]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/audit.c
audit: removing unused variable
[mirror_ubuntu-artful-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70
71 #include "audit.h"
72
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED -1
76 #define AUDIT_UNINITIALIZED 0
77 #define AUDIT_INITIALIZED 1
78 static int audit_initialized;
79
80 #define AUDIT_OFF 0
81 #define AUDIT_ON 1
82 #define AUDIT_LOCKED 2
83 u32 audit_enabled;
84 u32 audit_ever_enabled;
85
86 EXPORT_SYMBOL_GPL(audit_enabled);
87
88 /* Default state when kernel boots without any parameters. */
89 static u32 audit_default;
90
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94 /*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99 int audit_pid;
100 static __u32 audit_nlk_portid;
101
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105 static u32 audit_rate_limit;
106
107 /* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109 static u32 audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113 static u32 audit_backlog_wait_overflow = 0;
114
115 /* The identity of the user shutting down the audit system. */
116 kuid_t audit_sig_uid = INVALID_UID;
117 pid_t audit_sig_pid = -1;
118 u32 audit_sig_sid = 0;
119
120 /* Records can be lost in several ways:
121 0) [suppressed in audit_alloc]
122 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
123 2) out of memory in audit_log_move [alloc_skb]
124 3) suppressed due to audit_rate_limit
125 4) suppressed due to audit_backlog_limit
126 */
127 static atomic_t audit_lost = ATOMIC_INIT(0);
128
129 /* The netlink socket. */
130 static struct sock *audit_sock;
131 static int audit_net_id;
132
133 /* Hash for inode-based rules */
134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
135
136 /* The audit_freelist is a list of pre-allocated audit buffers (if more
137 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
138 * being placed on the freelist). */
139 static DEFINE_SPINLOCK(audit_freelist_lock);
140 static int audit_freelist_count;
141 static LIST_HEAD(audit_freelist);
142
143 static struct sk_buff_head audit_skb_queue;
144 /* queue of skbs to send to auditd when/if it comes back */
145 static struct sk_buff_head audit_skb_hold_queue;
146 static struct task_struct *kauditd_task;
147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
149
150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
151 .mask = -1,
152 .features = 0,
153 .lock = 0,};
154
155 static char *audit_feature_names[2] = {
156 "only_unset_loginuid",
157 "loginuid_immutable",
158 };
159
160
161 /* Serialize requests from userspace. */
162 DEFINE_MUTEX(audit_cmd_mutex);
163
164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
165 * audit records. Since printk uses a 1024 byte buffer, this buffer
166 * should be at least that large. */
167 #define AUDIT_BUFSIZ 1024
168
169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
170 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
171 #define AUDIT_MAXFREE (2*NR_CPUS)
172
173 /* The audit_buffer is used when formatting an audit record. The caller
174 * locks briefly to get the record off the freelist or to allocate the
175 * buffer, and locks briefly to send the buffer to the netlink layer or
176 * to place it on a transmit queue. Multiple audit_buffers can be in
177 * use simultaneously. */
178 struct audit_buffer {
179 struct list_head list;
180 struct sk_buff *skb; /* formatted skb ready to send */
181 struct audit_context *ctx; /* NULL or associated context */
182 gfp_t gfp_mask;
183 };
184
185 struct audit_reply {
186 __u32 portid;
187 struct net *net;
188 struct sk_buff *skb;
189 };
190
191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
192 {
193 if (ab) {
194 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
195 nlh->nlmsg_pid = portid;
196 }
197 }
198
199 void audit_panic(const char *message)
200 {
201 switch (audit_failure) {
202 case AUDIT_FAIL_SILENT:
203 break;
204 case AUDIT_FAIL_PRINTK:
205 if (printk_ratelimit())
206 pr_err("%s\n", message);
207 break;
208 case AUDIT_FAIL_PANIC:
209 /* test audit_pid since printk is always losey, why bother? */
210 if (audit_pid)
211 panic("audit: %s\n", message);
212 break;
213 }
214 }
215
216 static inline int audit_rate_check(void)
217 {
218 static unsigned long last_check = 0;
219 static int messages = 0;
220 static DEFINE_SPINLOCK(lock);
221 unsigned long flags;
222 unsigned long now;
223 unsigned long elapsed;
224 int retval = 0;
225
226 if (!audit_rate_limit) return 1;
227
228 spin_lock_irqsave(&lock, flags);
229 if (++messages < audit_rate_limit) {
230 retval = 1;
231 } else {
232 now = jiffies;
233 elapsed = now - last_check;
234 if (elapsed > HZ) {
235 last_check = now;
236 messages = 0;
237 retval = 1;
238 }
239 }
240 spin_unlock_irqrestore(&lock, flags);
241
242 return retval;
243 }
244
245 /**
246 * audit_log_lost - conditionally log lost audit message event
247 * @message: the message stating reason for lost audit message
248 *
249 * Emit at least 1 message per second, even if audit_rate_check is
250 * throttling.
251 * Always increment the lost messages counter.
252 */
253 void audit_log_lost(const char *message)
254 {
255 static unsigned long last_msg = 0;
256 static DEFINE_SPINLOCK(lock);
257 unsigned long flags;
258 unsigned long now;
259 int print;
260
261 atomic_inc(&audit_lost);
262
263 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
264
265 if (!print) {
266 spin_lock_irqsave(&lock, flags);
267 now = jiffies;
268 if (now - last_msg > HZ) {
269 print = 1;
270 last_msg = now;
271 }
272 spin_unlock_irqrestore(&lock, flags);
273 }
274
275 if (print) {
276 if (printk_ratelimit())
277 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
278 atomic_read(&audit_lost),
279 audit_rate_limit,
280 audit_backlog_limit);
281 audit_panic(message);
282 }
283 }
284
285 static int audit_log_config_change(char *function_name, u32 new, u32 old,
286 int allow_changes)
287 {
288 struct audit_buffer *ab;
289 int rc = 0;
290
291 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
292 if (unlikely(!ab))
293 return rc;
294 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
295 audit_log_session_info(ab);
296 rc = audit_log_task_context(ab);
297 if (rc)
298 allow_changes = 0; /* Something weird, deny request */
299 audit_log_format(ab, " res=%d", allow_changes);
300 audit_log_end(ab);
301 return rc;
302 }
303
304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
305 {
306 int allow_changes, rc = 0;
307 u32 old = *to_change;
308
309 /* check if we are locked */
310 if (audit_enabled == AUDIT_LOCKED)
311 allow_changes = 0;
312 else
313 allow_changes = 1;
314
315 if (audit_enabled != AUDIT_OFF) {
316 rc = audit_log_config_change(function_name, new, old, allow_changes);
317 if (rc)
318 allow_changes = 0;
319 }
320
321 /* If we are allowed, make the change */
322 if (allow_changes == 1)
323 *to_change = new;
324 /* Not allowed, update reason */
325 else if (rc == 0)
326 rc = -EPERM;
327 return rc;
328 }
329
330 static int audit_set_rate_limit(u32 limit)
331 {
332 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 }
334
335 static int audit_set_backlog_limit(u32 limit)
336 {
337 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 }
339
340 static int audit_set_backlog_wait_time(u32 timeout)
341 {
342 return audit_do_config_change("audit_backlog_wait_time",
343 &audit_backlog_wait_time_master, timeout);
344 }
345
346 static int audit_set_enabled(u32 state)
347 {
348 int rc;
349 if (state > AUDIT_LOCKED)
350 return -EINVAL;
351
352 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
353 if (!rc)
354 audit_ever_enabled |= !!state;
355
356 return rc;
357 }
358
359 static int audit_set_failure(u32 state)
360 {
361 if (state != AUDIT_FAIL_SILENT
362 && state != AUDIT_FAIL_PRINTK
363 && state != AUDIT_FAIL_PANIC)
364 return -EINVAL;
365
366 return audit_do_config_change("audit_failure", &audit_failure, state);
367 }
368
369 /*
370 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
371 * already have been sent via prink/syslog and so if these messages are dropped
372 * it is not a huge concern since we already passed the audit_log_lost()
373 * notification and stuff. This is just nice to get audit messages during
374 * boot before auditd is running or messages generated while auditd is stopped.
