]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/audit.c
Merge remote-tracking branches 'regulator/topic/supply', 'regulator/topic/tps6105x...
[mirror_ubuntu-artful-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70
71 #include "audit.h"
72
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED -1
76 #define AUDIT_UNINITIALIZED 0
77 #define AUDIT_INITIALIZED 1
78 static int audit_initialized;
79
80 #define AUDIT_OFF 0
81 #define AUDIT_ON 1
82 #define AUDIT_LOCKED 2
83 u32 audit_enabled;
84 u32 audit_ever_enabled;
85
86 EXPORT_SYMBOL_GPL(audit_enabled);
87
88 /* Default state when kernel boots without any parameters. */
89 static u32 audit_default;
90
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94 /*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99 int audit_pid;
100 static __u32 audit_nlk_portid;
101
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105 static u32 audit_rate_limit;
106
107 /* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109 static u32 audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113 static u32 audit_backlog_wait_overflow = 0;
114
115 /* The identity of the user shutting down the audit system. */
116 kuid_t audit_sig_uid = INVALID_UID;
117 pid_t audit_sig_pid = -1;
118 u32 audit_sig_sid = 0;
119
120 /* Records can be lost in several ways:
121 0) [suppressed in audit_alloc]
122 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
123 2) out of memory in audit_log_move [alloc_skb]
124 3) suppressed due to audit_rate_limit
125 4) suppressed due to audit_backlog_limit
126 */
127 static atomic_t audit_lost = ATOMIC_INIT(0);
128
129 /* The netlink socket. */
130 static struct sock *audit_sock;
131 static int audit_net_id;
132
133 /* Hash for inode-based rules */
134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
135
136 /* The audit_freelist is a list of pre-allocated audit buffers (if more
137 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
138 * being placed on the freelist). */
139 static DEFINE_SPINLOCK(audit_freelist_lock);
140 static int audit_freelist_count;
141 static LIST_HEAD(audit_freelist);
142
143 static struct sk_buff_head audit_skb_queue;
144 /* queue of skbs to send to auditd when/if it comes back */
145 static struct sk_buff_head audit_skb_hold_queue;
146 static struct task_struct *kauditd_task;
147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
149
150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
151 .mask = -1,
152 .features = 0,
153 .lock = 0,};
154
155 static char *audit_feature_names[2] = {
156 "only_unset_loginuid",
157 "loginuid_immutable",
158 };
159
160
161 /* Serialize requests from userspace. */
162 DEFINE_MUTEX(audit_cmd_mutex);
163
164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
165 * audit records. Since printk uses a 1024 byte buffer, this buffer
166 * should be at least that large. */
167 #define AUDIT_BUFSIZ 1024
168
169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
170 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
171 #define AUDIT_MAXFREE (2*NR_CPUS)
172
173 /* The audit_buffer is used when formatting an audit record. The caller
174 * locks briefly to get the record off the freelist or to allocate the
175 * buffer, and locks briefly to send the buffer to the netlink layer or
176 * to place it on a transmit queue. Multiple audit_buffers can be in
177 * use simultaneously. */
178 struct audit_buffer {
179 struct list_head list;
180 struct sk_buff *skb; /* formatted skb ready to send */
181 struct audit_context *ctx; /* NULL or associated context */
182 gfp_t gfp_mask;
183 };
184
185 struct audit_reply {
186 __u32 portid;
187 struct net *net;
188 struct sk_buff *skb;
189 };
190
191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
192 {
193 if (ab) {
194 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
195 nlh->nlmsg_pid = portid;
196 }
197 }
198
199 void audit_panic(const char *message)
200 {
201 switch (audit_failure) {
202 case AUDIT_FAIL_SILENT:
203 break;
204 case AUDIT_FAIL_PRINTK:
205 if (printk_ratelimit())
206 pr_err("%s\n", message);
207 break;
208 case AUDIT_FAIL_PANIC:
209 /* test audit_pid since printk is always losey, why bother? */
210 if (audit_pid)
211 panic("audit: %s\n", message);
212 break;
213 }
214 }
215
216 static inline int audit_rate_check(void)
217 {
218 static unsigned long last_check = 0;
219 static int messages = 0;
220 static DEFINE_SPINLOCK(lock);
221 unsigned long flags;
222 unsigned long now;
223 unsigned long elapsed;
224 int retval = 0;
225
226 if (!audit_rate_limit) return 1;
227
228 spin_lock_irqsave(&lock, flags);
229 if (++messages < audit_rate_limit) {
230 retval = 1;
231 } else {
232 now = jiffies;
233 elapsed = now - last_check;
234 if (elapsed > HZ) {
235 last_check = now;
236 messages = 0;
237 retval = 1;
238 }
239 }
240 spin_unlock_irqrestore(&lock, flags);
241
242 return retval;
243 }
244
245 /**
246 * audit_log_lost - conditionally log lost audit message event
247 * @message: the message stating reason for lost audit message
248 *
249 * Emit at least 1 message per second, even if audit_rate_check is
250 * throttling.
251 * Always increment the lost messages counter.
252 */
253 void audit_log_lost(const char *message)
254 {
255 static unsigned long last_msg = 0;
256 static DEFINE_SPINLOCK(lock);
257 unsigned long flags;
258 unsigned long now;
259 int print;
260
261 atomic_inc(&audit_lost);
262
263 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
264
265 if (!print) {
266 spin_lock_irqsave(&lock, flags);
267 now = jiffies;
268 if (now - last_msg > HZ) {
269 print = 1;
270 last_msg = now;
271 }
272 spin_unlock_irqrestore(&lock, flags);
273 }
274
275 if (print) {
276 if (printk_ratelimit())
277 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
278 atomic_read(&audit_lost),
279 audit_rate_limit,
280 audit_backlog_limit);
281 audit_panic(message);
282 }
283 }
284
285 static int audit_log_config_change(char *function_name, u32 new, u32 old,
286 int allow_changes)
287 {
288 struct audit_buffer *ab;
289 int rc = 0;
290
291 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
292 if (unlikely(!ab))
293 return rc;
294 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
295 audit_log_session_info(ab);
296 rc = audit_log_task_context(ab);
297 if (rc)
298 allow_changes = 0; /* Something weird, deny request */
299 audit_log_format(ab, " res=%d", allow_changes);
300 audit_log_end(ab);
301 return rc;
302 }
303
304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
305 {
306 int allow_changes, rc = 0;
307 u32 old = *to_change;
308
309 /* check if we are locked */
310 if (audit_enabled == AUDIT_LOCKED)
311 allow_changes = 0;
312 else
313 allow_changes = 1;
314
315 if (audit_enabled != AUDIT_OFF) {
316 rc = audit_log_config_change(function_name, new, old, allow_changes);
317 if (rc)
318 allow_changes = 0;
319 }
320
321 /* If we are allowed, make the change */
322 if (allow_changes == 1)
323 *to_change = new;
324 /* Not allowed, update reason */
325 else if (rc == 0)
326 rc = -EPERM;
327 return rc;
328 }
329
330 static int audit_set_rate_limit(u32 limit)
331 {
332 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 }
334
335 static int audit_set_backlog_limit(u32 limit)
336 {
337 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 }
339
340 static int audit_set_backlog_wait_time(u32 timeout)
341 {
342 return audit_do_config_change("audit_backlog_wait_time",
343 &audit_backlog_wait_time_master, timeout);
344 }
345
346 static int audit_set_enabled(u32 state)
347 {
348 int rc;
349 if (state > AUDIT_LOCKED)
350 return -EINVAL;
351
352 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
353 if (!rc)
354 audit_ever_enabled |= !!state;
355
356 return rc;
357 }
358
359 static int audit_set_failure(u32 state)
360 {
361 if (state != AUDIT_FAIL_SILENT
362 && state != AUDIT_FAIL_PRINTK
363 && state != AUDIT_FAIL_PANIC)
364 return -EINVAL;
365
366 return audit_do_config_change("audit_failure", &audit_failure, state);
367 }
368
369 /*
370 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
371 * already have been sent via prink/syslog and so if these messages are dropped
372 * it is not a huge concern since we already passed the audit_log_lost()
373 * notification and stuff. This is just nice to get audit messages during
374 * boot before auditd is running or messages generated while auditd is stopped.
