]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/async.c
async: Asynchronous function calls to speed up kernel boot
[mirror_ubuntu-artful-kernel.git] / kernel / async.c
1 /*
2 * async.c: Asynchronous function calls for boot performance
3 *
4 * (C) Copyright 2009 Intel Corporation
5 * Author: Arjan van de Ven <arjan@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13
14 /*
15
16 Goals and Theory of Operation
17
18 The primary goal of this feature is to reduce the kernel boot time,
19 by doing various independent hardware delays and discovery operations
20 decoupled and not strictly serialized.
21
22 More specifically, the asynchronous function call concept allows
23 certain operations (primarily during system boot) to happen
24 asynchronously, out of order, while these operations still
25 have their externally visible parts happen sequentially and in-order.
26 (not unlike how out-of-order CPUs retire their instructions in order)
27
28 Key to the asynchronous function call implementation is the concept of
29 a "sequence cookie" (which, although it has an abstracted type, can be
30 thought of as a monotonically incrementing number).
31
32 The async core will assign each scheduled event such a sequence cookie and
33 pass this to the called functions.
34
35 The asynchronously called function should before doing a globally visible
36 operation, such as registering device numbers, call the
37 async_synchronize_cookie() function and pass in its own cookie. The
38 async_synchronize_cookie() function will make sure that all asynchronous
39 operations that were scheduled prior to the operation corresponding with the
40 cookie have completed.
41
42 Subsystem/driver initialization code that scheduled asynchronous probe
43 functions, but which shares global resources with other drivers/subsystems
44 that do not use the asynchronous call feature, need to do a full
45 synchronization with the async_synchronize_full() function, before returning
46 from their init function. This is to maintain strict ordering between the
47 asynchronous and synchronous parts of the kernel.
48
49 */
50
51 #include <linux/async.h>
52 #include <linux/module.h>
53 #include <linux/wait.h>
54 #include <linux/sched.h>
55 #include <linux/init.h>
56 #include <linux/kthread.h>
57 #include <asm/atomic.h>
58
59 static async_cookie_t next_cookie = 1;
60
61 #define MAX_THREADS 256
62 #define MAX_WORK 32768
63
64 static LIST_HEAD(async_pending);
65 static LIST_HEAD(async_running);
66 static DEFINE_SPINLOCK(async_lock);
67
68 struct async_entry {
69 struct list_head list;
70 async_cookie_t cookie;
71 async_func_ptr *func;
72 void *data;
73 struct list_head *running;
74 };
75
76 static DECLARE_WAIT_QUEUE_HEAD(async_done);
77 static DECLARE_WAIT_QUEUE_HEAD(async_new);
78
79 static atomic_t entry_count;
80 static atomic_t thread_count;
81
82 extern int initcall_debug;
83
84
85 /*
86 * MUST be called with the lock held!
87 */
88 static async_cookie_t __lowest_in_progress(struct list_head *running)
89 {
90 struct async_entry *entry;
91 if (!list_empty(&async_pending)) {
92 entry = list_first_entry(&async_pending,
93 struct async_entry, list);
94 return entry->cookie;
95 } else if (!list_empty(running)) {
96 entry = list_first_entry(running,
97 struct async_entry, list);
98 return entry->cookie;
99 } else {
100 /* nothing in progress... next_cookie is "infinity" */
101 return next_cookie;
102 }
103
104 }
105 /*
106 * pick the first pending entry and run it
107 */
108 static void run_one_entry(void)
109 {
110 unsigned long flags;
111 struct async_entry *entry;
112 ktime_t calltime, delta, rettime;
113
114 /* 1) pick one task from the pending queue */
115
116 spin_lock_irqsave(&async_lock, flags);
117 if (list_empty(&async_pending))
118 goto out;
119 entry = list_first_entry(&async_pending, struct async_entry, list);
120
121 /* 2) move it to the running queue */
122 list_del(&entry->list);
123 list_add_tail(&entry->list, &async_running);
124 spin_unlock_irqrestore(&async_lock, flags);
125
126 /* 3) run it (and print duration)*/
127 if (initcall_debug) {
128 printk("calling %lli_%pF @ %i\n", entry->cookie, entry->func, task_pid_nr(current));
129 calltime = ktime_get();
130 }
131 entry->func(entry->data, entry->cookie);
132 if (initcall_debug) {
133 rettime = ktime_get();
134 delta = ktime_sub(rettime, calltime);
135 printk("initcall %lli_%pF returned 0 after %lld usecs\n", entry->cookie,
136 entry->func, ktime_to_ns(delta) >> 10);
137 }
138
139 /* 4) remove it from the running queue */
140 spin_lock_irqsave(&async_lock, flags);
141 list_del(&entry->list);
142
143 /* 5) free the entry */
144 kfree(entry);
145 atomic_dec(&entry_count);
146
147 spin_unlock_irqrestore(&async_lock, flags);
148
149 /* 6) wake up any waiters. */
150 wake_up(&async_done);
151 return;
152
153 out:
154 spin_unlock_irqrestore(&async_lock, flags);
155 }
156
157
158 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running)
159 {
160 struct async_entry *entry;
161 unsigned long flags;
162 async_cookie_t newcookie;
163
164
165 /* allow irq-off callers */
166 entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
167
168 /*
169 * If we're out of memory or if there's too much work
170 * pending already, we execute synchronously.