375 * This only holds messages is audit_default is set, aka booting with audit=1
376 * or building your kernel that way.
377 */
378 static void audit_hold_skb(struct sk_buff *skb)
379 {
380 if (audit_default &&
381 (!audit_backlog_limit ||
382 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
383 skb_queue_tail(&audit_skb_hold_queue, skb);
384 else
385 kfree_skb(skb);
386 }
387
388 /*
389 * For one reason or another this nlh isn't getting delivered to the userspace
390 * audit daemon, just send it to printk.
391 */
392 static void audit_printk_skb(struct sk_buff *skb)
393 {
394 struct nlmsghdr *nlh = nlmsg_hdr(skb);
395 char *data = nlmsg_data(nlh);
396
397 if (nlh->nlmsg_type != AUDIT_EOE) {
398 if (printk_ratelimit())
399 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
400 else
401 audit_log_lost("printk limit exceeded");
402 }
403
404 audit_hold_skb(skb);
405 }
406
407 static void kauditd_send_skb(struct sk_buff *skb)
408 {
409 int err;
410 int attempts = 0;
411 #define AUDITD_RETRIES 5
412
413 restart:
414 /* take a reference in case we can't send it and we want to hold it */
415 skb_get(skb);
416 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
417 if (err < 0) {
418 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
419 audit_pid, err);
420 if (audit_pid) {
421 if (err == -ECONNREFUSED || err == -EPERM
422 || ++attempts >= AUDITD_RETRIES) {
423 char s[32];
424
425 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
426 audit_log_lost(s);
427 audit_pid = 0;
428 audit_sock = NULL;
429 } else {
430 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
431 attempts, audit_pid);
432 set_current_state(TASK_INTERRUPTIBLE);
433 schedule();
434 __set_current_state(TASK_RUNNING);
435 goto restart;
436 }
437 }
438 /* we might get lucky and get this in the next auditd */
439 audit_hold_skb(skb);
440 } else
441 /* drop the extra reference if sent ok */
442 consume_skb(skb);
443 }
444
445 /*
446 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
447 *
448 * This function doesn't consume an skb as might be expected since it has to
449 * copy it anyways.
450 */
451 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
452 {
453 struct sk_buff *copy;
454 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
455 struct sock *sock = aunet->nlsk;
456
457 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
458 return;
459
460 /*
461 * The seemingly wasteful skb_copy() rather than bumping the refcount
462 * using skb_get() is necessary because non-standard mods are made to
463 * the skb by the original kaudit unicast socket send routine. The
464 * existing auditd daemon assumes this breakage. Fixing this would
465 * require co-ordinating a change in the established protocol between
466 * the kaudit kernel subsystem and the auditd userspace code. There is
467 * no reason for new multicast clients to continue with this
468 * non-compliance.
469 */
470 copy = skb_copy(skb, gfp_mask);
471 if (!copy)
472 return;
473
474 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
475 }
476
477 /*
478 * flush_hold_queue - empty the hold queue if auditd appears
479 *
480 * If auditd just started, drain the queue of messages already
481 * sent to syslog/printk. Remember loss here is ok. We already
482 * called audit_log_lost() if it didn't go out normally. so the
483 * race between the skb_dequeue and the next check for audit_pid
484 * doesn't matter.
485 *
486 * If you ever find kauditd to be too slow we can get a perf win
487 * by doing our own locking and keeping better track if there
488 * are messages in this queue. I don't see the need now, but
489 * in 5 years when I want to play with this again I'll see this
490 * note and still have no friggin idea what i'm thinking today.
491 */
492 static void flush_hold_queue(void)
493 {
494 struct sk_buff *skb;
495
496 if (!audit_default || !audit_pid)
497 return;
498
499 skb = skb_dequeue(&audit_skb_hold_queue);
500 if (likely(!skb))
501 return;
502
503 while (skb && audit_pid) {
504 kauditd_send_skb(skb);
505 skb = skb_dequeue(&audit_skb_hold_queue);
506 }
507
508 /*
509 * if auditd just disappeared but we
510 * dequeued an skb we need to drop ref
511 */
512 if (skb)
513 consume_skb(skb);
514 }
515
516 static int kauditd_thread(void *dummy)
517 {
518 set_freezable();
519 while (!kthread_should_stop()) {
520 struct sk_buff *skb;
521
522 flush_hold_queue();
523
524 skb = skb_dequeue(&audit_skb_queue);
525
526 if (skb) {
527 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
528 wake_up(&audit_backlog_wait);
529 if (audit_pid)
530 kauditd_send_skb(skb);
531 else
532 audit_printk_skb(skb);
533 continue;
534 }
535
536 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
537 }
538 return 0;
539 }
540
541 int audit_send_list(void *_dest)
542 {
543 struct audit_netlink_list *dest = _dest;
544 struct sk_buff *skb;
545 struct net *net = dest->net;
546 struct audit_net *aunet = net_generic(net, audit_net_id);
547
548 /* wait for parent to finish and send an ACK */
549 mutex_lock(&audit_cmd_mutex);
550 mutex_unlock(&audit_cmd_mutex);
551
552 while ((skb = __skb_dequeue(&dest->q)) != NULL)
553 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
554
555 put_net(net);
556 kfree(dest);
557
558 return 0;
559 }
560
561 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
562 int multi, const void *payload, int size)
563 {
564 struct sk_buff *skb;
565 struct nlmsghdr *nlh;
566 void *data;
567 int flags = multi ? NLM_F_MULTI : 0;
568 int t = done ? NLMSG_DONE : type;
569
570 skb = nlmsg_new(size, GFP_KERNEL);
571 if (!skb)
572 return NULL;
573
574 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
575 if (!nlh)
576 goto out_kfree_skb;
577 data = nlmsg_data(nlh);
578 memcpy(data, payload, size);
579 return skb;
580
581 out_kfree_skb:
582 kfree_skb(skb);
583 return NULL;
584 }
585
586 static int audit_send_reply_thread(void *arg)
587 {
588 struct audit_reply *reply = (struct audit_reply *)arg;
589 struct net *net = reply->net;
590 struct audit_net *aunet = net_generic(net, audit_net_id);
591
592 mutex_lock(&audit_cmd_mutex);
593 mutex_unlock(&audit_cmd_mutex);
594
595 /* Ignore failure. It'll only happen if the sender goes away,
596 because our timeout is set to infinite. */
597 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
598 put_net(net);
599 kfree(reply);
600 return 0;
601 }
602 /**
603 * audit_send_reply - send an audit reply message via netlink
604 * @request_skb: skb of request we are replying to (used to target the reply)
605 * @seq: sequence number
606 * @type: audit message type
607 * @done: done (last) flag
608 * @multi: multi-part message flag
609 * @payload: payload data
610 * @size: payload size
611 *
612 * Allocates an skb, builds the netlink message, and sends it to the port id.