375 * This only holds messages is audit_default is set, aka booting with audit=1
376 * or building your kernel that way.
377 */
378 static void audit_hold_skb(struct sk_buff *skb)
379 {
380 if (audit_default &&
381 (!audit_backlog_limit ||
382 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
383 skb_queue_tail(&audit_skb_hold_queue, skb);
384 else
385 kfree_skb(skb);
386 }
387
388 /*
389 * For one reason or another this nlh isn't getting delivered to the userspace
390 * audit daemon, just send it to printk.
391 */
392 static void audit_printk_skb(struct sk_buff *skb)
393 {
394 struct nlmsghdr *nlh = nlmsg_hdr(skb);
395 char *data = nlmsg_data(nlh);
396
397 if (nlh->nlmsg_type != AUDIT_EOE) {
398 if (printk_ratelimit())
399 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
400 else
401 audit_log_lost("printk limit exceeded");
402 }
403
404 audit_hold_skb(skb);
405 }
406
407 static void kauditd_send_skb(struct sk_buff *skb)
408 {
409 int err;
410 /* take a reference in case we can't send it and we want to hold it */
411 skb_get(skb);
412 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
413 if (err < 0) {
414 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
415 if (audit_pid) {
416 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
417 audit_log_lost("auditd disappeared");
418 audit_pid = 0;
419 audit_sock = NULL;
420 }
421 /* we might get lucky and get this in the next auditd */
422 audit_hold_skb(skb);
423 } else
424 /* drop the extra reference if sent ok */
425 consume_skb(skb);
426 }
427
428 /*
429 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
430 *
431 * This function doesn't consume an skb as might be expected since it has to
432 * copy it anyways.
433 */
434 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
435 {
436 struct sk_buff *copy;
437 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
438 struct sock *sock = aunet->nlsk;
439
440 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
441 return;
442
443 /*
444 * The seemingly wasteful skb_copy() rather than bumping the refcount
445 * using skb_get() is necessary because non-standard mods are made to
446 * the skb by the original kaudit unicast socket send routine. The
447 * existing auditd daemon assumes this breakage. Fixing this would
448 * require co-ordinating a change in the established protocol between
449 * the kaudit kernel subsystem and the auditd userspace code. There is
450 * no reason for new multicast clients to continue with this
451 * non-compliance.
452 */
453 copy = skb_copy(skb, gfp_mask);
454 if (!copy)
455 return;
456
457 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
458 }
459
460 /*
461 * flush_hold_queue - empty the hold queue if auditd appears
462 *
463 * If auditd just started, drain the queue of messages already
464 * sent to syslog/printk. Remember loss here is ok. We already
465 * called audit_log_lost() if it didn't go out normally. so the
466 * race between the skb_dequeue and the next check for audit_pid
467 * doesn't matter.
468 *
469 * If you ever find kauditd to be too slow we can get a perf win
470 * by doing our own locking and keeping better track if there
471 * are messages in this queue. I don't see the need now, but
472 * in 5 years when I want to play with this again I'll see this
473 * note and still have no friggin idea what i'm thinking today.
474 */
475 static void flush_hold_queue(void)
476 {
477 struct sk_buff *skb;
478
479 if (!audit_default || !audit_pid)
480 return;
481
482 skb = skb_dequeue(&audit_skb_hold_queue);
483 if (likely(!skb))
484 return;
485
486 while (skb && audit_pid) {
487 kauditd_send_skb(skb);
488 skb = skb_dequeue(&audit_skb_hold_queue);
489 }
490
491 /*
492 * if auditd just disappeared but we
493 * dequeued an skb we need to drop ref
494 */
495 if (skb)
496 consume_skb(skb);
497 }
498
499 static int kauditd_thread(void *dummy)
500 {
501 set_freezable();
502 while (!kthread_should_stop()) {
503 struct sk_buff *skb;
504
505 flush_hold_queue();
506
507 skb = skb_dequeue(&audit_skb_queue);
508
509 if (skb) {
510 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
511 wake_up(&audit_backlog_wait);
512 if (audit_pid)
513 kauditd_send_skb(skb);
514 else
515 audit_printk_skb(skb);
516 continue;
517 }
518
519 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
520 }
521 return 0;
522 }
523
524 int audit_send_list(void *_dest)
525 {
526 struct audit_netlink_list *dest = _dest;
527 struct sk_buff *skb;
528 struct net *net = dest->net;
529 struct audit_net *aunet = net_generic(net, audit_net_id);
530
531 /* wait for parent to finish and send an ACK */
532 mutex_lock(&audit_cmd_mutex);
533 mutex_unlock(&audit_cmd_mutex);
534
535 while ((skb = __skb_dequeue(&dest->q)) != NULL)
536 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
537
538 put_net(net);
539 kfree(dest);
540
541 return 0;
542 }
543
544 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
545 int multi, const void *payload, int size)
546 {
547 struct sk_buff *skb;
548 struct nlmsghdr *nlh;
549 void *data;
550 int flags = multi ? NLM_F_MULTI : 0;
551 int t = done ? NLMSG_DONE : type;
552
553 skb = nlmsg_new(size, GFP_KERNEL);
554 if (!skb)
555 return NULL;
556
557 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
558 if (!nlh)
559 goto out_kfree_skb;
560 data = nlmsg_data(nlh);
561 memcpy(data, payload, size);
562 return skb;
563
564 out_kfree_skb:
565 kfree_skb(skb);
566 return NULL;
567 }
568
569 static int audit_send_reply_thread(void *arg)
570 {
571 struct audit_reply *reply = (struct audit_reply *)arg;
572 struct net *net = reply->net;
573 struct audit_net *aunet = net_generic(net, audit_net_id);
574
575 mutex_lock(&audit_cmd_mutex);
576 mutex_unlock(&audit_cmd_mutex);
577
578 /* Ignore failure. It'll only happen if the sender goes away,
579 because our timeout is set to infinite. */
580 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
581 put_net(net);
582 kfree(reply);
583 return 0;
584 }
585 /**
586 * audit_send_reply - send an audit reply message via netlink
587 * @request_skb: skb of request we are replying to (used to target the reply)
588 * @seq: sequence number
589 * @type: audit message type
590 * @done: done (last) flag
591 * @multi: multi-part message flag
592 * @payload: payload data
593 * @size: payload size
594 *
595 * Allocates an skb, builds the netlink message, and sends it to the port id.
596 * No failure notifications.
