1711
1712 /* step 3: Acquire the lock on semaphore array */
1713 rcu_read_lock();
1714 sem_lock_and_putref(sma);
1715 if (!ipc_valid_object(&sma->sem_perm)) {
1716 sem_unlock(sma, -1);
1717 rcu_read_unlock();
1718 kfree(new);
1719 un = ERR_PTR(-EIDRM);
1720 goto out;
1721 }
1722 spin_lock(&ulp->lock);
1723
1724 /*
1725 * step 4: check for races: did someone else allocate the undo struct?
1726 */
1727 un = lookup_undo(ulp, semid);
1728 if (un) {
1729 kfree(new);
1730 goto success;
1731 }
1732 /* step 5: initialize & link new undo structure */
1733 new->semadj = (short *) &new[1];
1734 new->ulp = ulp;
1735 new->semid = semid;
1736 assert_spin_locked(&ulp->lock);
1737 list_add_rcu(&new->list_proc, &ulp->list_proc);
1738 ipc_assert_locked_object(&sma->sem_perm);
1739 list_add(&new->list_id, &sma->list_id);
1740 un = new;
1741
1742 success:
1743 spin_unlock(&ulp->lock);
1744 sem_unlock(sma, -1);
1745 out:
1746 return un;
1747 }
1748
1749
1750 /**
1751 * get_queue_result - retrieve the result code from sem_queue
1752 * @q: Pointer to queue structure
1753 *
1754 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1755 * q->status, then we must loop until the value is replaced with the final
1756 * value: This may happen if a task is woken up by an unrelated event (e.g.
1757 * signal) and in parallel the task is woken up by another task because it got
1758 * the requested semaphores.
1759 *
1760 * The function can be called with or without holding the semaphore spinlock.
1761 */
1762 static int get_queue_result(struct sem_queue *q)
1763 {
1764 int error;
1765
1766 error = q->status;
1767 while (unlikely(error == IN_WAKEUP)) {
1768 cpu_relax();
1769 error = q->status;
1770 }
1771
1772 return error;
1773 }
1774
1775 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1776 unsigned, nsops, const struct timespec __user *, timeout)
1777 {
1778 int error = -EINVAL;
1779 struct sem_array *sma;
1780 struct sembuf fast_sops[SEMOPM_FAST];
1781 struct sembuf *sops = fast_sops, *sop;
1782 struct sem_undo *un;
1783 int undos = 0, alter = 0, max, locknum;
1784 struct sem_queue queue;
1785 unsigned long jiffies_left = 0;
1786 struct ipc_namespace *ns;
1787 struct list_head tasks;
1788
1789 ns = current->nsproxy->ipc_ns;
1790
1791 if (nsops < 1 || semid < 0)
1792 return -EINVAL;
1793 if (nsops > ns->sc_semopm)
1794 return -E2BIG;
1795 if (nsops > SEMOPM_FAST) {
1796 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1797 if (sops == NULL)
1798 return -ENOMEM;
1799 }
1800 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1801 error = -EFAULT;
1802 goto out_free;
1803 }
1804 if (timeout) {
1805 struct timespec _timeout;
1806 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1807 error = -EFAULT;
1808 goto out_free;
1809 }
1810 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1811 _timeout.tv_nsec >= 1000000000L) {
1812 error = -EINVAL;
1813 goto out_free;
1814 }
1815 jiffies_left = timespec_to_jiffies(&_timeout);
1816 }
1817 max = 0;
1818 for (sop = sops; sop < sops + nsops; sop++) {
1819 if (sop->sem_num >= max)
1820 max = sop->sem_num;
1821 if (sop->sem_flg & SEM_UNDO)
1822 undos = 1;
1823 if (sop->sem_op != 0)
1824 alter = 1;
1825 }
1826
1827 INIT_LIST_HEAD(&tasks);
1828
1829 if (undos) {
1830 /* On success, find_alloc_undo takes the rcu_read_lock */
1831 un = find_alloc_undo(ns, semid);
1832 if (IS_ERR(un)) {
1833 error = PTR_ERR(un);
1834 goto out_free;
1835 }
1836 } else {
1837 un = NULL;
1838 rcu_read_lock();
1839 }
1840
1841 sma = sem_obtain_object_check(ns, semid);
1842 if (IS_ERR(sma)) {
1843 rcu_read_unlock();
1844 error = PTR_ERR(sma);
1845 goto out_free;
1846 }
1847
1848 error = -EFBIG;
1849 if (max >= sma->sem_nsems)
1850 goto out_rcu_wakeup;
1851
1852 error = -EACCES;
1853 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1854 goto out_rcu_wakeup;
1855
1856 error = security_sem_semop(sma, sops, nsops, alter);
1857 if (error)
1858 goto out_rcu_wakeup;
1859
1860 error = -EIDRM;
1861 locknum = sem_lock(sma, sops, nsops);
1862 /*
1863 * We eventually might perform the following check in a lockless
1864 * fashion, considering ipc_valid_object() locking constraints.
