]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/audit.c
UBUNTU: Start new release
[mirror_ubuntu-bionic-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61 #include <linux/pid.h>
62 #include <linux/slab.h>
63
64 #include <linux/audit.h>
65
66 #include <net/sock.h>
67 #include <net/netlink.h>
68 #include <linux/skbuff.h>
69 #ifdef CONFIG_SECURITY
70 #include <linux/security.h>
71 #endif
72 #include <linux/freezer.h>
73 #include <linux/pid_namespace.h>
74 #include <net/netns/generic.h>
75
76 #include "audit.h"
77
78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
79 * (Initialization happens after skb_init is called.) */
80 #define AUDIT_DISABLED -1
81 #define AUDIT_UNINITIALIZED 0
82 #define AUDIT_INITIALIZED 1
83 static int audit_initialized;
84
85 #define AUDIT_OFF 0
86 #define AUDIT_ON 1
87 #define AUDIT_LOCKED 2
88 u32 audit_enabled = AUDIT_OFF;
89 bool audit_ever_enabled = !!AUDIT_OFF;
90
91 EXPORT_SYMBOL_GPL(audit_enabled);
92
93 /* Default state when kernel boots without any parameters. */
94 static u32 audit_default = AUDIT_OFF;
95
96 /* If auditing cannot proceed, audit_failure selects what happens. */
97 static u32 audit_failure = AUDIT_FAIL_PRINTK;
98
99 /* private audit network namespace index */
100 static unsigned int audit_net_id;
101
102 /**
103 * struct audit_net - audit private network namespace data
104 * @sk: communication socket
105 */
106 struct audit_net {
107 struct sock *sk;
108 };
109
110 /**
111 * struct auditd_connection - kernel/auditd connection state
112 * @pid: auditd PID
113 * @portid: netlink portid
114 * @net: the associated network namespace
115 * @rcu: RCU head
116 *
117 * Description:
118 * This struct is RCU protected; you must either hold the RCU lock for reading
119 * or the associated spinlock for writing.
120 */
121 static struct auditd_connection {
122 struct pid *pid;
123 u32 portid;
124 struct net *net;
125 struct rcu_head rcu;
126 } *auditd_conn = NULL;
127 static DEFINE_SPINLOCK(auditd_conn_lock);
128
129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
130 * to that number per second. This prevents DoS attacks, but results in
131 * audit records being dropped. */
132 static u32 audit_rate_limit;
133
134 /* Number of outstanding audit_buffers allowed.
135 * When set to zero, this means unlimited. */
136 static u32 audit_backlog_limit = 64;
137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
138 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
139
140 /* The identity of the user shutting down the audit system. */
141 kuid_t audit_sig_uid = INVALID_UID;
142 pid_t audit_sig_pid = -1;
143 u32 audit_sig_sid = 0;
144
145 /* Records can be lost in several ways:
146 0) [suppressed in audit_alloc]
147 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
148 2) out of memory in audit_log_move [alloc_skb]
149 3) suppressed due to audit_rate_limit
150 4) suppressed due to audit_backlog_limit
151 */
152 static atomic_t audit_lost = ATOMIC_INIT(0);
153
154 /* Hash for inode-based rules */
155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
156
157 static struct kmem_cache *audit_buffer_cache;
158
159 /* queue msgs to send via kauditd_task */
160 static struct sk_buff_head audit_queue;
161 /* queue msgs due to temporary unicast send problems */
162 static struct sk_buff_head audit_retry_queue;
163 /* queue msgs waiting for new auditd connection */
164 static struct sk_buff_head audit_hold_queue;
165
166 /* queue servicing thread */
167 static struct task_struct *kauditd_task;
168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
169
170 /* waitqueue for callers who are blocked on the audit backlog */
171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
172
173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
174 .mask = -1,
175 .features = 0,
176 .lock = 0,};
177
178 static char *audit_feature_names[2] = {
179 "only_unset_loginuid",
180 "loginuid_immutable",
181 };
182
183
184 /* Serialize requests from userspace. */
185 DEFINE_MUTEX(audit_cmd_mutex);
186
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records. Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191
192 /* The audit_buffer is used when formatting an audit record. The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue. Multiple audit_buffers can be in
196 * use simultaneously. */
197 struct audit_buffer {
198 struct sk_buff *skb; /* formatted skb ready to send */
199 struct audit_context *ctx; /* NULL or associated context */
200 gfp_t gfp_mask;
201 };
202
203 struct audit_reply {
204 __u32 portid;
205 struct net *net;
206 struct sk_buff *skb;
207 };
208
209 /**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
216 int auditd_test_task(struct task_struct *task)
217 {
218 int rc;
219 struct auditd_connection *ac;
220
221 rcu_read_lock();
222 ac = rcu_dereference(auditd_conn);
223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 rcu_read_unlock();
225
226 return rc;
227 }
228
229 /**
230 * auditd_pid_vnr - Return the auditd PID relative to the namespace
231 *
232 * Description:
233 * Returns the PID in relation to the namespace, 0 on failure.
234 */
235 static pid_t auditd_pid_vnr(void)
236 {
237 pid_t pid;
238 const struct auditd_connection *ac;
239
240 rcu_read_lock();
241 ac = rcu_dereference(auditd_conn);
242 if (!ac || !ac->pid)
243 pid = 0;
244 else
245 pid = pid_vnr(ac->pid);
246 rcu_read_unlock();
247
248 return pid;
249 }
250
251 /**
252 * audit_get_sk - Return the audit socket for the given network namespace
253 * @net: the destination network namespace
254 *
255 * Description:
256 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
257 * that a reference is held for the network namespace while the sock is in use.
258 */
259 static struct sock *audit_get_sk(const struct net *net)
260 {
261 struct audit_net *aunet;
262
263 if (!net)
264 return NULL;
265
266 aunet = net_generic(net, audit_net_id);
267 return aunet->sk;
268 }
269
270 void audit_panic(const char *message)
271 {
272 switch (audit_failure) {
273 case AUDIT_FAIL_SILENT:
274 break;
275 case AUDIT_FAIL_PRINTK:
276 if (printk_ratelimit())
277 pr_err("%s\n", message);
278 break;
279 case AUDIT_FAIL_PANIC:
280 panic("audit: %s\n", message);
281 break;
282 }
283 }
284
285 static inline int audit_rate_check(void)
286 {
287 static unsigned long last_check = 0;
288 static int messages = 0;
289 static DEFINE_SPINLOCK(lock);
290 unsigned long flags;
291 unsigned long now;
292 unsigned long elapsed;
293 int retval = 0;
294
295 if (!audit_rate_limit) return 1;
296
297 spin_lock_irqsave(&lock, flags);
298 if (++messages < audit_rate_limit) {
299 retval = 1;
300 } else {
301 now = jiffies;
302 elapsed = now - last_check;
303 if (elapsed > HZ) {
304 last_check = now;
305 messages = 0;
306 retval = 1;
307 }
308 }
309 spin_unlock_irqrestore(&lock, flags);
310
311 return retval;
312 }
313
314 /**
315 * audit_log_lost - conditionally log lost audit message event
316 * @message: the message stating reason for lost audit message
317 *
318 * Emit at least 1 message per second, even if audit_rate_check is
319 * throttling.
320 * Always increment the lost messages counter.