597 */
598 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
599 int multi, const void *payload, int size)
600 {
601 u32 portid = NETLINK_CB(request_skb).portid;
602 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
603 struct sk_buff *skb;
604 struct task_struct *tsk;
605 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
606 GFP_KERNEL);
607
608 if (!reply)
609 return;
610
611 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
612 if (!skb)
613 goto out;
614
615 reply->net = get_net(net);
616 reply->portid = portid;
617 reply->skb = skb;
618
619 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
620 if (!IS_ERR(tsk))
621 return;
622 kfree_skb(skb);
623 out:
624 kfree(reply);
625 }
626
627 /*
628 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
629 * control messages.
630 */
631 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
632 {
633 int err = 0;
634
635 /* Only support initial user namespace for now. */
636 /*
637 * We return ECONNREFUSED because it tricks userspace into thinking
638 * that audit was not configured into the kernel. Lots of users
639 * configure their PAM stack (because that's what the distro does)
640 * to reject login if unable to send messages to audit. If we return
641 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
642 * configured in and will let login proceed. If we return EPERM
643 * userspace will reject all logins. This should be removed when we
644 * support non init namespaces!!
645 */
646 if (current_user_ns() != &init_user_ns)
647 return -ECONNREFUSED;
648
649 switch (msg_type) {
650 case AUDIT_LIST:
651 case AUDIT_ADD:
652 case AUDIT_DEL:
653 return -EOPNOTSUPP;
654 case AUDIT_GET:
655 case AUDIT_SET:
656 case AUDIT_GET_FEATURE:
657 case AUDIT_SET_FEATURE:
658 case AUDIT_LIST_RULES:
659 case AUDIT_ADD_RULE:
660 case AUDIT_DEL_RULE:
661 case AUDIT_SIGNAL_INFO:
662 case AUDIT_TTY_GET:
663 case AUDIT_TTY_SET:
664 case AUDIT_TRIM:
665 case AUDIT_MAKE_EQUIV:
666 /* Only support auditd and auditctl in initial pid namespace
667 * for now. */
668 if (task_active_pid_ns(current) != &init_pid_ns)
669 return -EPERM;
670
671 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
672 err = -EPERM;
673 break;
674 case AUDIT_USER:
675 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
676 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
677 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
678 err = -EPERM;
679 break;
680 default: /* bad msg */
681 err = -EINVAL;
682 }
683
684 return err;
685 }
686
687 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
688 {
689 int rc = 0;
690 uid_t uid = from_kuid(&init_user_ns, current_uid());
691 pid_t pid = task_tgid_nr(current);
692
693 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
694 *ab = NULL;
695 return rc;
696 }
697
698 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
699 if (unlikely(!*ab))
700 return rc;
701 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
702 audit_log_session_info(*ab);
703 audit_log_task_context(*ab);
704
705 return rc;
706 }
707
708 int is_audit_feature_set(int i)
709 {
710 return af.features & AUDIT_FEATURE_TO_MASK(i);
711 }
712
713
714 static int audit_get_feature(struct sk_buff *skb)
715 {
716 u32 seq;
717
718 seq = nlmsg_hdr(skb)->nlmsg_seq;
719
720 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
721
722 return 0;
723 }
724
725 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
726 u32 old_lock, u32 new_lock, int res)
727 {
728 struct audit_buffer *ab;
729
730 if (audit_enabled == AUDIT_OFF)
731 return;
732
733 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
734 audit_log_task_info(ab, current);
735 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
736 audit_feature_names[which], !!old_feature, !!new_feature,
737 !!old_lock, !!new_lock, res);
738 audit_log_end(ab);
739 }
740
741 static int audit_set_feature(struct sk_buff *skb)
742 {
743 struct audit_features *uaf;
744 int i;
745
746 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
747 uaf = nlmsg_data(nlmsg_hdr(skb));
748
749 /* if there is ever a version 2 we should handle that here */
750
751 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
752 u32 feature = AUDIT_FEATURE_TO_MASK(i);
753 u32 old_feature, new_feature, old_lock, new_lock;
754
755 /* if we are not changing this feature, move along */
756 if (!(feature & uaf->mask))
757 continue;
758
759 old_feature = af.features & feature;
760 new_feature = uaf->features & feature;
761 new_lock = (uaf->lock | af.lock) & feature;
762 old_lock = af.lock & feature;
763
764 /* are we changing a locked feature? */
765 if (old_lock && (new_feature != old_feature)) {
766 audit_log_feature_change(i, old_feature, new_feature,
767 old_lock, new_lock, 0);
768 return -EPERM;
769 }
770 }
771 /* nothing invalid, do the changes */
772 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
773 u32 feature = AUDIT_FEATURE_TO_MASK(i);
774 u32 old_feature, new_feature, old_lock, new_lock;
775
776 /* if we are not changing this feature, move along */
777 if (!(feature & uaf->mask))
778 continue;
779
780 old_feature = af.features & feature;
781 new_feature = uaf->features & feature;
782 old_lock = af.lock & feature;
783 new_lock = (uaf->lock | af.lock) & feature;
784
785 if (new_feature != old_feature)
786 audit_log_feature_change(i, old_feature, new_feature,
787 old_lock, new_lock, 1);
788
789 if (new_feature)
790 af.features |= feature;
791 else
792 af.features &= ~feature;
793 af.lock |= new_lock;
794 }
795
796 return 0;
797 }
798
799 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
800 {
801 u32 seq;
802 void *data;
803 int err;
804 struct audit_buffer *ab;
805 u16 msg_type = nlh->nlmsg_type;
806 struct audit_sig_info *sig_data;
807 char *ctx = NULL;
808 u32 len;
809
810 err = audit_netlink_ok(skb, msg_type);
811 if (err)
812 return err;
813
814 /* As soon as there's any sign of userspace auditd,
815 * start kauditd to talk to it */
816 if (!kauditd_task) {
817 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
818 if (IS_ERR(kauditd_task)) {
819 err = PTR_ERR(kauditd_task);
820 kauditd_task = NULL;
821 return err;
822 }
823 }
824 seq = nlh->nlmsg_seq;
825 data = nlmsg_data(nlh);
826
827 switch (msg_type) {
828 case AUDIT_GET: {
829 struct audit_status s;
830 memset(&s, 0, sizeof(s));
831 s.enabled = audit_enabled;
832 s.failure = audit_failure;
833 s.pid = audit_pid;
834 s.rate_limit = audit_rate_limit;
835 s.backlog_limit = audit_backlog_limit;
836 s.lost = atomic_read(&audit_lost);
837 s.backlog = skb_queue_len(&audit_skb_queue);
838 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
839 s.backlog_wait_time = audit_backlog_wait_time_master;