1865 * If nsops == 1 and there is no contention for sem_perm.lock, then
1866 * only a per-semaphore lock is held and it's OK to proceed with the
1867 * check below. More details on the fine grained locking scheme
1868 * entangled here and why it's RMID race safe on comments at sem_lock()
1869 */
1870 if (!ipc_valid_object(&sma->sem_perm))
1871 goto out_unlock_free;
1872 /*
1873 * semid identifiers are not unique - find_alloc_undo may have
1874 * allocated an undo structure, it was invalidated by an RMID
1875 * and now a new array with received the same id. Check and fail.
1876 * This case can be detected checking un->semid. The existence of
1877 * "un" itself is guaranteed by rcu.
1878 */
1879 if (un && un->semid == -1)
1880 goto out_unlock_free;
1881
1882 queue.sops = sops;
1883 queue.nsops = nsops;
1884 queue.undo = un;
1885 queue.pid = task_tgid_vnr(current);
1886 queue.alter = alter;
1887
1888 error = perform_atomic_semop(sma, &queue);
1889 if (error == 0) {
1890 /* If the operation was successful, then do
1891 * the required updates.
1892 */
1893 if (alter)
1894 do_smart_update(sma, sops, nsops, 1, &tasks);
1895 else
1896 set_semotime(sma, sops);
1897 }
1898 if (error <= 0)
1899 goto out_unlock_free;
1900
1901 /* We need to sleep on this operation, so we put the current
1902 * task into the pending queue and go to sleep.
1903 */
1904
1905 if (nsops == 1) {
1906 struct sem *curr;
1907 curr = &sma->sem_base[sops->sem_num];
1908
1909 if (alter) {
1910 if (sma->complex_count) {
1911 list_add_tail(&queue.list,
1912 &sma->pending_alter);
1913 } else {
1914
1915 list_add_tail(&queue.list,
1916 &curr->pending_alter);
1917 }
1918 } else {
1919 list_add_tail(&queue.list, &curr->pending_const);
1920 }
1921 } else {
1922 if (!sma->complex_count)
1923 merge_queues(sma);
1924
1925 if (alter)
1926 list_add_tail(&queue.list, &sma->pending_alter);
1927 else
1928 list_add_tail(&queue.list, &sma->pending_const);
1929
1930 sma->complex_count++;
1931 }
1932
1933 queue.status = -EINTR;
1934 queue.sleeper = current;
1935
1936 sleep_again:
1937 current->state = TASK_INTERRUPTIBLE;
1938 sem_unlock(sma, locknum);
1939 rcu_read_unlock();
1940
1941 if (timeout)
1942 jiffies_left = schedule_timeout(jiffies_left);
1943 else
1944 schedule();
1945
1946 error = get_queue_result(&queue);
1947
1948 if (error != -EINTR) {
1949 /* fast path: update_queue already obtained all requested
1950 * resources.
1951 * Perform a smp_mb(): User space could assume that semop()
1952 * is a memory barrier: Without the mb(), the cpu could
1953 * speculatively read in user space stale data that was
1954 * overwritten by the previous owner of the semaphore.
1955 */
1956 smp_mb();
1957
1958 goto out_free;
1959 }
1960
1961 rcu_read_lock();
1962 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1963
1964 /*
1965 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1966 */
1967 error = get_queue_result(&queue);
1968
1969 /*
1970 * Array removed? If yes, leave without sem_unlock().
1971 */
1972 if (IS_ERR(sma)) {
1973 rcu_read_unlock();
1974 goto out_free;
1975 }
1976
1977
1978 /*
1979 * If queue.status != -EINTR we are woken up by another process.
1980 * Leave without unlink_queue(), but with sem_unlock().
1981 */
1982 if (error != -EINTR)
1983 goto out_unlock_free;
1984
1985 /*
1986 * If an interrupt occurred we have to clean up the queue
1987 */
1988 if (timeout && jiffies_left == 0)
1989 error = -EAGAIN;
1990
1991 /*
1992 * If the wakeup was spurious, just retry
1993 */
1994 if (error == -EINTR && !signal_pending(current))
1995 goto sleep_again;
1996
1997 unlink_queue(sma, &queue);
1998
1999 out_unlock_free:
2000 sem_unlock(sma, locknum);
2001 out_rcu_wakeup:
2002 rcu_read_unlock();
2003 wake_up_sem_queue_do(&tasks);
2004 out_free:
2005 if (sops != fast_sops)
2006 kfree(sops);
2007 return error;
2008 }
2009
2010 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2011 unsigned, nsops)
2012 {
2013 return sys_semtimedop(semid, tsops, nsops, NULL);
2014 }
2015
2016 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2017 * parent and child tasks.
2018 */
2019
2020 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2021 {
2022 struct sem_undo_list *undo_list;
2023 int error;
2024
2025 if (clone_flags & CLONE_SYSVSEM) {
2026 error = get_undo_list(&undo_list);
2027 if (error)
2028 return error;
2029 atomic_inc(&undo_list->refcnt);
2030 tsk->sysvsem.undo_list = undo_list;
2031 } else
2032 tsk->sysvsem.undo_list = NULL;
2033
2034 return 0;
2035 }
2036
2037 /*
2038 * add semadj values to semaphores, free undo structures.