613 * No failure notifications.
614 */
615 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
616 int multi, const void *payload, int size)
617 {
618 u32 portid = NETLINK_CB(request_skb).portid;
619 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
620 struct sk_buff *skb;
621 struct task_struct *tsk;
622 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
623 GFP_KERNEL);
624
625 if (!reply)
626 return;
627
628 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
629 if (!skb)
630 goto out;
631
632 reply->net = get_net(net);
633 reply->portid = portid;
634 reply->skb = skb;
635
636 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
637 if (!IS_ERR(tsk))
638 return;
639 kfree_skb(skb);
640 out:
641 kfree(reply);
642 }
643
644 /*
645 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
646 * control messages.
647 */
648 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
649 {
650 int err = 0;
651
652 /* Only support initial user namespace for now. */
653 /*
654 * We return ECONNREFUSED because it tricks userspace into thinking
655 * that audit was not configured into the kernel. Lots of users
656 * configure their PAM stack (because that's what the distro does)
657 * to reject login if unable to send messages to audit. If we return
658 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
659 * configured in and will let login proceed. If we return EPERM
660 * userspace will reject all logins. This should be removed when we
661 * support non init namespaces!!
662 */
663 if (current_user_ns() != &init_user_ns)
664 return -ECONNREFUSED;
665
666 switch (msg_type) {
667 case AUDIT_LIST:
668 case AUDIT_ADD:
669 case AUDIT_DEL:
670 return -EOPNOTSUPP;
671 case AUDIT_GET:
672 case AUDIT_SET:
673 case AUDIT_GET_FEATURE:
674 case AUDIT_SET_FEATURE:
675 case AUDIT_LIST_RULES:
676 case AUDIT_ADD_RULE:
677 case AUDIT_DEL_RULE:
678 case AUDIT_SIGNAL_INFO:
679 case AUDIT_TTY_GET:
680 case AUDIT_TTY_SET:
681 case AUDIT_TRIM:
682 case AUDIT_MAKE_EQUIV:
683 /* Only support auditd and auditctl in initial pid namespace
684 * for now. */
685 if (task_active_pid_ns(current) != &init_pid_ns)
686 return -EPERM;
687
688 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
689 err = -EPERM;
690 break;
691 case AUDIT_USER:
692 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
693 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
694 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
695 err = -EPERM;
696 break;
697 default: /* bad msg */
698 err = -EINVAL;
699 }
700
701 return err;
702 }
703
704 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
705 {
706 uid_t uid = from_kuid(&init_user_ns, current_uid());
707 pid_t pid = task_tgid_nr(current);
708
709 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
710 *ab = NULL;
711 return 0;
712 }
713
714 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
715 if (unlikely(!*ab))
716 return 0;
717 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
718 audit_log_session_info(*ab);
719 audit_log_task_context(*ab);
720
721 return 0;
722 }
723
724 int is_audit_feature_set(int i)
725 {
726 return af.features & AUDIT_FEATURE_TO_MASK(i);
727 }
728
729
730 static int audit_get_feature(struct sk_buff *skb)
731 {
732 u32 seq;
733
734 seq = nlmsg_hdr(skb)->nlmsg_seq;
735
736 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
737
738 return 0;
739 }
740
741 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
742 u32 old_lock, u32 new_lock, int res)
743 {
744 struct audit_buffer *ab;
745
746 if (audit_enabled == AUDIT_OFF)
747 return;
748
749 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
750 audit_log_task_info(ab, current);
751 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
752 audit_feature_names[which], !!old_feature, !!new_feature,
753 !!old_lock, !!new_lock, res);
754 audit_log_end(ab);
755 }
756
757 static int audit_set_feature(struct sk_buff *skb)
758 {
759 struct audit_features *uaf;
760 int i;
761
762 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
763 uaf = nlmsg_data(nlmsg_hdr(skb));
764
765 /* if there is ever a version 2 we should handle that here */
766
767 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
768 u32 feature = AUDIT_FEATURE_TO_MASK(i);
769 u32 old_feature, new_feature, old_lock, new_lock;
770
771 /* if we are not changing this feature, move along */
772 if (!(feature & uaf->mask))
773 continue;
774
775 old_feature = af.features & feature;
776 new_feature = uaf->features & feature;
777 new_lock = (uaf->lock | af.lock) & feature;
778 old_lock = af.lock & feature;
779
780 /* are we changing a locked feature? */
781 if (old_lock && (new_feature != old_feature)) {
782 audit_log_feature_change(i, old_feature, new_feature,
783 old_lock, new_lock, 0);
784 return -EPERM;
785 }
786 }
787 /* nothing invalid, do the changes */
788 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
789 u32 feature = AUDIT_FEATURE_TO_MASK(i);
790 u32 old_feature, new_feature, old_lock, new_lock;
791
792 /* if we are not changing this feature, move along */
793 if (!(feature & uaf->mask))
794 continue;
795
796 old_feature = af.features & feature;
797 new_feature = uaf->features & feature;
798 old_lock = af.lock & feature;
799 new_lock = (uaf->lock | af.lock) & feature;
800
801 if (new_feature != old_feature)
802 audit_log_feature_change(i, old_feature, new_feature,
803 old_lock, new_lock, 1);
804
805 if (new_feature)
806 af.features |= feature;
807 else
808 af.features &= ~feature;
809 af.lock |= new_lock;
810 }
811
812 return 0;
813 }
814
815 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
816 {
817 u32 seq;
818 void *data;
819 int err;
820 struct audit_buffer *ab;
821 u16 msg_type = nlh->nlmsg_type;
822 struct audit_sig_info *sig_data;
823 char *ctx = NULL;
824 u32 len;
825
826 err = audit_netlink_ok(skb, msg_type);
827 if (err)
828 return err;
829
830 /* As soon as there's any sign of userspace auditd,
831 * start kauditd to talk to it */
832 if (!kauditd_task) {
833 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
834 if (IS_ERR(kauditd_task)) {
835 err = PTR_ERR(kauditd_task);
836 kauditd_task = NULL;
837 return err;
838 }
839 }
840 seq = nlh->nlmsg_seq;
841 data = nlmsg_data(nlh);
842
843 switch (msg_type) {
844 case AUDIT_GET: {
845 struct audit_status s;
846 memset(&s, 0, sizeof(s));
847 s.enabled = audit_enabled;
848 s.failure = audit_failure;
849 s.pid = audit_pid;
850 s.rate_limit = audit_rate_limit;
851 s.backlog_limit = audit_backlog_limit;
852 s.lost = atomic_read(&audit_lost);
853 s.backlog = skb_queue_len(&audit_skb_queue);
854 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
855 s.backlog_wait_time = audit_backlog_wait_time_master;