840 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
841 break;
842 }
843 case AUDIT_SET: {
844 struct audit_status s;
845 memset(&s, 0, sizeof(s));
846 /* guard against past and future API changes */
847 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
848 if (s.mask & AUDIT_STATUS_ENABLED) {
849 err = audit_set_enabled(s.enabled);
850 if (err < 0)
851 return err;
852 }
853 if (s.mask & AUDIT_STATUS_FAILURE) {
854 err = audit_set_failure(s.failure);
855 if (err < 0)
856 return err;
857 }
858 if (s.mask & AUDIT_STATUS_PID) {
859 int new_pid = s.pid;
860
861 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
862 return -EACCES;
863 if (audit_enabled != AUDIT_OFF)
864 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
865 audit_pid = new_pid;
866 audit_nlk_portid = NETLINK_CB(skb).portid;
867 audit_sock = skb->sk;
868 }
869 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
870 err = audit_set_rate_limit(s.rate_limit);
871 if (err < 0)
872 return err;
873 }
874 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
875 err = audit_set_backlog_limit(s.backlog_limit);
876 if (err < 0)
877 return err;
878 }
879 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
880 if (sizeof(s) > (size_t)nlh->nlmsg_len)
881 return -EINVAL;
882 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
883 return -EINVAL;
884 err = audit_set_backlog_wait_time(s.backlog_wait_time);
885 if (err < 0)
886 return err;
887 }
888 break;
889 }
890 case AUDIT_GET_FEATURE:
891 err = audit_get_feature(skb);
892 if (err)
893 return err;
894 break;
895 case AUDIT_SET_FEATURE:
896 err = audit_set_feature(skb);
897 if (err)
898 return err;
899 break;
900 case AUDIT_USER:
901 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
902 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
903 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
904 return 0;
905
906 err = audit_filter_user(msg_type);
907 if (err == 1) { /* match or error */
908 err = 0;
909 if (msg_type == AUDIT_USER_TTY) {
910 err = tty_audit_push_current();
911 if (err)
912 break;
913 }
914 mutex_unlock(&audit_cmd_mutex);
915 audit_log_common_recv_msg(&ab, msg_type);
916 if (msg_type != AUDIT_USER_TTY)
917 audit_log_format(ab, " msg='%.*s'",
918 AUDIT_MESSAGE_TEXT_MAX,
919 (char *)data);
920 else {
921 int size;
922
923 audit_log_format(ab, " data=");
924 size = nlmsg_len(nlh);
925 if (size > 0 &&
926 ((unsigned char *)data)[size - 1] == '\0')
927 size--;
928 audit_log_n_untrustedstring(ab, data, size);
929 }
930 audit_set_portid(ab, NETLINK_CB(skb).portid);
931 audit_log_end(ab);
932 mutex_lock(&audit_cmd_mutex);
933 }
934 break;
935 case AUDIT_ADD_RULE:
936 case AUDIT_DEL_RULE:
937 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
938 return -EINVAL;
939 if (audit_enabled == AUDIT_LOCKED) {
940 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
941 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
942 audit_log_end(ab);
943 return -EPERM;
944 }
945 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
946 seq, data, nlmsg_len(nlh));
947 break;
948 case AUDIT_LIST_RULES:
949 err = audit_list_rules_send(skb, seq);
950 break;
951 case AUDIT_TRIM:
952 audit_trim_trees();
953 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
954 audit_log_format(ab, " op=trim res=1");
955 audit_log_end(ab);
956 break;
957 case AUDIT_MAKE_EQUIV: {
958 void *bufp = data;
959 u32 sizes[2];
960 size_t msglen = nlmsg_len(nlh);
961 char *old, *new;
962
963 err = -EINVAL;
964 if (msglen < 2 * sizeof(u32))
965 break;
966 memcpy(sizes, bufp, 2 * sizeof(u32));
967 bufp += 2 * sizeof(u32);
968 msglen -= 2 * sizeof(u32);
969 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
970 if (IS_ERR(old)) {
971 err = PTR_ERR(old);
972 break;
973 }
974 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
975 if (IS_ERR(new)) {
976 err = PTR_ERR(new);
977 kfree(old);
978 break;
979 }
980 /* OK, here comes... */
981 err = audit_tag_tree(old, new);
982
983 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
984
985 audit_log_format(ab, " op=make_equiv old=");
986 audit_log_untrustedstring(ab, old);
987 audit_log_format(ab, " new=");
988 audit_log_untrustedstring(ab, new);
989 audit_log_format(ab, " res=%d", !err);
990 audit_log_end(ab);
991 kfree(old);
992 kfree(new);
993 break;
994 }
995 case AUDIT_SIGNAL_INFO:
996 len = 0;
997 if (audit_sig_sid) {
998 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
999 if (err)
1000 return err;
1001 }
1002 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1003 if (!sig_data) {
1004 if (audit_sig_sid)
1005 security_release_secctx(ctx, len);
1006 return -ENOMEM;
1007 }
1008 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1009 sig_data->pid = audit_sig_pid;
1010 if (audit_sig_sid) {
1011 memcpy(sig_data->ctx, ctx, len);
1012 security_release_secctx(ctx, len);
1013 }
1014 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1015 sig_data, sizeof(*sig_data) + len);
1016 kfree(sig_data);
1017 break;
1018 case AUDIT_TTY_GET: {
1019 struct audit_tty_status s;
1020 struct task_struct *tsk = current;
1021
1022 spin_lock(&tsk->sighand->siglock);
1023 s.enabled = tsk->signal->audit_tty;
1024 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1025 spin_unlock(&tsk->sighand->siglock);
1026
1027 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1028 break;
1029 }
1030 case AUDIT_TTY_SET: {
1031 struct audit_tty_status s, old;
1032 struct task_struct *tsk = current;
1033 struct audit_buffer *ab;
1034
1035 memset(&s, 0, sizeof(s));
1036 /* guard against past and future API changes */
1037 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1038 /* check if new data is valid */
1039 if ((s.enabled != 0 && s.enabled != 1) ||
1040 (s.log_passwd != 0 && s.log_passwd != 1))
1041 err = -EINVAL;
1042
1043 spin_lock(&tsk->sighand->siglock);
1044 old.enabled = tsk->signal->audit_tty;
1045 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1046 if (!err) {
1047 tsk->signal->audit_tty = s.enabled;
1048 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1049 }
1050 spin_unlock(&tsk->sighand->siglock);
1051
1052 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1053 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1054 " old-log_passwd=%d new-log_passwd=%d res=%d",
1055 old.enabled, s.enabled, old.log_passwd,
1056 s.log_passwd, !err);
1057 audit_log_end(ab);
1058 break;
1059 }
1060 default:
1061 err = -EINVAL;
1062 break;
1063 }
1064
1065 return err < 0 ? err : 0;
1066 }
1067
1068 /*
1069 * Get message from skb. Each message is processed by audit_receive_msg.
1070 * Malformed skbs with wrong length are discarded silently.
