]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/audit.c
Bluetooth: btusb: Add one more Bluetooth part for the Realtek RTL8852AE
[mirror_ubuntu-jammy-kernel.git] / kernel / audit.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62
63 #include "audit.h"
64
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66 * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED -1
68 #define AUDIT_UNINITIALIZED 0
69 #define AUDIT_INITIALIZED 1
70 static int audit_initialized = AUDIT_UNINITIALIZED;
71
72 u32 audit_enabled = AUDIT_OFF;
73 bool audit_ever_enabled = !!AUDIT_OFF;
74
75 EXPORT_SYMBOL_GPL(audit_enabled);
76
77 /* Default state when kernel boots without any parameters. */
78 static u32 audit_default = AUDIT_OFF;
79
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32 audit_failure = AUDIT_FAIL_PRINTK;
82
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85
86 /**
87 * struct audit_net - audit private network namespace data
88 * @sk: communication socket
89 */
90 struct audit_net {
91 struct sock *sk;
92 };
93
94 /**
95 * struct auditd_connection - kernel/auditd connection state
96 * @pid: auditd PID
97 * @portid: netlink portid
98 * @net: the associated network namespace
99 * @rcu: RCU head
100 *
101 * Description:
102 * This struct is RCU protected; you must either hold the RCU lock for reading
103 * or the associated spinlock for writing.
104 */
105 struct auditd_connection {
106 struct pid *pid;
107 u32 portid;
108 struct net *net;
109 struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115 * to that number per second. This prevents DoS attacks, but results in
116 * audit records being dropped. */
117 static u32 audit_rate_limit;
118
119 /* Number of outstanding audit_buffers allowed.
120 * When set to zero, this means unlimited. */
121 static u32 audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t audit_sig_uid = INVALID_UID;
127 static pid_t audit_sig_pid = -1;
128 struct lsmblob audit_sig_lsm;
129
130 /* Records can be lost in several ways:
131 0) [suppressed in audit_alloc]
132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133 2) out of memory in audit_log_move [alloc_skb]
134 3) suppressed due to audit_rate_limit
135 4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t audit_lost = ATOMIC_INIT(0);
138
139 /* Monotonically increasing sum of time the kernel has spent
140 * waiting while the backlog limit is exceeded.
141 */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146
147 static struct kmem_cache *audit_buffer_cache;
148
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 .mask = -1,
165 .features = 0,
166 .lock = 0,};
167
168 static char *audit_feature_names[2] = {
169 "only_unset_loginuid",
170 "loginuid_immutable",
171 };
172
173 /**
174 * struct audit_ctl_mutex - serialize requests from userspace
175 * @lock: the mutex used for locking
176 * @owner: the task which owns the lock
177 *
178 * Description:
179 * This is the lock struct used to ensure we only process userspace requests
180 * in an orderly fashion. We can't simply use a mutex/lock here because we
181 * need to track lock ownership so we don't end up blocking the lock owner in
182 * audit_log_start() or similar.
183 */
184 static struct audit_ctl_mutex {
185 struct mutex lock;
186 void *owner;
187 } audit_cmd_mutex;
188
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190 * audit records. Since printk uses a 1024 byte buffer, this buffer
191 * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193
194 /* The audit_buffer is used when formatting an audit record. The caller
195 * locks briefly to get the record off the freelist or to allocate the
196 * buffer, and locks briefly to send the buffer to the netlink layer or
197 * to place it on a transmit queue. Multiple audit_buffers can be in
198 * use simultaneously. */
199 struct audit_buffer {
200 struct sk_buff *skb; /* formatted skb ready to send */
201 struct audit_context *ctx; /* NULL or associated context */
202 gfp_t gfp_mask;
203 };
204
205 struct audit_reply {
206 __u32 portid;
207 struct net *net;
208 struct sk_buff *skb;
209 };
210
211 /**
212 * auditd_test_task - Check to see if a given task is an audit daemon
213 * @task: the task to check
214 *
215 * Description:
216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
217 */
218 int auditd_test_task(struct task_struct *task)
219 {
220 int rc;
221 struct auditd_connection *ac;
222
223 rcu_read_lock();
224 ac = rcu_dereference(auditd_conn);
225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 rcu_read_unlock();
227
228 return rc;
229 }
230
231 /**
232 * audit_ctl_lock - Take the audit control lock
233 */
234 void audit_ctl_lock(void)
235 {
236 mutex_lock(&audit_cmd_mutex.lock);
237 audit_cmd_mutex.owner = current;
238 }
239
240 /**
241 * audit_ctl_unlock - Drop the audit control lock
242 */
243 void audit_ctl_unlock(void)
244 {
245 audit_cmd_mutex.owner = NULL;
246 mutex_unlock(&audit_cmd_mutex.lock);
247 }
248
249 /**
250 * audit_ctl_owner_current - Test to see if the current task owns the lock
251 *
252 * Description:
253 * Return true if the current task owns the audit control lock, false if it
254 * doesn't own the lock.
255 */
256 static bool audit_ctl_owner_current(void)
257 {
258 return (current == audit_cmd_mutex.owner);
259 }
260
261 /**
262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
263 *
264 * Description:
265 * Returns the PID in relation to the namespace, 0 on failure.
266 */
267 static pid_t auditd_pid_vnr(void)
268 {
269 pid_t pid;
270 const struct auditd_connection *ac;
271
272 rcu_read_lock();
273 ac = rcu_dereference(auditd_conn);
274 if (!ac || !ac->pid)
275 pid = 0;
276 else
277 pid = pid_vnr(ac->pid);
278 rcu_read_unlock();
279
280 return pid;
281 }
282
283 /**
284 * audit_get_sk - Return the audit socket for the given network namespace
285 * @net: the destination network namespace
286 *
287 * Description:
288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
289 * that a reference is held for the network namespace while the sock is in use.
290 */
291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 struct audit_net *aunet;
294
295 if (!net)
296 return NULL;
297
298 aunet = net_generic(net, audit_net_id);
299 return aunet->sk;
300 }
301
302 void audit_panic(const char *message)
303 {
304 switch (audit_failure) {
305 case AUDIT_FAIL_SILENT:
306 break;
307 case AUDIT_FAIL_PRINTK:
308 if (printk_ratelimit())
309 pr_err("%s\n", message);
310 break;
311 case AUDIT_FAIL_PANIC:
312 panic("audit: %s\n", message);
313 break;
314 }
315 }
316
317 static inline int audit_rate_check(void)
318 {
319 static unsigned long last_check = 0;
320 static int messages = 0;
321 static DEFINE_SPINLOCK(lock);
322 unsigned long flags;
323 unsigned long now;
324 unsigned long elapsed;
325 int retval = 0;
326
327 if (!audit_rate_limit) return 1;
328
329 spin_lock_irqsave(&lock, flags);
330 if (++messages < audit_rate_limit) {
331 retval = 1;
332 } else {
333 now = jiffies;
334 elapsed = now - last_check;
335 if (elapsed > HZ) {
336 last_check = now;
337 messages = 0;
338 retval = 1;
339 }
340 }
341 spin_unlock_irqrestore(&lock, flags);
342
343 return retval;
344 }
345
346 /**
347 * audit_log_lost - conditionally log lost audit message event
348 * @message: the message stating reason for lost audit message
349 *
350 * Emit at least 1 message per second, even if audit_rate_check is
351 * throttling.
352 * Always increment the lost messages counter.
353 */
354 void audit_log_lost(const char *message)
355 {
356 static unsigned long last_msg = 0;
357 static DEFINE_SPINLOCK(lock);
358 unsigned long flags;
359 unsigned long now;
360 int print;
361
362 atomic_inc(&audit_lost);
363
364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
365
366 if (!print) {
367 spin_lock_irqsave(&lock, flags);
368 now = jiffies;
369 if (now - last_msg > HZ) {
370 print = 1;
371 last_msg = now;
372 }
373 spin_unlock_irqrestore(&lock, flags);
374 }
375
376 if (print) {
377 if (printk_ratelimit())
378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
379 atomic_read(&audit_lost),
380 audit_rate_limit,
381 audit_backlog_limit);
382 audit_panic(message);
383 }
384 }
385
386 static int audit_log_config_change(char *function_name, u32 new, u32 old,
387 int allow_changes)
388 {
389 struct audit_buffer *ab;
390 int rc = 0;
391
392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
393 if (unlikely(!ab))
394 return rc;
395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
396 audit_log_session_info(ab);
397 rc = audit_log_task_context(ab, NULL);
398 if (rc)
399 allow_changes = 0; /* Something weird, deny request */
400 audit_log_format(ab, " res=%d", allow_changes);
401 audit_log_lsm(NULL, false);
402 audit_log_end(ab);
403 return rc;
404 }
405
406 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
407 {
408 int allow_changes, rc = 0;
409 u32 old = *to_change;
410
411 /* check if we are locked */
412 if (audit_enabled == AUDIT_LOCKED)
413 allow_changes = 0;
414 else
415 allow_changes = 1;
416
417 if (audit_enabled != AUDIT_OFF) {
418 rc = audit_log_config_change(function_name, new, old, allow_changes);
419 if (rc)
420 allow_changes = 0;
421 }
422
423 /* If we are allowed, make the change */
424 if (allow_changes == 1)
425 *to_change = new;
426 /* Not allowed, update reason */
427 else if (rc == 0)
428 rc = -EPERM;
429 return rc;
430 }
431
432 static int audit_set_rate_limit(u32 limit)
433 {
434 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
435 }
436
437 static int audit_set_backlog_limit(u32 limit)
438 {
439 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
440 }
441
442 static int audit_set_backlog_wait_time(u32 timeout)
443 {
444 return audit_do_config_change("audit_backlog_wait_time",
445 &audit_backlog_wait_time, timeout);
446 }
447
448 static int audit_set_enabled(u32 state)
449 {
450 int rc;
451 if (state > AUDIT_LOCKED)
452 return -EINVAL;
453
454 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
455 if (!rc)
456 audit_ever_enabled |= !!state;
457
458 return rc;
459 }
460
461 static int audit_set_failure(u32 state)
462 {
463 if (state != AUDIT_FAIL_SILENT
464 && state != AUDIT_FAIL_PRINTK
465 && state != AUDIT_FAIL_PANIC)
466 return -EINVAL;
467
468 return audit_do_config_change("audit_failure", &audit_failure, state);
469 }
470
471 /**
472 * auditd_conn_free - RCU helper to release an auditd connection struct
473 * @rcu: RCU head
474 *
475 * Description:
476 * Drop any references inside the auditd connection tracking struct and free
477 * the memory.
