]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/audit.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61 #include <linux/pid.h>
62 #include <linux/slab.h>
63
64 #include <linux/audit.h>
65
66 #include <net/sock.h>
67 #include <net/netlink.h>
68 #include <linux/skbuff.h>
69 #ifdef CONFIG_SECURITY
70 #include <linux/security.h>
71 #endif
72 #include <linux/freezer.h>
73 #include <linux/pid_namespace.h>
74 #include <net/netns/generic.h>
75
76 #include "audit.h"
77
78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
79 * (Initialization happens after skb_init is called.) */
80 #define AUDIT_DISABLED -1
81 #define AUDIT_UNINITIALIZED 0
82 #define AUDIT_INITIALIZED 1
83 static int audit_initialized;
84
85 #define AUDIT_OFF 0
86 #define AUDIT_ON 1
87 #define AUDIT_LOCKED 2
88 u32 audit_enabled;
89 u32 audit_ever_enabled;
90
91 EXPORT_SYMBOL_GPL(audit_enabled);
92
93 /* Default state when kernel boots without any parameters. */
94 static u32 audit_default;
95
96 /* If auditing cannot proceed, audit_failure selects what happens. */
97 static u32 audit_failure = AUDIT_FAIL_PRINTK;
98
99 /* private audit network namespace index */
100 static unsigned int audit_net_id;
101
102 /**
103 * struct audit_net - audit private network namespace data
104 * @sk: communication socket
105 */
106 struct audit_net {
107 struct sock *sk;
108 };
109
110 /**
111 * struct auditd_connection - kernel/auditd connection state
112 * @pid: auditd PID
113 * @portid: netlink portid
114 * @net: the associated network namespace
115 * @rcu: RCU head
116 *
117 * Description:
118 * This struct is RCU protected; you must either hold the RCU lock for reading
119 * or the associated spinlock for writing.
120 */
121 static struct auditd_connection {
122 struct pid *pid;
123 u32 portid;
124 struct net *net;
125 struct rcu_head rcu;
126 } *auditd_conn = NULL;
127 static DEFINE_SPINLOCK(auditd_conn_lock);
128
129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
130 * to that number per second. This prevents DoS attacks, but results in
131 * audit records being dropped. */
132 static u32 audit_rate_limit;
133
134 /* Number of outstanding audit_buffers allowed.
135 * When set to zero, this means unlimited. */
136 static u32 audit_backlog_limit = 64;
137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
138 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
139
140 /* The identity of the user shutting down the audit system. */
141 kuid_t audit_sig_uid = INVALID_UID;
142 pid_t audit_sig_pid = -1;
143 u32 audit_sig_sid = 0;
144
145 /* Records can be lost in several ways:
146 0) [suppressed in audit_alloc]
147 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
148 2) out of memory in audit_log_move [alloc_skb]
149 3) suppressed due to audit_rate_limit
150 4) suppressed due to audit_backlog_limit
151 */
152 static atomic_t audit_lost = ATOMIC_INIT(0);
153
154 /* Hash for inode-based rules */
155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
156
157 static struct kmem_cache *audit_buffer_cache;
158
159 /* queue msgs to send via kauditd_task */
160 static struct sk_buff_head audit_queue;
161 /* queue msgs due to temporary unicast send problems */
162 static struct sk_buff_head audit_retry_queue;
163 /* queue msgs waiting for new auditd connection */
164 static struct sk_buff_head audit_hold_queue;
165
166 /* queue servicing thread */
167 static struct task_struct *kauditd_task;
168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
169
170 /* waitqueue for callers who are blocked on the audit backlog */
171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
172
173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
174 .mask = -1,
175 .features = 0,
176 .lock = 0,};
177
178 static char *audit_feature_names[2] = {
179 "only_unset_loginuid",
180 "loginuid_immutable",
181 };
182
183
184 /* Serialize requests from userspace. */
185 DEFINE_MUTEX(audit_cmd_mutex);
186
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records. Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191
192 /* The audit_buffer is used when formatting an audit record. The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue. Multiple audit_buffers can be in
196 * use simultaneously. */
197 struct audit_buffer {
198 struct sk_buff *skb; /* formatted skb ready to send */
199 struct audit_context *ctx; /* NULL or associated context */
200 gfp_t gfp_mask;
201 };
202
203 struct audit_reply {
204 __u32 portid;
205 struct net *net;
206 struct sk_buff *skb;
207 };
208
209 /**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
216 int auditd_test_task(struct task_struct *task)
217 {
218 int rc;
219 struct auditd_connection *ac;
220
221 rcu_read_lock();
222 ac = rcu_dereference(auditd_conn);
223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 rcu_read_unlock();
225
226 return rc;
227 }
228
229 /**
230 * auditd_pid_vnr - Return the auditd PID relative to the namespace
231 *
232 * Description:
233 * Returns the PID in relation to the namespace, 0 on failure.
234 */
235 static pid_t auditd_pid_vnr(void)
236 {
237 pid_t pid;
238 const struct auditd_connection *ac;
239
240 rcu_read_lock();
241 ac = rcu_dereference(auditd_conn);
242 if (!ac || !ac->pid)
243 pid = 0;
244 else
245 pid = pid_vnr(ac->pid);
246 rcu_read_unlock();
247
248 return pid;
249 }
250
251 /**
252 * audit_get_sk - Return the audit socket for the given network namespace
253 * @net: the destination network namespace
254 *
255 * Description:
256 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
257 * that a reference is held for the network namespace while the sock is in use.
258 */
259 static struct sock *audit_get_sk(const struct net *net)
260 {
261 struct audit_net *aunet;
262
263 if (!net)
264 return NULL;
265
266 aunet = net_generic(net, audit_net_id);
267 return aunet->sk;
268 }
269
270 void audit_panic(const char *message)
271 {
272 switch (audit_failure) {
273 case AUDIT_FAIL_SILENT:
274 break;
275 case AUDIT_FAIL_PRINTK:
276 if (printk_ratelimit())
277 pr_err("%s\n", message);
278 break;
279 case AUDIT_FAIL_PANIC:
280 panic("audit: %s\n", message);
281 break;
282 }
283 }
284
285 static inline int audit_rate_check(void)
286 {
287 static unsigned long last_check = 0;
288 static int messages = 0;
289 static DEFINE_SPINLOCK(lock);
290 unsigned long flags;
291 unsigned long now;
292 unsigned long elapsed;
293 int retval = 0;
294
295 if (!audit_rate_limit) return 1;
296
297 spin_lock_irqsave(&lock, flags);
298 if (++messages < audit_rate_limit) {
299 retval = 1;
300 } else {
301 now = jiffies;
302 elapsed = now - last_check;
303 if (elapsed > HZ) {
304 last_check = now;
305 messages = 0;
306 retval = 1;
307 }
308 }
309 spin_unlock_irqrestore(&lock, flags);
310
311 return retval;
312 }
313
314 /**
315 * audit_log_lost - conditionally log lost audit message event
316 * @message: the message stating reason for lost audit message
317 *
318 * Emit at least 1 message per second, even if audit_rate_check is
319 * throttling.
320 * Always increment the lost messages counter.
321 */
322 void audit_log_lost(const char *message)
323 {
324 static unsigned long last_msg = 0;
325 static DEFINE_SPINLOCK(lock);
326 unsigned long flags;
327 unsigned long now;
328 int print;
329
330 atomic_inc(&audit_lost);
331
332 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
333
334 if (!print) {
335 spin_lock_irqsave(&lock, flags);
336 now = jiffies;
337 if (now - last_msg > HZ) {
338 print = 1;
339 last_msg = now;
340 }
341 spin_unlock_irqrestore(&lock, flags);
342 }
343
344 if (print) {
345 if (printk_ratelimit())
346 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
347 atomic_read(&audit_lost),
348 audit_rate_limit,
349 audit_backlog_limit);
350 audit_panic(message);
351 }
352 }
353
354 static int audit_log_config_change(char *function_name, u32 new, u32 old,
355 int allow_changes)
356 {
357 struct audit_buffer *ab;
358 int rc = 0;
359
360 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
361 if (unlikely(!ab))
362 return rc;
363 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
364 audit_log_session_info(ab);
365 rc = audit_log_task_context(ab);
366 if (rc)
367 allow_changes = 0; /* Something weird, deny request */
368 audit_log_format(ab, " res=%d", allow_changes);
369 audit_log_end(ab);
370 return rc;
371 }
372
373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
374 {
375 int allow_changes, rc = 0;
376 u32 old = *to_change;
377
378 /* check if we are locked */
379 if (audit_enabled == AUDIT_LOCKED)
380 allow_changes = 0;
381 else
382 allow_changes = 1;
383
384 if (audit_enabled != AUDIT_OFF) {
385 rc = audit_log_config_change(function_name, new, old, allow_changes);
386 if (rc)
387 allow_changes = 0;
388 }
389
390 /* If we are allowed, make the change */
391 if (allow_changes == 1)
392 *to_change = new;
393 /* Not allowed, update reason */
394 else if (rc == 0)
395 rc = -EPERM;
396 return rc;
397 }
398
399 static int audit_set_rate_limit(u32 limit)
400 {
401 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
402 }
403
404 static int audit_set_backlog_limit(u32 limit)
405 {
406 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
407 }
408
409 static int audit_set_backlog_wait_time(u32 timeout)
410 {
411 return audit_do_config_change("audit_backlog_wait_time",
412 &audit_backlog_wait_time, timeout);
413 }
414
415 static int audit_set_enabled(u32 state)
416 {
417 int rc;
418 if (state > AUDIT_LOCKED)
419 return -EINVAL;
420
421 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
422 if (!rc)
423 audit_ever_enabled |= !!state;
424
425 return rc;
426 }
427
428 static int audit_set_failure(u32 state)
429 {
430 if (state != AUDIT_FAIL_SILENT
431 && state != AUDIT_FAIL_PRINTK
432 && state != AUDIT_FAIL_PANIC)
433 return -EINVAL;
434
435 return audit_do_config_change("audit_failure", &audit_failure, state);
436 }
437
438 /**
439 * auditd_conn_free - RCU helper to release an auditd connection struct
440 * @rcu: RCU head
441 *
442 * Description:
443 * Drop any references inside the auditd connection tracking struct and free
444 * the memory.