856 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
857 break;
858 }
859 case AUDIT_SET: {
860 struct audit_status s;
861 memset(&s, 0, sizeof(s));
862 /* guard against past and future API changes */
863 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
864 if (s.mask & AUDIT_STATUS_ENABLED) {
865 err = audit_set_enabled(s.enabled);
866 if (err < 0)
867 return err;
868 }
869 if (s.mask & AUDIT_STATUS_FAILURE) {
870 err = audit_set_failure(s.failure);
871 if (err < 0)
872 return err;
873 }
874 if (s.mask & AUDIT_STATUS_PID) {
875 int new_pid = s.pid;
876
877 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
878 return -EACCES;
879 if (audit_enabled != AUDIT_OFF)
880 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
881 audit_pid = new_pid;
882 audit_nlk_portid = NETLINK_CB(skb).portid;
883 audit_sock = skb->sk;
884 }
885 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
886 err = audit_set_rate_limit(s.rate_limit);
887 if (err < 0)
888 return err;
889 }
890 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
891 err = audit_set_backlog_limit(s.backlog_limit);
892 if (err < 0)
893 return err;
894 }
895 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
896 if (sizeof(s) > (size_t)nlh->nlmsg_len)
897 return -EINVAL;
898 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
899 return -EINVAL;
900 err = audit_set_backlog_wait_time(s.backlog_wait_time);
901 if (err < 0)
902 return err;
903 }
904 break;
905 }
906 case AUDIT_GET_FEATURE:
907 err = audit_get_feature(skb);
908 if (err)
909 return err;
910 break;
911 case AUDIT_SET_FEATURE:
912 err = audit_set_feature(skb);
913 if (err)
914 return err;
915 break;
916 case AUDIT_USER:
917 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
918 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
919 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
920 return 0;
921
922 err = audit_filter_user(msg_type);
923 if (err == 1) { /* match or error */
924 err = 0;
925 if (msg_type == AUDIT_USER_TTY) {
926 err = tty_audit_push_current();
927 if (err)
928 break;
929 }
930 mutex_unlock(&audit_cmd_mutex);
931 audit_log_common_recv_msg(&ab, msg_type);
932 if (msg_type != AUDIT_USER_TTY)
933 audit_log_format(ab, " msg='%.*s'",
934 AUDIT_MESSAGE_TEXT_MAX,
935 (char *)data);
936 else {
937 int size;
938
939 audit_log_format(ab, " data=");
940 size = nlmsg_len(nlh);
941 if (size > 0 &&
942 ((unsigned char *)data)[size - 1] == '\0')
943 size--;
944 audit_log_n_untrustedstring(ab, data, size);
945 }
946 audit_set_portid(ab, NETLINK_CB(skb).portid);
947 audit_log_end(ab);
948 mutex_lock(&audit_cmd_mutex);
949 }
950 break;
951 case AUDIT_ADD_RULE:
952 case AUDIT_DEL_RULE:
953 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
954 return -EINVAL;
955 if (audit_enabled == AUDIT_LOCKED) {
956 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
957 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
958 audit_log_end(ab);
959 return -EPERM;
960 }
961 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
962 seq, data, nlmsg_len(nlh));
963 break;
964 case AUDIT_LIST_RULES:
965 err = audit_list_rules_send(skb, seq);
966 break;
967 case AUDIT_TRIM:
968 audit_trim_trees();
969 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
970 audit_log_format(ab, " op=trim res=1");
971 audit_log_end(ab);
972 break;
973 case AUDIT_MAKE_EQUIV: {
974 void *bufp = data;
975 u32 sizes[2];
976 size_t msglen = nlmsg_len(nlh);
977 char *old, *new;
978
979 err = -EINVAL;
980 if (msglen < 2 * sizeof(u32))
981 break;
982 memcpy(sizes, bufp, 2 * sizeof(u32));
983 bufp += 2 * sizeof(u32);
984 msglen -= 2 * sizeof(u32);
985 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
986 if (IS_ERR(old)) {
987 err = PTR_ERR(old);
988 break;
989 }
990 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
991 if (IS_ERR(new)) {
992 err = PTR_ERR(new);
993 kfree(old);
994 break;
995 }
996 /* OK, here comes... */
997 err = audit_tag_tree(old, new);
998
999 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1000
1001 audit_log_format(ab, " op=make_equiv old=");
1002 audit_log_untrustedstring(ab, old);
1003 audit_log_format(ab, " new=");
1004 audit_log_untrustedstring(ab, new);
1005 audit_log_format(ab, " res=%d", !err);
1006 audit_log_end(ab);
1007 kfree(old);
1008 kfree(new);
1009 break;
1010 }
1011 case AUDIT_SIGNAL_INFO:
1012 len = 0;
1013 if (audit_sig_sid) {
1014 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1015 if (err)
1016 return err;
1017 }
1018 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1019 if (!sig_data) {
1020 if (audit_sig_sid)
1021 security_release_secctx(ctx, len);
1022 return -ENOMEM;
1023 }
1024 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1025 sig_data->pid = audit_sig_pid;
1026 if (audit_sig_sid) {
1027 memcpy(sig_data->ctx, ctx, len);
1028 security_release_secctx(ctx, len);
1029 }
1030 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1031 sig_data, sizeof(*sig_data) + len);
1032 kfree(sig_data);
1033 break;
1034 case AUDIT_TTY_GET: {
1035 struct audit_tty_status s;
1036 struct task_struct *tsk = current;
1037
1038 spin_lock(&tsk->sighand->siglock);
1039 s.enabled = tsk->signal->audit_tty;
1040 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1041 spin_unlock(&tsk->sighand->siglock);
1042
1043 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1044 break;
1045 }
1046 case AUDIT_TTY_SET: {
1047 struct audit_tty_status s, old;
1048 struct task_struct *tsk = current;
1049 struct audit_buffer *ab;
1050
1051 memset(&s, 0, sizeof(s));
1052 /* guard against past and future API changes */
1053 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1054 /* check if new data is valid */
1055 if ((s.enabled != 0 && s.enabled != 1) ||
1056 (s.log_passwd != 0 && s.log_passwd != 1))
1057 err = -EINVAL;
1058
1059 spin_lock(&tsk->sighand->siglock);
1060 old.enabled = tsk->signal->audit_tty;
1061 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1062 if (!err) {
1063 tsk->signal->audit_tty = s.enabled;
1064 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1065 }
1066 spin_unlock(&tsk->sighand->siglock);
1067
1068 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1069 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1070 " old-log_passwd=%d new-log_passwd=%d res=%d",
1071 old.enabled, s.enabled, old.log_passwd,
1072 s.log_passwd, !err);
1073 audit_log_end(ab);
1074 break;
1075 }
1076 default:
1077 err = -EINVAL;
1078 break;
1079 }
1080
1081 return err < 0 ? err : 0;
1082 }
1083
1084 /*
1085 * Get message from skb. Each message is processed by audit_receive_msg.
1086 * Malformed skbs with wrong length are discarded silently.