478 */
479 static void auditd_conn_free(struct rcu_head *rcu)
480 {
481 struct auditd_connection *ac;
482
483 ac = container_of(rcu, struct auditd_connection, rcu);
484 put_pid(ac->pid);
485 put_net(ac->net);
486 kfree(ac);
487 }
488
489 /**
490 * auditd_set - Set/Reset the auditd connection state
491 * @pid: auditd PID
492 * @portid: auditd netlink portid
493 * @net: auditd network namespace pointer
494 *
495 * Description:
496 * This function will obtain and drop network namespace references as
497 * necessary. Returns zero on success, negative values on failure.
498 */
499 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
500 {
501 unsigned long flags;
502 struct auditd_connection *ac_old, *ac_new;
503
504 if (!pid || !net)
505 return -EINVAL;
506
507 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
508 if (!ac_new)
509 return -ENOMEM;
510 ac_new->pid = get_pid(pid);
511 ac_new->portid = portid;
512 ac_new->net = get_net(net);
513
514 spin_lock_irqsave(&auditd_conn_lock, flags);
515 ac_old = rcu_dereference_protected(auditd_conn,
516 lockdep_is_held(&auditd_conn_lock));
517 rcu_assign_pointer(auditd_conn, ac_new);
518 spin_unlock_irqrestore(&auditd_conn_lock, flags);
519
520 if (ac_old)
521 call_rcu(&ac_old->rcu, auditd_conn_free);
522
523 return 0;
524 }
525
526 /**
527 * kauditd_printk_skb - Print the audit record to the ring buffer
528 * @skb: audit record
529 *
530 * Whatever the reason, this packet may not make it to the auditd connection
531 * so write it via printk so the information isn't completely lost.
532 */
533 static void kauditd_printk_skb(struct sk_buff *skb)
534 {
535 struct nlmsghdr *nlh = nlmsg_hdr(skb);
536 char *data = nlmsg_data(nlh);
537
538 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
539 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
540 }
541
542 /**
543 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
544 * @skb: audit record
545 *
546 * Description:
547 * This should only be used by the kauditd_thread when it fails to flush the
548 * hold queue.
549 */
550 static void kauditd_rehold_skb(struct sk_buff *skb)
551 {
552 /* put the record back in the queue at the same place */
553 skb_queue_head(&audit_hold_queue, skb);
554 }
555
556 /**
557 * kauditd_hold_skb - Queue an audit record, waiting for auditd
558 * @skb: audit record
559 *
560 * Description:
561 * Queue the audit record, waiting for an instance of auditd. When this
562 * function is called we haven't given up yet on sending the record, but things
563 * are not looking good. The first thing we want to do is try to write the
564 * record via printk and then see if we want to try and hold on to the record
565 * and queue it, if we have room. If we want to hold on to the record, but we
566 * don't have room, record a record lost message.
567 */
568 static void kauditd_hold_skb(struct sk_buff *skb)
569 {
570 /* at this point it is uncertain if we will ever send this to auditd so
571 * try to send the message via printk before we go any further */
572 kauditd_printk_skb(skb);
573
574 /* can we just silently drop the message? */
575 if (!audit_default) {
576 kfree_skb(skb);
577 return;
578 }
579
580 /* if we have room, queue the message */
581 if (!audit_backlog_limit ||
582 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
583 skb_queue_tail(&audit_hold_queue, skb);
584 return;
585 }
586
587 /* we have no other options - drop the message */
588 audit_log_lost("kauditd hold queue overflow");
589 kfree_skb(skb);
590 }
591
592 /**
593 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
594 * @skb: audit record
595 *
596 * Description:
597 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
598 * but for some reason we are having problems sending it audit records so
599 * queue the given record and attempt to resend.
600 */
601 static void kauditd_retry_skb(struct sk_buff *skb)
602 {
603 /* NOTE: because records should only live in the retry queue for a
604 * short period of time, before either being sent or moved to the hold
605 * queue, we don't currently enforce a limit on this queue */
606 skb_queue_tail(&audit_retry_queue, skb);
607 }
608
609 /**
610 * auditd_reset - Disconnect the auditd connection
611 * @ac: auditd connection state
612 *
613 * Description:
614 * Break the auditd/kauditd connection and move all the queued records into the
615 * hold queue in case auditd reconnects. It is important to note that the @ac
616 * pointer should never be dereferenced inside this function as it may be NULL
617 * or invalid, you can only compare the memory address! If @ac is NULL then
618 * the connection will always be reset.
619 */
620 static void auditd_reset(const struct auditd_connection *ac)
621 {
622 unsigned long flags;
623 struct sk_buff *skb;
624 struct auditd_connection *ac_old;
625
626 /* if it isn't already broken, break the connection */
627 spin_lock_irqsave(&auditd_conn_lock, flags);
628 ac_old = rcu_dereference_protected(auditd_conn,
629 lockdep_is_held(&auditd_conn_lock));
630 if (ac && ac != ac_old) {
631 /* someone already registered a new auditd connection */
632 spin_unlock_irqrestore(&auditd_conn_lock, flags);
633 return;
634 }
635 rcu_assign_pointer(auditd_conn, NULL);
636 spin_unlock_irqrestore(&auditd_conn_lock, flags);
637
638 if (ac_old)
639 call_rcu(&ac_old->rcu, auditd_conn_free);
640
641 /* flush the retry queue to the hold queue, but don't touch the main
642 * queue since we need to process that normally for multicast */
643 while ((skb = skb_dequeue(&audit_retry_queue)))
644 kauditd_hold_skb(skb);
645 }
646
647 /**
648 * auditd_send_unicast_skb - Send a record via unicast to auditd
649 * @skb: audit record
650 *
651 * Description:
652 * Send a skb to the audit daemon, returns positive/zero values on success and
653 * negative values on failure; in all cases the skb will be consumed by this
654 * function. If the send results in -ECONNREFUSED the connection with auditd
655 * will be reset. This function may sleep so callers should not hold any locks
656 * where this would cause a problem.
657 */
658 static int auditd_send_unicast_skb(struct sk_buff *skb)
659 {
660 int rc;
661 u32 portid;
662 struct net *net;
663 struct sock *sk;
664 struct auditd_connection *ac;
665
666 /* NOTE: we can't call netlink_unicast while in the RCU section so
667 * take a reference to the network namespace and grab local
668 * copies of the namespace, the sock, and the portid; the
669 * namespace and sock aren't going to go away while we hold a
670 * reference and if the portid does become invalid after the RCU
671 * section netlink_unicast() should safely return an error */
672
673 rcu_read_lock();
674 ac = rcu_dereference(auditd_conn);
675 if (!ac) {
676 rcu_read_unlock();
677 kfree_skb(skb);
678 rc = -ECONNREFUSED;
679 goto err;
680 }
681 net = get_net(ac->net);
682 sk = audit_get_sk(net);
683 portid = ac->portid;
684 rcu_read_unlock();
685
686 rc = netlink_unicast(sk, skb, portid, 0);
687 put_net(net);
688 if (rc < 0)
689 goto err;
690
691 return rc;
692
693 err:
694 if (ac && rc == -ECONNREFUSED)
695 auditd_reset(ac);
696 return rc;
697 }
698
699 /**
700 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
701 * @sk: the sending sock
702 * @portid: the netlink destination
703 * @queue: the skb queue to process
704 * @retry_limit: limit on number of netlink unicast failures
705 * @skb_hook: per-skb hook for additional processing
706 * @err_hook: hook called if the skb fails the netlink unicast send
707 *
708 * Description:
709 * Run through the given queue and attempt to send the audit records to auditd,
710 * returns zero on success, negative values on failure. It is up to the caller
711 * to ensure that the @sk is valid for the duration of this function.