2039 * undo structures are not freed when semaphore arrays are destroyed
2040 * so some of them may be out of date.
2041 * IMPLEMENTATION NOTE: There is some confusion over whether the
2042 * set of adjustments that needs to be done should be done in an atomic
2043 * manner or not. That is, if we are attempting to decrement the semval
2044 * should we queue up and wait until we can do so legally?
2045 * The original implementation attempted to do this (queue and wait).
2046 * The current implementation does not do so. The POSIX standard
2047 * and SVID should be consulted to determine what behavior is mandated.
2048 */
2049 void exit_sem(struct task_struct *tsk)
2050 {
2051 struct sem_undo_list *ulp;
2052
2053 ulp = tsk->sysvsem.undo_list;
2054 if (!ulp)
2055 return;
2056 tsk->sysvsem.undo_list = NULL;
2057
2058 if (!atomic_dec_and_test(&ulp->refcnt))
2059 return;
2060
2061 for (;;) {
2062 struct sem_array *sma;
2063 struct sem_undo *un;
2064 struct list_head tasks;
2065 int semid, i;
2066
2067 rcu_read_lock();
2068 un = list_entry_rcu(ulp->list_proc.next,
2069 struct sem_undo, list_proc);
2070 if (&un->list_proc == &ulp->list_proc)
2071 semid = -1;
2072 else
2073 semid = un->semid;
2074
2075 if (semid == -1) {
2076 rcu_read_unlock();
2077 break;
2078 }
2079
2080 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
2081 /* exit_sem raced with IPC_RMID, nothing to do */
2082 if (IS_ERR(sma)) {
2083 rcu_read_unlock();
2084 continue;
2085 }
2086
2087 sem_lock(sma, NULL, -1);
2088 /* exit_sem raced with IPC_RMID, nothing to do */
2089 if (!ipc_valid_object(&sma->sem_perm)) {
2090 sem_unlock(sma, -1);
2091 rcu_read_unlock();
2092 continue;
2093 }
2094 un = __lookup_undo(ulp, semid);
2095 if (un == NULL) {
2096 /* exit_sem raced with IPC_RMID+semget() that created
2097 * exactly the same semid. Nothing to do.
2098 */
2099 sem_unlock(sma, -1);
2100 rcu_read_unlock();
2101 continue;
2102 }
2103
2104 /* remove un from the linked lists */
2105 ipc_assert_locked_object(&sma->sem_perm);
2106 list_del(&un->list_id);
2107
2108 spin_lock(&ulp->lock);
2109 list_del_rcu(&un->list_proc);
2110 spin_unlock(&ulp->lock);
2111
2112 /* perform adjustments registered in un */
2113 for (i = 0; i < sma->sem_nsems; i++) {
2114 struct sem *semaphore = &sma->sem_base[i];
2115 if (un->semadj[i]) {
2116 semaphore->semval += un->semadj[i];
2117 /*
2118 * Range checks of the new semaphore value,
2119 * not defined by sus:
2120 * - Some unices ignore the undo entirely
2121 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2122 * - some cap the value (e.g. FreeBSD caps
2123 * at 0, but doesn't enforce SEMVMX)
2124 *
2125 * Linux caps the semaphore value, both at 0
2126 * and at SEMVMX.
2127 *
2128 * Manfred <manfred@colorfullife.com>
2129 */
2130 if (semaphore->semval < 0)
2131 semaphore->semval = 0;
2132 if (semaphore->semval > SEMVMX)
2133 semaphore->semval = SEMVMX;
2134 semaphore->sempid = task_tgid_vnr(current);
2135 }
2136 }
2137 /* maybe some queued-up processes were waiting for this */
2138 INIT_LIST_HEAD(&tasks);
2139 do_smart_update(sma, NULL, 0, 1, &tasks);
2140 sem_unlock(sma, -1);
2141 rcu_read_unlock();
2142 wake_up_sem_queue_do(&tasks);
2143
2144 kfree_rcu(un, rcu);
2145 }
2146 kfree(ulp);
2147 }
2148
2149 #ifdef CONFIG_PROC_FS
2150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2151 {
2152 struct user_namespace *user_ns = seq_user_ns(s);
2153 struct sem_array *sma = it;
2154 time_t sem_otime;
2155
2156 /*
2157 * The proc interface isn't aware of sem_lock(), it calls
2158 * ipc_lock_object() directly (in sysvipc_find_ipc).
2159 * In order to stay compatible with sem_lock(), we must wait until
2160 * all simple semop() calls have left their critical regions.
2161 */
2162 sem_wait_array(sma);
2163
2164 sem_otime = get_semotime(sma);
2165
2166 return seq_printf(s,
2167 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2168 sma->sem_perm.key,
2169 sma->sem_perm.id,
2170 sma->sem_perm.mode,
2171 sma->sem_nsems,
2172 from_kuid_munged(user_ns, sma->sem_perm.uid),
2173 from_kgid_munged(user_ns, sma->sem_perm.gid),
2174 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2175 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2176 sem_otime,
2177 sma->sem_ctime);
2178 }
2179 #endif