445 */
446 static void auditd_conn_free(struct rcu_head *rcu)
447 {
448 struct auditd_connection *ac;
449
450 ac = container_of(rcu, struct auditd_connection, rcu);
451 put_pid(ac->pid);
452 put_net(ac->net);
453 kfree(ac);
454 }
455
456 /**
457 * auditd_set - Set/Reset the auditd connection state
458 * @pid: auditd PID
459 * @portid: auditd netlink portid
460 * @net: auditd network namespace pointer
461 *
462 * Description:
463 * This function will obtain and drop network namespace references as
464 * necessary. Returns zero on success, negative values on failure.
465 */
466 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
467 {
468 unsigned long flags;
469 struct auditd_connection *ac_old, *ac_new;
470
471 if (!pid || !net)
472 return -EINVAL;
473
474 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
475 if (!ac_new)
476 return -ENOMEM;
477 ac_new->pid = get_pid(pid);
478 ac_new->portid = portid;
479 ac_new->net = get_net(net);
480
481 spin_lock_irqsave(&auditd_conn_lock, flags);
482 ac_old = rcu_dereference_protected(auditd_conn,
483 lockdep_is_held(&auditd_conn_lock));
484 rcu_assign_pointer(auditd_conn, ac_new);
485 spin_unlock_irqrestore(&auditd_conn_lock, flags);
486
487 if (ac_old)
488 call_rcu(&ac_old->rcu, auditd_conn_free);
489
490 return 0;
491 }
492
493 /**
494 * kauditd_print_skb - Print the audit record to the ring buffer
495 * @skb: audit record
496 *
497 * Whatever the reason, this packet may not make it to the auditd connection
498 * so write it via printk so the information isn't completely lost.
499 */
500 static void kauditd_printk_skb(struct sk_buff *skb)
501 {
502 struct nlmsghdr *nlh = nlmsg_hdr(skb);
503 char *data = nlmsg_data(nlh);
504
505 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
506 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
507 }
508
509 /**
510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
511 * @skb: audit record
512 *
513 * Description:
514 * This should only be used by the kauditd_thread when it fails to flush the
515 * hold queue.
516 */
517 static void kauditd_rehold_skb(struct sk_buff *skb)
518 {
519 /* put the record back in the queue at the same place */
520 skb_queue_head(&audit_hold_queue, skb);
521 }
522
523 /**
524 * kauditd_hold_skb - Queue an audit record, waiting for auditd
525 * @skb: audit record
526 *
527 * Description:
528 * Queue the audit record, waiting for an instance of auditd. When this
529 * function is called we haven't given up yet on sending the record, but things
530 * are not looking good. The first thing we want to do is try to write the
531 * record via printk and then see if we want to try and hold on to the record
532 * and queue it, if we have room. If we want to hold on to the record, but we
533 * don't have room, record a record lost message.
534 */
535 static void kauditd_hold_skb(struct sk_buff *skb)
536 {
537 /* at this point it is uncertain if we will ever send this to auditd so
538 * try to send the message via printk before we go any further */
539 kauditd_printk_skb(skb);
540
541 /* can we just silently drop the message? */
542 if (!audit_default) {
543 kfree_skb(skb);
544 return;
545 }
546
547 /* if we have room, queue the message */
548 if (!audit_backlog_limit ||
549 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
550 skb_queue_tail(&audit_hold_queue, skb);
551 return;
552 }
553
554 /* we have no other options - drop the message */
555 audit_log_lost("kauditd hold queue overflow");
556 kfree_skb(skb);
557 }
558
559 /**
560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
561 * @skb: audit record
562 *
563 * Description:
564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
565 * but for some reason we are having problems sending it audit records so
566 * queue the given record and attempt to resend.
567 */
568 static void kauditd_retry_skb(struct sk_buff *skb)
569 {
570 /* NOTE: because records should only live in the retry queue for a
571 * short period of time, before either being sent or moved to the hold
572 * queue, we don't currently enforce a limit on this queue */
573 skb_queue_tail(&audit_retry_queue, skb);
574 }
575
576 /**
577 * auditd_reset - Disconnect the auditd connection
578 * @ac: auditd connection state
579 *
580 * Description:
581 * Break the auditd/kauditd connection and move all the queued records into the
582 * hold queue in case auditd reconnects. It is important to note that the @ac
583 * pointer should never be dereferenced inside this function as it may be NULL
584 * or invalid, you can only compare the memory address! If @ac is NULL then
585 * the connection will always be reset.
586 */
587 static void auditd_reset(const struct auditd_connection *ac)
588 {
589 unsigned long flags;
590 struct sk_buff *skb;
591 struct auditd_connection *ac_old;
592
593 /* if it isn't already broken, break the connection */
594 spin_lock_irqsave(&auditd_conn_lock, flags);
595 ac_old = rcu_dereference_protected(auditd_conn,
596 lockdep_is_held(&auditd_conn_lock));
597 if (ac && ac != ac_old) {
598 /* someone already registered a new auditd connection */
599 spin_unlock_irqrestore(&auditd_conn_lock, flags);
600 return;
601 }
602 rcu_assign_pointer(auditd_conn, NULL);
603 spin_unlock_irqrestore(&auditd_conn_lock, flags);
604
605 if (ac_old)
606 call_rcu(&ac_old->rcu, auditd_conn_free);
607
608 /* flush the retry queue to the hold queue, but don't touch the main
609 * queue since we need to process that normally for multicast */
610 while ((skb = skb_dequeue(&audit_retry_queue)))
611 kauditd_hold_skb(skb);
612 }
613
614 /**
615 * auditd_send_unicast_skb - Send a record via unicast to auditd
616 * @skb: audit record
617 *
618 * Description:
619 * Send a skb to the audit daemon, returns positive/zero values on success and
620 * negative values on failure; in all cases the skb will be consumed by this
621 * function. If the send results in -ECONNREFUSED the connection with auditd
622 * will be reset. This function may sleep so callers should not hold any locks
623 * where this would cause a problem.
624 */
625 static int auditd_send_unicast_skb(struct sk_buff *skb)
626 {
627 int rc;
628 u32 portid;
629 struct net *net;
630 struct sock *sk;
631 struct auditd_connection *ac;
632
633 /* NOTE: we can't call netlink_unicast while in the RCU section so
634 * take a reference to the network namespace and grab local
635 * copies of the namespace, the sock, and the portid; the
636 * namespace and sock aren't going to go away while we hold a
637 * reference and if the portid does become invalid after the RCU
638 * section netlink_unicast() should safely return an error */
639
640 rcu_read_lock();
641 ac = rcu_dereference(auditd_conn);
642 if (!ac) {
643 rcu_read_unlock();
644 rc = -ECONNREFUSED;
645 goto err;
646 }
647 net = get_net(ac->net);
648 sk = audit_get_sk(net);
649 portid = ac->portid;
650 rcu_read_unlock();
651
652 rc = netlink_unicast(sk, skb, portid, 0);
653 put_net(net);
654 if (rc < 0)
655 goto err;
656
657 return rc;
658
659 err:
660 if (ac && rc == -ECONNREFUSED)
661 auditd_reset(ac);
662 return rc;
663 }
664
665 /**
666 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
667 * @sk: the sending sock
668 * @portid: the netlink destination
669 * @queue: the skb queue to process
670 * @retry_limit: limit on number of netlink unicast failures
671 * @skb_hook: per-skb hook for additional processing
672 * @err_hook: hook called if the skb fails the netlink unicast send
673 *
674 * Description:
675 * Run through the given queue and attempt to send the audit records to auditd,
676 * returns zero on success, negative values on failure. It is up to the caller
677 * to ensure that the @sk is valid for the duration of this function.