1087 */
1088 static void audit_receive_skb(struct sk_buff *skb)
1089 {
1090 struct nlmsghdr *nlh;
1091 /*
1092 * len MUST be signed for nlmsg_next to be able to dec it below 0
1093 * if the nlmsg_len was not aligned
1094 */
1095 int len;
1096 int err;
1097
1098 nlh = nlmsg_hdr(skb);
1099 len = skb->len;
1100
1101 while (nlmsg_ok(nlh, len)) {
1102 err = audit_receive_msg(skb, nlh);
1103 /* if err or if this message says it wants a response */
1104 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1105 netlink_ack(skb, nlh, err);
1106
1107 nlh = nlmsg_next(nlh, &len);
1108 }
1109 }
1110
1111 /* Receive messages from netlink socket. */
1112 static void audit_receive(struct sk_buff *skb)
1113 {
1114 mutex_lock(&audit_cmd_mutex);
1115 audit_receive_skb(skb);
1116 mutex_unlock(&audit_cmd_mutex);
1117 }
1118
1119 /* Run custom bind function on netlink socket group connect or bind requests. */
1120 static int audit_bind(struct net *net, int group)
1121 {
1122 if (!capable(CAP_AUDIT_READ))
1123 return -EPERM;
1124
1125 return 0;
1126 }
1127
1128 static int __net_init audit_net_init(struct net *net)
1129 {
1130 struct netlink_kernel_cfg cfg = {
1131 .input = audit_receive,
1132 .bind = audit_bind,
1133 .flags = NL_CFG_F_NONROOT_RECV,
1134 .groups = AUDIT_NLGRP_MAX,
1135 };
1136
1137 struct audit_net *aunet = net_generic(net, audit_net_id);
1138
1139 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1140 if (aunet->nlsk == NULL) {
1141 audit_panic("cannot initialize netlink socket in namespace");
1142 return -ENOMEM;
1143 }
1144 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1145 return 0;
1146 }
1147
1148 static void __net_exit audit_net_exit(struct net *net)
1149 {
1150 struct audit_net *aunet = net_generic(net, audit_net_id);
1151 struct sock *sock = aunet->nlsk;
1152 if (sock == audit_sock) {
1153 audit_pid = 0;
1154 audit_sock = NULL;
1155 }
1156
1157 RCU_INIT_POINTER(aunet->nlsk, NULL);
1158 synchronize_net();
1159 netlink_kernel_release(sock);
1160 }
1161
1162 static struct pernet_operations audit_net_ops __net_initdata = {
1163 .init = audit_net_init,
1164 .exit = audit_net_exit,
1165 .id = &audit_net_id,
1166 .size = sizeof(struct audit_net),
1167 };
1168
1169 /* Initialize audit support at boot time. */
1170 static int __init audit_init(void)
1171 {
1172 int i;
1173
1174 if (audit_initialized == AUDIT_DISABLED)
1175 return 0;
1176
1177 pr_info("initializing netlink subsys (%s)\n",
1178 audit_default ? "enabled" : "disabled");
1179 register_pernet_subsys(&audit_net_ops);
1180
1181 skb_queue_head_init(&audit_skb_queue);
1182 skb_queue_head_init(&audit_skb_hold_queue);
1183 audit_initialized = AUDIT_INITIALIZED;
1184 audit_enabled = audit_default;
1185 audit_ever_enabled |= !!audit_default;
1186
1187 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1188
1189 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1190 INIT_LIST_HEAD(&audit_inode_hash[i]);
1191
1192 return 0;
1193 }
1194 __initcall(audit_init);
1195
1196 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1197 static int __init audit_enable(char *str)
1198 {
1199 audit_default = !!simple_strtol(str, NULL, 0);
1200 if (!audit_default)
1201 audit_initialized = AUDIT_DISABLED;
1202
1203 pr_info("%s\n", audit_default ?
1204 "enabled (after initialization)" : "disabled (until reboot)");
1205
1206 return 1;
1207 }
1208 __setup("audit=", audit_enable);
1209
1210 /* Process kernel command-line parameter at boot time.
1211 * audit_backlog_limit=<n> */
1212 static int __init audit_backlog_limit_set(char *str)
1213 {
1214 u32 audit_backlog_limit_arg;
1215
1216 pr_info("audit_backlog_limit: ");
1217 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1218 pr_cont("using default of %u, unable to parse %s\n",
1219 audit_backlog_limit, str);
1220 return 1;
1221 }
1222
1223 audit_backlog_limit = audit_backlog_limit_arg;
1224 pr_cont("%d\n", audit_backlog_limit);
1225
1226 return 1;
1227 }
1228 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1229
1230 static void audit_buffer_free(struct audit_buffer *ab)
1231 {
1232 unsigned long flags;
1233
1234 if (!ab)
1235 return;
1236
1237 if (ab->skb)
1238 kfree_skb(ab->skb);
1239
1240 spin_lock_irqsave(&audit_freelist_lock, flags);
1241 if (audit_freelist_count > AUDIT_MAXFREE)
1242 kfree(ab);
1243 else {
1244 audit_freelist_count++;
1245 list_add(&ab->list, &audit_freelist);
1246 }
1247 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1248 }
1249
1250 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1251 gfp_t gfp_mask, int type)
1252 {
1253 unsigned long flags;
1254 struct audit_buffer *ab = NULL;
1255 struct nlmsghdr *nlh;
1256
1257 spin_lock_irqsave(&audit_freelist_lock, flags);
1258 if (!list_empty(&audit_freelist)) {
1259 ab = list_entry(audit_freelist.next,
1260 struct audit_buffer, list);
1261 list_del(&ab->list);
1262 --audit_freelist_count;
1263 }
1264 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1265
1266 if (!ab) {
1267 ab = kmalloc(sizeof(*ab), gfp_mask);
1268 if (!ab)
1269 goto err;
1270 }
1271
1272 ab->ctx = ctx;
1273 ab->gfp_mask = gfp_mask;
1274
1275 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1276 if (!ab->skb)
1277 goto err;
1278
1279 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1280 if (!nlh)
1281 goto out_kfree_skb;
1282
1283 return ab;
1284
1285 out_kfree_skb:
1286 kfree_skb(ab->skb);
1287 ab->skb = NULL;
1288 err:
1289 audit_buffer_free(ab);
1290 return NULL;
1291 }
1292
1293 /**
1294 * audit_serial - compute a serial number for the audit record
1295 *
1296 * Compute a serial number for the audit record. Audit records are
1297 * written to user-space as soon as they are generated, so a complete
1298 * audit record may be written in several pieces. The timestamp of the
1299 * record and this serial number are used by the user-space tools to
1300 * determine which pieces belong to the same audit record. The
1301 * (timestamp,serial) tuple is unique for each syscall and is live from
1302 * syscall entry to syscall exit.
1303 *
1304 * NOTE: Another possibility is to store the formatted records off the
1305 * audit context (for those records that have a context), and emit them
1306 * all at syscall exit. However, this could delay the reporting of
1307 * significant errors until syscall exit (or never, if the system
1308 * halts).
1309 */
1310 unsigned int audit_serial(void)
1311 {
1312 static atomic_t serial = ATOMIC_INIT(0);
1313
1314 return atomic_add_return(1, &serial);
1315 }
1316
1317 static inline void audit_get_stamp(struct audit_context *ctx,
1318 struct timespec *t, unsigned int *serial)
1319 {
1320 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1321 *t = CURRENT_TIME;
1322 *serial = audit_serial();
1323 }
1324 }
1325
1326 /*
1327 * Wait for auditd to drain the queue a little
1328 */
1329 static long wait_for_auditd(long sleep_time)
1330 {
1331 DECLARE_WAITQUEUE(wait, current);
1332 set_current_state(TASK_UNINTERRUPTIBLE);
1333 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1334
1335 if (audit_backlog_limit &&
1336 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1337 sleep_time = schedule_timeout(sleep_time);
1338
1339 __set_current_state(TASK_RUNNING);
1340 remove_wait_queue(&audit_backlog_wait, &wait);
1341
1342 return sleep_time;
1343 }
1344
1345 /**
1346 * audit_log_start - obtain an audit buffer
1347 * @ctx: audit_context (may be NULL)
1348 * @gfp_mask: type of allocation
1349 * @type: audit message type
1350 *
1351 * Returns audit_buffer pointer on success or NULL on error.