1071 */
1072 static void audit_receive_skb(struct sk_buff *skb)
1073 {
1074 struct nlmsghdr *nlh;
1075 /*
1076 * len MUST be signed for nlmsg_next to be able to dec it below 0
1077 * if the nlmsg_len was not aligned
1078 */
1079 int len;
1080 int err;
1081
1082 nlh = nlmsg_hdr(skb);
1083 len = skb->len;
1084
1085 while (nlmsg_ok(nlh, len)) {
1086 err = audit_receive_msg(skb, nlh);
1087 /* if err or if this message says it wants a response */
1088 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1089 netlink_ack(skb, nlh, err);
1090
1091 nlh = nlmsg_next(nlh, &len);
1092 }
1093 }
1094
1095 /* Receive messages from netlink socket. */
1096 static void audit_receive(struct sk_buff *skb)
1097 {
1098 mutex_lock(&audit_cmd_mutex);
1099 audit_receive_skb(skb);
1100 mutex_unlock(&audit_cmd_mutex);
1101 }
1102
1103 /* Run custom bind function on netlink socket group connect or bind requests. */
1104 static int audit_bind(struct net *net, int group)
1105 {
1106 if (!capable(CAP_AUDIT_READ))
1107 return -EPERM;
1108
1109 return 0;
1110 }
1111
1112 static int __net_init audit_net_init(struct net *net)
1113 {
1114 struct netlink_kernel_cfg cfg = {
1115 .input = audit_receive,
1116 .bind = audit_bind,
1117 .flags = NL_CFG_F_NONROOT_RECV,
1118 .groups = AUDIT_NLGRP_MAX,
1119 };
1120
1121 struct audit_net *aunet = net_generic(net, audit_net_id);
1122
1123 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1124 if (aunet->nlsk == NULL) {
1125 audit_panic("cannot initialize netlink socket in namespace");
1126 return -ENOMEM;
1127 }
1128 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1129 return 0;
1130 }
1131
1132 static void __net_exit audit_net_exit(struct net *net)
1133 {
1134 struct audit_net *aunet = net_generic(net, audit_net_id);
1135 struct sock *sock = aunet->nlsk;
1136 if (sock == audit_sock) {
1137 audit_pid = 0;
1138 audit_sock = NULL;
1139 }
1140
1141 RCU_INIT_POINTER(aunet->nlsk, NULL);
1142 synchronize_net();
1143 netlink_kernel_release(sock);
1144 }
1145
1146 static struct pernet_operations audit_net_ops __net_initdata = {
1147 .init = audit_net_init,
1148 .exit = audit_net_exit,
1149 .id = &audit_net_id,
1150 .size = sizeof(struct audit_net),
1151 };
1152
1153 /* Initialize audit support at boot time. */
1154 static int __init audit_init(void)
1155 {
1156 int i;
1157
1158 if (audit_initialized == AUDIT_DISABLED)
1159 return 0;
1160
1161 pr_info("initializing netlink subsys (%s)\n",
1162 audit_default ? "enabled" : "disabled");
1163 register_pernet_subsys(&audit_net_ops);
1164
1165 skb_queue_head_init(&audit_skb_queue);
1166 skb_queue_head_init(&audit_skb_hold_queue);
1167 audit_initialized = AUDIT_INITIALIZED;
1168 audit_enabled = audit_default;
1169 audit_ever_enabled |= !!audit_default;
1170
1171 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1172
1173 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1174 INIT_LIST_HEAD(&audit_inode_hash[i]);
1175
1176 return 0;
1177 }
1178 __initcall(audit_init);
1179
1180 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1181 static int __init audit_enable(char *str)
1182 {
1183 audit_default = !!simple_strtol(str, NULL, 0);
1184 if (!audit_default)
1185 audit_initialized = AUDIT_DISABLED;
1186
1187 pr_info("%s\n", audit_default ?
1188 "enabled (after initialization)" : "disabled (until reboot)");
1189
1190 return 1;
1191 }
1192 __setup("audit=", audit_enable);
1193
1194 /* Process kernel command-line parameter at boot time.
1195 * audit_backlog_limit=<n> */
1196 static int __init audit_backlog_limit_set(char *str)
1197 {
1198 u32 audit_backlog_limit_arg;
1199
1200 pr_info("audit_backlog_limit: ");
1201 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1202 pr_cont("using default of %u, unable to parse %s\n",
1203 audit_backlog_limit, str);
1204 return 1;
1205 }
1206
1207 audit_backlog_limit = audit_backlog_limit_arg;
1208 pr_cont("%d\n", audit_backlog_limit);
1209
1210 return 1;
1211 }
1212 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1213
1214 static void audit_buffer_free(struct audit_buffer *ab)
1215 {
1216 unsigned long flags;
1217
1218 if (!ab)
1219 return;
1220
1221 if (ab->skb)
1222 kfree_skb(ab->skb);
1223
1224 spin_lock_irqsave(&audit_freelist_lock, flags);
1225 if (audit_freelist_count > AUDIT_MAXFREE)
1226 kfree(ab);
1227 else {
1228 audit_freelist_count++;
1229 list_add(&ab->list, &audit_freelist);
1230 }
1231 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1232 }
1233
1234 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1235 gfp_t gfp_mask, int type)
1236 {
1237 unsigned long flags;
1238 struct audit_buffer *ab = NULL;
1239 struct nlmsghdr *nlh;
1240
1241 spin_lock_irqsave(&audit_freelist_lock, flags);
1242 if (!list_empty(&audit_freelist)) {
1243 ab = list_entry(audit_freelist.next,
1244 struct audit_buffer, list);
1245 list_del(&ab->list);
1246 --audit_freelist_count;
1247 }
1248 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1249
1250 if (!ab) {
1251 ab = kmalloc(sizeof(*ab), gfp_mask);
1252 if (!ab)
1253 goto err;
1254 }
1255
1256 ab->ctx = ctx;
1257 ab->gfp_mask = gfp_mask;
1258
1259 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1260 if (!ab->skb)
1261 goto err;
1262
1263 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1264 if (!nlh)
1265 goto out_kfree_skb;
1266
1267 return ab;
1268
1269 out_kfree_skb:
1270 kfree_skb(ab->skb);
1271 ab->skb = NULL;
1272 err:
1273 audit_buffer_free(ab);
1274 return NULL;
1275 }
1276
1277 /**
1278 * audit_serial - compute a serial number for the audit record
1279 *
1280 * Compute a serial number for the audit record. Audit records are
1281 * written to user-space as soon as they are generated, so a complete
1282 * audit record may be written in several pieces. The timestamp of the
1283 * record and this serial number are used by the user-space tools to
1284 * determine which pieces belong to the same audit record. The
1285 * (timestamp,serial) tuple is unique for each syscall and is live from
1286 * syscall entry to syscall exit.
1287 *
1288 * NOTE: Another possibility is to store the formatted records off the
1289 * audit context (for those records that have a context), and emit them
1290 * all at syscall exit. However, this could delay the reporting of
1291 * significant errors until syscall exit (or never, if the system
1292 * halts).
1293 */
1294 unsigned int audit_serial(void)
1295 {
1296 static atomic_t serial = ATOMIC_INIT(0);
1297
1298 return atomic_add_return(1, &serial);
1299 }
1300
1301 static inline void audit_get_stamp(struct audit_context *ctx,
1302 struct timespec *t, unsigned int *serial)
1303 {
1304 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1305 *t = CURRENT_TIME;
1306 *serial = audit_serial();
1307 }
1308 }
1309
1310 /*
1311 * Wait for auditd to drain the queue a little
1312 */
1313 static long wait_for_auditd(long sleep_time)
1314 {
1315 DECLARE_WAITQUEUE(wait, current);
1316 set_current_state(TASK_UNINTERRUPTIBLE);
1317 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1318
1319 if (audit_backlog_limit &&
1320 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1321 sleep_time = schedule_timeout(sleep_time);
1322
1323 __set_current_state(TASK_RUNNING);
1324 remove_wait_queue(&audit_backlog_wait, &wait);
1325
1326 return sleep_time;
1327 }
1328
1329 /**
1330 * audit_log_start - obtain an audit buffer
1331 * @ctx: audit_context (may be NULL)
1332 * @gfp_mask: type of allocation
1333 * @type: audit message type
1334 *
1335 * Returns audit_buffer pointer on success or NULL on error.