678 *
679 */
680 static int kauditd_send_queue(struct sock *sk, u32 portid,
681 struct sk_buff_head *queue,
682 unsigned int retry_limit,
683 void (*skb_hook)(struct sk_buff *skb),
684 void (*err_hook)(struct sk_buff *skb))
685 {
686 int rc = 0;
687 struct sk_buff *skb;
688 static unsigned int failed = 0;
689
690 /* NOTE: kauditd_thread takes care of all our locking, we just use
691 * the netlink info passed to us (e.g. sk and portid) */
692
693 while ((skb = skb_dequeue(queue))) {
694 /* call the skb_hook for each skb we touch */
695 if (skb_hook)
696 (*skb_hook)(skb);
697
698 /* can we send to anyone via unicast? */
699 if (!sk) {
700 if (err_hook)
701 (*err_hook)(skb);
702 continue;
703 }
704
705 /* grab an extra skb reference in case of error */
706 skb_get(skb);
707 rc = netlink_unicast(sk, skb, portid, 0);
708 if (rc < 0) {
709 /* fatal failure for our queue flush attempt? */
710 if (++failed >= retry_limit ||
711 rc == -ECONNREFUSED || rc == -EPERM) {
712 /* yes - error processing for the queue */
713 sk = NULL;
714 if (err_hook)
715 (*err_hook)(skb);
716 if (!skb_hook)
717 goto out;
718 /* keep processing with the skb_hook */
719 continue;
720 } else
721 /* no - requeue to preserve ordering */
722 skb_queue_head(queue, skb);
723 } else {
724 /* it worked - drop the extra reference and continue */
725 consume_skb(skb);
726 failed = 0;
727 }
728 }
729
730 out:
731 return (rc >= 0 ? 0 : rc);
732 }
733
734 /*
735 * kauditd_send_multicast_skb - Send a record to any multicast listeners
736 * @skb: audit record
737 *
738 * Description:
739 * Write a multicast message to anyone listening in the initial network
740 * namespace. This function doesn't consume an skb as might be expected since
741 * it has to copy it anyways.
742 */
743 static void kauditd_send_multicast_skb(struct sk_buff *skb)
744 {
745 struct sk_buff *copy;
746 struct sock *sock = audit_get_sk(&init_net);
747 struct nlmsghdr *nlh;
748
749 /* NOTE: we are not taking an additional reference for init_net since
750 * we don't have to worry about it going away */
751
752 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
753 return;
754
755 /*
756 * The seemingly wasteful skb_copy() rather than bumping the refcount
757 * using skb_get() is necessary because non-standard mods are made to
758 * the skb by the original kaudit unicast socket send routine. The
759 * existing auditd daemon assumes this breakage. Fixing this would
760 * require co-ordinating a change in the established protocol between
761 * the kaudit kernel subsystem and the auditd userspace code. There is
762 * no reason for new multicast clients to continue with this
763 * non-compliance.
764 */
765 copy = skb_copy(skb, GFP_KERNEL);
766 if (!copy)
767 return;
768 nlh = nlmsg_hdr(copy);
769 nlh->nlmsg_len = skb->len;
770
771 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
772 }
773
774 /**
775 * kauditd_thread - Worker thread to send audit records to userspace
776 * @dummy: unused
777 */
778 static int kauditd_thread(void *dummy)
779 {
780 int rc;
781 u32 portid = 0;
782 struct net *net = NULL;
783 struct sock *sk = NULL;
784 struct auditd_connection *ac;
785
786 #define UNICAST_RETRIES 5
787
788 set_freezable();
789 while (!kthread_should_stop()) {
790 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
791 rcu_read_lock();
792 ac = rcu_dereference(auditd_conn);
793 if (!ac) {
794 rcu_read_unlock();
795 goto main_queue;
796 }
797 net = get_net(ac->net);
798 sk = audit_get_sk(net);
799 portid = ac->portid;
800 rcu_read_unlock();
801
802 /* attempt to flush the hold queue */
803 rc = kauditd_send_queue(sk, portid,
804 &audit_hold_queue, UNICAST_RETRIES,
805 NULL, kauditd_rehold_skb);
806 if (ac && rc < 0) {
807 sk = NULL;
808 auditd_reset(ac);
809 goto main_queue;
810 }
811
812 /* attempt to flush the retry queue */
813 rc = kauditd_send_queue(sk, portid,
814 &audit_retry_queue, UNICAST_RETRIES,
815 NULL, kauditd_hold_skb);
816 if (ac && rc < 0) {
817 sk = NULL;
818 auditd_reset(ac);
819 goto main_queue;
820 }
821
822 main_queue:
823 /* process the main queue - do the multicast send and attempt
824 * unicast, dump failed record sends to the retry queue; if
825 * sk == NULL due to previous failures we will just do the
826 * multicast send and move the record to the hold queue */
827 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
828 kauditd_send_multicast_skb,
829 (sk ?
830 kauditd_retry_skb : kauditd_hold_skb));
831 if (ac && rc < 0)
832 auditd_reset(ac);
833 sk = NULL;
834
835 /* drop our netns reference, no auditd sends past this line */
836 if (net) {
837 put_net(net);
838 net = NULL;
839 }
840
841 /* we have processed all the queues so wake everyone */
842 wake_up(&audit_backlog_wait);
843
844 /* NOTE: we want to wake up if there is anything on the queue,
845 * regardless of if an auditd is connected, as we need to
846 * do the multicast send and rotate records from the
847 * main queue to the retry/hold queues */
848 wait_event_freezable(kauditd_wait,
849 (skb_queue_len(&audit_queue) ? 1 : 0));
850 }
851
852 return 0;
853 }
854
855 int audit_send_list(void *_dest)
856 {
857 struct audit_netlink_list *dest = _dest;
858 struct sk_buff *skb;
859 struct sock *sk = audit_get_sk(dest->net);
860
861 /* wait for parent to finish and send an ACK */
862 mutex_lock(&audit_cmd_mutex);
863 mutex_unlock(&audit_cmd_mutex);
864
865 while ((skb = __skb_dequeue(&dest->q)) != NULL)
866 netlink_unicast(sk, skb, dest->portid, 0);
867
868 put_net(dest->net);
869 kfree(dest);
870
871 return 0;
872 }
873
874 struct sk_buff *audit_make_reply(int seq, int type, int done,
875 int multi, const void *payload, int size)
876 {
877 struct sk_buff *skb;
878 struct nlmsghdr *nlh;
879 void *data;
880 int flags = multi ? NLM_F_MULTI : 0;
881 int t = done ? NLMSG_DONE : type;
882
883 skb = nlmsg_new(size, GFP_KERNEL);
884 if (!skb)
885 return NULL;
886
887 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
888 if (!nlh)
889 goto out_kfree_skb;
890 data = nlmsg_data(nlh);
891 memcpy(data, payload, size);
892 return skb;
893
894 out_kfree_skb:
895 kfree_skb(skb);
896 return NULL;
897 }
898
899 static int audit_send_reply_thread(void *arg)
900 {
901 struct audit_reply *reply = (struct audit_reply *)arg;
902 struct sock *sk = audit_get_sk(reply->net);
903
904 mutex_lock(&audit_cmd_mutex);
905 mutex_unlock(&audit_cmd_mutex);
906
907 /* Ignore failure. It'll only happen if the sender goes away,
908 because our timeout is set to infinite. */
909 netlink_unicast(sk, reply->skb, reply->portid, 0);
910 put_net(reply->net);
911 kfree(reply);
912 return 0;
913 }
914
915 /**
916 * audit_send_reply - send an audit reply message via netlink
917 * @request_skb: skb of request we are replying to (used to target the reply)
918 * @seq: sequence number
919 * @type: audit message type
920 * @done: done (last) flag
921 * @multi: multi-part message flag
922 * @payload: payload data
923 * @size: payload size
924 *
925 * Allocates an skb, builds the netlink message, and sends it to the port id.
926 * No failure notifications.
927 */
928 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
929 int multi, const void *payload, int size)
930 {
931 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
932 struct sk_buff *skb;
933 struct task_struct *tsk;
934 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
935 GFP_KERNEL);
936
937 if (!reply)
938 return;
939
940 skb = audit_make_reply(seq, type, done, multi, payload, size);
941 if (!skb)
942 goto out;
943
944 reply->net = get_net(net);
945 reply->portid = NETLINK_CB(request_skb).portid;
946 reply->skb = skb;
947
948 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
949 if (!IS_ERR(tsk))
950 return;
951 kfree_skb(skb);
952 out:
953 kfree(reply);
954 }
955
956 /*
957 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
958 * control messages.