1352 *
1353 * Obtain an audit buffer. This routine does locking to obtain the
1354 * audit buffer, but then no locking is required for calls to
1355 * audit_log_*format. If the task (ctx) is a task that is currently in a
1356 * syscall, then the syscall is marked as auditable and an audit record
1357 * will be written at syscall exit. If there is no associated task, then
1358 * task context (ctx) should be NULL.
1359 */
1360 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1361 int type)
1362 {
1363 struct audit_buffer *ab = NULL;
1364 struct timespec t;
1365 unsigned int uninitialized_var(serial);
1366 int reserve = 5; /* Allow atomic callers to go up to five
1367 entries over the normal backlog limit */
1368 unsigned long timeout_start = jiffies;
1369
1370 if (audit_initialized != AUDIT_INITIALIZED)
1371 return NULL;
1372
1373 if (unlikely(audit_filter_type(type)))
1374 return NULL;
1375
1376 if (gfp_mask & __GFP_WAIT) {
1377 if (audit_pid && audit_pid == current->pid)
1378 gfp_mask &= ~__GFP_WAIT;
1379 else
1380 reserve = 0;
1381 }
1382
1383 while (audit_backlog_limit
1384 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1385 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1386 long sleep_time;
1387
1388 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1389 if (sleep_time > 0) {
1390 sleep_time = wait_for_auditd(sleep_time);
1391 if (sleep_time > 0)
1392 continue;
1393 }
1394 }
1395 if (audit_rate_check() && printk_ratelimit())
1396 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1397 skb_queue_len(&audit_skb_queue),
1398 audit_backlog_limit);
1399 audit_log_lost("backlog limit exceeded");
1400 audit_backlog_wait_time = audit_backlog_wait_overflow;
1401 wake_up(&audit_backlog_wait);
1402 return NULL;
1403 }
1404
1405 if (!reserve)
1406 audit_backlog_wait_time = audit_backlog_wait_time_master;
1407
1408 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1409 if (!ab) {
1410 audit_log_lost("out of memory in audit_log_start");
1411 return NULL;
1412 }
1413
1414 audit_get_stamp(ab->ctx, &t, &serial);
1415
1416 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1417 t.tv_sec, t.tv_nsec/1000000, serial);
1418 return ab;
1419 }
1420
1421 /**
1422 * audit_expand - expand skb in the audit buffer
1423 * @ab: audit_buffer
1424 * @extra: space to add at tail of the skb
1425 *
1426 * Returns 0 (no space) on failed expansion, or available space if
1427 * successful.
1428 */
1429 static inline int audit_expand(struct audit_buffer *ab, int extra)
1430 {
1431 struct sk_buff *skb = ab->skb;
1432 int oldtail = skb_tailroom(skb);
1433 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1434 int newtail = skb_tailroom(skb);
1435
1436 if (ret < 0) {
1437 audit_log_lost("out of memory in audit_expand");
1438 return 0;
1439 }
1440
1441 skb->truesize += newtail - oldtail;
1442 return newtail;
1443 }
1444
1445 /*
1446 * Format an audit message into the audit buffer. If there isn't enough
1447 * room in the audit buffer, more room will be allocated and vsnprint
1448 * will be called a second time. Currently, we assume that a printk
1449 * can't format message larger than 1024 bytes, so we don't either.
1450 */
1451 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1452 va_list args)
1453 {
1454 int len, avail;
1455 struct sk_buff *skb;
1456 va_list args2;
1457
1458 if (!ab)
1459 return;
1460
1461 BUG_ON(!ab->skb);
1462 skb = ab->skb;
1463 avail = skb_tailroom(skb);
1464 if (avail == 0) {
1465 avail = audit_expand(ab, AUDIT_BUFSIZ);
1466 if (!avail)
1467 goto out;
1468 }
1469 va_copy(args2, args);
1470 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1471 if (len >= avail) {
1472 /* The printk buffer is 1024 bytes long, so if we get
1473 * here and AUDIT_BUFSIZ is at least 1024, then we can
1474 * log everything that printk could have logged. */
1475 avail = audit_expand(ab,
1476 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1477 if (!avail)
1478 goto out_va_end;
1479 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1480 }
1481 if (len > 0)
1482 skb_put(skb, len);
1483 out_va_end:
1484 va_end(args2);
1485 out:
1486 return;
1487 }
1488
1489 /**
1490 * audit_log_format - format a message into the audit buffer.
1491 * @ab: audit_buffer
1492 * @fmt: format string
1493 * @...: optional parameters matching @fmt string
1494 *
1495 * All the work is done in audit_log_vformat.
1496 */
1497 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1498 {
1499 va_list args;
1500
1501 if (!ab)
1502 return;
1503 va_start(args, fmt);
1504 audit_log_vformat(ab, fmt, args);
1505 va_end(args);
1506 }
1507
1508 /**
1509 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1510 * @ab: the audit_buffer
1511 * @buf: buffer to convert to hex
1512 * @len: length of @buf to be converted
1513 *
1514 * No return value; failure to expand is silently ignored.
1515 *
1516 * This function will take the passed buf and convert it into a string of
1517 * ascii hex digits. The new string is placed onto the skb.
1518 */
1519 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1520 size_t len)
1521 {
1522 int i, avail, new_len;
1523 unsigned char *ptr;
1524 struct sk_buff *skb;
1525
1526 if (!ab)
1527 return;
1528
1529 BUG_ON(!ab->skb);
1530 skb = ab->skb;
1531 avail = skb_tailroom(skb);
1532 new_len = len<<1;
1533 if (new_len >= avail) {
1534 /* Round the buffer request up to the next multiple */
1535 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1536 avail = audit_expand(ab, new_len);
1537 if (!avail)
1538 return;
1539 }
1540
1541 ptr = skb_tail_pointer(skb);
1542 for (i = 0; i < len; i++)
1543 ptr = hex_byte_pack_upper(ptr, buf[i]);
1544 *ptr = 0;
1545 skb_put(skb, len << 1); /* new string is twice the old string */
1546 }
1547
1548 /*
1549 * Format a string of no more than slen characters into the audit buffer,
1550 * enclosed in quote marks.
1551 */
1552 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1553 size_t slen)
1554 {
1555 int avail, new_len;
1556 unsigned char *ptr;
1557 struct sk_buff *skb;
1558
1559 if (!ab)
1560 return;
1561
1562 BUG_ON(!ab->skb);
1563 skb = ab->skb;
1564 avail = skb_tailroom(skb);
1565 new_len = slen + 3; /* enclosing quotes + null terminator */
1566 if (new_len > avail) {
1567 avail = audit_expand(ab, new_len);
1568 if (!avail)
1569 return;
1570 }
1571 ptr = skb_tail_pointer(skb);
1572 *ptr++ = '"';
1573 memcpy(ptr, string, slen);
1574 ptr += slen;
1575 *ptr++ = '"';
1576 *ptr = 0;
1577 skb_put(skb, slen + 2); /* don't include null terminator */
1578 }
1579
1580 /**
1581 * audit_string_contains_control - does a string need to be logged in hex
1582 * @string: string to be checked
1583 * @len: max length of the string to check
1584 */
1585 bool audit_string_contains_control(const char *string, size_t len)
1586 {
1587 const unsigned char *p;
1588 for (p = string; p < (const unsigned char *)string + len; p++) {
1589 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1590 return true;
1591 }
1592 return false;
1593 }
1594
1595 /**
1596 * audit_log_n_untrustedstring - log a string that may contain random characters
1597 * @ab: audit_buffer
1598 * @len: length of string (not including trailing null)
1599 * @string: string to be logged
1600 *
1601 * This code will escape a string that is passed to it if the string
1602 * contains a control character, unprintable character, double quote mark,
1603 * or a space. Unescaped strings will start and end with a double quote mark.