712 *
713 */
714 static int kauditd_send_queue(struct sock *sk, u32 portid,
715 struct sk_buff_head *queue,
716 unsigned int retry_limit,
717 void (*skb_hook)(struct sk_buff *skb),
718 void (*err_hook)(struct sk_buff *skb))
719 {
720 int rc = 0;
721 struct sk_buff *skb;
722 unsigned int failed = 0;
723
724 /* NOTE: kauditd_thread takes care of all our locking, we just use
725 * the netlink info passed to us (e.g. sk and portid) */
726
727 while ((skb = skb_dequeue(queue))) {
728 /* call the skb_hook for each skb we touch */
729 if (skb_hook)
730 (*skb_hook)(skb);
731
732 /* can we send to anyone via unicast? */
733 if (!sk) {
734 if (err_hook)
735 (*err_hook)(skb);
736 continue;
737 }
738
739 retry:
740 /* grab an extra skb reference in case of error */
741 skb_get(skb);
742 rc = netlink_unicast(sk, skb, portid, 0);
743 if (rc < 0) {
744 /* send failed - try a few times unless fatal error */
745 if (++failed >= retry_limit ||
746 rc == -ECONNREFUSED || rc == -EPERM) {
747 sk = NULL;
748 if (err_hook)
749 (*err_hook)(skb);
750 if (rc == -EAGAIN)
751 rc = 0;
752 /* continue to drain the queue */
753 continue;
754 } else
755 goto retry;
756 } else {
757 /* skb sent - drop the extra reference and continue */
758 consume_skb(skb);
759 failed = 0;
760 }
761 }
762
763 return (rc >= 0 ? 0 : rc);
764 }
765
766 /*
767 * kauditd_send_multicast_skb - Send a record to any multicast listeners
768 * @skb: audit record
769 *
770 * Description:
771 * Write a multicast message to anyone listening in the initial network
772 * namespace. This function doesn't consume an skb as might be expected since
773 * it has to copy it anyways.
774 */
775 static void kauditd_send_multicast_skb(struct sk_buff *skb)
776 {
777 struct sk_buff *copy;
778 struct sock *sock = audit_get_sk(&init_net);
779 struct nlmsghdr *nlh;
780
781 /* NOTE: we are not taking an additional reference for init_net since
782 * we don't have to worry about it going away */
783
784 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
785 return;
786
787 /*
788 * The seemingly wasteful skb_copy() rather than bumping the refcount
789 * using skb_get() is necessary because non-standard mods are made to
790 * the skb by the original kaudit unicast socket send routine. The
791 * existing auditd daemon assumes this breakage. Fixing this would
792 * require co-ordinating a change in the established protocol between
793 * the kaudit kernel subsystem and the auditd userspace code. There is
794 * no reason for new multicast clients to continue with this
795 * non-compliance.
796 */
797 copy = skb_copy(skb, GFP_KERNEL);
798 if (!copy)
799 return;
800 nlh = nlmsg_hdr(copy);
801 nlh->nlmsg_len = skb->len;
802
803 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
804 }
805
806 /**
807 * kauditd_thread - Worker thread to send audit records to userspace
808 * @dummy: unused
809 */
810 static int kauditd_thread(void *dummy)
811 {
812 int rc;
813 u32 portid = 0;
814 struct net *net = NULL;
815 struct sock *sk = NULL;
816 struct auditd_connection *ac;
817
818 #define UNICAST_RETRIES 5
819
820 set_freezable();
821 while (!kthread_should_stop()) {
822 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
823 rcu_read_lock();
824 ac = rcu_dereference(auditd_conn);
825 if (!ac) {
826 rcu_read_unlock();
827 goto main_queue;
828 }
829 net = get_net(ac->net);
830 sk = audit_get_sk(net);
831 portid = ac->portid;
832 rcu_read_unlock();
833
834 /* attempt to flush the hold queue */
835 rc = kauditd_send_queue(sk, portid,
836 &audit_hold_queue, UNICAST_RETRIES,
837 NULL, kauditd_rehold_skb);
838 if (rc < 0) {
839 sk = NULL;
840 auditd_reset(ac);
841 goto main_queue;
842 }
843
844 /* attempt to flush the retry queue */
845 rc = kauditd_send_queue(sk, portid,
846 &audit_retry_queue, UNICAST_RETRIES,
847 NULL, kauditd_hold_skb);
848 if (rc < 0) {
849 sk = NULL;
850 auditd_reset(ac);
851 goto main_queue;
852 }
853
854 main_queue:
855 /* process the main queue - do the multicast send and attempt
856 * unicast, dump failed record sends to the retry queue; if
857 * sk == NULL due to previous failures we will just do the
858 * multicast send and move the record to the hold queue */
859 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
860 kauditd_send_multicast_skb,
861 (sk ?
862 kauditd_retry_skb : kauditd_hold_skb));
863 if (ac && rc < 0)
864 auditd_reset(ac);
865 sk = NULL;
866
867 /* drop our netns reference, no auditd sends past this line */
868 if (net) {
869 put_net(net);
870 net = NULL;
871 }
872
873 /* we have processed all the queues so wake everyone */
874 wake_up(&audit_backlog_wait);
875
876 /* NOTE: we want to wake up if there is anything on the queue,
877 * regardless of if an auditd is connected, as we need to
878 * do the multicast send and rotate records from the
879 * main queue to the retry/hold queues */
880 wait_event_freezable(kauditd_wait,
881 (skb_queue_len(&audit_queue) ? 1 : 0));
882 }
883
884 return 0;
885 }
886
887 int audit_send_list_thread(void *_dest)
888 {
889 struct audit_netlink_list *dest = _dest;
890 struct sk_buff *skb;
891 struct sock *sk = audit_get_sk(dest->net);
892
893 /* wait for parent to finish and send an ACK */
894 audit_ctl_lock();
895 audit_ctl_unlock();
896
897 while ((skb = __skb_dequeue(&dest->q)) != NULL)
898 netlink_unicast(sk, skb, dest->portid, 0);
899
900 put_net(dest->net);
901 kfree(dest);
902
903 return 0;
904 }
905
906 struct sk_buff *audit_make_reply(int seq, int type, int done,
907 int multi, const void *payload, int size)
908 {
909 struct sk_buff *skb;
910 struct nlmsghdr *nlh;
911 void *data;
912 int flags = multi ? NLM_F_MULTI : 0;
913 int t = done ? NLMSG_DONE : type;
914
915 skb = nlmsg_new(size, GFP_KERNEL);
916 if (!skb)
917 return NULL;
918
919 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
920 if (!nlh)
921 goto out_kfree_skb;
922 data = nlmsg_data(nlh);
923 memcpy(data, payload, size);
924 return skb;
925
926 out_kfree_skb:
927 kfree_skb(skb);
928 return NULL;
929 }
930
931 static void audit_free_reply(struct audit_reply *reply)
932 {
933 if (!reply)
934 return;
935
936 kfree_skb(reply->skb);
937 if (reply->net)
938 put_net(reply->net);
939 kfree(reply);
940 }
941
942 static int audit_send_reply_thread(void *arg)
943 {
944 struct audit_reply *reply = (struct audit_reply *)arg;
945
946 audit_ctl_lock();
947 audit_ctl_unlock();
948
949 /* Ignore failure. It'll only happen if the sender goes away,
950 because our timeout is set to infinite. */
951 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
952 reply->skb = NULL;
953 audit_free_reply(reply);
954 return 0;
955 }
956
957 /**
958 * audit_send_reply - send an audit reply message via netlink
959 * @request_skb: skb of request we are replying to (used to target the reply)
960 * @seq: sequence number
961 * @type: audit message type
962 * @done: done (last) flag
963 * @multi: multi-part message flag
964 * @payload: payload data
965 * @size: payload size
966 *
967 * Allocates a skb, builds the netlink message, and sends it to the port id.
968 */
969 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
970 int multi, const void *payload, int size)
971 {
972 struct task_struct *tsk;
973 struct audit_reply *reply;
974
975 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
976 if (!reply)
977 return;
978
979 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
980 if (!reply->skb)
981 goto err;
982 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
983 reply->portid = NETLINK_CB(request_skb).portid;
984
985 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
986 if (IS_ERR(tsk))
987 goto err;
988
989 return;
990
991 err:
992 audit_free_reply(reply);
993 }
994
995 /*
996 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
997 * control messages.
998 */
999 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1000 {
1001 int err = 0;
1002
1003 /* Only support initial user namespace for now. */
1004 /*
1005 * We return ECONNREFUSED because it tricks userspace into thinking
1006 * that audit was not configured into the kernel. Lots of users
1007 * configure their PAM stack (because that's what the distro does)
1008 * to reject login if unable to send messages to audit. If we return
1009 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1010 * configured in and will let login proceed. If we return EPERM
1011 * userspace will reject all logins. This should be removed when we
1012 * support non init namespaces!!