959 */
960 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
961 {
962 int err = 0;
963
964 /* Only support initial user namespace for now. */
965 /*
966 * We return ECONNREFUSED because it tricks userspace into thinking
967 * that audit was not configured into the kernel. Lots of users
968 * configure their PAM stack (because that's what the distro does)
969 * to reject login if unable to send messages to audit. If we return
970 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
971 * configured in and will let login proceed. If we return EPERM
972 * userspace will reject all logins. This should be removed when we
973 * support non init namespaces!!
974 */
975 if (current_user_ns() != &init_user_ns)
976 return -ECONNREFUSED;
977
978 switch (msg_type) {
979 case AUDIT_LIST:
980 case AUDIT_ADD:
981 case AUDIT_DEL:
982 return -EOPNOTSUPP;
983 case AUDIT_GET:
984 case AUDIT_SET:
985 case AUDIT_GET_FEATURE:
986 case AUDIT_SET_FEATURE:
987 case AUDIT_LIST_RULES:
988 case AUDIT_ADD_RULE:
989 case AUDIT_DEL_RULE:
990 case AUDIT_SIGNAL_INFO:
991 case AUDIT_TTY_GET:
992 case AUDIT_TTY_SET:
993 case AUDIT_TRIM:
994 case AUDIT_MAKE_EQUIV:
995 /* Only support auditd and auditctl in initial pid namespace
996 * for now. */
997 if (task_active_pid_ns(current) != &init_pid_ns)
998 return -EPERM;
999
1000 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1001 err = -EPERM;
1002 break;
1003 case AUDIT_USER:
1004 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1005 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1006 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1007 err = -EPERM;
1008 break;
1009 default: /* bad msg */
1010 err = -EINVAL;
1011 }
1012
1013 return err;
1014 }
1015
1016 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1017 {
1018 uid_t uid = from_kuid(&init_user_ns, current_uid());
1019 pid_t pid = task_tgid_nr(current);
1020
1021 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1022 *ab = NULL;
1023 return;
1024 }
1025
1026 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1027 if (unlikely(!*ab))
1028 return;
1029 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1030 audit_log_session_info(*ab);
1031 audit_log_task_context(*ab);
1032 }
1033
1034 int is_audit_feature_set(int i)
1035 {
1036 return af.features & AUDIT_FEATURE_TO_MASK(i);
1037 }
1038
1039
1040 static int audit_get_feature(struct sk_buff *skb)
1041 {
1042 u32 seq;
1043
1044 seq = nlmsg_hdr(skb)->nlmsg_seq;
1045
1046 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1047
1048 return 0;
1049 }
1050
1051 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1052 u32 old_lock, u32 new_lock, int res)
1053 {
1054 struct audit_buffer *ab;
1055
1056 if (audit_enabled == AUDIT_OFF)
1057 return;
1058
1059 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1060 audit_log_task_info(ab, current);
1061 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1062 audit_feature_names[which], !!old_feature, !!new_feature,
1063 !!old_lock, !!new_lock, res);
1064 audit_log_end(ab);
1065 }
1066
1067 static int audit_set_feature(struct sk_buff *skb)
1068 {
1069 struct audit_features *uaf;
1070 int i;
1071
1072 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1073 uaf = nlmsg_data(nlmsg_hdr(skb));
1074
1075 /* if there is ever a version 2 we should handle that here */
1076
1077 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1078 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1079 u32 old_feature, new_feature, old_lock, new_lock;
1080
1081 /* if we are not changing this feature, move along */
1082 if (!(feature & uaf->mask))
1083 continue;
1084
1085 old_feature = af.features & feature;
1086 new_feature = uaf->features & feature;
1087 new_lock = (uaf->lock | af.lock) & feature;
1088 old_lock = af.lock & feature;
1089
1090 /* are we changing a locked feature? */
1091 if (old_lock && (new_feature != old_feature)) {
1092 audit_log_feature_change(i, old_feature, new_feature,
1093 old_lock, new_lock, 0);
1094 return -EPERM;
1095 }
1096 }
1097 /* nothing invalid, do the changes */
1098 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1099 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1100 u32 old_feature, new_feature, old_lock, new_lock;
1101
1102 /* if we are not changing this feature, move along */
1103 if (!(feature & uaf->mask))
1104 continue;
1105
1106 old_feature = af.features & feature;
1107 new_feature = uaf->features & feature;
1108 old_lock = af.lock & feature;
1109 new_lock = (uaf->lock | af.lock) & feature;
1110
1111 if (new_feature != old_feature)
1112 audit_log_feature_change(i, old_feature, new_feature,
1113 old_lock, new_lock, 1);
1114
1115 if (new_feature)
1116 af.features |= feature;
1117 else
1118 af.features &= ~feature;
1119 af.lock |= new_lock;
1120 }
1121
1122 return 0;
1123 }
1124
1125 static int audit_replace(struct pid *pid)
1126 {
1127 pid_t pvnr;
1128 struct sk_buff *skb;
1129
1130 pvnr = pid_vnr(pid);
1131 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1132 if (!skb)
1133 return -ENOMEM;
1134 return auditd_send_unicast_skb(skb);
1135 }
1136
1137 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1138 {
1139 u32 seq;
1140 void *data;
1141 int err;
1142 struct audit_buffer *ab;
1143 u16 msg_type = nlh->nlmsg_type;
1144 struct audit_sig_info *sig_data;
1145 char *ctx = NULL;
1146 u32 len;
1147
1148 err = audit_netlink_ok(skb, msg_type);
1149 if (err)
1150 return err;
1151
1152 seq = nlh->nlmsg_seq;
1153 data = nlmsg_data(nlh);
1154
1155 switch (msg_type) {
1156 case AUDIT_GET: {
1157 struct audit_status s;
1158 memset(&s, 0, sizeof(s));
1159 s.enabled = audit_enabled;
1160 s.failure = audit_failure;
1161 /* NOTE: use pid_vnr() so the PID is relative to the current
1162 * namespace */
1163 s.pid = auditd_pid_vnr();
1164 s.rate_limit = audit_rate_limit;
1165 s.backlog_limit = audit_backlog_limit;
1166 s.lost = atomic_read(&audit_lost);
1167 s.backlog = skb_queue_len(&audit_queue);
1168 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1169 s.backlog_wait_time = audit_backlog_wait_time;
1170 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1171 break;
1172 }
1173 case AUDIT_SET: {
1174 struct audit_status s;
1175 memset(&s, 0, sizeof(s));
1176 /* guard against past and future API changes */
1177 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1178 if (s.mask & AUDIT_STATUS_ENABLED) {
1179 err = audit_set_enabled(s.enabled);
1180 if (err < 0)
1181 return err;
1182 }
1183 if (s.mask & AUDIT_STATUS_FAILURE) {
1184 err = audit_set_failure(s.failure);
1185 if (err < 0)
1186 return err;
1187 }
1188 if (s.mask & AUDIT_STATUS_PID) {
1189 /* NOTE: we are using the vnr PID functions below
1190 * because the s.pid value is relative to the
1191 * namespace of the caller; at present this
1192 * doesn't matter much since you can really only
1193 * run auditd from the initial pid namespace, but
1194 * something to keep in mind if this changes */
1195 pid_t new_pid = s.pid;
1196 pid_t auditd_pid;
1197 struct pid *req_pid = task_tgid(current);
1198
1199 /* sanity check - PID values must match */
1200 if (new_pid != pid_vnr(req_pid))
1201 return -EINVAL;
1202
1203 /* test the auditd connection */
1204 audit_replace(req_pid);
1205
1206 auditd_pid = auditd_pid_vnr();
1207 /* only the current auditd can unregister itself */
1208 if ((!new_pid) && (new_pid != auditd_pid)) {
1209 audit_log_config_change("audit_pid", new_pid,
1210 auditd_pid, 0);
1211 return -EACCES;
1212 }
1213 /* replacing a healthy auditd is not allowed */
1214 if (auditd_pid && new_pid) {
1215 audit_log_config_change("audit_pid", new_pid,
1216 auditd_pid, 0);
1217 return -EEXIST;
1218 }
1219
1220 if (new_pid) {
1221 /* register a new auditd connection */
1222 err = auditd_set(req_pid,
1223 NETLINK_CB(skb).portid,
1224 sock_net(NETLINK_CB(skb).sk));
1225 if (audit_enabled != AUDIT_OFF)
1226 audit_log_config_change("audit_pid",
1227 new_pid,
1228 auditd_pid,
1229 err ? 0 : 1);
1230 if (err)
1231 return err;
1232
1233 /* try to process any backlog */
1234 wake_up_interruptible(&kauditd_wait);
1235 } else {
1236 if (audit_enabled != AUDIT_OFF)
1237 audit_log_config_change("audit_pid",
1238 new_pid,
1239 auditd_pid, 1);
1240
1241 /* unregister the auditd connection */
1242 auditd_reset(NULL);
1243 }
1244 }
1245 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1246 err = audit_set_rate_limit(s.rate_limit);
1247 if (err < 0)
1248 return err;
1249 }
1250 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1251 err = audit_set_backlog_limit(s.backlog_limit);
1252 if (err < 0)
1253 return err;
1254 }
1255 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1256 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1257 return -EINVAL;
1258 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1259 return -EINVAL;
1260 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1261 if (err < 0)
1262 return err;
1263 }
1264 if (s.mask == AUDIT_STATUS_LOST) {
1265 u32 lost = atomic_xchg(&audit_lost, 0);