1336 *
1337 * Obtain an audit buffer. This routine does locking to obtain the
1338 * audit buffer, but then no locking is required for calls to
1339 * audit_log_*format. If the task (ctx) is a task that is currently in a
1340 * syscall, then the syscall is marked as auditable and an audit record
1341 * will be written at syscall exit. If there is no associated task, then
1342 * task context (ctx) should be NULL.
1343 */
1344 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1345 int type)
1346 {
1347 struct audit_buffer *ab = NULL;
1348 struct timespec t;
1349 unsigned int uninitialized_var(serial);
1350 int reserve = 5; /* Allow atomic callers to go up to five
1351 entries over the normal backlog limit */
1352 unsigned long timeout_start = jiffies;
1353
1354 if (audit_initialized != AUDIT_INITIALIZED)
1355 return NULL;
1356
1357 if (unlikely(audit_filter_type(type)))
1358 return NULL;
1359
1360 if (gfp_mask & __GFP_WAIT) {
1361 if (audit_pid && audit_pid == current->pid)
1362 gfp_mask &= ~__GFP_WAIT;
1363 else
1364 reserve = 0;
1365 }
1366
1367 while (audit_backlog_limit
1368 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1369 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1370 long sleep_time;
1371
1372 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1373 if (sleep_time > 0) {
1374 sleep_time = wait_for_auditd(sleep_time);
1375 if (sleep_time > 0)
1376 continue;
1377 }
1378 }
1379 if (audit_rate_check() && printk_ratelimit())
1380 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1381 skb_queue_len(&audit_skb_queue),
1382 audit_backlog_limit);
1383 audit_log_lost("backlog limit exceeded");
1384 audit_backlog_wait_time = audit_backlog_wait_overflow;
1385 wake_up(&audit_backlog_wait);
1386 return NULL;
1387 }
1388
1389 if (!reserve)
1390 audit_backlog_wait_time = audit_backlog_wait_time_master;
1391
1392 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1393 if (!ab) {
1394 audit_log_lost("out of memory in audit_log_start");
1395 return NULL;
1396 }
1397
1398 audit_get_stamp(ab->ctx, &t, &serial);
1399
1400 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1401 t.tv_sec, t.tv_nsec/1000000, serial);
1402 return ab;
1403 }
1404
1405 /**
1406 * audit_expand - expand skb in the audit buffer
1407 * @ab: audit_buffer
1408 * @extra: space to add at tail of the skb
1409 *
1410 * Returns 0 (no space) on failed expansion, or available space if
1411 * successful.
1412 */
1413 static inline int audit_expand(struct audit_buffer *ab, int extra)
1414 {
1415 struct sk_buff *skb = ab->skb;
1416 int oldtail = skb_tailroom(skb);
1417 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1418 int newtail = skb_tailroom(skb);
1419
1420 if (ret < 0) {
1421 audit_log_lost("out of memory in audit_expand");
1422 return 0;
1423 }
1424
1425 skb->truesize += newtail - oldtail;
1426 return newtail;
1427 }
1428
1429 /*
1430 * Format an audit message into the audit buffer. If there isn't enough
1431 * room in the audit buffer, more room will be allocated and vsnprint
1432 * will be called a second time. Currently, we assume that a printk
1433 * can't format message larger than 1024 bytes, so we don't either.
1434 */
1435 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1436 va_list args)
1437 {
1438 int len, avail;
1439 struct sk_buff *skb;
1440 va_list args2;
1441
1442 if (!ab)
1443 return;
1444
1445 BUG_ON(!ab->skb);
1446 skb = ab->skb;
1447 avail = skb_tailroom(skb);
1448 if (avail == 0) {
1449 avail = audit_expand(ab, AUDIT_BUFSIZ);
1450 if (!avail)
1451 goto out;
1452 }
1453 va_copy(args2, args);
1454 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1455 if (len >= avail) {
1456 /* The printk buffer is 1024 bytes long, so if we get
1457 * here and AUDIT_BUFSIZ is at least 1024, then we can
1458 * log everything that printk could have logged. */
1459 avail = audit_expand(ab,
1460 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1461 if (!avail)
1462 goto out_va_end;
1463 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1464 }
1465 if (len > 0)
1466 skb_put(skb, len);
1467 out_va_end:
1468 va_end(args2);
1469 out:
1470 return;
1471 }
1472
1473 /**
1474 * audit_log_format - format a message into the audit buffer.
1475 * @ab: audit_buffer
1476 * @fmt: format string
1477 * @...: optional parameters matching @fmt string
1478 *
1479 * All the work is done in audit_log_vformat.
1480 */
1481 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1482 {
1483 va_list args;
1484
1485 if (!ab)
1486 return;
1487 va_start(args, fmt);
1488 audit_log_vformat(ab, fmt, args);
1489 va_end(args);
1490 }
1491
1492 /**
1493 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1494 * @ab: the audit_buffer
1495 * @buf: buffer to convert to hex
1496 * @len: length of @buf to be converted
1497 *
1498 * No return value; failure to expand is silently ignored.
1499 *
1500 * This function will take the passed buf and convert it into a string of
1501 * ascii hex digits. The new string is placed onto the skb.
1502 */
1503 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1504 size_t len)
1505 {
1506 int i, avail, new_len;
1507 unsigned char *ptr;
1508 struct sk_buff *skb;
1509
1510 if (!ab)
1511 return;
1512
1513 BUG_ON(!ab->skb);
1514 skb = ab->skb;
1515 avail = skb_tailroom(skb);
1516 new_len = len<<1;
1517 if (new_len >= avail) {
1518 /* Round the buffer request up to the next multiple */
1519 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1520 avail = audit_expand(ab, new_len);
1521 if (!avail)
1522 return;
1523 }
1524
1525 ptr = skb_tail_pointer(skb);
1526 for (i = 0; i < len; i++)
1527 ptr = hex_byte_pack_upper(ptr, buf[i]);
1528 *ptr = 0;
1529 skb_put(skb, len << 1); /* new string is twice the old string */
1530 }
1531
1532 /*
1533 * Format a string of no more than slen characters into the audit buffer,
1534 * enclosed in quote marks.
1535 */
1536 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1537 size_t slen)
1538 {
1539 int avail, new_len;
1540 unsigned char *ptr;
1541 struct sk_buff *skb;
1542
1543 if (!ab)
1544 return;
1545
1546 BUG_ON(!ab->skb);
1547 skb = ab->skb;
1548 avail = skb_tailroom(skb);
1549 new_len = slen + 3; /* enclosing quotes + null terminator */
1550 if (new_len > avail) {
1551 avail = audit_expand(ab, new_len);
1552 if (!avail)
1553 return;
1554 }
1555 ptr = skb_tail_pointer(skb);
1556 *ptr++ = '"';
1557 memcpy(ptr, string, slen);
1558 ptr += slen;
1559 *ptr++ = '"';
1560 *ptr = 0;
1561 skb_put(skb, slen + 2); /* don't include null terminator */
1562 }
1563
1564 /**
1565 * audit_string_contains_control - does a string need to be logged in hex
1566 * @string: string to be checked
1567 * @len: max length of the string to check
1568 */
1569 int audit_string_contains_control(const char *string, size_t len)
1570 {
1571 const unsigned char *p;
1572 for (p = string; p < (const unsigned char *)string + len; p++) {
1573 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1574 return 1;
1575 }
1576 return 0;
1577 }
1578
1579 /**
1580 * audit_log_n_untrustedstring - log a string that may contain random characters
1581 * @ab: audit_buffer
1582 * @len: length of string (not including trailing null)
1583 * @string: string to be logged
1584 *
1585 * This code will escape a string that is passed to it if the string
1586 * contains a control character, unprintable character, double quote mark,
1587 * or a space. Unescaped strings will start and end with a double quote mark.