321 */
322 void audit_log_lost(const char *message)
323 {
324 static unsigned long last_msg = 0;
325 static DEFINE_SPINLOCK(lock);
326 unsigned long flags;
327 unsigned long now;
328 int print;
329
330 atomic_inc(&audit_lost);
331
332 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
333
334 if (!print) {
335 spin_lock_irqsave(&lock, flags);
336 now = jiffies;
337 if (now - last_msg > HZ) {
338 print = 1;
339 last_msg = now;
340 }
341 spin_unlock_irqrestore(&lock, flags);
342 }
343
344 if (print) {
345 if (printk_ratelimit())
346 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
347 atomic_read(&audit_lost),
348 audit_rate_limit,
349 audit_backlog_limit);
350 audit_panic(message);
351 }
352 }
353
354 static int audit_log_config_change(char *function_name, u32 new, u32 old,
355 int allow_changes)
356 {
357 struct audit_buffer *ab;
358 int rc = 0;
359
360 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
361 if (unlikely(!ab))
362 return rc;
363 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
364 audit_log_session_info(ab);
365 rc = audit_log_task_context(ab);
366 if (rc)
367 allow_changes = 0; /* Something weird, deny request */
368 audit_log_format(ab, " res=%d", allow_changes);
369 audit_log_end(ab);
370 return rc;
371 }
372
373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
374 {
375 int allow_changes, rc = 0;
376 u32 old = *to_change;
377
378 /* check if we are locked */
379 if (audit_enabled == AUDIT_LOCKED)
380 allow_changes = 0;
381 else
382 allow_changes = 1;
383
384 if (audit_enabled != AUDIT_OFF) {
385 rc = audit_log_config_change(function_name, new, old, allow_changes);
386 if (rc)
387 allow_changes = 0;
388 }
389
390 /* If we are allowed, make the change */
391 if (allow_changes == 1)
392 *to_change = new;
393 /* Not allowed, update reason */
394 else if (rc == 0)
395 rc = -EPERM;
396 return rc;
397 }
398
399 static int audit_set_rate_limit(u32 limit)
400 {
401 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
402 }
403
404 static int audit_set_backlog_limit(u32 limit)
405 {
406 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
407 }
408
409 static int audit_set_backlog_wait_time(u32 timeout)
410 {
411 return audit_do_config_change("audit_backlog_wait_time",
412 &audit_backlog_wait_time, timeout);
413 }
414
415 static int audit_set_enabled(u32 state)
416 {
417 int rc;
418 if (state > AUDIT_LOCKED)
419 return -EINVAL;
420
421 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
422 if (!rc)
423 audit_ever_enabled |= !!state;
424
425 return rc;
426 }
427
428 static int audit_set_failure(u32 state)
429 {
430 if (state != AUDIT_FAIL_SILENT
431 && state != AUDIT_FAIL_PRINTK
432 && state != AUDIT_FAIL_PANIC)
433 return -EINVAL;
434
435 return audit_do_config_change("audit_failure", &audit_failure, state);
436 }
437
438 /**
439 * auditd_conn_free - RCU helper to release an auditd connection struct
440 * @rcu: RCU head
441 *
442 * Description:
443 * Drop any references inside the auditd connection tracking struct and free
444 * the memory.
445 */
446 static void auditd_conn_free(struct rcu_head *rcu)
447 {
448 struct auditd_connection *ac;
449
450 ac = container_of(rcu, struct auditd_connection, rcu);
451 put_pid(ac->pid);
452 put_net(ac->net);
453 kfree(ac);
454 }
455
456 /**
457 * auditd_set - Set/Reset the auditd connection state
458 * @pid: auditd PID
459 * @portid: auditd netlink portid
460 * @net: auditd network namespace pointer
461 *
462 * Description:
463 * This function will obtain and drop network namespace references as
464 * necessary. Returns zero on success, negative values on failure.
465 */
466 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
467 {
468 unsigned long flags;
469 struct auditd_connection *ac_old, *ac_new;
470
471 if (!pid || !net)
472 return -EINVAL;
473
474 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
475 if (!ac_new)
476 return -ENOMEM;
477 ac_new->pid = get_pid(pid);
478 ac_new->portid = portid;
479 ac_new->net = get_net(net);
480
481 spin_lock_irqsave(&auditd_conn_lock, flags);
482 ac_old = rcu_dereference_protected(auditd_conn,
483 lockdep_is_held(&auditd_conn_lock));
484 rcu_assign_pointer(auditd_conn, ac_new);
485 spin_unlock_irqrestore(&auditd_conn_lock, flags);
486
487 if (ac_old)
488 call_rcu(&ac_old->rcu, auditd_conn_free);
489
490 return 0;
491 }
492
493 /**
494 * kauditd_print_skb - Print the audit record to the ring buffer
495 * @skb: audit record
496 *
497 * Whatever the reason, this packet may not make it to the auditd connection
498 * so write it via printk so the information isn't completely lost.
499 */
500 static void kauditd_printk_skb(struct sk_buff *skb)
501 {
502 struct nlmsghdr *nlh = nlmsg_hdr(skb);
503 char *data = nlmsg_data(nlh);
504
505 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
506 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
507 }
508
509 /**
510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
511 * @skb: audit record
512 *
513 * Description:
514 * This should only be used by the kauditd_thread when it fails to flush the
515 * hold queue.
516 */
517 static void kauditd_rehold_skb(struct sk_buff *skb)
518 {
519 /* put the record back in the queue at the same place */
520 skb_queue_head(&audit_hold_queue, skb);
521 }
522
523 /**
524 * kauditd_hold_skb - Queue an audit record, waiting for auditd
525 * @skb: audit record
526 *
527 * Description:
528 * Queue the audit record, waiting for an instance of auditd. When this
529 * function is called we haven't given up yet on sending the record, but things
530 * are not looking good. The first thing we want to do is try to write the
531 * record via printk and then see if we want to try and hold on to the record
532 * and queue it, if we have room. If we want to hold on to the record, but we
533 * don't have room, record a record lost message.
534 */
535 static void kauditd_hold_skb(struct sk_buff *skb)
536 {
537 /* at this point it is uncertain if we will ever send this to auditd so
538 * try to send the message via printk before we go any further */
539 kauditd_printk_skb(skb);
540
541 /* can we just silently drop the message? */
542 if (!audit_default) {
543 kfree_skb(skb);
544 return;
545 }
546
547 /* if we have room, queue the message */
548 if (!audit_backlog_limit ||
549 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
550 skb_queue_tail(&audit_hold_queue, skb);
551 return;
552 }
553
554 /* we have no other options - drop the message */
555 audit_log_lost("kauditd hold queue overflow");
556 kfree_skb(skb);
557 }
558
559 /**
560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
561 * @skb: audit record
562 *
563 * Description:
564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
565 * but for some reason we are having problems sending it audit records so
566 * queue the given record and attempt to resend.
567 */
568 static void kauditd_retry_skb(struct sk_buff *skb)
569 {
570 /* NOTE: because records should only live in the retry queue for a
571 * short period of time, before either being sent or moved to the hold
572 * queue, we don't currently enforce a limit on this queue */
573 skb_queue_tail(&audit_retry_queue, skb);
574 }
575
576 /**
577 * auditd_reset - Disconnect the auditd connection
578 * @ac: auditd connection state
579 *
580 * Description:
581 * Break the auditd/kauditd connection and move all the queued records into the
582 * hold queue in case auditd reconnects. It is important to note that the @ac
583 * pointer should never be dereferenced inside this function as it may be NULL
584 * or invalid, you can only compare the memory address! If @ac is NULL then
585 * the connection will always be reset.
586 */
587 static void auditd_reset(const struct auditd_connection *ac)
588 {
589 unsigned long flags;
590 struct sk_buff *skb;
591 struct auditd_connection *ac_old;
592
593 /* if it isn't already broken, break the connection */
594 spin_lock_irqsave(&auditd_conn_lock, flags);
595 ac_old = rcu_dereference_protected(auditd_conn,
596 lockdep_is_held(&auditd_conn_lock));
597 if (ac && ac != ac_old) {
598 /* someone already registered a new auditd connection */
599 spin_unlock_irqrestore(&auditd_conn_lock, flags);
600 return;
601 }
602 rcu_assign_pointer(auditd_conn, NULL);
603 spin_unlock_irqrestore(&auditd_conn_lock, flags);
604
605 if (ac_old)
606 call_rcu(&ac_old->rcu, auditd_conn_free);
607
608 /* flush the retry queue to the hold queue, but don't touch the main
609 * queue since we need to process that normally for multicast */
610 while ((skb = skb_dequeue(&audit_retry_queue)))
611 kauditd_hold_skb(skb);
612 }
613
614 /**
615 * auditd_send_unicast_skb - Send a record via unicast to auditd
616 * @skb: audit record
617 *
618 * Description:
619 * Send a skb to the audit daemon, returns positive/zero values on success and
620 * negative values on failure; in all cases the skb will be consumed by this
621 * function. If the send results in -ECONNREFUSED the connection with auditd
622 * will be reset. This function may sleep so callers should not hold any locks
623 * where this would cause a problem.