1266
1267 audit_log_config_change("lost", 0, lost, 1);
1268 return lost;
1269 }
1270 break;
1271 }
1272 case AUDIT_GET_FEATURE:
1273 err = audit_get_feature(skb);
1274 if (err)
1275 return err;
1276 break;
1277 case AUDIT_SET_FEATURE:
1278 err = audit_set_feature(skb);
1279 if (err)
1280 return err;
1281 break;
1282 case AUDIT_USER:
1283 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1284 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1285 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1286 return 0;
1287
1288 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1289 if (err == 1) { /* match or error */
1290 err = 0;
1291 if (msg_type == AUDIT_USER_TTY) {
1292 err = tty_audit_push();
1293 if (err)
1294 break;
1295 }
1296 audit_log_common_recv_msg(&ab, msg_type);
1297 if (msg_type != AUDIT_USER_TTY)
1298 audit_log_format(ab, " msg='%.*s'",
1299 AUDIT_MESSAGE_TEXT_MAX,
1300 (char *)data);
1301 else {
1302 int size;
1303
1304 audit_log_format(ab, " data=");
1305 size = nlmsg_len(nlh);
1306 if (size > 0 &&
1307 ((unsigned char *)data)[size - 1] == '\0')
1308 size--;
1309 audit_log_n_untrustedstring(ab, data, size);
1310 }
1311 audit_log_end(ab);
1312 }
1313 break;
1314 case AUDIT_ADD_RULE:
1315 case AUDIT_DEL_RULE:
1316 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1317 return -EINVAL;
1318 if (audit_enabled == AUDIT_LOCKED) {
1319 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1320 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1321 audit_log_end(ab);
1322 return -EPERM;
1323 }
1324 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1325 break;
1326 case AUDIT_LIST_RULES:
1327 err = audit_list_rules_send(skb, seq);
1328 break;
1329 case AUDIT_TRIM:
1330 audit_trim_trees();
1331 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1332 audit_log_format(ab, " op=trim res=1");
1333 audit_log_end(ab);
1334 break;
1335 case AUDIT_MAKE_EQUIV: {
1336 void *bufp = data;
1337 u32 sizes[2];
1338 size_t msglen = nlmsg_len(nlh);
1339 char *old, *new;
1340
1341 err = -EINVAL;
1342 if (msglen < 2 * sizeof(u32))
1343 break;
1344 memcpy(sizes, bufp, 2 * sizeof(u32));
1345 bufp += 2 * sizeof(u32);
1346 msglen -= 2 * sizeof(u32);
1347 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1348 if (IS_ERR(old)) {
1349 err = PTR_ERR(old);
1350 break;
1351 }
1352 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1353 if (IS_ERR(new)) {
1354 err = PTR_ERR(new);
1355 kfree(old);
1356 break;
1357 }
1358 /* OK, here comes... */
1359 err = audit_tag_tree(old, new);
1360
1361 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1362
1363 audit_log_format(ab, " op=make_equiv old=");
1364 audit_log_untrustedstring(ab, old);
1365 audit_log_format(ab, " new=");
1366 audit_log_untrustedstring(ab, new);
1367 audit_log_format(ab, " res=%d", !err);
1368 audit_log_end(ab);
1369 kfree(old);
1370 kfree(new);
1371 break;
1372 }
1373 case AUDIT_SIGNAL_INFO:
1374 len = 0;
1375 if (audit_sig_sid) {
1376 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1377 if (err)
1378 return err;
1379 }
1380 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1381 if (!sig_data) {
1382 if (audit_sig_sid)
1383 security_release_secctx(ctx, len);
1384 return -ENOMEM;
1385 }
1386 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1387 sig_data->pid = audit_sig_pid;
1388 if (audit_sig_sid) {
1389 memcpy(sig_data->ctx, ctx, len);
1390 security_release_secctx(ctx, len);
1391 }
1392 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1393 sig_data, sizeof(*sig_data) + len);
1394 kfree(sig_data);
1395 break;
1396 case AUDIT_TTY_GET: {
1397 struct audit_tty_status s;
1398 unsigned int t;
1399
1400 t = READ_ONCE(current->signal->audit_tty);
1401 s.enabled = t & AUDIT_TTY_ENABLE;
1402 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1403
1404 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1405 break;
1406 }
1407 case AUDIT_TTY_SET: {
1408 struct audit_tty_status s, old;
1409 struct audit_buffer *ab;
1410 unsigned int t;
1411
1412 memset(&s, 0, sizeof(s));
1413 /* guard against past and future API changes */
1414 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1415 /* check if new data is valid */
1416 if ((s.enabled != 0 && s.enabled != 1) ||
1417 (s.log_passwd != 0 && s.log_passwd != 1))
1418 err = -EINVAL;
1419
1420 if (err)
1421 t = READ_ONCE(current->signal->audit_tty);
1422 else {
1423 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1424 t = xchg(&current->signal->audit_tty, t);
1425 }
1426 old.enabled = t & AUDIT_TTY_ENABLE;
1427 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1428
1429 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1430 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1431 " old-log_passwd=%d new-log_passwd=%d res=%d",
1432 old.enabled, s.enabled, old.log_passwd,
1433 s.log_passwd, !err);
1434 audit_log_end(ab);
1435 break;
1436 }
1437 default:
1438 err = -EINVAL;
1439 break;
1440 }
1441
1442 return err < 0 ? err : 0;
1443 }
1444
1445 /**
1446 * audit_receive - receive messages from a netlink control socket
1447 * @skb: the message buffer
1448 *
1449 * Parse the provided skb and deal with any messages that may be present,
1450 * malformed skbs are discarded.
1451 */
1452 static void audit_receive(struct sk_buff *skb)
1453 {
1454 struct nlmsghdr *nlh;
1455 /*
1456 * len MUST be signed for nlmsg_next to be able to dec it below 0
1457 * if the nlmsg_len was not aligned
1458 */
1459 int len;
1460 int err;
1461
1462 nlh = nlmsg_hdr(skb);
1463 len = skb->len;
1464
1465 mutex_lock(&audit_cmd_mutex);
1466 while (nlmsg_ok(nlh, len)) {
1467 err = audit_receive_msg(skb, nlh);
1468 /* if err or if this message says it wants a response */
1469 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1470 netlink_ack(skb, nlh, err, NULL);
1471
1472 nlh = nlmsg_next(nlh, &len);
1473 }
1474 mutex_unlock(&audit_cmd_mutex);
1475 }
1476
1477 /* Run custom bind function on netlink socket group connect or bind requests. */
1478 static int audit_bind(struct net *net, int group)
1479 {
1480 if (!capable(CAP_AUDIT_READ))
1481 return -EPERM;
1482
1483 return 0;
1484 }
1485
1486 static int __net_init audit_net_init(struct net *net)
1487 {
1488 struct netlink_kernel_cfg cfg = {
1489 .input = audit_receive,
1490 .bind = audit_bind,
1491 .flags = NL_CFG_F_NONROOT_RECV,
1492 .groups = AUDIT_NLGRP_MAX,
1493 };
1494
1495 struct audit_net *aunet = net_generic(net, audit_net_id);
1496
1497 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1498 if (aunet->sk == NULL) {
1499 audit_panic("cannot initialize netlink socket in namespace");
1500 return -ENOMEM;
1501 }
1502 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1503
1504 return 0;
1505 }
1506
1507 static void __net_exit audit_net_exit(struct net *net)
1508 {
1509 struct audit_net *aunet = net_generic(net, audit_net_id);
1510
1511 /* NOTE: you would think that we would want to check the auditd
1512 * connection and potentially reset it here if it lives in this
1513 * namespace, but since the auditd connection tracking struct holds a
1514 * reference to this namespace (see auditd_set()) we are only ever
1515 * going to get here after that connection has been released */
1516
1517 netlink_kernel_release(aunet->sk);
1518 }
1519
1520 static struct pernet_operations audit_net_ops __net_initdata = {
1521 .init = audit_net_init,
1522 .exit = audit_net_exit,
1523 .id = &audit_net_id,
1524 .size = sizeof(struct audit_net),
1525 };
1526
1527 /* Initialize audit support at boot time. */
1528 static int __init audit_init(void)
1529 {
1530 int i;
1531
1532 if (audit_initialized == AUDIT_DISABLED)
1533 return 0;
1534
1535 audit_buffer_cache = kmem_cache_create("audit_buffer",
1536 sizeof(struct audit_buffer),
1537 0, SLAB_PANIC, NULL);
1538
1539 skb_queue_head_init(&audit_queue);
1540 skb_queue_head_init(&audit_retry_queue);
1541 skb_queue_head_init(&audit_hold_queue);
1542
1543 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1544 INIT_LIST_HEAD(&audit_inode_hash[i]);
1545
1546 pr_info("initializing netlink subsys (%s)\n",
1547 audit_default ? "enabled" : "disabled");
1548 register_pernet_subsys(&audit_net_ops);
1549
1550 audit_initialized = AUDIT_INITIALIZED;
1551 audit_enabled = audit_default;
1552 audit_ever_enabled |= !!audit_default;
1553
1554 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1555 if (IS_ERR(kauditd_task)) {
1556 int err = PTR_ERR(kauditd_task);
1557 panic("audit: failed to start the kauditd thread (%d)\n", err);
1558 }
1559
1560 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1561 "state=initialized audit_enabled=%u res=1",
1562 audit_enabled);
1563
1564 return 0;
1565 }
1566 __initcall(audit_init);
1567
1568 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1569 static int __init audit_enable(char *str)
1570 {
1571 audit_default = !!simple_strtol(str, NULL, 0);
1572 if (!audit_default)
1573 audit_initialized = AUDIT_DISABLED;
1574
1575 pr_info("%s\n", audit_default ?