1588 * Strings that are escaped are printed in hex (2 digits per char).
1589 *
1590 * The caller specifies the number of characters in the string to log, which may
1591 * or may not be the entire string.
1592 */
1593 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1594 size_t len)
1595 {
1596 if (audit_string_contains_control(string, len))
1597 audit_log_n_hex(ab, string, len);
1598 else
1599 audit_log_n_string(ab, string, len);
1600 }
1601
1602 /**
1603 * audit_log_untrustedstring - log a string that may contain random characters
1604 * @ab: audit_buffer
1605 * @string: string to be logged
1606 *
1607 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1608 * determine string length.
1609 */
1610 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1611 {
1612 audit_log_n_untrustedstring(ab, string, strlen(string));
1613 }
1614
1615 /* This is a helper-function to print the escaped d_path */
1616 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1617 const struct path *path)
1618 {
1619 char *p, *pathname;
1620
1621 if (prefix)
1622 audit_log_format(ab, "%s", prefix);
1623
1624 /* We will allow 11 spaces for ' (deleted)' to be appended */
1625 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1626 if (!pathname) {
1627 audit_log_string(ab, "<no_memory>");
1628 return;
1629 }
1630 p = d_path(path, pathname, PATH_MAX+11);
1631 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1632 /* FIXME: can we save some information here? */
1633 audit_log_string(ab, "<too_long>");
1634 } else
1635 audit_log_untrustedstring(ab, p);
1636 kfree(pathname);
1637 }
1638
1639 void audit_log_session_info(struct audit_buffer *ab)
1640 {
1641 unsigned int sessionid = audit_get_sessionid(current);
1642 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1643
1644 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1645 }
1646
1647 void audit_log_key(struct audit_buffer *ab, char *key)
1648 {
1649 audit_log_format(ab, " key=");
1650 if (key)
1651 audit_log_untrustedstring(ab, key);
1652 else
1653 audit_log_format(ab, "(null)");
1654 }
1655
1656 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1657 {
1658 int i;
1659
1660 audit_log_format(ab, " %s=", prefix);
1661 CAP_FOR_EACH_U32(i) {
1662 audit_log_format(ab, "%08x",
1663 cap->cap[CAP_LAST_U32 - i]);
1664 }
1665 }
1666
1667 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1668 {
1669 kernel_cap_t *perm = &name->fcap.permitted;
1670 kernel_cap_t *inh = &name->fcap.inheritable;
1671 int log = 0;
1672
1673 if (!cap_isclear(*perm)) {
1674 audit_log_cap(ab, "cap_fp", perm);
1675 log = 1;
1676 }
1677 if (!cap_isclear(*inh)) {
1678 audit_log_cap(ab, "cap_fi", inh);
1679 log = 1;
1680 }
1681
1682 if (log)
1683 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1684 name->fcap.fE, name->fcap_ver);
1685 }
1686
1687 static inline int audit_copy_fcaps(struct audit_names *name,
1688 const struct dentry *dentry)
1689 {
1690 struct cpu_vfs_cap_data caps;
1691 int rc;
1692
1693 if (!dentry)
1694 return 0;
1695
1696 rc = get_vfs_caps_from_disk(dentry, &caps);
1697 if (rc)
1698 return rc;
1699
1700 name->fcap.permitted = caps.permitted;
1701 name->fcap.inheritable = caps.inheritable;
1702 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1703 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1704 VFS_CAP_REVISION_SHIFT;
1705
1706 return 0;
1707 }
1708
1709 /* Copy inode data into an audit_names. */
1710 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1711 const struct inode *inode)
1712 {
1713 name->ino = inode->i_ino;
1714 name->dev = inode->i_sb->s_dev;
1715 name->mode = inode->i_mode;
1716 name->uid = inode->i_uid;
1717 name->gid = inode->i_gid;
1718 name->rdev = inode->i_rdev;
1719 security_inode_getsecid(inode, &name->osid);
1720 audit_copy_fcaps(name, dentry);
1721 }
1722
1723 /**
1724 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1725 * @context: audit_context for the task
1726 * @n: audit_names structure with reportable details
1727 * @path: optional path to report instead of audit_names->name
1728 * @record_num: record number to report when handling a list of names
1729 * @call_panic: optional pointer to int that will be updated if secid fails
1730 */
1731 void audit_log_name(struct audit_context *context, struct audit_names *n,
1732 struct path *path, int record_num, int *call_panic)
1733 {
1734 struct audit_buffer *ab;
1735 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1736 if (!ab)
1737 return;
1738
1739 audit_log_format(ab, "item=%d", record_num);
1740
1741 if (path)
1742 audit_log_d_path(ab, " name=", path);
1743 else if (n->name) {
1744 switch (n->name_len) {
1745 case AUDIT_NAME_FULL:
1746 /* log the full path */
1747 audit_log_format(ab, " name=");
1748 audit_log_untrustedstring(ab, n->name->name);
1749 break;
1750 case 0:
1751 /* name was specified as a relative path and the
1752 * directory component is the cwd */
1753 audit_log_d_path(ab, " name=", &context->pwd);
1754 break;
1755 default:
1756 /* log the name's directory component */
1757 audit_log_format(ab, " name=");
1758 audit_log_n_untrustedstring(ab, n->name->name,
1759 n->name_len);
1760 }
1761 } else
1762 audit_log_format(ab, " name=(null)");
1763
1764 if (n->ino != AUDIT_INO_UNSET)
1765 audit_log_format(ab, " inode=%lu"
1766 " dev=%02x:%02x mode=%#ho"
1767 " ouid=%u ogid=%u rdev=%02x:%02x",
1768 n->ino,
1769 MAJOR(n->dev),
1770 MINOR(n->dev),
1771 n->mode,
1772 from_kuid(&init_user_ns, n->uid),
1773 from_kgid(&init_user_ns, n->gid),
1774 MAJOR(n->rdev),
1775 MINOR(n->rdev));
1776 if (n->osid != 0) {
1777 char *ctx = NULL;
1778 u32 len;
1779 if (security_secid_to_secctx(
1780 n->osid, &ctx, &len)) {
1781 audit_log_format(ab, " osid=%u", n->osid);
1782 if (call_panic)
1783 *call_panic = 2;
1784 } else {
1785 audit_log_format(ab, " obj=%s", ctx);
1786 security_release_secctx(ctx, len);
1787 }
1788 }
1789
1790 /* log the audit_names record type */
1791 audit_log_format(ab, " nametype=");
1792 switch(n->type) {
1793 case AUDIT_TYPE_NORMAL:
1794 audit_log_format(ab, "NORMAL");
1795 break;
1796 case AUDIT_TYPE_PARENT:
1797 audit_log_format(ab, "PARENT");
1798 break;
1799 case AUDIT_TYPE_CHILD_DELETE:
1800 audit_log_format(ab, "DELETE");
1801 break;
1802 case AUDIT_TYPE_CHILD_CREATE:
1803 audit_log_format(ab, "CREATE");
1804 break;
1805 default:
1806 audit_log_format(ab, "UNKNOWN");
1807 break;
1808 }
1809
1810 audit_log_fcaps(ab, n);
1811 audit_log_end(ab);
1812 }
1813
1814 int audit_log_task_context(struct audit_buffer *ab)