1013 */
1014 if (current_user_ns() != &init_user_ns)
1015 return -ECONNREFUSED;
1016
1017 switch (msg_type) {
1018 case AUDIT_LIST:
1019 case AUDIT_ADD:
1020 case AUDIT_DEL:
1021 return -EOPNOTSUPP;
1022 case AUDIT_GET:
1023 case AUDIT_SET:
1024 case AUDIT_GET_FEATURE:
1025 case AUDIT_SET_FEATURE:
1026 case AUDIT_LIST_RULES:
1027 case AUDIT_ADD_RULE:
1028 case AUDIT_DEL_RULE:
1029 case AUDIT_SIGNAL_INFO:
1030 case AUDIT_TTY_GET:
1031 case AUDIT_TTY_SET:
1032 case AUDIT_TRIM:
1033 case AUDIT_MAKE_EQUIV:
1034 /* Only support auditd and auditctl in initial pid namespace
1035 * for now. */
1036 if (task_active_pid_ns(current) != &init_pid_ns)
1037 return -EPERM;
1038
1039 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1040 err = -EPERM;
1041 break;
1042 case AUDIT_USER:
1043 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1044 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1045 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1046 err = -EPERM;
1047 break;
1048 default: /* bad msg */
1049 err = -EINVAL;
1050 }
1051
1052 return err;
1053 }
1054
1055 static void audit_log_common_recv_msg(struct audit_context *context,
1056 struct audit_buffer **ab, u16 msg_type)
1057 {
1058 uid_t uid = from_kuid(&init_user_ns, current_uid());
1059 pid_t pid = task_tgid_nr(current);
1060
1061 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1062 *ab = NULL;
1063 return;
1064 }
1065
1066 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1067 if (unlikely(!*ab))
1068 return;
1069 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1070 audit_log_session_info(*ab);
1071 audit_log_task_context(*ab, NULL);
1072 }
1073
1074 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1075 u16 msg_type)
1076 {
1077 struct audit_context *context;
1078
1079 if (!lsm_multiple_contexts()) {
1080 audit_log_common_recv_msg(NULL, ab, msg_type);
1081 return;
1082 }
1083
1084 context = audit_context();
1085 if (context) {
1086 if (!context->in_syscall)
1087 audit_stamp_context(context);
1088 audit_log_common_recv_msg(context, ab, msg_type);
1089 return;
1090 }
1091
1092 audit_alloc(current);
1093 context = audit_context();
1094
1095 audit_log_common_recv_msg(context, ab, msg_type);
1096 }
1097
1098 int is_audit_feature_set(int i)
1099 {
1100 return af.features & AUDIT_FEATURE_TO_MASK(i);
1101 }
1102
1103
1104 static int audit_get_feature(struct sk_buff *skb)
1105 {
1106 u32 seq;
1107
1108 seq = nlmsg_hdr(skb)->nlmsg_seq;
1109
1110 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1111
1112 return 0;
1113 }
1114
1115 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1116 u32 old_lock, u32 new_lock, int res)
1117 {
1118 struct audit_buffer *ab;
1119
1120 if (audit_enabled == AUDIT_OFF)
1121 return;
1122
1123 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1124 if (!ab)
1125 return;
1126 audit_log_task_info(ab);
1127 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1128 audit_feature_names[which], !!old_feature, !!new_feature,
1129 !!old_lock, !!new_lock, res);
1130 audit_log_end(ab);
1131 }
1132
1133 static int audit_set_feature(struct audit_features *uaf)
1134 {
1135 int i;
1136
1137 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1138
1139 /* if there is ever a version 2 we should handle that here */
1140
1141 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1142 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1143 u32 old_feature, new_feature, old_lock, new_lock;
1144
1145 /* if we are not changing this feature, move along */
1146 if (!(feature & uaf->mask))
1147 continue;
1148
1149 old_feature = af.features & feature;
1150 new_feature = uaf->features & feature;
1151 new_lock = (uaf->lock | af.lock) & feature;
1152 old_lock = af.lock & feature;
1153
1154 /* are we changing a locked feature? */
1155 if (old_lock && (new_feature != old_feature)) {
1156 audit_log_feature_change(i, old_feature, new_feature,
1157 old_lock, new_lock, 0);
1158 return -EPERM;
1159 }
1160 }
1161 /* nothing invalid, do the changes */
1162 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1163 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1164 u32 old_feature, new_feature, old_lock, new_lock;
1165
1166 /* if we are not changing this feature, move along */
1167 if (!(feature & uaf->mask))
1168 continue;
1169
1170 old_feature = af.features & feature;
1171 new_feature = uaf->features & feature;
1172 old_lock = af.lock & feature;
1173 new_lock = (uaf->lock | af.lock) & feature;
1174
1175 if (new_feature != old_feature)
1176 audit_log_feature_change(i, old_feature, new_feature,
1177 old_lock, new_lock, 1);
1178
1179 if (new_feature)
1180 af.features |= feature;
1181 else
1182 af.features &= ~feature;
1183 af.lock |= new_lock;
1184 }
1185
1186 return 0;
1187 }
1188
1189 static int audit_replace(struct pid *pid)
1190 {
1191 pid_t pvnr;
1192 struct sk_buff *skb;
1193
1194 pvnr = pid_vnr(pid);
1195 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1196 if (!skb)
1197 return -ENOMEM;
1198 return auditd_send_unicast_skb(skb);
1199 }
1200
1201 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1202 {
1203 u32 seq;
1204 void *data;
1205 int data_len;
1206 int err;
1207 struct audit_buffer *ab;
1208 u16 msg_type = nlh->nlmsg_type;
1209 struct audit_sig_info *sig_data;
1210
1211 err = audit_netlink_ok(skb, msg_type);
1212 if (err)
1213 return err;
1214
1215 seq = nlh->nlmsg_seq;
1216 data = nlmsg_data(nlh);
1217 data_len = nlmsg_len(nlh);
1218
1219 switch (msg_type) {
1220 case AUDIT_GET: {
1221 struct audit_status s;
1222 memset(&s, 0, sizeof(s));
1223 s.enabled = audit_enabled;
1224 s.failure = audit_failure;
1225 /* NOTE: use pid_vnr() so the PID is relative to the current
1226 * namespace */
1227 s.pid = auditd_pid_vnr();
1228 s.rate_limit = audit_rate_limit;
1229 s.backlog_limit = audit_backlog_limit;
1230 s.lost = atomic_read(&audit_lost);
1231 s.backlog = skb_queue_len(&audit_queue);
1232 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1233 s.backlog_wait_time = audit_backlog_wait_time;
1234 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1235 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1236 break;
1237 }
1238 case AUDIT_SET: {
1239 struct audit_status s;
1240 memset(&s, 0, sizeof(s));
1241 /* guard against past and future API changes */
1242 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1243 if (s.mask & AUDIT_STATUS_ENABLED) {
1244 err = audit_set_enabled(s.enabled);
1245 if (err < 0)
1246 return err;
1247 }
1248 if (s.mask & AUDIT_STATUS_FAILURE) {
1249 err = audit_set_failure(s.failure);
1250 if (err < 0)
1251 return err;
1252 }
1253 if (s.mask & AUDIT_STATUS_PID) {
1254 /* NOTE: we are using the vnr PID functions below
1255 * because the s.pid value is relative to the
1256 * namespace of the caller; at present this
1257 * doesn't matter much since you can really only
1258 * run auditd from the initial pid namespace, but
1259 * something to keep in mind if this changes */
1260 pid_t new_pid = s.pid;
1261 pid_t auditd_pid;
1262 struct pid *req_pid = task_tgid(current);
1263
1264 /* Sanity check - PID values must match. Setting
1265 * pid to 0 is how auditd ends auditing. */
1266 if (new_pid && (new_pid != pid_vnr(req_pid)))
1267 return -EINVAL;
1268
1269 /* test the auditd connection */
1270 audit_replace(req_pid);
1271
1272 auditd_pid = auditd_pid_vnr();
1273 if (auditd_pid) {
1274 /* replacing a healthy auditd is not allowed */
1275 if (new_pid) {
1276 audit_log_config_change("audit_pid",
1277 new_pid, auditd_pid, 0);
1278 return -EEXIST;
1279 }
1280 /* only current auditd can unregister itself */
1281 if (pid_vnr(req_pid) != auditd_pid) {
1282 audit_log_config_change("audit_pid",
1283 new_pid, auditd_pid, 0);
1284 return -EACCES;
1285 }
1286 }
1287
1288 if (new_pid) {
1289 /* register a new auditd connection */
1290 err = auditd_set(req_pid,
1291 NETLINK_CB(skb).portid,
1292 sock_net(NETLINK_CB(skb).sk));
1293 if (audit_enabled != AUDIT_OFF)
1294 audit_log_config_change("audit_pid",
1295 new_pid,
1296 auditd_pid,
1297 err ? 0 : 1);
1298 if (err)
1299 return err;
1300
1301 /* try to process any backlog */
1302 wake_up_interruptible(&kauditd_wait);
1303 } else {
1304 if (audit_enabled != AUDIT_OFF)
1305 audit_log_config_change("audit_pid",
1306 new_pid,
1307 auditd_pid, 1);
1308
1309 /* unregister the auditd connection */
1310 auditd_reset(NULL);
1311 }
1312 }
1313 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1314 err = audit_set_rate_limit(s.rate_limit);
1315 if (err < 0)
1316 return err;
1317 }
1318 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1319 err = audit_set_backlog_limit(s.backlog_limit);
1320 if (err < 0)
1321 return err;
1322 }
1323 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1324 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1325 return -EINVAL;
1326 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1327 return -EINVAL;
1328 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1329 if (err < 0)
1330 return err;
1331 }
1332 if (s.mask == AUDIT_STATUS_LOST) {
1333 u32 lost = atomic_xchg(&audit_lost, 0);
1334
1335 audit_log_config_change("lost", 0, lost, 1);
1336 return lost;
1337 }
1338 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1339 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1340
1341 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1342 return actual;
1343 }
1344 break;
1345 }
1346 case AUDIT_GET_FEATURE:
1347 err = audit_get_feature(skb);
1348 if (err)
1349 return err;
1350 break;
1351 case AUDIT_SET_FEATURE:
1352 if (data_len < sizeof(struct audit_features))
1353 return -EINVAL;
1354 err = audit_set_feature(data);
1355 if (err)
1356 return err;
1357 break;
1358 case AUDIT_USER:
1359 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1360 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1361 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1362 return 0;
1363 /* exit early if there isn't at least one character to print */
1364 if (data_len < 2)
1365 return -EINVAL;
1366
1367 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1368 if (err == 1) { /* match or error */
1369 char *str = data;
1370
1371 err = 0;
1372 if (msg_type == AUDIT_USER_TTY) {
1373 err = tty_audit_push();
1374 if (err)
1375 break;
1376 }
1377 audit_log_user_recv_msg(&ab, msg_type);
1378 if (msg_type != AUDIT_USER_TTY) {
1379 /* ensure NULL termination */
1380 str[data_len - 1] = '\0';
1381 audit_log_format(ab, " msg='%.*s'",
1382 AUDIT_MESSAGE_TEXT_MAX,
1383 str);
1384 } else {
1385 audit_log_format(ab, " data=");
1386 if (data_len > 0 && str[data_len - 1] == '\0')
1387 data_len--;
1388 audit_log_n_untrustedstring(ab, str, data_len);
1389 }
1390 audit_log_end(ab);
1391 audit_log_lsm(NULL, false);
1392 }
1393 break;
1394 case AUDIT_ADD_RULE:
1395 case AUDIT_DEL_RULE:
1396 if (data_len < sizeof(struct audit_rule_data))
1397 return -EINVAL;
1398 if (audit_enabled == AUDIT_LOCKED) {
1399 audit_log_common_recv_msg(audit_context(), &ab,
1400 AUDIT_CONFIG_CHANGE);
1401 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1402 msg_type == AUDIT_ADD_RULE ?