1576 "enabled (after initialization)" : "disabled (until reboot)");
1577
1578 return 1;
1579 }
1580 __setup("audit=", audit_enable);
1581
1582 /* Process kernel command-line parameter at boot time.
1583 * audit_backlog_limit=<n> */
1584 static int __init audit_backlog_limit_set(char *str)
1585 {
1586 u32 audit_backlog_limit_arg;
1587
1588 pr_info("audit_backlog_limit: ");
1589 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1590 pr_cont("using default of %u, unable to parse %s\n",
1591 audit_backlog_limit, str);
1592 return 1;
1593 }
1594
1595 audit_backlog_limit = audit_backlog_limit_arg;
1596 pr_cont("%d\n", audit_backlog_limit);
1597
1598 return 1;
1599 }
1600 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1601
1602 static void audit_buffer_free(struct audit_buffer *ab)
1603 {
1604 if (!ab)
1605 return;
1606
1607 kfree_skb(ab->skb);
1608 kmem_cache_free(audit_buffer_cache, ab);
1609 }
1610
1611 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1612 gfp_t gfp_mask, int type)
1613 {
1614 struct audit_buffer *ab;
1615
1616 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1617 if (!ab)
1618 return NULL;
1619
1620 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1621 if (!ab->skb)
1622 goto err;
1623 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1624 goto err;
1625
1626 ab->ctx = ctx;
1627 ab->gfp_mask = gfp_mask;
1628
1629 return ab;
1630
1631 err:
1632 audit_buffer_free(ab);
1633 return NULL;
1634 }
1635
1636 /**
1637 * audit_serial - compute a serial number for the audit record
1638 *
1639 * Compute a serial number for the audit record. Audit records are
1640 * written to user-space as soon as they are generated, so a complete
1641 * audit record may be written in several pieces. The timestamp of the
1642 * record and this serial number are used by the user-space tools to
1643 * determine which pieces belong to the same audit record. The
1644 * (timestamp,serial) tuple is unique for each syscall and is live from
1645 * syscall entry to syscall exit.
1646 *
1647 * NOTE: Another possibility is to store the formatted records off the
1648 * audit context (for those records that have a context), and emit them
1649 * all at syscall exit. However, this could delay the reporting of
1650 * significant errors until syscall exit (or never, if the system
1651 * halts).
1652 */
1653 unsigned int audit_serial(void)
1654 {
1655 static atomic_t serial = ATOMIC_INIT(0);
1656
1657 return atomic_add_return(1, &serial);
1658 }
1659
1660 static inline void audit_get_stamp(struct audit_context *ctx,
1661 struct timespec64 *t, unsigned int *serial)
1662 {
1663 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1664 ktime_get_real_ts64(t);
1665 *serial = audit_serial();
1666 }
1667 }
1668
1669 /**
1670 * audit_log_start - obtain an audit buffer
1671 * @ctx: audit_context (may be NULL)
1672 * @gfp_mask: type of allocation
1673 * @type: audit message type
1674 *
1675 * Returns audit_buffer pointer on success or NULL on error.
1676 *
1677 * Obtain an audit buffer. This routine does locking to obtain the
1678 * audit buffer, but then no locking is required for calls to
1679 * audit_log_*format. If the task (ctx) is a task that is currently in a
1680 * syscall, then the syscall is marked as auditable and an audit record
1681 * will be written at syscall exit. If there is no associated task, then
1682 * task context (ctx) should be NULL.
1683 */
1684 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1685 int type)
1686 {
1687 struct audit_buffer *ab;
1688 struct timespec64 t;
1689 unsigned int uninitialized_var(serial);
1690
1691 if (audit_initialized != AUDIT_INITIALIZED)
1692 return NULL;
1693
1694 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1695 return NULL;
1696
1697 /* NOTE: don't ever fail/sleep on these two conditions:
1698 * 1. auditd generated record - since we need auditd to drain the
1699 * queue; also, when we are checking for auditd, compare PIDs using
1700 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1701 * using a PID anchored in the caller's namespace
1702 * 2. generator holding the audit_cmd_mutex - we don't want to block
1703 * while holding the mutex */
1704 if (!(auditd_test_task(current) ||
1705 (current == __mutex_owner(&audit_cmd_mutex)))) {
1706 long stime = audit_backlog_wait_time;
1707
1708 while (audit_backlog_limit &&
1709 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1710 /* wake kauditd to try and flush the queue */
1711 wake_up_interruptible(&kauditd_wait);
1712
1713 /* sleep if we are allowed and we haven't exhausted our
1714 * backlog wait limit */
1715 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1716 DECLARE_WAITQUEUE(wait, current);
1717
1718 add_wait_queue_exclusive(&audit_backlog_wait,
1719 &wait);
1720 set_current_state(TASK_UNINTERRUPTIBLE);
1721 stime = schedule_timeout(stime);
1722 remove_wait_queue(&audit_backlog_wait, &wait);
1723 } else {
1724 if (audit_rate_check() && printk_ratelimit())
1725 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1726 skb_queue_len(&audit_queue),
1727 audit_backlog_limit);
1728 audit_log_lost("backlog limit exceeded");
1729 return NULL;
1730 }
1731 }
1732 }
1733
1734 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1735 if (!ab) {
1736 audit_log_lost("out of memory in audit_log_start");
1737 return NULL;
1738 }
1739
1740 audit_get_stamp(ab->ctx, &t, &serial);
1741 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1742 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1743
1744 return ab;
1745 }
1746
1747 /**
1748 * audit_expand - expand skb in the audit buffer
1749 * @ab: audit_buffer
1750 * @extra: space to add at tail of the skb
1751 *
1752 * Returns 0 (no space) on failed expansion, or available space if
1753 * successful.
1754 */
1755 static inline int audit_expand(struct audit_buffer *ab, int extra)
1756 {
1757 struct sk_buff *skb = ab->skb;
1758 int oldtail = skb_tailroom(skb);
1759 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1760 int newtail = skb_tailroom(skb);
1761
1762 if (ret < 0) {
1763 audit_log_lost("out of memory in audit_expand");
1764 return 0;
1765 }
1766
1767 skb->truesize += newtail - oldtail;
1768 return newtail;
1769 }
1770
1771 /*
1772 * Format an audit message into the audit buffer. If there isn't enough
1773 * room in the audit buffer, more room will be allocated and vsnprint
1774 * will be called a second time. Currently, we assume that a printk
1775 * can't format message larger than 1024 bytes, so we don't either.
1776 */
1777 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1778 va_list args)
1779 {
1780 int len, avail;
1781 struct sk_buff *skb;
1782 va_list args2;
1783
1784 if (!ab)
1785 return;
1786
1787 BUG_ON(!ab->skb);
1788 skb = ab->skb;
1789 avail = skb_tailroom(skb);
1790 if (avail == 0) {
1791 avail = audit_expand(ab, AUDIT_BUFSIZ);
1792 if (!avail)
1793 goto out;
1794 }
1795 va_copy(args2, args);
1796 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1797 if (len >= avail) {
1798 /* The printk buffer is 1024 bytes long, so if we get
1799 * here and AUDIT_BUFSIZ is at least 1024, then we can
1800 * log everything that printk could have logged. */
1801 avail = audit_expand(ab,
1802 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1803 if (!avail)
1804 goto out_va_end;
1805 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1806 }
1807 if (len > 0)
1808 skb_put(skb, len);
1809 out_va_end:
1810 va_end(args2);
1811 out:
1812 return;
1813 }
1814
1815 /**
1816 * audit_log_format - format a message into the audit buffer.