1604 * Strings that are escaped are printed in hex (2 digits per char).
1605 *
1606 * The caller specifies the number of characters in the string to log, which may
1607 * or may not be the entire string.
1608 */
1609 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1610 size_t len)
1611 {
1612 if (audit_string_contains_control(string, len))
1613 audit_log_n_hex(ab, string, len);
1614 else
1615 audit_log_n_string(ab, string, len);
1616 }
1617
1618 /**
1619 * audit_log_untrustedstring - log a string that may contain random characters
1620 * @ab: audit_buffer
1621 * @string: string to be logged
1622 *
1623 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1624 * determine string length.
1625 */
1626 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1627 {
1628 audit_log_n_untrustedstring(ab, string, strlen(string));
1629 }
1630
1631 /* This is a helper-function to print the escaped d_path */
1632 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1633 const struct path *path)
1634 {
1635 char *p, *pathname;
1636
1637 if (prefix)
1638 audit_log_format(ab, "%s", prefix);
1639
1640 /* We will allow 11 spaces for ' (deleted)' to be appended */
1641 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1642 if (!pathname) {
1643 audit_log_string(ab, "<no_memory>");
1644 return;
1645 }
1646 p = d_path(path, pathname, PATH_MAX+11);
1647 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1648 /* FIXME: can we save some information here? */
1649 audit_log_string(ab, "<too_long>");
1650 } else
1651 audit_log_untrustedstring(ab, p);
1652 kfree(pathname);
1653 }
1654
1655 void audit_log_session_info(struct audit_buffer *ab)
1656 {
1657 unsigned int sessionid = audit_get_sessionid(current);
1658 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1659
1660 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1661 }
1662
1663 void audit_log_key(struct audit_buffer *ab, char *key)
1664 {
1665 audit_log_format(ab, " key=");
1666 if (key)
1667 audit_log_untrustedstring(ab, key);
1668 else
1669 audit_log_format(ab, "(null)");
1670 }
1671
1672 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1673 {
1674 int i;
1675
1676 audit_log_format(ab, " %s=", prefix);
1677 CAP_FOR_EACH_U32(i) {
1678 audit_log_format(ab, "%08x",
1679 cap->cap[CAP_LAST_U32 - i]);
1680 }
1681 }
1682
1683 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1684 {
1685 kernel_cap_t *perm = &name->fcap.permitted;
1686 kernel_cap_t *inh = &name->fcap.inheritable;
1687 int log = 0;
1688
1689 if (!cap_isclear(*perm)) {
1690 audit_log_cap(ab, "cap_fp", perm);
1691 log = 1;
1692 }
1693 if (!cap_isclear(*inh)) {
1694 audit_log_cap(ab, "cap_fi", inh);
1695 log = 1;
1696 }
1697
1698 if (log)
1699 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1700 name->fcap.fE, name->fcap_ver);
1701 }
1702
1703 static inline int audit_copy_fcaps(struct audit_names *name,
1704 const struct dentry *dentry)
1705 {
1706 struct cpu_vfs_cap_data caps;
1707 int rc;
1708
1709 if (!dentry)
1710 return 0;
1711
1712 rc = get_vfs_caps_from_disk(dentry, &caps);
1713 if (rc)
1714 return rc;
1715
1716 name->fcap.permitted = caps.permitted;
1717 name->fcap.inheritable = caps.inheritable;
1718 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1719 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1720 VFS_CAP_REVISION_SHIFT;
1721
1722 return 0;
1723 }
1724
1725 /* Copy inode data into an audit_names. */
1726 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1727 const struct inode *inode)
1728 {
1729 name->ino = inode->i_ino;
1730 name->dev = inode->i_sb->s_dev;
1731 name->mode = inode->i_mode;
1732 name->uid = inode->i_uid;
1733 name->gid = inode->i_gid;
1734 name->rdev = inode->i_rdev;
1735 security_inode_getsecid(inode, &name->osid);
1736 audit_copy_fcaps(name, dentry);
1737 }
1738
1739 /**
1740 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1741 * @context: audit_context for the task
1742 * @n: audit_names structure with reportable details
1743 * @path: optional path to report instead of audit_names->name
1744 * @record_num: record number to report when handling a list of names
1745 * @call_panic: optional pointer to int that will be updated if secid fails
1746 */
1747 void audit_log_name(struct audit_context *context, struct audit_names *n,
1748 struct path *path, int record_num, int *call_panic)
1749 {
1750 struct audit_buffer *ab;
1751 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1752 if (!ab)
1753 return;
1754
1755 audit_log_format(ab, "item=%d", record_num);
1756
1757 if (path)
1758 audit_log_d_path(ab, " name=", path);
1759 else if (n->name) {
1760 switch (n->name_len) {
1761 case AUDIT_NAME_FULL:
1762 /* log the full path */
1763 audit_log_format(ab, " name=");
1764 audit_log_untrustedstring(ab, n->name->name);
1765 break;
1766 case 0:
1767 /* name was specified as a relative path and the
1768 * directory component is the cwd */
1769 audit_log_d_path(ab, " name=", &context->pwd);
1770 break;
1771 default:
1772 /* log the name's directory component */
1773 audit_log_format(ab, " name=");
1774 audit_log_n_untrustedstring(ab, n->name->name,
1775 n->name_len);
1776 }
1777 } else
1778 audit_log_format(ab, " name=(null)");
1779
1780 if (n->ino != AUDIT_INO_UNSET)
1781 audit_log_format(ab, " inode=%lu"
1782 " dev=%02x:%02x mode=%#ho"
1783 " ouid=%u ogid=%u rdev=%02x:%02x",
1784 n->ino,
1785 MAJOR(n->dev),
1786 MINOR(n->dev),
1787 n->mode,
1788 from_kuid(&init_user_ns, n->uid),
1789 from_kgid(&init_user_ns, n->gid),
1790 MAJOR(n->rdev),
1791 MINOR(n->rdev));
1792 if (n->osid != 0) {
1793 char *ctx = NULL;
1794 u32 len;
1795 if (security_secid_to_secctx(
1796 n->osid, &ctx, &len)) {
1797 audit_log_format(ab, " osid=%u", n->osid);
1798 if (call_panic)
1799 *call_panic = 2;
1800 } else {
1801 audit_log_format(ab, " obj=%s", ctx);
1802 security_release_secctx(ctx, len);
1803 }
1804 }
1805
1806 /* log the audit_names record type */
1807 audit_log_format(ab, " nametype=");
1808 switch(n->type) {
1809 case AUDIT_TYPE_NORMAL:
1810 audit_log_format(ab, "NORMAL");
1811 break;
1812 case AUDIT_TYPE_PARENT:
1813 audit_log_format(ab, "PARENT");
1814 break;
1815 case AUDIT_TYPE_CHILD_DELETE:
1816 audit_log_format(ab, "DELETE");
1817 break;
1818 case AUDIT_TYPE_CHILD_CREATE:
1819 audit_log_format(ab, "CREATE");
1820 break;
1821 default:
1822 audit_log_format(ab, "UNKNOWN");
1823 break;
1824 }
1825
1826 audit_log_fcaps(ab, n);
1827 audit_log_end(ab);
1828 }
1829
1830 int audit_log_task_context(struct audit_buffer *ab)