624 */
625 static int auditd_send_unicast_skb(struct sk_buff *skb)
626 {
627 int rc;
628 u32 portid;
629 struct net *net;
630 struct sock *sk;
631 struct auditd_connection *ac;
632
633 /* NOTE: we can't call netlink_unicast while in the RCU section so
634 * take a reference to the network namespace and grab local
635 * copies of the namespace, the sock, and the portid; the
636 * namespace and sock aren't going to go away while we hold a
637 * reference and if the portid does become invalid after the RCU
638 * section netlink_unicast() should safely return an error */
639
640 rcu_read_lock();
641 ac = rcu_dereference(auditd_conn);
642 if (!ac) {
643 rcu_read_unlock();
644 kfree_skb(skb);
645 rc = -ECONNREFUSED;
646 goto err;
647 }
648 net = get_net(ac->net);
649 sk = audit_get_sk(net);
650 portid = ac->portid;
651 rcu_read_unlock();
652
653 rc = netlink_unicast(sk, skb, portid, 0);
654 put_net(net);
655 if (rc < 0)
656 goto err;
657
658 return rc;
659
660 err:
661 if (ac && rc == -ECONNREFUSED)
662 auditd_reset(ac);
663 return rc;
664 }
665
666 /**
667 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
668 * @sk: the sending sock
669 * @portid: the netlink destination
670 * @queue: the skb queue to process
671 * @retry_limit: limit on number of netlink unicast failures
672 * @skb_hook: per-skb hook for additional processing
673 * @err_hook: hook called if the skb fails the netlink unicast send
674 *
675 * Description:
676 * Run through the given queue and attempt to send the audit records to auditd,
677 * returns zero on success, negative values on failure. It is up to the caller
678 * to ensure that the @sk is valid for the duration of this function.
679 *
680 */
681 static int kauditd_send_queue(struct sock *sk, u32 portid,
682 struct sk_buff_head *queue,
683 unsigned int retry_limit,
684 void (*skb_hook)(struct sk_buff *skb),
685 void (*err_hook)(struct sk_buff *skb))
686 {
687 int rc = 0;
688 struct sk_buff *skb;
689 static unsigned int failed = 0;
690
691 /* NOTE: kauditd_thread takes care of all our locking, we just use
692 * the netlink info passed to us (e.g. sk and portid) */
693
694 while ((skb = skb_dequeue(queue))) {
695 /* call the skb_hook for each skb we touch */
696 if (skb_hook)
697 (*skb_hook)(skb);
698
699 /* can we send to anyone via unicast? */
700 if (!sk) {
701 if (err_hook)
702 (*err_hook)(skb);
703 continue;
704 }
705
706 /* grab an extra skb reference in case of error */
707 skb_get(skb);
708 rc = netlink_unicast(sk, skb, portid, 0);
709 if (rc < 0) {
710 /* fatal failure for our queue flush attempt? */
711 if (++failed >= retry_limit ||
712 rc == -ECONNREFUSED || rc == -EPERM) {
713 /* yes - error processing for the queue */
714 sk = NULL;
715 if (err_hook)
716 (*err_hook)(skb);
717 if (!skb_hook)
718 goto out;
719 /* keep processing with the skb_hook */
720 continue;
721 } else
722 /* no - requeue to preserve ordering */
723 skb_queue_head(queue, skb);
724 } else {
725 /* it worked - drop the extra reference and continue */
726 consume_skb(skb);
727 failed = 0;
728 }
729 }
730
731 out:
732 return (rc >= 0 ? 0 : rc);
733 }
734
735 /*
736 * kauditd_send_multicast_skb - Send a record to any multicast listeners
737 * @skb: audit record
738 *
739 * Description:
740 * Write a multicast message to anyone listening in the initial network
741 * namespace. This function doesn't consume an skb as might be expected since
742 * it has to copy it anyways.
743 */
744 static void kauditd_send_multicast_skb(struct sk_buff *skb)
745 {
746 struct sk_buff *copy;
747 struct sock *sock = audit_get_sk(&init_net);
748 struct nlmsghdr *nlh;
749
750 /* NOTE: we are not taking an additional reference for init_net since
751 * we don't have to worry about it going away */
752
753 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
754 return;
755
756 /*
757 * The seemingly wasteful skb_copy() rather than bumping the refcount
758 * using skb_get() is necessary because non-standard mods are made to
759 * the skb by the original kaudit unicast socket send routine. The
760 * existing auditd daemon assumes this breakage. Fixing this would
761 * require co-ordinating a change in the established protocol between
762 * the kaudit kernel subsystem and the auditd userspace code. There is
763 * no reason for new multicast clients to continue with this
764 * non-compliance.
765 */
766 copy = skb_copy(skb, GFP_KERNEL);
767 if (!copy)
768 return;
769 nlh = nlmsg_hdr(copy);
770 nlh->nlmsg_len = skb->len;
771
772 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
773 }
774
775 /**
776 * kauditd_thread - Worker thread to send audit records to userspace
777 * @dummy: unused
778 */
779 static int kauditd_thread(void *dummy)
780 {
781 int rc;
782 u32 portid = 0;
783 struct net *net = NULL;
784 struct sock *sk = NULL;
785 struct auditd_connection *ac;
786
787 #define UNICAST_RETRIES 5
788
789 set_freezable();
790 while (!kthread_should_stop()) {
791 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
792 rcu_read_lock();
793 ac = rcu_dereference(auditd_conn);
794 if (!ac) {
795 rcu_read_unlock();
796 goto main_queue;
797 }
798 net = get_net(ac->net);
799 sk = audit_get_sk(net);
800 portid = ac->portid;
801 rcu_read_unlock();
802
803 /* attempt to flush the hold queue */
804 rc = kauditd_send_queue(sk, portid,
805 &audit_hold_queue, UNICAST_RETRIES,
806 NULL, kauditd_rehold_skb);
807 if (ac && rc < 0) {
808 sk = NULL;
809 auditd_reset(ac);
810 goto main_queue;
811 }
812
813 /* attempt to flush the retry queue */
814 rc = kauditd_send_queue(sk, portid,
815 &audit_retry_queue, UNICAST_RETRIES,
816 NULL, kauditd_hold_skb);
817 if (ac && rc < 0) {
818 sk = NULL;
819 auditd_reset(ac);
820 goto main_queue;
821 }
822
823 main_queue:
824 /* process the main queue - do the multicast send and attempt
825 * unicast, dump failed record sends to the retry queue; if
826 * sk == NULL due to previous failures we will just do the
827 * multicast send and move the record to the hold queue */
828 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
829 kauditd_send_multicast_skb,
830 (sk ?