1817 * @ab: audit_buffer
1818 * @fmt: format string
1819 * @...: optional parameters matching @fmt string
1820 *
1821 * All the work is done in audit_log_vformat.
1822 */
1823 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1824 {
1825 va_list args;
1826
1827 if (!ab)
1828 return;
1829 va_start(args, fmt);
1830 audit_log_vformat(ab, fmt, args);
1831 va_end(args);
1832 }
1833
1834 /**
1835 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1836 * @ab: the audit_buffer
1837 * @buf: buffer to convert to hex
1838 * @len: length of @buf to be converted
1839 *
1840 * No return value; failure to expand is silently ignored.
1841 *
1842 * This function will take the passed buf and convert it into a string of
1843 * ascii hex digits. The new string is placed onto the skb.
1844 */
1845 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1846 size_t len)
1847 {
1848 int i, avail, new_len;
1849 unsigned char *ptr;
1850 struct sk_buff *skb;
1851
1852 if (!ab)
1853 return;
1854
1855 BUG_ON(!ab->skb);
1856 skb = ab->skb;
1857 avail = skb_tailroom(skb);
1858 new_len = len<<1;
1859 if (new_len >= avail) {
1860 /* Round the buffer request up to the next multiple */
1861 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1862 avail = audit_expand(ab, new_len);
1863 if (!avail)
1864 return;
1865 }
1866
1867 ptr = skb_tail_pointer(skb);
1868 for (i = 0; i < len; i++)
1869 ptr = hex_byte_pack_upper(ptr, buf[i]);
1870 *ptr = 0;
1871 skb_put(skb, len << 1); /* new string is twice the old string */
1872 }
1873
1874 /*
1875 * Format a string of no more than slen characters into the audit buffer,
1876 * enclosed in quote marks.
1877 */
1878 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1879 size_t slen)
1880 {
1881 int avail, new_len;
1882 unsigned char *ptr;
1883 struct sk_buff *skb;
1884
1885 if (!ab)
1886 return;
1887
1888 BUG_ON(!ab->skb);
1889 skb = ab->skb;
1890 avail = skb_tailroom(skb);
1891 new_len = slen + 3; /* enclosing quotes + null terminator */
1892 if (new_len > avail) {
1893 avail = audit_expand(ab, new_len);
1894 if (!avail)
1895 return;
1896 }
1897 ptr = skb_tail_pointer(skb);
1898 *ptr++ = '"';
1899 memcpy(ptr, string, slen);
1900 ptr += slen;
1901 *ptr++ = '"';
1902 *ptr = 0;
1903 skb_put(skb, slen + 2); /* don't include null terminator */
1904 }
1905
1906 /**
1907 * audit_string_contains_control - does a string need to be logged in hex
1908 * @string: string to be checked
1909 * @len: max length of the string to check
1910 */
1911 bool audit_string_contains_control(const char *string, size_t len)
1912 {
1913 const unsigned char *p;
1914 for (p = string; p < (const unsigned char *)string + len; p++) {
1915 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1916 return true;
1917 }
1918 return false;
1919 }
1920
1921 /**
1922 * audit_log_n_untrustedstring - log a string that may contain random characters
1923 * @ab: audit_buffer
1924 * @len: length of string (not including trailing null)
1925 * @string: string to be logged
1926 *
1927 * This code will escape a string that is passed to it if the string
1928 * contains a control character, unprintable character, double quote mark,
1929 * or a space. Unescaped strings will start and end with a double quote mark.
1930 * Strings that are escaped are printed in hex (2 digits per char).
1931 *
1932 * The caller specifies the number of characters in the string to log, which may
1933 * or may not be the entire string.
1934 */
1935 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1936 size_t len)
1937 {
1938 if (audit_string_contains_control(string, len))
1939 audit_log_n_hex(ab, string, len);
1940 else
1941 audit_log_n_string(ab, string, len);
1942 }
1943
1944 /**
1945 * audit_log_untrustedstring - log a string that may contain random characters
1946 * @ab: audit_buffer
1947 * @string: string to be logged
1948 *
1949 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1950 * determine string length.
1951 */
1952 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1953 {
1954 audit_log_n_untrustedstring(ab, string, strlen(string));
1955 }
1956
1957 /* This is a helper-function to print the escaped d_path */
1958 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1959 const struct path *path)
1960 {
1961 char *p, *pathname;
1962
1963 if (prefix)
1964 audit_log_format(ab, "%s", prefix);
1965
1966 /* We will allow 11 spaces for ' (deleted)' to be appended */
1967 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1968 if (!pathname) {
1969 audit_log_string(ab, "<no_memory>");
1970 return;
1971 }
1972 p = d_path(path, pathname, PATH_MAX+11);
1973 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1974 /* FIXME: can we save some information here? */
1975 audit_log_string(ab, "<too_long>");
1976 } else
1977 audit_log_untrustedstring(ab, p);
1978 kfree(pathname);
1979 }
1980
1981 void audit_log_session_info(struct audit_buffer *ab)
1982 {
1983 unsigned int sessionid = audit_get_sessionid(current);
1984 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1985
1986 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1987 }
1988
1989 void audit_log_key(struct audit_buffer *ab, char *key)
1990 {
1991 audit_log_format(ab, " key=");
1992 if (key)
1993 audit_log_untrustedstring(ab, key);
1994 else
1995 audit_log_format(ab, "(null)");
1996 }
1997
1998 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1999 {
2000 int i;
2001
2002 audit_log_format(ab, " %s=", prefix);
2003 CAP_FOR_EACH_U32(i) {
2004 audit_log_format(ab, "%08x",
2005 cap->cap[CAP_LAST_U32 - i]);
2006 }
2007 }
2008
2009 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2010 {
2011 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2012 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2013 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2014 name->fcap.fE, name->fcap_ver);
2015 }
2016
2017 static inline int audit_copy_fcaps(struct audit_names *name,
2018 const struct dentry *dentry)
2019 {
2020 struct cpu_vfs_cap_data caps;
2021 int rc;
2022
2023 if (!dentry)
2024 return 0;
2025
2026 rc = get_vfs_caps_from_disk(dentry, &caps);
2027 if (rc)
2028 return rc;
2029
2030 name->fcap.permitted = caps.permitted;
2031 name->fcap.inheritable = caps.inheritable;
2032 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2033 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2034 VFS_CAP_REVISION_SHIFT;
2035
2036 return 0;
2037 }
2038
2039 /* Copy inode data into an audit_names. */
2040 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2041 struct inode *inode)
2042 {
2043 name->ino = inode->i_ino;
2044 name->dev = inode->i_sb->s_dev;
2045 name->mode = inode->i_mode;
2046 name->uid = inode->i_uid;
2047 name->gid = inode->i_gid;
2048 name->rdev = inode->i_rdev;
2049 security_inode_getsecid(inode, &name->osid);
2050 audit_copy_fcaps(name, dentry);
2051 }
2052
2053 /**
2054 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2055 * @context: audit_context for the task
2056 * @n: audit_names structure with reportable details
2057 * @path: optional path to report instead of audit_names->name
2058 * @record_num: record number to report when handling a list of names
2059 * @call_panic: optional pointer to int that will be updated if secid fails
2060 */
2061 void audit_log_name(struct audit_context *context, struct audit_names *n,
2062 const struct path *path, int record_num, int *call_panic)
2063 {
2064 struct audit_buffer *ab;
2065 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2066 if (!ab)
2067 return;
2068
2069 audit_log_format(ab, "item=%d", record_num);
2070
2071 if (path)
2072 audit_log_d_path(ab, " name=", path);
2073 else if (n->name) {
2074 switch (n->name_len) {
2075 case AUDIT_NAME_FULL:
2076 /* log the full path */
2077 audit_log_format(ab, " name=");
2078 audit_log_untrustedstring(ab, n->name->name);
2079 break;
2080 case 0:
2081 /* name was specified as a relative path and the
2082 * directory component is the cwd */
2083 audit_log_d_path(ab, " name=", &context->pwd);