171 */
172 if (!entry || atomic_read(&entry_count) > MAX_WORK) {
173 kfree(entry);
174 spin_lock_irqsave(&async_lock, flags);
175 newcookie = next_cookie++;
176 spin_unlock_irqrestore(&async_lock, flags);
177
178 /* low on memory.. run synchronously */
179 ptr(data, newcookie);
180 return newcookie;
181 }
182 entry->func = ptr;
183 entry->data = data;
184 entry->running = running;
185
186 spin_lock_irqsave(&async_lock, flags);
187 newcookie = entry->cookie = next_cookie++;
188 list_add_tail(&entry->list, &async_pending);
189 atomic_inc(&entry_count);
190 spin_unlock_irqrestore(&async_lock, flags);
191 wake_up(&async_new);
192 return newcookie;
193 }
194
195 async_cookie_t async_schedule(async_func_ptr *ptr, void *data)
196 {
197 return __async_schedule(ptr, data, &async_pending);
198 }
199 EXPORT_SYMBOL_GPL(async_schedule);
200
201 async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running)
202 {
203 return __async_schedule(ptr, data, running);
204 }
205 EXPORT_SYMBOL_GPL(async_schedule_special);
206
207 void async_synchronize_full(void)
208 {
209 async_synchronize_cookie(next_cookie);
210 }
211 EXPORT_SYMBOL_GPL(async_synchronize_full);
212
213 void async_synchronize_full_special(struct list_head *list)
214 {
215 async_synchronize_cookie_special(next_cookie, list);
216 }
217 EXPORT_SYMBOL_GPL(async_synchronize_full_special);
218
219 void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running)
220 {
221 ktime_t starttime, delta, endtime;
222
223 if (initcall_debug) {
224 printk("async_waiting @ %i\n", task_pid_nr(current));
225 starttime = ktime_get();
226 }
227
228 wait_event(async_done, __lowest_in_progress(running) >= cookie);
229
230 if (initcall_debug) {
231 endtime = ktime_get();
232 delta = ktime_sub(endtime, starttime);
233
234 printk("async_continuing @ %i after %lli usec\n",
235 task_pid_nr(current), ktime_to_ns(delta) >> 10);
236 }
237 }
238 EXPORT_SYMBOL_GPL(async_synchronize_cookie_special);
239
240 void async_synchronize_cookie(async_cookie_t cookie)
241 {
242 async_synchronize_cookie_special(cookie, &async_running);
243 }
244 EXPORT_SYMBOL_GPL(async_synchronize_cookie);
245
246
247 static int async_thread(void *unused)
248 {
249 DECLARE_WAITQUEUE(wq, current);
250 add_wait_queue(&async_new, &wq);
251
252 while (!kthread_should_stop()) {
253 int ret = HZ;
254 set_current_state(TASK_INTERRUPTIBLE);
255 /*
256 * check the list head without lock.. false positives
257 * are dealt with inside run_one_entry() while holding
258 * the lock.
259 */
260 rmb();
261 if (!list_empty(&async_pending))
262 run_one_entry();
263 else
264 ret = schedule_timeout(HZ);
265
266 if (ret == 0) {
267 /*
268 * we timed out, this means we as thread are redundant.
269 * we sign off and die, but we to avoid any races there
270 * is a last-straw check to see if work snuck in.
271 */
272 atomic_dec(&thread_count);
273 wmb(); /* manager must see our departure first */
274 if (list_empty(&async_pending))
275 break;
276 /*
277 * woops work came in between us timing out and us
278 * signing off; we need to stay alive and keep working.
279 */
280 atomic_inc(&thread_count);
281 }
282 }
283 remove_wait_queue(&async_new, &wq);
284
285 return 0;
286 }
287
288 static int async_manager_thread(void *unused)
289 {
290 DECLARE_WAITQUEUE(wq, current);
291 add_wait_queue(&async_new, &wq);
292
293 while (!kthread_should_stop()) {
294 int tc, ec;
295
296 set_current_state(TASK_INTERRUPTIBLE);
297
298 tc = atomic_read(&thread_count);
299 rmb();
300 ec = atomic_read(&entry_count);
301
302 while (tc < ec && tc < MAX_THREADS) {
303 kthread_run(async_thread, NULL, "async/%i", tc);
304 atomic_inc(&thread_count);
305 tc++;
306 }
307
308 schedule();
309 }
310 remove_wait_queue(&async_new, &wq);
311
312 return 0;
313 }
314
315 static int __init async_init(void)
316 {
317 kthread_run(async_manager_thread, NULL, "async/mgr");
318 return 0;
319 }
320
321 core_initcall(async_init);