831 kauditd_retry_skb : kauditd_hold_skb));
832 if (ac && rc < 0)
833 auditd_reset(ac);
834 sk = NULL;
835
836 /* drop our netns reference, no auditd sends past this line */
837 if (net) {
838 put_net(net);
839 net = NULL;
840 }
841
842 /* we have processed all the queues so wake everyone */
843 wake_up(&audit_backlog_wait);
844
845 /* NOTE: we want to wake up if there is anything on the queue,
846 * regardless of if an auditd is connected, as we need to
847 * do the multicast send and rotate records from the
848 * main queue to the retry/hold queues */
849 wait_event_freezable(kauditd_wait,
850 (skb_queue_len(&audit_queue) ? 1 : 0));
851 }
852
853 return 0;
854 }
855
856 int audit_send_list(void *_dest)
857 {
858 struct audit_netlink_list *dest = _dest;
859 struct sk_buff *skb;
860 struct sock *sk = audit_get_sk(dest->net);
861
862 /* wait for parent to finish and send an ACK */
863 mutex_lock(&audit_cmd_mutex);
864 mutex_unlock(&audit_cmd_mutex);
865
866 while ((skb = __skb_dequeue(&dest->q)) != NULL)
867 netlink_unicast(sk, skb, dest->portid, 0);
868
869 put_net(dest->net);
870 kfree(dest);
871
872 return 0;
873 }
874
875 struct sk_buff *audit_make_reply(int seq, int type, int done,
876 int multi, const void *payload, int size)
877 {
878 struct sk_buff *skb;
879 struct nlmsghdr *nlh;
880 void *data;
881 int flags = multi ? NLM_F_MULTI : 0;
882 int t = done ? NLMSG_DONE : type;
883
884 skb = nlmsg_new(size, GFP_KERNEL);
885 if (!skb)
886 return NULL;
887
888 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
889 if (!nlh)
890 goto out_kfree_skb;
891 data = nlmsg_data(nlh);
892 memcpy(data, payload, size);
893 return skb;
894
895 out_kfree_skb:
896 kfree_skb(skb);
897 return NULL;
898 }
899
900 static int audit_send_reply_thread(void *arg)
901 {
902 struct audit_reply *reply = (struct audit_reply *)arg;
903 struct sock *sk = audit_get_sk(reply->net);
904
905 mutex_lock(&audit_cmd_mutex);
906 mutex_unlock(&audit_cmd_mutex);
907
908 /* Ignore failure. It'll only happen if the sender goes away,
909 because our timeout is set to infinite. */
910 netlink_unicast(sk, reply->skb, reply->portid, 0);
911 put_net(reply->net);
912 kfree(reply);
913 return 0;
914 }
915
916 /**
917 * audit_send_reply - send an audit reply message via netlink
918 * @request_skb: skb of request we are replying to (used to target the reply)
919 * @seq: sequence number
920 * @type: audit message type
921 * @done: done (last) flag
922 * @multi: multi-part message flag
923 * @payload: payload data
924 * @size: payload size
925 *
926 * Allocates an skb, builds the netlink message, and sends it to the port id.
927 * No failure notifications.
928 */
929 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
930 int multi, const void *payload, int size)
931 {
932 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
933 struct sk_buff *skb;
934 struct task_struct *tsk;
935 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
936 GFP_KERNEL);
937
938 if (!reply)
939 return;
940
941 skb = audit_make_reply(seq, type, done, multi, payload, size);
942 if (!skb)
943 goto out;
944
945 reply->net = get_net(net);
946 reply->portid = NETLINK_CB(request_skb).portid;
947 reply->skb = skb;
948
949 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
950 if (!IS_ERR(tsk))
951 return;
952 kfree_skb(skb);
953 out:
954 kfree(reply);
955 }
956
957 /*
958 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
959 * control messages.
960 */
961 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
962 {
963 int err = 0;
964
965 /* Only support initial user namespace for now. */
966 /*
967 * We return ECONNREFUSED because it tricks userspace into thinking
968 * that audit was not configured into the kernel. Lots of users
969 * configure their PAM stack (because that's what the distro does)
970 * to reject login if unable to send messages to audit. If we return
971 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
972 * configured in and will let login proceed. If we return EPERM
973 * userspace will reject all logins. This should be removed when we
974 * support non init namespaces!!
975 */
976 if (current_user_ns() != &init_user_ns)
977 return -ECONNREFUSED;
978
979 switch (msg_type) {
980 case AUDIT_LIST:
981 case AUDIT_ADD:
982 case AUDIT_DEL:
983 return -EOPNOTSUPP;
984 case AUDIT_GET:
985 case AUDIT_SET:
986 case AUDIT_GET_FEATURE:
987 case AUDIT_SET_FEATURE:
988 case AUDIT_LIST_RULES:
989 case AUDIT_ADD_RULE:
990 case AUDIT_DEL_RULE:
991 case AUDIT_SIGNAL_INFO:
992 case AUDIT_TTY_GET:
993 case AUDIT_TTY_SET:
994 case AUDIT_TRIM:
995 case AUDIT_MAKE_EQUIV:
996 /* Only support auditd and auditctl in initial pid namespace
997 * for now. */
998 if (task_active_pid_ns(current) != &init_pid_ns)
999 return -EPERM;
1000
1001 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1002 err = -EPERM;
1003 break;
1004 case AUDIT_USER:
1005 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1006 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1007 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1008 err = -EPERM;
1009 break;
1010 default: /* bad msg */
1011 err = -EINVAL;
1012 }
1013
1014 return err;
1015 }
1016
1017 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1018 {
1019 uid_t uid = from_kuid(&init_user_ns, current_uid());
1020 pid_t pid = task_tgid_nr(current);
1021
1022 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1023 *ab = NULL;
1024 return;
1025 }
1026
1027 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1028 if (unlikely(!*ab))
1029 return;
1030 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1031 audit_log_session_info(*ab);
1032 audit_log_task_context(*ab);
1033 }
1034
1035 int is_audit_feature_set(int i)
1036 {
1037 return af.features & AUDIT_FEATURE_TO_MASK(i);
1038 }
1039
1040
1041 static int audit_get_feature(struct sk_buff *skb)
1042 {
1043 u32 seq;
1044
1045 seq = nlmsg_hdr(skb)->nlmsg_seq;
1046
1047 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1048
1049 return 0;
1050 }
1051
1052 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1053 u32 old_lock, u32 new_lock, int res)
1054 {
1055 struct audit_buffer *ab;
1056
1057 if (audit_enabled == AUDIT_OFF)
1058 return;
1059
1060 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1061 if (!ab)
1062 return;
1063 audit_log_task_info(ab, current);
1064 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1065 audit_feature_names[which], !!old_feature, !!new_feature,
1066 !!old_lock, !!new_lock, res);
1067 audit_log_end(ab);
1068 }
1069
1070 static int audit_set_feature(struct sk_buff *skb)
1071 {
1072 struct audit_features *uaf;
1073 int i;
1074
1075 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1076 uaf = nlmsg_data(nlmsg_hdr(skb));
1077
1078 /* if there is ever a version 2 we should handle that here */
1079
1080 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1081 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1082 u32 old_feature, new_feature, old_lock, new_lock;
1083
1084 /* if we are not changing this feature, move along */
1085 if (!(feature & uaf->mask))
1086 continue;
1087
1088 old_feature = af.features & feature;
1089 new_feature = uaf->features & feature;
1090 new_lock = (uaf->lock | af.lock) & feature;
1091 old_lock = af.lock & feature;
1092
1093 /* are we changing a locked feature? */
1094 if (old_lock && (new_feature != old_feature)) {
1095 audit_log_feature_change(i, old_feature, new_feature,
1096 old_lock, new_lock, 0);
1097 return -EPERM;
1098 }
1099 }
1100 /* nothing invalid, do the changes */
1101 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1102 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1103 u32 old_feature, new_feature, old_lock, new_lock;
1104
1105 /* if we are not changing this feature, move along */
1106 if (!(feature & uaf->mask))
1107 continue;
1108
1109 old_feature = af.features & feature;
1110 new_feature = uaf->features & feature;
1111 old_lock = af.lock & feature;
1112 new_lock = (uaf->lock | af.lock) & feature;
1113
1114 if (new_feature != old_feature)
1115 audit_log_feature_change(i, old_feature, new_feature,
1116 old_lock, new_lock, 1);
1117
1118 if (new_feature)
1119 af.features |= feature;
1120 else
1121 af.features &= ~feature;
1122 af.lock |= new_lock;
1123 }
1124
1125 return 0;
1126 }
1127
1128 static int audit_replace(struct pid *pid)
1129 {
1130 pid_t pvnr;
1131 struct sk_buff *skb;
1132
1133 pvnr = pid_vnr(pid);
1134 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1135 if (!skb)
1136 return -ENOMEM;
1137 return auditd_send_unicast_skb(skb);
1138 }
1139
1140 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1141 {
1142 u32 seq;
1143 void *data;
1144 int err;
1145 struct audit_buffer *ab;
1146 u16 msg_type = nlh->nlmsg_type;
1147 struct audit_sig_info *sig_data;
1148 char *ctx = NULL;
1149 u32 len;
1150
1151 err = audit_netlink_ok(skb, msg_type);