2084 break;
2085 default:
2086 /* log the name's directory component */
2087 audit_log_format(ab, " name=");
2088 audit_log_n_untrustedstring(ab, n->name->name,
2089 n->name_len);
2090 }
2091 } else
2092 audit_log_format(ab, " name=(null)");
2093
2094 if (n->ino != AUDIT_INO_UNSET)
2095 audit_log_format(ab, " inode=%lu"
2096 " dev=%02x:%02x mode=%#ho"
2097 " ouid=%u ogid=%u rdev=%02x:%02x",
2098 n->ino,
2099 MAJOR(n->dev),
2100 MINOR(n->dev),
2101 n->mode,
2102 from_kuid(&init_user_ns, n->uid),
2103 from_kgid(&init_user_ns, n->gid),
2104 MAJOR(n->rdev),
2105 MINOR(n->rdev));
2106 if (n->osid != 0) {
2107 char *ctx = NULL;
2108 u32 len;
2109 if (security_secid_to_secctx(
2110 n->osid, &ctx, &len)) {
2111 audit_log_format(ab, " osid=%u", n->osid);
2112 if (call_panic)
2113 *call_panic = 2;
2114 } else {
2115 audit_log_format(ab, " obj=%s", ctx);
2116 security_release_secctx(ctx, len);
2117 }
2118 }
2119
2120 /* log the audit_names record type */
2121 audit_log_format(ab, " nametype=");
2122 switch(n->type) {
2123 case AUDIT_TYPE_NORMAL:
2124 audit_log_format(ab, "NORMAL");
2125 break;
2126 case AUDIT_TYPE_PARENT:
2127 audit_log_format(ab, "PARENT");
2128 break;
2129 case AUDIT_TYPE_CHILD_DELETE:
2130 audit_log_format(ab, "DELETE");
2131 break;
2132 case AUDIT_TYPE_CHILD_CREATE:
2133 audit_log_format(ab, "CREATE");
2134 break;
2135 default:
2136 audit_log_format(ab, "UNKNOWN");
2137 break;
2138 }
2139
2140 audit_log_fcaps(ab, n);
2141 audit_log_end(ab);
2142 }
2143
2144 int audit_log_task_context(struct audit_buffer *ab)
2145 {
2146 char *ctx = NULL;
2147 unsigned len;
2148 int error;
2149 u32 sid;
2150
2151 security_task_getsecid(current, &sid);
2152 if (!sid)
2153 return 0;
2154
2155 error = security_secid_to_secctx(sid, &ctx, &len);
2156 if (error) {
2157 if (error != -EINVAL)
2158 goto error_path;
2159 return 0;
2160 }
2161
2162 audit_log_format(ab, " subj=%s", ctx);
2163 security_release_secctx(ctx, len);
2164 return 0;
2165
2166 error_path:
2167 audit_panic("error in audit_log_task_context");
2168 return error;
2169 }
2170 EXPORT_SYMBOL(audit_log_task_context);
2171
2172 void audit_log_d_path_exe(struct audit_buffer *ab,
2173 struct mm_struct *mm)
2174 {
2175 struct file *exe_file;
2176
2177 if (!mm)
2178 goto out_null;
2179
2180 exe_file = get_mm_exe_file(mm);
2181 if (!exe_file)
2182 goto out_null;
2183
2184 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2185 fput(exe_file);
2186 return;
2187 out_null:
2188 audit_log_format(ab, " exe=(null)");
2189 }
2190
2191 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2192 {
2193 struct tty_struct *tty = NULL;
2194 unsigned long flags;
2195
2196 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2197 if (tsk->signal)
2198 tty = tty_kref_get(tsk->signal->tty);
2199 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2200 return tty;
2201 }
2202
2203 void audit_put_tty(struct tty_struct *tty)
2204 {
2205 tty_kref_put(tty);
2206 }
2207
2208 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2209 {
2210 const struct cred *cred;
2211 char comm[sizeof(tsk->comm)];
2212 struct tty_struct *tty;
2213
2214 if (!ab)
2215 return;
2216
2217 /* tsk == current */
2218 cred = current_cred();
2219 tty = audit_get_tty(tsk);
2220 audit_log_format(ab,
2221 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2222 " euid=%u suid=%u fsuid=%u"
2223 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2224 task_ppid_nr(tsk),
2225 task_tgid_nr(tsk),
2226 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2227 from_kuid(&init_user_ns, cred->uid),
2228 from_kgid(&init_user_ns, cred->gid),
2229 from_kuid(&init_user_ns, cred->euid),
2230 from_kuid(&init_user_ns, cred->suid),
2231 from_kuid(&init_user_ns, cred->fsuid),
2232 from_kgid(&init_user_ns, cred->egid),
2233 from_kgid(&init_user_ns, cred->sgid),
2234 from_kgid(&init_user_ns, cred->fsgid),
2235 tty ? tty_name(tty) : "(none)",
2236 audit_get_sessionid(tsk));
2237 audit_put_tty(tty);
2238 audit_log_format(ab, " comm=");
2239 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2240 audit_log_d_path_exe(ab, tsk->mm);
2241 audit_log_task_context(ab);
2242 }
2243 EXPORT_SYMBOL(audit_log_task_info);
2244
2245 /**
2246 * audit_log_link_denied - report a link restriction denial
2247 * @operation: specific link operation
2248 * @link: the path that triggered the restriction
2249 */
2250 void audit_log_link_denied(const char *operation, const struct path *link)
2251 {
2252 struct audit_buffer *ab;
2253 struct audit_names *name;
2254
2255 name = kzalloc(sizeof(*name), GFP_NOFS);
2256 if (!name)
2257 return;
2258
2259 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2260 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2261 AUDIT_ANOM_LINK);
2262 if (!ab)
2263 goto out;
2264 audit_log_format(ab, "op=%s", operation);
2265 audit_log_task_info(ab, current);
2266 audit_log_format(ab, " res=0");
2267 audit_log_end(ab);
2268
2269 /* Generate AUDIT_PATH record with object. */
2270 name->type = AUDIT_TYPE_NORMAL;
2271 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2272 audit_log_name(current->audit_context, name, link, 0, NULL);
2273 out:
2274 kfree(name);
2275 }
2276
2277 /**
2278 * audit_log_end - end one audit record
2279 * @ab: the audit_buffer
2280 *
2281 * We can not do a netlink send inside an irq context because it blocks (last
2282 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2283 * queue and a tasklet is scheduled to remove them from the queue outside the
2284 * irq context. May be called in any context.
2285 */
2286 void audit_log_end(struct audit_buffer *ab)
2287 {
2288 struct sk_buff *skb;
2289 struct nlmsghdr *nlh;
2290
2291 if (!ab)
2292 return;
2293
2294 if (audit_rate_check()) {
2295 skb = ab->skb;
2296 ab->skb = NULL;
2297
2298 /* setup the netlink header, see the comments in
2299 * kauditd_send_multicast_skb() for length quirks */
2300 nlh = nlmsg_hdr(skb);
2301 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2302
2303 /* queue the netlink packet and poke the kauditd thread */
2304 skb_queue_tail(&audit_queue, skb);
2305 wake_up_interruptible(&kauditd_wait);
2306 } else
2307 audit_log_lost("rate limit exceeded");
2308
2309 audit_buffer_free(ab);
2310 }
2311
2312 /**
2313 * audit_log - Log an audit record
2314 * @ctx: audit context
2315 * @gfp_mask: type of allocation
2316 * @type: audit message type
2317 * @fmt: format string to use
2318 * @...: variable parameters matching the format string
2319 *
2320 * This is a convenience function that calls audit_log_start,
2321 * audit_log_vformat, and audit_log_end. It may be called
2322 * in any context.
2323 */
2324 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2325 const char *fmt, ...)
2326 {
2327 struct audit_buffer *ab;
2328 va_list args;
2329
2330 ab = audit_log_start(ctx, gfp_mask, type);
2331 if (ab) {
2332 va_start(args, fmt);
2333 audit_log_vformat(ab, fmt, args);
2334 va_end(args);
2335 audit_log_end(ab);
2336 }
2337 }
2338
2339 #ifdef CONFIG_SECURITY
2340 /**
2341 * audit_log_secctx - Converts and logs SELinux context
2342 * @ab: audit_buffer
2343 * @secid: security number
2344 *
2345 * This is a helper function that calls security_secid_to_secctx to convert
2346 * secid to secctx and then adds the (converted) SELinux context to the audit
2347 * log by calling audit_log_format, thus also preventing leak of internal secid
2348 * to userspace. If secid cannot be converted audit_panic is called.
2349 */
2350 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2351 {
2352 u32 len;
2353 char *secctx;
2354
2355 if (security_secid_to_secctx(secid, &secctx, &len)) {
2356 audit_panic("Cannot convert secid to context");
2357 } else {
2358 audit_log_format(ab, " obj=%s", secctx);
2359 security_release_secctx(secctx, len);
2360 }
2361 }
2362 EXPORT_SYMBOL(audit_log_secctx);
2363 #endif
2364
2365 EXPORT_SYMBOL(audit_log_start);
2366 EXPORT_SYMBOL(audit_log_end);
2367 EXPORT_SYMBOL(audit_log_format);
2368 EXPORT_SYMBOL(audit_log);