1403 "add_rule" : "remove_rule",
1404 audit_enabled);
1405 audit_log_end(ab);
1406 return -EPERM;
1407 }
1408 err = audit_rule_change(msg_type, seq, data, data_len);
1409 break;
1410 case AUDIT_LIST_RULES:
1411 err = audit_list_rules_send(skb, seq);
1412 break;
1413 case AUDIT_TRIM:
1414 audit_trim_trees();
1415 audit_log_common_recv_msg(audit_context(), &ab,
1416 AUDIT_CONFIG_CHANGE);
1417 audit_log_format(ab, " op=trim res=1");
1418 audit_log_end(ab);
1419 break;
1420 case AUDIT_MAKE_EQUIV: {
1421 void *bufp = data;
1422 u32 sizes[2];
1423 size_t msglen = data_len;
1424 char *old, *new;
1425
1426 err = -EINVAL;
1427 if (msglen < 2 * sizeof(u32))
1428 break;
1429 memcpy(sizes, bufp, 2 * sizeof(u32));
1430 bufp += 2 * sizeof(u32);
1431 msglen -= 2 * sizeof(u32);
1432 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1433 if (IS_ERR(old)) {
1434 err = PTR_ERR(old);
1435 break;
1436 }
1437 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1438 if (IS_ERR(new)) {
1439 err = PTR_ERR(new);
1440 kfree(old);
1441 break;
1442 }
1443 /* OK, here comes... */
1444 err = audit_tag_tree(old, new);
1445
1446 audit_log_common_recv_msg(audit_context(), &ab,
1447 AUDIT_CONFIG_CHANGE);
1448 audit_log_format(ab, " op=make_equiv old=");
1449 audit_log_untrustedstring(ab, old);
1450 audit_log_format(ab, " new=");
1451 audit_log_untrustedstring(ab, new);
1452 audit_log_format(ab, " res=%d", !err);
1453 audit_log_end(ab);
1454 kfree(old);
1455 kfree(new);
1456 break;
1457 }
1458 case AUDIT_SIGNAL_INFO: {
1459 struct lsmcontext context = { };
1460 int len = 0;
1461
1462 if (lsmblob_is_set(&audit_sig_lsm)) {
1463 err = security_secid_to_secctx(&audit_sig_lsm,
1464 &context, LSMBLOB_FIRST);
1465 if (err)
1466 return err;
1467 }
1468 sig_data = kmalloc(sizeof(*sig_data) + context.len, GFP_KERNEL);
1469 if (!sig_data) {
1470 if (lsmblob_is_set(&audit_sig_lsm))
1471 security_release_secctx(&context);
1472 return -ENOMEM;
1473 }
1474 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1475 sig_data->pid = audit_sig_pid;
1476 if (lsmblob_is_set(&audit_sig_lsm)) {
1477 len = context.len;
1478 memcpy(sig_data->ctx, context.context, len);
1479 security_release_secctx(&context);
1480 }
1481 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1482 sig_data, sizeof(*sig_data) + len);
1483 kfree(sig_data);
1484 break;
1485 }
1486 case AUDIT_TTY_GET: {
1487 struct audit_tty_status s;
1488 unsigned int t;
1489
1490 t = READ_ONCE(current->signal->audit_tty);
1491 s.enabled = t & AUDIT_TTY_ENABLE;
1492 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1493
1494 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1495 break;
1496 }
1497 case AUDIT_TTY_SET: {
1498 struct audit_tty_status s, old;
1499 struct audit_buffer *ab;
1500 unsigned int t;
1501
1502 memset(&s, 0, sizeof(s));
1503 /* guard against past and future API changes */
1504 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1505 /* check if new data is valid */
1506 if ((s.enabled != 0 && s.enabled != 1) ||
1507 (s.log_passwd != 0 && s.log_passwd != 1))
1508 err = -EINVAL;
1509
1510 if (err)
1511 t = READ_ONCE(current->signal->audit_tty);
1512 else {
1513 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1514 t = xchg(&current->signal->audit_tty, t);
1515 }
1516 old.enabled = t & AUDIT_TTY_ENABLE;
1517 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1518
1519 audit_log_common_recv_msg(audit_context(), &ab,
1520 AUDIT_CONFIG_CHANGE);
1521 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1522 " old-log_passwd=%d new-log_passwd=%d res=%d",
1523 old.enabled, s.enabled, old.log_passwd,
1524 s.log_passwd, !err);
1525 audit_log_end(ab);
1526 break;
1527 }
1528 default:
1529 err = -EINVAL;
1530 break;
1531 }
1532
1533 return err < 0 ? err : 0;
1534 }
1535
1536 /**
1537 * audit_receive - receive messages from a netlink control socket
1538 * @skb: the message buffer
1539 *
1540 * Parse the provided skb and deal with any messages that may be present,
1541 * malformed skbs are discarded.
1542 */
1543 static void audit_receive(struct sk_buff *skb)
1544 {
1545 struct nlmsghdr *nlh;
1546 /*
1547 * len MUST be signed for nlmsg_next to be able to dec it below 0
1548 * if the nlmsg_len was not aligned
1549 */
1550 int len;
1551 int err;
1552
1553 nlh = nlmsg_hdr(skb);
1554 len = skb->len;
1555
1556 audit_ctl_lock();
1557 while (nlmsg_ok(nlh, len)) {
1558 err = audit_receive_msg(skb, nlh);
1559 /* if err or if this message says it wants a response */
1560 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1561 netlink_ack(skb, nlh, err, NULL);
1562
1563 nlh = nlmsg_next(nlh, &len);
1564 }
1565 audit_ctl_unlock();
1566 }
1567
1568 /* Log information about who is connecting to the audit multicast socket */
1569 static void audit_log_multicast(int group, const char *op, int err)
1570 {
1571 const struct cred *cred;
1572 struct tty_struct *tty;
1573 char comm[sizeof(current->comm)];
1574 struct audit_buffer *ab;
1575
1576 if (!audit_enabled)
1577 return;
1578
1579 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1580 if (!ab)
1581 return;
1582
1583 cred = current_cred();
1584 tty = audit_get_tty();
1585 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1586 task_pid_nr(current),
1587 from_kuid(&init_user_ns, cred->uid),
1588 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1589 tty ? tty_name(tty) : "(none)",
1590 audit_get_sessionid(current));
1591 audit_put_tty(tty);
1592 audit_log_task_context(ab, NULL); /* subj= */
1593 audit_log_format(ab, " comm=");
1594 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1595 audit_log_d_path_exe(ab, current->mm); /* exe= */
1596 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1597 audit_log_end(ab);
1598 }
1599
1600 /* Run custom bind function on netlink socket group connect or bind requests. */
1601 static int audit_multicast_bind(struct net *net, int group)
1602 {
1603 int err = 0;
1604
1605 if (!capable(CAP_AUDIT_READ))
1606 err = -EPERM;
1607 audit_log_multicast(group, "connect", err);
1608 return err;
1609 }
1610
1611 static void audit_multicast_unbind(struct net *net, int group)
1612 {
1613 audit_log_multicast(group, "disconnect", 0);
1614 }
1615
1616 static int __net_init audit_net_init(struct net *net)
1617 {
1618 struct netlink_kernel_cfg cfg = {
1619 .input = audit_receive,
1620 .bind = audit_multicast_bind,
1621 .unbind = audit_multicast_unbind,
1622 .flags = NL_CFG_F_NONROOT_RECV,
1623 .groups = AUDIT_NLGRP_MAX,
1624 };
1625
1626 struct audit_net *aunet = net_generic(net, audit_net_id);
1627
1628 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1629 if (aunet->sk == NULL) {
1630 audit_panic("cannot initialize netlink socket in namespace");
1631 return -ENOMEM;
1632 }
1633 /* limit the timeout in case auditd is blocked/stopped */
1634 aunet->sk->sk_sndtimeo = HZ / 10;
1635
1636 return 0;
1637 }
1638
1639 static void __net_exit audit_net_exit(struct net *net)
1640 {
1641 struct audit_net *aunet = net_generic(net, audit_net_id);
1642
1643 /* NOTE: you would think that we would want to check the auditd
1644 * connection and potentially reset it here if it lives in this
1645 * namespace, but since the auditd connection tracking struct holds a
1646 * reference to this namespace (see auditd_set()) we are only ever
1647 * going to get here after that connection has been released */
1648
1649 netlink_kernel_release(aunet->sk);
1650 }
1651
1652 static struct pernet_operations audit_net_ops __net_initdata = {
1653 .init = audit_net_init,
1654 .exit = audit_net_exit,
1655 .id = &audit_net_id,
1656 .size = sizeof(struct audit_net),
1657 };
1658
1659 /* Initialize audit support at boot time. */
1660 static int __init audit_init(void)
1661 {
1662 int i;
1663
1664 if (audit_initialized == AUDIT_DISABLED)
1665 return 0;
1666
1667 audit_buffer_cache = kmem_cache_create("audit_buffer",
1668 sizeof(struct audit_buffer),
1669 0, SLAB_PANIC, NULL);
1670
1671 skb_queue_head_init(&audit_queue);
1672 skb_queue_head_init(&audit_retry_queue);
1673 skb_queue_head_init(&audit_hold_queue);
1674
1675 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1676 INIT_LIST_HEAD(&audit_inode_hash[i]);
1677
1678 mutex_init(&audit_cmd_mutex.lock);
1679 audit_cmd_mutex.owner = NULL;
1680
1681 pr_info("initializing netlink subsys (%s)\n",
1682 audit_default ? "enabled" : "disabled");
1683 register_pernet_subsys(&audit_net_ops);
1684
1685 audit_initialized = AUDIT_INITIALIZED;
1686
1687 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1688 if (IS_ERR(kauditd_task)) {
1689 int err = PTR_ERR(kauditd_task);
1690 panic("audit: failed to start the kauditd thread (%d)\n", err);
1691 }
1692
1693 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1694 "state=initialized audit_enabled=%u res=1",
1695 audit_enabled);
1696
1697 return 0;
1698 }
1699 postcore_initcall(audit_init);
1700
1701 /*
1702 * Process kernel command-line parameter at boot time.