1152 if (err)
1153 return err;
1154
1155 seq = nlh->nlmsg_seq;
1156 data = nlmsg_data(nlh);
1157
1158 switch (msg_type) {
1159 case AUDIT_GET: {
1160 struct audit_status s;
1161 memset(&s, 0, sizeof(s));
1162 s.enabled = audit_enabled;
1163 s.failure = audit_failure;
1164 /* NOTE: use pid_vnr() so the PID is relative to the current
1165 * namespace */
1166 s.pid = auditd_pid_vnr();
1167 s.rate_limit = audit_rate_limit;
1168 s.backlog_limit = audit_backlog_limit;
1169 s.lost = atomic_read(&audit_lost);
1170 s.backlog = skb_queue_len(&audit_queue);
1171 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1172 s.backlog_wait_time = audit_backlog_wait_time;
1173 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1174 break;
1175 }
1176 case AUDIT_SET: {
1177 struct audit_status s;
1178 memset(&s, 0, sizeof(s));
1179 /* guard against past and future API changes */
1180 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1181 if (s.mask & AUDIT_STATUS_ENABLED) {
1182 err = audit_set_enabled(s.enabled);
1183 if (err < 0)
1184 return err;
1185 }
1186 if (s.mask & AUDIT_STATUS_FAILURE) {
1187 err = audit_set_failure(s.failure);
1188 if (err < 0)
1189 return err;
1190 }
1191 if (s.mask & AUDIT_STATUS_PID) {
1192 /* NOTE: we are using the vnr PID functions below
1193 * because the s.pid value is relative to the
1194 * namespace of the caller; at present this
1195 * doesn't matter much since you can really only
1196 * run auditd from the initial pid namespace, but
1197 * something to keep in mind if this changes */
1198 pid_t new_pid = s.pid;
1199 pid_t auditd_pid;
1200 struct pid *req_pid = task_tgid(current);
1201
1202 /* Sanity check - PID values must match. Setting
1203 * pid to 0 is how auditd ends auditing. */
1204 if (new_pid && (new_pid != pid_vnr(req_pid)))
1205 return -EINVAL;
1206
1207 /* test the auditd connection */
1208 audit_replace(req_pid);
1209
1210 auditd_pid = auditd_pid_vnr();
1211 if (auditd_pid) {
1212 /* replacing a healthy auditd is not allowed */
1213 if (new_pid) {
1214 audit_log_config_change("audit_pid",
1215 new_pid, auditd_pid, 0);
1216 return -EEXIST;
1217 }
1218 /* only current auditd can unregister itself */
1219 if (pid_vnr(req_pid) != auditd_pid) {
1220 audit_log_config_change("audit_pid",
1221 new_pid, auditd_pid, 0);
1222 return -EACCES;
1223 }
1224 }
1225
1226 if (new_pid) {
1227 /* register a new auditd connection */
1228 err = auditd_set(req_pid,
1229 NETLINK_CB(skb).portid,
1230 sock_net(NETLINK_CB(skb).sk));
1231 if (audit_enabled != AUDIT_OFF)
1232 audit_log_config_change("audit_pid",
1233 new_pid,
1234 auditd_pid,
1235 err ? 0 : 1);
1236 if (err)
1237 return err;
1238
1239 /* try to process any backlog */
1240 wake_up_interruptible(&kauditd_wait);
1241 } else {
1242 if (audit_enabled != AUDIT_OFF)
1243 audit_log_config_change("audit_pid",
1244 new_pid,
1245 auditd_pid, 1);
1246
1247 /* unregister the auditd connection */
1248 auditd_reset(NULL);
1249 }
1250 }
1251 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1252 err = audit_set_rate_limit(s.rate_limit);
1253 if (err < 0)
1254 return err;
1255 }
1256 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1257 err = audit_set_backlog_limit(s.backlog_limit);
1258 if (err < 0)
1259 return err;
1260 }
1261 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1262 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1263 return -EINVAL;
1264 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1265 return -EINVAL;
1266 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1267 if (err < 0)
1268 return err;
1269 }
1270 if (s.mask == AUDIT_STATUS_LOST) {
1271 u32 lost = atomic_xchg(&audit_lost, 0);
1272
1273 audit_log_config_change("lost", 0, lost, 1);
1274 return lost;
1275 }
1276 break;
1277 }
1278 case AUDIT_GET_FEATURE:
1279 err = audit_get_feature(skb);
1280 if (err)
1281 return err;
1282 break;
1283 case AUDIT_SET_FEATURE:
1284 err = audit_set_feature(skb);
1285 if (err)
1286 return err;
1287 break;
1288 case AUDIT_USER:
1289 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1290 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1291 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1292 return 0;
1293
1294 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1295 if (err == 1) { /* match or error */
1296 err = 0;
1297 if (msg_type == AUDIT_USER_TTY) {
1298 err = tty_audit_push();
1299 if (err)
1300 break;
1301 }
1302 audit_log_common_recv_msg(&ab, msg_type);
1303 if (msg_type != AUDIT_USER_TTY)
1304 audit_log_format(ab, " msg='%.*s'",
1305 AUDIT_MESSAGE_TEXT_MAX,
1306 (char *)data);
1307 else {
1308 int size;
1309
1310 audit_log_format(ab, " data=");
1311 size = nlmsg_len(nlh);
1312 if (size > 0 &&
1313 ((unsigned char *)data)[size - 1] == '\0')
1314 size--;
1315 audit_log_n_untrustedstring(ab, data, size);
1316 }
1317 audit_log_end(ab);
1318 }
1319 break;
1320 case AUDIT_ADD_RULE:
1321 case AUDIT_DEL_RULE:
1322 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1323 return -EINVAL;
1324 if (audit_enabled == AUDIT_LOCKED) {
1325 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1326 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1327 audit_log_end(ab);
1328 return -EPERM;
1329 }
1330 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1331 break;
1332 case AUDIT_LIST_RULES:
1333 err = audit_list_rules_send(skb, seq);
1334 break;
1335 case AUDIT_TRIM:
1336 audit_trim_trees();
1337 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1338 audit_log_format(ab, " op=trim res=1");
1339 audit_log_end(ab);
1340 break;
1341 case AUDIT_MAKE_EQUIV: {
1342 void *bufp = data;
1343 u32 sizes[2];
1344 size_t msglen = nlmsg_len(nlh);
1345 char *old, *new;
1346
1347 err = -EINVAL;
1348 if (msglen < 2 * sizeof(u32))
1349 break;
1350 memcpy(sizes, bufp, 2 * sizeof(u32));
1351 bufp += 2 * sizeof(u32);
1352 msglen -= 2 * sizeof(u32);
1353 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1354 if (IS_ERR(old)) {
1355 err = PTR_ERR(old);
1356 break;
1357 }
1358 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1359 if (IS_ERR(new)) {
1360 err = PTR_ERR(new);
1361 kfree(old);
1362 break;
1363 }
1364 /* OK, here comes... */
1365 err = audit_tag_tree(old, new);
1366
1367 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1368
1369 audit_log_format(ab, " op=make_equiv old=");
1370 audit_log_untrustedstring(ab, old);
1371 audit_log_format(ab, " new=");
1372 audit_log_untrustedstring(ab, new);
1373 audit_log_format(ab, " res=%d", !err);
1374 audit_log_end(ab);
1375 kfree(old);
1376 kfree(new);
1377 break;
1378 }
1379 case AUDIT_SIGNAL_INFO:
1380 len = 0;
1381 if (audit_sig_sid) {
1382 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1383 if (err)
1384 return err;
1385 }
1386 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1387 if (!sig_data) {
1388 if (audit_sig_sid)
1389 security_release_secctx(ctx, len);
1390 return -ENOMEM;
1391 }
1392 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1393 sig_data->pid = audit_sig_pid;
1394 if (audit_sig_sid) {
1395 memcpy(sig_data->ctx, ctx, len);
1396 security_release_secctx(ctx, len);
1397 }
1398 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1399 sig_data, sizeof(*sig_data) + len);
1400 kfree(sig_data);
1401 break;
1402 case AUDIT_TTY_GET: {
1403 struct audit_tty_status s;
1404 unsigned int t;
1405
1406 t = READ_ONCE(current->signal->audit_tty);
1407 s.enabled = t & AUDIT_TTY_ENABLE;
1408 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1409
1410 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1411 break;
1412 }
1413 case AUDIT_TTY_SET: {
1414 struct audit_tty_status s, old;
1415 struct audit_buffer *ab;
1416 unsigned int t;
1417
1418 memset(&s, 0, sizeof(s));
1419 /* guard against past and future API changes */
1420 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1421 /* check if new data is valid */
1422 if ((s.enabled != 0 && s.enabled != 1) ||
1423 (s.log_passwd != 0 && s.log_passwd != 1))
1424 err = -EINVAL;
1425
1426 if (err)
1427 t = READ_ONCE(current->signal->audit_tty);
1428 else {
1429 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1430 t = xchg(&current->signal->audit_tty, t);
1431 }
1432 old.enabled = t & AUDIT_TTY_ENABLE;
1433 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1434
1435 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1436 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1437 " old-log_passwd=%d new-log_passwd=%d res=%d",
1438 old.enabled, s.enabled, old.log_passwd,
1439 s.log_passwd, !err);
1440 audit_log_end(ab);
1441 break;
1442 }
1443 default:
1444 err = -EINVAL;
1445 break;
1446 }
1447
1448 return err < 0 ? err : 0;
1449 }
1450
1451 /**
1452 * audit_receive - receive messages from a netlink control socket
1453 * @skb: the message buffer
1454 *
1455 * Parse the provided skb and deal with any messages that may be present,
1456 * malformed skbs are discarded.