1831 {
1832 char *ctx = NULL;
1833 unsigned len;
1834 int error;
1835 u32 sid;
1836
1837 security_task_getsecid(current, &sid);
1838 if (!sid)
1839 return 0;
1840
1841 error = security_secid_to_secctx(sid, &ctx, &len);
1842 if (error) {
1843 if (error != -EINVAL)
1844 goto error_path;
1845 return 0;
1846 }
1847
1848 audit_log_format(ab, " subj=%s", ctx);
1849 security_release_secctx(ctx, len);
1850 return 0;
1851
1852 error_path:
1853 audit_panic("error in audit_log_task_context");
1854 return error;
1855 }
1856 EXPORT_SYMBOL(audit_log_task_context);
1857
1858 void audit_log_d_path_exe(struct audit_buffer *ab,
1859 struct mm_struct *mm)
1860 {
1861 struct file *exe_file;
1862
1863 if (!mm)
1864 goto out_null;
1865
1866 exe_file = get_mm_exe_file(mm);
1867 if (!exe_file)
1868 goto out_null;
1869
1870 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1871 fput(exe_file);
1872 return;
1873 out_null:
1874 audit_log_format(ab, " exe=(null)");
1875 }
1876
1877 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1878 {
1879 const struct cred *cred;
1880 char comm[sizeof(tsk->comm)];
1881 char *tty;
1882
1883 if (!ab)
1884 return;
1885
1886 /* tsk == current */
1887 cred = current_cred();
1888
1889 spin_lock_irq(&tsk->sighand->siglock);
1890 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1891 tty = tsk->signal->tty->name;
1892 else
1893 tty = "(none)";
1894 spin_unlock_irq(&tsk->sighand->siglock);
1895
1896 audit_log_format(ab,
1897 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1898 " euid=%u suid=%u fsuid=%u"
1899 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1900 task_ppid_nr(tsk),
1901 task_pid_nr(tsk),
1902 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1903 from_kuid(&init_user_ns, cred->uid),
1904 from_kgid(&init_user_ns, cred->gid),
1905 from_kuid(&init_user_ns, cred->euid),
1906 from_kuid(&init_user_ns, cred->suid),
1907 from_kuid(&init_user_ns, cred->fsuid),
1908 from_kgid(&init_user_ns, cred->egid),
1909 from_kgid(&init_user_ns, cred->sgid),
1910 from_kgid(&init_user_ns, cred->fsgid),
1911 tty, audit_get_sessionid(tsk));
1912
1913 audit_log_format(ab, " comm=");
1914 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1915
1916 audit_log_d_path_exe(ab, tsk->mm);
1917 audit_log_task_context(ab);
1918 }
1919 EXPORT_SYMBOL(audit_log_task_info);
1920
1921 /**
1922 * audit_log_link_denied - report a link restriction denial
1923 * @operation: specific link operation
1924 * @link: the path that triggered the restriction
1925 */
1926 void audit_log_link_denied(const char *operation, struct path *link)
1927 {
1928 struct audit_buffer *ab;
1929 struct audit_names *name;
1930
1931 name = kzalloc(sizeof(*name), GFP_NOFS);
1932 if (!name)
1933 return;
1934
1935 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1936 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1937 AUDIT_ANOM_LINK);
1938 if (!ab)
1939 goto out;
1940 audit_log_format(ab, "op=%s", operation);
1941 audit_log_task_info(ab, current);
1942 audit_log_format(ab, " res=0");
1943 audit_log_end(ab);
1944
1945 /* Generate AUDIT_PATH record with object. */
1946 name->type = AUDIT_TYPE_NORMAL;
1947 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1948 audit_log_name(current->audit_context, name, link, 0, NULL);
1949 out:
1950 kfree(name);
1951 }
1952
1953 /**
1954 * audit_log_end - end one audit record
1955 * @ab: the audit_buffer
1956 *
1957 * netlink_unicast() cannot be called inside an irq context because it blocks
1958 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1959 * on a queue and a tasklet is scheduled to remove them from the queue outside
1960 * the irq context. May be called in any context.
1961 */
1962 void audit_log_end(struct audit_buffer *ab)
1963 {
1964 if (!ab)
1965 return;
1966 if (!audit_rate_check()) {
1967 audit_log_lost("rate limit exceeded");
1968 } else {
1969 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1970
1971 nlh->nlmsg_len = ab->skb->len;
1972 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1973
1974 /*
1975 * The original kaudit unicast socket sends up messages with
1976 * nlmsg_len set to the payload length rather than the entire
1977 * message length. This breaks the standard set by netlink.
1978 * The existing auditd daemon assumes this breakage. Fixing
1979 * this would require co-ordinating a change in the established
1980 * protocol between the kaudit kernel subsystem and the auditd
1981 * userspace code.
1982 */
1983 nlh->nlmsg_len -= NLMSG_HDRLEN;
1984
1985 if (audit_pid) {
1986 skb_queue_tail(&audit_skb_queue, ab->skb);
1987 wake_up_interruptible(&kauditd_wait);
1988 } else {
1989 audit_printk_skb(ab->skb);
1990 }
1991 ab->skb = NULL;
1992 }
1993 audit_buffer_free(ab);
1994 }
1995
1996 /**
1997 * audit_log - Log an audit record
1998 * @ctx: audit context
1999 * @gfp_mask: type of allocation
2000 * @type: audit message type
2001 * @fmt: format string to use
2002 * @...: variable parameters matching the format string
2003 *
2004 * This is a convenience function that calls audit_log_start,
2005 * audit_log_vformat, and audit_log_end. It may be called
2006 * in any context.
2007 */
2008 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2009 const char *fmt, ...)
2010 {
2011 struct audit_buffer *ab;
2012 va_list args;
2013
2014 ab = audit_log_start(ctx, gfp_mask, type);
2015 if (ab) {
2016 va_start(args, fmt);
2017 audit_log_vformat(ab, fmt, args);
2018 va_end(args);
2019 audit_log_end(ab);
2020 }
2021 }
2022
2023 #ifdef CONFIG_SECURITY
2024 /**
2025 * audit_log_secctx - Converts and logs SELinux context
2026 * @ab: audit_buffer
2027 * @secid: security number
2028 *
2029 * This is a helper function that calls security_secid_to_secctx to convert
2030 * secid to secctx and then adds the (converted) SELinux context to the audit
2031 * log by calling audit_log_format, thus also preventing leak of internal secid
2032 * to userspace. If secid cannot be converted audit_panic is called.
2033 */
2034 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2035 {
2036 u32 len;
2037 char *secctx;
2038
2039 if (security_secid_to_secctx(secid, &secctx, &len)) {
2040 audit_panic("Cannot convert secid to context");
2041 } else {
2042 audit_log_format(ab, " obj=%s", secctx);
2043 security_release_secctx(secctx, len);
2044 }
2045 }
2046 EXPORT_SYMBOL(audit_log_secctx);
2047 #endif
2048
2049 EXPORT_SYMBOL(audit_log_start);
2050 EXPORT_SYMBOL(audit_log_end);
2051 EXPORT_SYMBOL(audit_log_format);
2052 EXPORT_SYMBOL(audit_log);