1703 * audit={0|off} or audit={1|on}.
1704 */
1705 static int __init audit_enable(char *str)
1706 {
1707 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1708 audit_default = AUDIT_OFF;
1709 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1710 audit_default = AUDIT_ON;
1711 else {
1712 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1713 audit_default = AUDIT_ON;
1714 }
1715
1716 if (audit_default == AUDIT_OFF)
1717 audit_initialized = AUDIT_DISABLED;
1718 if (audit_set_enabled(audit_default))
1719 pr_err("audit: error setting audit state (%d)\n",
1720 audit_default);
1721
1722 pr_info("%s\n", audit_default ?
1723 "enabled (after initialization)" : "disabled (until reboot)");
1724
1725 return 1;
1726 }
1727 __setup("audit=", audit_enable);
1728
1729 /* Process kernel command-line parameter at boot time.
1730 * audit_backlog_limit=<n> */
1731 static int __init audit_backlog_limit_set(char *str)
1732 {
1733 u32 audit_backlog_limit_arg;
1734
1735 pr_info("audit_backlog_limit: ");
1736 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1737 pr_cont("using default of %u, unable to parse %s\n",
1738 audit_backlog_limit, str);
1739 return 1;
1740 }
1741
1742 audit_backlog_limit = audit_backlog_limit_arg;
1743 pr_cont("%d\n", audit_backlog_limit);
1744
1745 return 1;
1746 }
1747 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1748
1749 static void audit_buffer_free(struct audit_buffer *ab)
1750 {
1751 if (!ab)
1752 return;
1753
1754 kfree_skb(ab->skb);
1755 kmem_cache_free(audit_buffer_cache, ab);
1756 }
1757
1758 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1759 gfp_t gfp_mask, int type)
1760 {
1761 struct audit_buffer *ab;
1762
1763 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1764 if (!ab)
1765 return NULL;
1766
1767 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1768 if (!ab->skb)
1769 goto err;
1770 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1771 goto err;
1772
1773 ab->ctx = ctx;
1774 ab->gfp_mask = gfp_mask;
1775
1776 return ab;
1777
1778 err:
1779 audit_buffer_free(ab);
1780 return NULL;
1781 }
1782
1783 /**
1784 * audit_serial - compute a serial number for the audit record
1785 *
1786 * Compute a serial number for the audit record. Audit records are
1787 * written to user-space as soon as they are generated, so a complete
1788 * audit record may be written in several pieces. The timestamp of the
1789 * record and this serial number are used by the user-space tools to
1790 * determine which pieces belong to the same audit record. The
1791 * (timestamp,serial) tuple is unique for each syscall and is live from
1792 * syscall entry to syscall exit.
1793 *
1794 * NOTE: Another possibility is to store the formatted records off the
1795 * audit context (for those records that have a context), and emit them
1796 * all at syscall exit. However, this could delay the reporting of
1797 * significant errors until syscall exit (or never, if the system
1798 * halts).
1799 */
1800 unsigned int audit_serial(void)
1801 {
1802 static atomic_t serial = ATOMIC_INIT(0);
1803
1804 return atomic_inc_return(&serial);
1805 }
1806
1807 static inline void audit_get_stamp(struct audit_context *ctx,
1808 struct timespec64 *t, unsigned int *serial)
1809 {
1810 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1811 ktime_get_coarse_real_ts64(t);
1812 *serial = audit_serial();
1813 }
1814 }
1815
1816 /**
1817 * audit_log_start - obtain an audit buffer
1818 * @ctx: audit_context (may be NULL)
1819 * @gfp_mask: type of allocation
1820 * @type: audit message type
1821 *
1822 * Returns audit_buffer pointer on success or NULL on error.
1823 *
1824 * Obtain an audit buffer. This routine does locking to obtain the
1825 * audit buffer, but then no locking is required for calls to
1826 * audit_log_*format. If the task (ctx) is a task that is currently in a
1827 * syscall, then the syscall is marked as auditable and an audit record
1828 * will be written at syscall exit. If there is no associated task, then
1829 * task context (ctx) should be NULL.
1830 */
1831 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1832 int type)
1833 {
1834 struct audit_buffer *ab;
1835 struct timespec64 t;
1836 unsigned int serial;
1837
1838 if (audit_initialized != AUDIT_INITIALIZED)
1839 return NULL;
1840
1841 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1842 return NULL;
1843
1844 /* NOTE: don't ever fail/sleep on these two conditions:
1845 * 1. auditd generated record - since we need auditd to drain the
1846 * queue; also, when we are checking for auditd, compare PIDs using
1847 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1848 * using a PID anchored in the caller's namespace
1849 * 2. generator holding the audit_cmd_mutex - we don't want to block
1850 * while holding the mutex */
1851 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1852 long stime = audit_backlog_wait_time;
1853
1854 while (audit_backlog_limit &&
1855 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1856 /* wake kauditd to try and flush the queue */
1857 wake_up_interruptible(&kauditd_wait);
1858
1859 /* sleep if we are allowed and we haven't exhausted our
1860 * backlog wait limit */
1861 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1862 long rtime = stime;
1863
1864 DECLARE_WAITQUEUE(wait, current);
1865
1866 add_wait_queue_exclusive(&audit_backlog_wait,
1867 &wait);
1868 set_current_state(TASK_UNINTERRUPTIBLE);
1869 stime = schedule_timeout(rtime);
1870 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1871 remove_wait_queue(&audit_backlog_wait, &wait);
1872 } else {
1873 if (audit_rate_check() && printk_ratelimit())
1874 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1875 skb_queue_len(&audit_queue),
1876 audit_backlog_limit);
1877 audit_log_lost("backlog limit exceeded");
1878 return NULL;
1879 }
1880 }
1881 }
1882
1883 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1884 if (!ab) {
1885 audit_log_lost("out of memory in audit_log_start");
1886 return NULL;
1887 }
1888
1889 audit_get_stamp(ab->ctx, &t, &serial);
1890 /* cancel dummy context to enable supporting records */
1891 if (ctx)
1892 ctx->dummy = 0;
1893 if (type == AUDIT_MAC_TASK_CONTEXTS && ab->ctx &&
1894 ab->ctx->serial == 0) {
1895 audit_stamp_context(ab->ctx);
1896 audit_get_stamp(ab->ctx, &t, &serial);
1897 }
1898 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1899 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1900
1901 return ab;
1902 }
1903
1904 /**
1905 * audit_expand - expand skb in the audit buffer
1906 * @ab: audit_buffer
1907 * @extra: space to add at tail of the skb
1908 *
1909 * Returns 0 (no space) on failed expansion, or available space if
1910 * successful.