1457 */
1458 static void audit_receive(struct sk_buff *skb)
1459 {
1460 struct nlmsghdr *nlh;
1461 /*
1462 * len MUST be signed for nlmsg_next to be able to dec it below 0
1463 * if the nlmsg_len was not aligned
1464 */
1465 int len;
1466 int err;
1467
1468 nlh = nlmsg_hdr(skb);
1469 len = skb->len;
1470
1471 mutex_lock(&audit_cmd_mutex);
1472 while (nlmsg_ok(nlh, len)) {
1473 err = audit_receive_msg(skb, nlh);
1474 /* if err or if this message says it wants a response */
1475 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1476 netlink_ack(skb, nlh, err, NULL);
1477
1478 nlh = nlmsg_next(nlh, &len);
1479 }
1480 mutex_unlock(&audit_cmd_mutex);
1481 }
1482
1483 /* Run custom bind function on netlink socket group connect or bind requests. */
1484 static int audit_bind(struct net *net, int group)
1485 {
1486 if (!capable(CAP_AUDIT_READ))
1487 return -EPERM;
1488
1489 return 0;
1490 }
1491
1492 static int __net_init audit_net_init(struct net *net)
1493 {
1494 struct netlink_kernel_cfg cfg = {
1495 .input = audit_receive,
1496 .bind = audit_bind,
1497 .flags = NL_CFG_F_NONROOT_RECV,
1498 .groups = AUDIT_NLGRP_MAX,
1499 };
1500
1501 struct audit_net *aunet = net_generic(net, audit_net_id);
1502
1503 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1504 if (aunet->sk == NULL) {
1505 audit_panic("cannot initialize netlink socket in namespace");
1506 return -ENOMEM;
1507 }
1508 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1509
1510 return 0;
1511 }
1512
1513 static void __net_exit audit_net_exit(struct net *net)
1514 {
1515 struct audit_net *aunet = net_generic(net, audit_net_id);
1516
1517 /* NOTE: you would think that we would want to check the auditd
1518 * connection and potentially reset it here if it lives in this
1519 * namespace, but since the auditd connection tracking struct holds a
1520 * reference to this namespace (see auditd_set()) we are only ever
1521 * going to get here after that connection has been released */
1522
1523 netlink_kernel_release(aunet->sk);
1524 }
1525
1526 static struct pernet_operations audit_net_ops __net_initdata = {
1527 .init = audit_net_init,
1528 .exit = audit_net_exit,
1529 .id = &audit_net_id,
1530 .size = sizeof(struct audit_net),
1531 };
1532
1533 /* Initialize audit support at boot time. */
1534 static int __init audit_init(void)
1535 {
1536 int i;
1537
1538 if (audit_initialized == AUDIT_DISABLED)
1539 return 0;
1540
1541 audit_buffer_cache = kmem_cache_create("audit_buffer",
1542 sizeof(struct audit_buffer),
1543 0, SLAB_PANIC, NULL);
1544
1545 skb_queue_head_init(&audit_queue);
1546 skb_queue_head_init(&audit_retry_queue);
1547 skb_queue_head_init(&audit_hold_queue);
1548
1549 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1550 INIT_LIST_HEAD(&audit_inode_hash[i]);
1551
1552 pr_info("initializing netlink subsys (%s)\n",
1553 audit_default ? "enabled" : "disabled");
1554 register_pernet_subsys(&audit_net_ops);
1555
1556 audit_initialized = AUDIT_INITIALIZED;
1557
1558 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1559 if (IS_ERR(kauditd_task)) {
1560 int err = PTR_ERR(kauditd_task);
1561 panic("audit: failed to start the kauditd thread (%d)\n", err);
1562 }
1563
1564 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1565 "state=initialized audit_enabled=%u res=1",
1566 audit_enabled);
1567
1568 return 0;
1569 }
1570 postcore_initcall(audit_init);
1571
1572 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1573 static int __init audit_enable(char *str)
1574 {
1575 long val;
1576
1577 if (kstrtol(str, 0, &val))
1578 panic("audit: invalid 'audit' parameter value (%s)\n", str);
1579 audit_default = (val ? AUDIT_ON : AUDIT_OFF);
1580
1581 if (audit_default == AUDIT_OFF)
1582 audit_initialized = AUDIT_DISABLED;
1583 if (audit_set_enabled(audit_default))
1584 panic("audit: error setting audit state (%d)\n", audit_default);
1585
1586 pr_info("%s\n", audit_default ?
1587 "enabled (after initialization)" : "disabled (until reboot)");
1588
1589 return 1;
1590 }
1591 __setup("audit=", audit_enable);
1592
1593 /* Process kernel command-line parameter at boot time.
1594 * audit_backlog_limit=<n> */
1595 static int __init audit_backlog_limit_set(char *str)
1596 {
1597 u32 audit_backlog_limit_arg;
1598
1599 pr_info("audit_backlog_limit: ");
1600 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1601 pr_cont("using default of %u, unable to parse %s\n",
1602 audit_backlog_limit, str);
1603 return 1;
1604 }
1605
1606 audit_backlog_limit = audit_backlog_limit_arg;
1607 pr_cont("%d\n", audit_backlog_limit);
1608
1609 return 1;
1610 }
1611 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1612
1613 static void audit_buffer_free(struct audit_buffer *ab)
1614 {
1615 if (!ab)
1616 return;
1617
1618 kfree_skb(ab->skb);
1619 kmem_cache_free(audit_buffer_cache, ab);
1620 }
1621
1622 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1623 gfp_t gfp_mask, int type)
1624 {
1625 struct audit_buffer *ab;
1626
1627 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1628 if (!ab)
1629 return NULL;
1630
1631 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1632 if (!ab->skb)
1633 goto err;
1634 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1635 goto err;
1636
1637 ab->ctx = ctx;
1638 ab->gfp_mask = gfp_mask;
1639
1640 return ab;
1641
1642 err:
1643 audit_buffer_free(ab);
1644 return NULL;
1645 }
1646
1647 /**
1648 * audit_serial - compute a serial number for the audit record
1649 *
1650 * Compute a serial number for the audit record. Audit records are
1651 * written to user-space as soon as they are generated, so a complete
1652 * audit record may be written in several pieces. The timestamp of the
1653 * record and this serial number are used by the user-space tools to
1654 * determine which pieces belong to the same audit record. The
1655 * (timestamp,serial) tuple is unique for each syscall and is live from
1656 * syscall entry to syscall exit.