1815 {
1816 char *ctx = NULL;
1817 unsigned len;
1818 int error;
1819 u32 sid;
1820
1821 security_task_getsecid(current, &sid);
1822 if (!sid)
1823 return 0;
1824
1825 error = security_secid_to_secctx(sid, &ctx, &len);
1826 if (error) {
1827 if (error != -EINVAL)
1828 goto error_path;
1829 return 0;
1830 }
1831
1832 audit_log_format(ab, " subj=%s", ctx);
1833 security_release_secctx(ctx, len);
1834 return 0;
1835
1836 error_path:
1837 audit_panic("error in audit_log_task_context");
1838 return error;
1839 }
1840 EXPORT_SYMBOL(audit_log_task_context);
1841
1842 void audit_log_d_path_exe(struct audit_buffer *ab,
1843 struct mm_struct *mm)
1844 {
1845 struct file *exe_file;
1846
1847 if (!mm)
1848 goto out_null;
1849
1850 exe_file = get_mm_exe_file(mm);
1851 if (!exe_file)
1852 goto out_null;
1853
1854 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1855 fput(exe_file);
1856 return;
1857 out_null:
1858 audit_log_format(ab, " exe=(null)");
1859 }
1860
1861 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1862 {
1863 const struct cred *cred;
1864 char comm[sizeof(tsk->comm)];
1865 char *tty;
1866
1867 if (!ab)
1868 return;
1869
1870 /* tsk == current */
1871 cred = current_cred();
1872
1873 spin_lock_irq(&tsk->sighand->siglock);
1874 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1875 tty = tsk->signal->tty->name;
1876 else
1877 tty = "(none)";
1878 spin_unlock_irq(&tsk->sighand->siglock);
1879
1880 audit_log_format(ab,
1881 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1882 " euid=%u suid=%u fsuid=%u"
1883 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1884 task_ppid_nr(tsk),
1885 task_pid_nr(tsk),
1886 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1887 from_kuid(&init_user_ns, cred->uid),
1888 from_kgid(&init_user_ns, cred->gid),
1889 from_kuid(&init_user_ns, cred->euid),
1890 from_kuid(&init_user_ns, cred->suid),
1891 from_kuid(&init_user_ns, cred->fsuid),
1892 from_kgid(&init_user_ns, cred->egid),
1893 from_kgid(&init_user_ns, cred->sgid),
1894 from_kgid(&init_user_ns, cred->fsgid),
1895 tty, audit_get_sessionid(tsk));
1896
1897 audit_log_format(ab, " comm=");
1898 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1899
1900 audit_log_d_path_exe(ab, tsk->mm);
1901 audit_log_task_context(ab);
1902 }
1903 EXPORT_SYMBOL(audit_log_task_info);
1904
1905 /**
1906 * audit_log_link_denied - report a link restriction denial
1907 * @operation: specific link operation
1908 * @link: the path that triggered the restriction
1909 */
1910 void audit_log_link_denied(const char *operation, struct path *link)
1911 {
1912 struct audit_buffer *ab;
1913 struct audit_names *name;
1914
1915 name = kzalloc(sizeof(*name), GFP_NOFS);
1916 if (!name)
1917 return;
1918
1919 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1920 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1921 AUDIT_ANOM_LINK);
1922 if (!ab)
1923 goto out;
1924 audit_log_format(ab, "op=%s", operation);
1925 audit_log_task_info(ab, current);
1926 audit_log_format(ab, " res=0");
1927 audit_log_end(ab);
1928
1929 /* Generate AUDIT_PATH record with object. */
1930 name->type = AUDIT_TYPE_NORMAL;
1931 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1932 audit_log_name(current->audit_context, name, link, 0, NULL);
1933 out:
1934 kfree(name);
1935 }
1936
1937 /**
1938 * audit_log_end - end one audit record
1939 * @ab: the audit_buffer
1940 *
1941 * netlink_unicast() cannot be called inside an irq context because it blocks
1942 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1943 * on a queue and a tasklet is scheduled to remove them from the queue outside
1944 * the irq context. May be called in any context.
1945 */
1946 void audit_log_end(struct audit_buffer *ab)
1947 {
1948 if (!ab)
1949 return;
1950 if (!audit_rate_check()) {
1951 audit_log_lost("rate limit exceeded");
1952 } else {
1953 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1954
1955 nlh->nlmsg_len = ab->skb->len;
1956 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1957
1958 /*
1959 * The original kaudit unicast socket sends up messages with
1960 * nlmsg_len set to the payload length rather than the entire
1961 * message length. This breaks the standard set by netlink.
1962 * The existing auditd daemon assumes this breakage. Fixing
1963 * this would require co-ordinating a change in the established
1964 * protocol between the kaudit kernel subsystem and the auditd
1965 * userspace code.
1966 */
1967 nlh->nlmsg_len -= NLMSG_HDRLEN;
1968
1969 if (audit_pid) {
1970 skb_queue_tail(&audit_skb_queue, ab->skb);
1971 wake_up_interruptible(&kauditd_wait);
1972 } else {
1973 audit_printk_skb(ab->skb);
1974 }
1975 ab->skb = NULL;
1976 }
1977 audit_buffer_free(ab);
1978 }
1979
1980 /**
1981 * audit_log - Log an audit record
1982 * @ctx: audit context
1983 * @gfp_mask: type of allocation
1984 * @type: audit message type
1985 * @fmt: format string to use
1986 * @...: variable parameters matching the format string
1987 *
1988 * This is a convenience function that calls audit_log_start,
1989 * audit_log_vformat, and audit_log_end. It may be called
1990 * in any context.
1991 */
1992 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1993 const char *fmt, ...)
1994 {
1995 struct audit_buffer *ab;
1996 va_list args;
1997
1998 ab = audit_log_start(ctx, gfp_mask, type);
1999 if (ab) {
2000 va_start(args, fmt);
2001 audit_log_vformat(ab, fmt, args);
2002 va_end(args);
2003 audit_log_end(ab);
2004 }
2005 }
2006
2007 #ifdef CONFIG_SECURITY
2008 /**
2009 * audit_log_secctx - Converts and logs SELinux context
2010 * @ab: audit_buffer
2011 * @secid: security number
2012 *
2013 * This is a helper function that calls security_secid_to_secctx to convert
2014 * secid to secctx and then adds the (converted) SELinux context to the audit
2015 * log by calling audit_log_format, thus also preventing leak of internal secid
2016 * to userspace. If secid cannot be converted audit_panic is called.
2017 */
2018 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2019 {
2020 u32 len;
2021 char *secctx;
2022
2023 if (security_secid_to_secctx(secid, &secctx, &len)) {
2024 audit_panic("Cannot convert secid to context");
2025 } else {
2026 audit_log_format(ab, " obj=%s", secctx);
2027 security_release_secctx(secctx, len);
2028 }
2029 }
2030 EXPORT_SYMBOL(audit_log_secctx);
2031 #endif
2032
2033 EXPORT_SYMBOL(audit_log_start);
2034 EXPORT_SYMBOL(audit_log_end);
2035 EXPORT_SYMBOL(audit_log_format);
2036 EXPORT_SYMBOL(audit_log);