1911 */
1912 static inline int audit_expand(struct audit_buffer *ab, int extra)
1913 {
1914 struct sk_buff *skb = ab->skb;
1915 int oldtail = skb_tailroom(skb);
1916 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1917 int newtail = skb_tailroom(skb);
1918
1919 if (ret < 0) {
1920 audit_log_lost("out of memory in audit_expand");
1921 return 0;
1922 }
1923
1924 skb->truesize += newtail - oldtail;
1925 return newtail;
1926 }
1927
1928 /*
1929 * Format an audit message into the audit buffer. If there isn't enough
1930 * room in the audit buffer, more room will be allocated and vsnprint
1931 * will be called a second time. Currently, we assume that a printk
1932 * can't format message larger than 1024 bytes, so we don't either.
1933 */
1934 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1935 va_list args)
1936 {
1937 int len, avail;
1938 struct sk_buff *skb;
1939 va_list args2;
1940
1941 if (!ab)
1942 return;
1943
1944 BUG_ON(!ab->skb);
1945 skb = ab->skb;
1946 avail = skb_tailroom(skb);
1947 if (avail == 0) {
1948 avail = audit_expand(ab, AUDIT_BUFSIZ);
1949 if (!avail)
1950 goto out;
1951 }
1952 va_copy(args2, args);
1953 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1954 if (len >= avail) {
1955 /* The printk buffer is 1024 bytes long, so if we get
1956 * here and AUDIT_BUFSIZ is at least 1024, then we can
1957 * log everything that printk could have logged. */
1958 avail = audit_expand(ab,
1959 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1960 if (!avail)
1961 goto out_va_end;
1962 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1963 }
1964 if (len > 0)
1965 skb_put(skb, len);
1966 out_va_end:
1967 va_end(args2);
1968 out:
1969 return;
1970 }
1971
1972 /**
1973 * audit_log_format - format a message into the audit buffer.
1974 * @ab: audit_buffer
1975 * @fmt: format string
1976 * @...: optional parameters matching @fmt string
1977 *
1978 * All the work is done in audit_log_vformat.
1979 */
1980 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1981 {
1982 va_list args;
1983
1984 if (!ab)
1985 return;
1986 va_start(args, fmt);
1987 audit_log_vformat(ab, fmt, args);
1988 va_end(args);
1989 }
1990
1991 /**
1992 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1993 * @ab: the audit_buffer
1994 * @buf: buffer to convert to hex
1995 * @len: length of @buf to be converted
1996 *
1997 * No return value; failure to expand is silently ignored.
1998 *
1999 * This function will take the passed buf and convert it into a string of
2000 * ascii hex digits. The new string is placed onto the skb.
2001 */
2002 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2003 size_t len)
2004 {
2005 int i, avail, new_len;
2006 unsigned char *ptr;
2007 struct sk_buff *skb;
2008
2009 if (!ab)
2010 return;
2011
2012 BUG_ON(!ab->skb);
2013 skb = ab->skb;
2014 avail = skb_tailroom(skb);
2015 new_len = len<<1;
2016 if (new_len >= avail) {
2017 /* Round the buffer request up to the next multiple */
2018 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2019 avail = audit_expand(ab, new_len);
2020 if (!avail)
2021 return;
2022 }
2023
2024 ptr = skb_tail_pointer(skb);
2025 for (i = 0; i < len; i++)
2026 ptr = hex_byte_pack_upper(ptr, buf[i]);
2027 *ptr = 0;
2028 skb_put(skb, len << 1); /* new string is twice the old string */
2029 }
2030
2031 /*
2032 * Format a string of no more than slen characters into the audit buffer,
2033 * enclosed in quote marks.
2034 */
2035 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2036 size_t slen)
2037 {
2038 int avail, new_len;
2039 unsigned char *ptr;
2040 struct sk_buff *skb;
2041
2042 if (!ab)
2043 return;
2044
2045 BUG_ON(!ab->skb);
2046 skb = ab->skb;
2047 avail = skb_tailroom(skb);
2048 new_len = slen + 3; /* enclosing quotes + null terminator */
2049 if (new_len > avail) {
2050 avail = audit_expand(ab, new_len);
2051 if (!avail)
2052 return;
2053 }
2054 ptr = skb_tail_pointer(skb);
2055 *ptr++ = '"';
2056 memcpy(ptr, string, slen);
2057 ptr += slen;
2058 *ptr++ = '"';
2059 *ptr = 0;
2060 skb_put(skb, slen + 2); /* don't include null terminator */
2061 }
2062
2063 /**
2064 * audit_string_contains_control - does a string need to be logged in hex
2065 * @string: string to be checked
2066 * @len: max length of the string to check
2067 */
2068 bool audit_string_contains_control(const char *string, size_t len)
2069 {
2070 const unsigned char *p;
2071 for (p = string; p < (const unsigned char *)string + len; p++) {
2072 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2073 return true;
2074 }
2075 return false;
2076 }
2077
2078 /**
2079 * audit_log_n_untrustedstring - log a string that may contain random characters
2080 * @ab: audit_buffer
2081 * @len: length of string (not including trailing null)
2082 * @string: string to be logged
2083 *
2084 * This code will escape a string that is passed to it if the string
2085 * contains a control character, unprintable character, double quote mark,
2086 * or a space. Unescaped strings will start and end with a double quote mark.
2087 * Strings that are escaped are printed in hex (2 digits per char).
2088 *
2089 * The caller specifies the number of characters in the string to log, which may
2090 * or may not be the entire string.
2091 */
2092 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2093 size_t len)
2094 {
2095 if (audit_string_contains_control(string, len))
2096 audit_log_n_hex(ab, string, len);
2097 else
2098 audit_log_n_string(ab, string, len);
2099 }
2100
2101 /**
2102 * audit_log_untrustedstring - log a string that may contain random characters
2103 * @ab: audit_buffer
2104 * @string: string to be logged
2105 *
2106 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2107 * determine string length.
2108 */
2109 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2110 {
2111 audit_log_n_untrustedstring(ab, string, strlen(string));
2112 }
2113
2114 /* This is a helper-function to print the escaped d_path */
2115 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2116 const struct path *path)
2117 {
2118 char *p, *pathname;
2119
2120 if (prefix)
2121 audit_log_format(ab, "%s", prefix);
2122
2123 /* We will allow 11 spaces for ' (deleted)' to be appended */
2124 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2125 if (!pathname) {
2126 audit_log_format(ab, "\"<no_memory>\"");
2127 return;
2128 }
2129 p = d_path(path, pathname, PATH_MAX+11);
2130 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2131 /* FIXME: can we save some information here? */
2132 audit_log_format(ab, "\"<too_long>\"");
2133 } else
2134 audit_log_untrustedstring(ab, p);
2135 kfree(pathname);
2136 }
2137
2138 void audit_log_session_info(struct audit_buffer *ab)
2139 {
2140 unsigned int sessionid = audit_get_sessionid(current);
2141 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2142
2143 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2144 }
2145
2146 void audit_log_key(struct audit_buffer *ab, char *key)
2147 {
2148 audit_log_format(ab, " key=");
2149 if (key)
2150 audit_log_untrustedstring(ab, key);
2151 else
2152 audit_log_format(ab, "(null)");
2153 }
2154
2155 int audit_log_task_context(struct audit_buffer *ab, struct lsmblob *blob)
2156 {
2157 int i;
2158 int error;
2159 struct lsmblob localblob;
2160 struct lsmcontext lsmdata;
2161
2162 /*
2163 * If there is more than one security module that has a
2164 * subject "context" it's necessary to put the subject data
2165 * into a separate record to maintain compatibility.
2166 */
2167 if (lsm_multiple_contexts()) {
2168 audit_log_format(ab, " subj=?");
2169 return 0;
2170 }
2171
2172 if (blob == NULL) {
2173 security_task_getsecid_subj(current, &localblob);
2174 if (!lsmblob_is_set(&localblob)) {
2175 audit_log_format(ab, " subj=?");
2176 return 0;
2177 }
2178 blob = &localblob;
2179 }
2180
2181 for (i = 0; i < LSMBLOB_ENTRIES; i++) {
2182 if (blob->secid[i] == 0)
2183 continue;
2184 error = security_secid_to_secctx(blob, &lsmdata, i);
2185 if (error && error != -EINVAL) {
2186 audit_panic("error in audit_log_task_context");
2187 return error;
2188 }
2189
2190 audit_log_format(ab, " subj=%s", lsmdata.context);
2191 security_release_secctx(&lsmdata);
2192 break;
2193 }
2194
2195 return 0;
2196 }
2197 EXPORT_SYMBOL(audit_log_task_context);
2198
2199 int audit_log_object_context(struct audit_buffer *ab,
2200 struct lsmblob *blob)
2201 {
2202 int i;
2203 int error;
2204 bool sep = false;
2205 struct lsmcontext lsmdata;
2206 struct audit_buffer *lsmab = NULL;
2207 struct audit_context *context = NULL;
2208
2209 /*
2210 * If there is more than one security module that has a
2211 * object "context" it's necessary to put the object data
2212 * into a separate record to maintain compatibility.