1657 *
1658 * NOTE: Another possibility is to store the formatted records off the
1659 * audit context (for those records that have a context), and emit them
1660 * all at syscall exit. However, this could delay the reporting of
1661 * significant errors until syscall exit (or never, if the system
1662 * halts).
1663 */
1664 unsigned int audit_serial(void)
1665 {
1666 static atomic_t serial = ATOMIC_INIT(0);
1667
1668 return atomic_add_return(1, &serial);
1669 }
1670
1671 static inline void audit_get_stamp(struct audit_context *ctx,
1672 struct timespec64 *t, unsigned int *serial)
1673 {
1674 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1675 *t = current_kernel_time64();
1676 *serial = audit_serial();
1677 }
1678 }
1679
1680 /**
1681 * audit_log_start - obtain an audit buffer
1682 * @ctx: audit_context (may be NULL)
1683 * @gfp_mask: type of allocation
1684 * @type: audit message type
1685 *
1686 * Returns audit_buffer pointer on success or NULL on error.
1687 *
1688 * Obtain an audit buffer. This routine does locking to obtain the
1689 * audit buffer, but then no locking is required for calls to
1690 * audit_log_*format. If the task (ctx) is a task that is currently in a
1691 * syscall, then the syscall is marked as auditable and an audit record
1692 * will be written at syscall exit. If there is no associated task, then
1693 * task context (ctx) should be NULL.
1694 */
1695 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1696 int type)
1697 {
1698 struct audit_buffer *ab;
1699 struct timespec64 t;
1700 unsigned int uninitialized_var(serial);
1701
1702 if (audit_initialized != AUDIT_INITIALIZED)
1703 return NULL;
1704
1705 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1706 return NULL;
1707
1708 /* NOTE: don't ever fail/sleep on these two conditions:
1709 * 1. auditd generated record - since we need auditd to drain the
1710 * queue; also, when we are checking for auditd, compare PIDs using
1711 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1712 * using a PID anchored in the caller's namespace
1713 * 2. generator holding the audit_cmd_mutex - we don't want to block
1714 * while holding the mutex */
1715 if (!(auditd_test_task(current) ||
1716 (current == __mutex_owner(&audit_cmd_mutex)))) {
1717 long stime = audit_backlog_wait_time;
1718
1719 while (audit_backlog_limit &&
1720 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1721 /* wake kauditd to try and flush the queue */
1722 wake_up_interruptible(&kauditd_wait);
1723
1724 /* sleep if we are allowed and we haven't exhausted our
1725 * backlog wait limit */
1726 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1727 DECLARE_WAITQUEUE(wait, current);
1728
1729 add_wait_queue_exclusive(&audit_backlog_wait,
1730 &wait);
1731 set_current_state(TASK_UNINTERRUPTIBLE);
1732 stime = schedule_timeout(stime);
1733 remove_wait_queue(&audit_backlog_wait, &wait);
1734 } else {
1735 if (audit_rate_check() && printk_ratelimit())
1736 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1737 skb_queue_len(&audit_queue),
1738 audit_backlog_limit);
1739 audit_log_lost("backlog limit exceeded");
1740 return NULL;
1741 }
1742 }
1743 }
1744
1745 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1746 if (!ab) {
1747 audit_log_lost("out of memory in audit_log_start");
1748 return NULL;
1749 }
1750
1751 audit_get_stamp(ab->ctx, &t, &serial);
1752 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1753 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1754
1755 return ab;
1756 }
1757
1758 /**
1759 * audit_expand - expand skb in the audit buffer
1760 * @ab: audit_buffer
1761 * @extra: space to add at tail of the skb
1762 *
1763 * Returns 0 (no space) on failed expansion, or available space if
1764 * successful.
1765 */
1766 static inline int audit_expand(struct audit_buffer *ab, int extra)
1767 {
1768 struct sk_buff *skb = ab->skb;
1769 int oldtail = skb_tailroom(skb);
1770 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1771 int newtail = skb_tailroom(skb);
1772
1773 if (ret < 0) {
1774 audit_log_lost("out of memory in audit_expand");
1775 return 0;
1776 }
1777
1778 skb->truesize += newtail - oldtail;
1779 return newtail;
1780 }
1781
1782 /*
1783 * Format an audit message into the audit buffer. If there isn't enough
1784 * room in the audit buffer, more room will be allocated and vsnprint
1785 * will be called a second time. Currently, we assume that a printk
1786 * can't format message larger than 1024 bytes, so we don't either.
1787 */
1788 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1789 va_list args)
1790 {
1791 int len, avail;
1792 struct sk_buff *skb;
1793 va_list args2;
1794
1795 if (!ab)
1796 return;
1797
1798 BUG_ON(!ab->skb);
1799 skb = ab->skb;
1800 avail = skb_tailroom(skb);
1801 if (avail == 0) {
1802 avail = audit_expand(ab, AUDIT_BUFSIZ);
1803 if (!avail)
1804 goto out;
1805 }
1806 va_copy(args2, args);
1807 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1808 if (len >= avail) {
1809 /* The printk buffer is 1024 bytes long, so if we get
1810 * here and AUDIT_BUFSIZ is at least 1024, then we can
1811 * log everything that printk could have logged. */
1812 avail = audit_expand(ab,
1813 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1814 if (!avail)
1815 goto out_va_end;
1816 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1817 }
1818 if (len > 0)
1819 skb_put(skb, len);
1820 out_va_end:
1821 va_end(args2);
1822 out:
1823 return;
1824 }
1825
1826 /**
1827 * audit_log_format - format a message into the audit buffer.
1828 * @ab: audit_buffer
1829 * @fmt: format string
1830 * @...: optional parameters matching @fmt string
1831 *
1832 * All the work is done in audit_log_vformat.
1833 */
1834 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1835 {
1836 va_list args;
1837
1838 if (!ab)
1839 return;
1840 va_start(args, fmt);
1841 audit_log_vformat(ab, fmt, args);
1842 va_end(args);
1843 }
1844
1845 /**
1846 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1847 * @ab: the audit_buffer
1848 * @buf: buffer to convert to hex
1849 * @len: length of @buf to be converted
1850 *
1851 * No return value; failure to expand is silently ignored.
1852 *
1853 * This function will take the passed buf and convert it into a string of
1854 * ascii hex digits. The new string is placed onto the skb.
1855 */
1856 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1857 size_t len)
1858 {
1859 int i, avail, new_len;
1860 unsigned char *ptr;
1861 struct sk_buff *skb;
1862
1863 if (!ab)
1864 return;
1865
1866 BUG_ON(!ab->skb);
1867 skb = ab->skb;
1868 avail = skb_tailroom(skb);
1869 new_len = len<<1;
1870 if (new_len >= avail) {
1871 /* Round the buffer request up to the next multiple */
1872 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1873 avail = audit_expand(ab, new_len);
1874 if (!avail)
1875 return;
1876 }
1877
1878 ptr = skb_tail_pointer(skb);
1879 for (i = 0; i < len; i++)
1880 ptr = hex_byte_pack_upper(ptr, buf[i]);
1881 *ptr = 0;
1882 skb_put(skb, len << 1); /* new string is twice the old string */
1883 }
1884
1885 /*
1886 * Format a string of no more than slen characters into the audit buffer,
1887 * enclosed in quote marks.
1888 */
1889 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1890 size_t slen)
1891 {
1892 int avail, new_len;
1893 unsigned char *ptr;
1894 struct sk_buff *skb;
1895
1896 if (!ab)
1897 return;
1898
1899 BUG_ON(!ab->skb);
1900 skb = ab->skb;
1901 avail = skb_tailroom(skb);
1902 new_len = slen + 3; /* enclosing quotes + null terminator */
1903 if (new_len > avail) {
1904 avail = audit_expand(ab, new_len);
1905 if (!avail)
1906 return;
1907 }
1908 ptr = skb_tail_pointer(skb);
1909 *ptr++ = '"';
1910 memcpy(ptr, string, slen);
1911 ptr += slen;
1912 *ptr++ = '"';
1913 *ptr = 0;
1914 skb_put(skb, slen + 2); /* don't include null terminator */
1915 }
1916
1917 /**
1918 * audit_string_contains_control - does a string need to be logged in hex
1919 * @string: string to be checked
1920 * @len: max length of the string to check
1921 */
1922 bool audit_string_contains_control(const char *string, size_t len)
1923 {
1924 const unsigned char *p;
1925 for (p = string; p < (const unsigned char *)string + len; p++) {
1926 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1927 return true;
1928 }
1929 return false;
1930 }
1931
1932 /**
1933 * audit_log_n_untrustedstring - log a string that may contain random characters
1934 * @ab: audit_buffer
1935 * @len: length of string (not including trailing null)
1936 * @string: string to be logged
1937 *
1938 * This code will escape a string that is passed to it if the string
1939 * contains a control character, unprintable character, double quote mark,
1940 * or a space. Unescaped strings will start and end with a double quote mark.