2213 */
2214 if (lsm_multiple_contexts()) {
2215 audit_log_format(ab, " obj=?");
2216 context = ab->ctx;
2217 if (context)
2218 lsmab = audit_log_start(context, GFP_KERNEL,
2219 AUDIT_MAC_OBJ_CONTEXTS);
2220 }
2221
2222 for (i = 0; i < LSMBLOB_ENTRIES; i++) {
2223 if (blob->secid[i] == 0)
2224 continue;
2225 error = security_secid_to_secctx(blob, &lsmdata, i);
2226 if (error && error != -EINVAL) {
2227 audit_panic("error in audit_log_object_context");
2228 return error;
2229 }
2230
2231 if (context) {
2232 audit_log_format(lsmab, "%sobj_%s=%s",
2233 sep ? " " : "",
2234 security_lsm_slot_name(i),
2235 lsmdata.context);
2236 sep = true;
2237 } else
2238 audit_log_format(ab, " obj=%s", lsmdata.context);
2239
2240 security_release_secctx(&lsmdata);
2241 if (!context)
2242 break;
2243 }
2244
2245 if (context)
2246 audit_log_end(lsmab);
2247
2248 return 0;
2249 }
2250 EXPORT_SYMBOL(audit_log_object_context);
2251
2252 void audit_log_d_path_exe(struct audit_buffer *ab,
2253 struct mm_struct *mm)
2254 {
2255 struct file *exe_file;
2256
2257 if (!mm)
2258 goto out_null;
2259
2260 exe_file = get_mm_exe_file(mm);
2261 if (!exe_file)
2262 goto out_null;
2263
2264 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2265 fput(exe_file);
2266 return;
2267 out_null:
2268 audit_log_format(ab, " exe=(null)");
2269 }
2270
2271 struct tty_struct *audit_get_tty(void)
2272 {
2273 struct tty_struct *tty = NULL;
2274 unsigned long flags;
2275
2276 spin_lock_irqsave(&current->sighand->siglock, flags);
2277 if (current->signal)
2278 tty = tty_kref_get(current->signal->tty);
2279 spin_unlock_irqrestore(&current->sighand->siglock, flags);
2280 return tty;
2281 }
2282
2283 void audit_put_tty(struct tty_struct *tty)
2284 {
2285 tty_kref_put(tty);
2286 }
2287
2288 void audit_log_task_info(struct audit_buffer *ab)
2289 {
2290 const struct cred *cred;
2291 char comm[sizeof(current->comm)];
2292 struct tty_struct *tty;
2293
2294 if (!ab)
2295 return;
2296
2297 cred = current_cred();
2298 tty = audit_get_tty();
2299 audit_log_format(ab,
2300 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2301 " euid=%u suid=%u fsuid=%u"
2302 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2303 task_ppid_nr(current),
2304 task_tgid_nr(current),
2305 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2306 from_kuid(&init_user_ns, cred->uid),
2307 from_kgid(&init_user_ns, cred->gid),
2308 from_kuid(&init_user_ns, cred->euid),
2309 from_kuid(&init_user_ns, cred->suid),
2310 from_kuid(&init_user_ns, cred->fsuid),
2311 from_kgid(&init_user_ns, cred->egid),
2312 from_kgid(&init_user_ns, cred->sgid),
2313 from_kgid(&init_user_ns, cred->fsgid),
2314 tty ? tty_name(tty) : "(none)",
2315 audit_get_sessionid(current));
2316 audit_put_tty(tty);
2317 audit_log_format(ab, " comm=");
2318 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2319 audit_log_d_path_exe(ab, current->mm);
2320 audit_log_task_context(ab, NULL);
2321 }
2322 EXPORT_SYMBOL(audit_log_task_info);
2323
2324 /**
2325 * audit_log_path_denied - report a path restriction denial
2326 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2327 * @operation: specific operation name
2328 */
2329 void audit_log_path_denied(int type, const char *operation)
2330 {
2331 struct audit_buffer *ab;
2332
2333 if (!audit_enabled || audit_dummy_context())
2334 return;
2335
2336 /* Generate log with subject, operation, outcome. */
2337 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2338 if (!ab)
2339 return;
2340 audit_log_format(ab, "op=%s", operation);
2341 audit_log_task_info(ab);
2342 audit_log_format(ab, " res=0");
2343 audit_log_end(ab);
2344 }
2345
2346 /* global counter which is incremented every time something logs in */
2347 static atomic_t session_id = ATOMIC_INIT(0);
2348
2349 static int audit_set_loginuid_perm(kuid_t loginuid)
2350 {
2351 /* if we are unset, we don't need privs */
2352 if (!audit_loginuid_set(current))
2353 return 0;
2354 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2355 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2356 return -EPERM;
2357 /* it is set, you need permission */
2358 if (!capable(CAP_AUDIT_CONTROL))
2359 return -EPERM;
2360 /* reject if this is not an unset and we don't allow that */
2361 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2362 && uid_valid(loginuid))
2363 return -EPERM;
2364 return 0;
2365 }
2366
2367 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2368 unsigned int oldsessionid,
2369 unsigned int sessionid, int rc)
2370 {
2371 struct audit_buffer *ab;
2372 uid_t uid, oldloginuid, loginuid;
2373 struct tty_struct *tty;
2374
2375 if (!audit_enabled)
2376 return;
2377
2378 audit_stamp_context(audit_context());
2379 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2380 if (!ab)
2381 return;
2382
2383 uid = from_kuid(&init_user_ns, task_uid(current));
2384 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2385 loginuid = from_kuid(&init_user_ns, kloginuid);
2386 tty = audit_get_tty();
2387
2388 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2389 audit_log_task_context(ab, NULL);
2390 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2391 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2392 oldsessionid, sessionid, !rc);
2393 audit_put_tty(tty);
2394 audit_log_lsm(NULL, true);
2395 audit_log_end(ab);
2396 }
2397
2398 /**
2399 * audit_set_loginuid - set current task's loginuid
2400 * @loginuid: loginuid value
2401 *
2402 * Returns 0.
2403 *
2404 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2405 */
2406 int audit_set_loginuid(kuid_t loginuid)
2407 {
2408 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2409 kuid_t oldloginuid;
2410 int rc;
2411
2412 oldloginuid = audit_get_loginuid(current);
2413 oldsessionid = audit_get_sessionid(current);
2414
2415 rc = audit_set_loginuid_perm(loginuid);
2416 if (rc)
2417 goto out;
2418
2419 /* are we setting or clearing? */
2420 if (uid_valid(loginuid)) {
2421 sessionid = (unsigned int)atomic_inc_return(&session_id);
2422 if (unlikely(sessionid == AUDIT_SID_UNSET))
2423 sessionid = (unsigned int)atomic_inc_return(&session_id);
2424 }
2425
2426 current->sessionid = sessionid;
2427 current->loginuid = loginuid;
2428 out:
2429 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2430 return rc;
2431 }
2432
2433 /**
2434 * audit_signal_info - record signal info for shutting down audit subsystem
2435 * @sig: signal value
2436 * @t: task being signaled
2437 *
2438 * If the audit subsystem is being terminated, record the task (pid)
2439 * and uid that is doing that.
2440 */
2441 int audit_signal_info(int sig, struct task_struct *t)
2442 {
2443 kuid_t uid = current_uid(), auid;
2444
2445 if (auditd_test_task(t) &&
2446 (sig == SIGTERM || sig == SIGHUP ||
2447 sig == SIGUSR1 || sig == SIGUSR2)) {
2448 audit_sig_pid = task_tgid_nr(current);
2449 auid = audit_get_loginuid(current);
2450 if (uid_valid(auid))
2451 audit_sig_uid = auid;
2452 else
2453 audit_sig_uid = uid;
2454 security_task_getsecid_subj(current, &audit_sig_lsm);
2455 }
2456
2457 return audit_signal_info_syscall(t);
2458 }
2459
2460 /**
2461 * audit_log_end - end one audit record
2462 * @ab: the audit_buffer
2463 *
2464 * We can not do a netlink send inside an irq context because it blocks (last
2465 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2466 * queue and a kthread is scheduled to remove them from the queue outside the
2467 * irq context. May be called in any context.
2468 */
2469 void audit_log_end(struct audit_buffer *ab)
2470 {
2471 struct sk_buff *skb;
2472 struct nlmsghdr *nlh;
2473
2474 if (!ab)
2475 return;
2476
2477 if (audit_rate_check()) {
2478 skb = ab->skb;
2479 ab->skb = NULL;
2480
2481 /* setup the netlink header, see the comments in
2482 * kauditd_send_multicast_skb() for length quirks */
2483 nlh = nlmsg_hdr(skb);
2484 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2485
2486 /* queue the netlink packet and poke the kauditd thread */
2487 skb_queue_tail(&audit_queue, skb);
2488 wake_up_interruptible(&kauditd_wait);
2489 } else
2490 audit_log_lost("rate limit exceeded");
2491
2492 audit_buffer_free(ab);
2493 }
2494
2495 /**
2496 * audit_log - Log an audit record
2497 * @ctx: audit context
2498 * @gfp_mask: type of allocation
2499 * @type: audit message type
2500 * @fmt: format string to use
2501 * @...: variable parameters matching the format string
2502 *
2503 * This is a convenience function that calls audit_log_start,
2504 * audit_log_vformat, and audit_log_end. It may be called
2505 * in any context.
2506 */
2507 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2508 const char *fmt, ...)
2509 {
2510 struct audit_buffer *ab;
2511 va_list args;
2512
2513 ab = audit_log_start(ctx, gfp_mask, type);
2514 if (ab) {
2515 va_start(args, fmt);
2516 audit_log_vformat(ab, fmt, args);
2517 va_end(args);
2518 audit_log_end(ab);
2519 }
2520 }
2521
2522 EXPORT_SYMBOL(audit_log_start);
2523 EXPORT_SYMBOL(audit_log_end);
2524 EXPORT_SYMBOL(audit_log_format);
2525 EXPORT_SYMBOL(audit_log);