1941 * Strings that are escaped are printed in hex (2 digits per char).
1942 *
1943 * The caller specifies the number of characters in the string to log, which may
1944 * or may not be the entire string.
1945 */
1946 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1947 size_t len)
1948 {
1949 if (audit_string_contains_control(string, len))
1950 audit_log_n_hex(ab, string, len);
1951 else
1952 audit_log_n_string(ab, string, len);
1953 }
1954
1955 /**
1956 * audit_log_untrustedstring - log a string that may contain random characters
1957 * @ab: audit_buffer
1958 * @string: string to be logged
1959 *
1960 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1961 * determine string length.
1962 */
1963 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1964 {
1965 audit_log_n_untrustedstring(ab, string, strlen(string));
1966 }
1967
1968 /* This is a helper-function to print the escaped d_path */
1969 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1970 const struct path *path)
1971 {
1972 char *p, *pathname;
1973
1974 if (prefix)
1975 audit_log_format(ab, "%s", prefix);
1976
1977 /* We will allow 11 spaces for ' (deleted)' to be appended */
1978 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1979 if (!pathname) {
1980 audit_log_string(ab, "<no_memory>");
1981 return;
1982 }
1983 p = d_path(path, pathname, PATH_MAX+11);
1984 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1985 /* FIXME: can we save some information here? */
1986 audit_log_string(ab, "<too_long>");
1987 } else
1988 audit_log_untrustedstring(ab, p);
1989 kfree(pathname);
1990 }
1991
1992 void audit_log_session_info(struct audit_buffer *ab)
1993 {
1994 unsigned int sessionid = audit_get_sessionid(current);
1995 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1996
1997 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1998 }
1999
2000 void audit_log_key(struct audit_buffer *ab, char *key)
2001 {
2002 audit_log_format(ab, " key=");
2003 if (key)
2004 audit_log_untrustedstring(ab, key);
2005 else
2006 audit_log_format(ab, "(null)");
2007 }
2008
2009 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2010 {
2011 int i;
2012
2013 audit_log_format(ab, " %s=", prefix);
2014 CAP_FOR_EACH_U32(i) {
2015 audit_log_format(ab, "%08x",
2016 cap->cap[CAP_LAST_U32 - i]);
2017 }
2018 }
2019
2020 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2021 {
2022 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2023 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2024 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2025 name->fcap.fE, name->fcap_ver);
2026 }
2027
2028 static inline int audit_copy_fcaps(struct audit_names *name,
2029 const struct dentry *dentry)
2030 {
2031 struct cpu_vfs_cap_data caps;
2032 int rc;
2033
2034 if (!dentry)
2035 return 0;
2036
2037 rc = get_vfs_caps_from_disk(dentry, &caps);
2038 if (rc)
2039 return rc;
2040
2041 name->fcap.permitted = caps.permitted;
2042 name->fcap.inheritable = caps.inheritable;
2043 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2044 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2045 VFS_CAP_REVISION_SHIFT;
2046
2047 return 0;
2048 }
2049
2050 /* Copy inode data into an audit_names. */
2051 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2052 struct inode *inode)
2053 {
2054 name->ino = inode->i_ino;
2055 name->dev = inode->i_sb->s_dev;
2056 name->mode = inode->i_mode;
2057 name->uid = inode->i_uid;
2058 name->gid = inode->i_gid;
2059 name->rdev = inode->i_rdev;
2060 security_inode_getsecid(inode, &name->osid);
2061 audit_copy_fcaps(name, dentry);
2062 }
2063
2064 /**
2065 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2066 * @context: audit_context for the task
2067 * @n: audit_names structure with reportable details
2068 * @path: optional path to report instead of audit_names->name
2069 * @record_num: record number to report when handling a list of names
2070 * @call_panic: optional pointer to int that will be updated if secid fails
2071 */
2072 void audit_log_name(struct audit_context *context, struct audit_names *n,
2073 const struct path *path, int record_num, int *call_panic)
2074 {
2075 struct audit_buffer *ab;
2076 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2077 if (!ab)
2078 return;
2079
2080 audit_log_format(ab, "item=%d", record_num);
2081
2082 if (path)
2083 audit_log_d_path(ab, " name=", path);
2084 else if (n->name) {
2085 switch (n->name_len) {
2086 case AUDIT_NAME_FULL:
2087 /* log the full path */
2088 audit_log_format(ab, " name=");
2089 audit_log_untrustedstring(ab, n->name->name);
2090 break;
2091 case 0:
2092 /* name was specified as a relative path and the
2093 * directory component is the cwd */
2094 audit_log_d_path(ab, " name=", &context->pwd);
2095 break;
2096 default:
2097 /* log the name's directory component */
2098 audit_log_format(ab, " name=");
2099 audit_log_n_untrustedstring(ab, n->name->name,
2100 n->name_len);
2101 }
2102 } else
2103 audit_log_format(ab, " name=(null)");
2104
2105 if (n->ino != AUDIT_INO_UNSET)
2106 audit_log_format(ab, " inode=%lu"
2107 " dev=%02x:%02x mode=%#ho"
2108 " ouid=%u ogid=%u rdev=%02x:%02x",
2109 n->ino,
2110 MAJOR(n->dev),
2111 MINOR(n->dev),
2112 n->mode,
2113 from_kuid(&init_user_ns, n->uid),
2114 from_kgid(&init_user_ns, n->gid),
2115 MAJOR(n->rdev),
2116 MINOR(n->rdev));
2117 if (n->osid != 0) {
2118 char *ctx = NULL;
2119 u32 len;
2120 if (security_secid_to_secctx(
2121 n->osid, &ctx, &len)) {
2122 audit_log_format(ab, " osid=%u", n->osid);
2123 if (call_panic)
2124 *call_panic = 2;
2125 } else {
2126 audit_log_format(ab, " obj=%s", ctx);
2127 security_release_secctx(ctx, len);
2128 }
2129 }
2130
2131 /* log the audit_names record type */
2132 audit_log_format(ab, " nametype=");
2133 switch(n->type) {
2134 case AUDIT_TYPE_NORMAL:
2135 audit_log_format(ab, "NORMAL");
2136 break;
2137 case AUDIT_TYPE_PARENT:
2138 audit_log_format(ab, "PARENT");
2139 break;
2140 case AUDIT_TYPE_CHILD_DELETE:
2141 audit_log_format(ab, "DELETE");
2142 break;
2143 case AUDIT_TYPE_CHILD_CREATE:
2144 audit_log_format(ab, "CREATE");
2145 break;
2146 default:
2147 audit_log_format(ab, "UNKNOWN");
2148 break;
2149 }
2150
2151 audit_log_fcaps(ab, n);
2152 audit_log_end(ab);
2153 }
2154
2155 int audit_log_task_context(struct audit_buffer *ab)
2156 {
2157 char *ctx = NULL;
2158 unsigned len;
2159 int error;
2160 u32 sid;
2161
2162 security_task_getsecid(current, &sid);
2163 if (!sid)
2164 return 0;
2165
2166 error = security_secid_to_secctx(sid, &ctx, &len);
2167 if (error) {
2168 if (error != -EINVAL)
2169 goto error_path;
2170 return 0;
2171 }
2172
2173 audit_log_format(ab, " subj=%s", ctx);
2174 security_release_secctx(ctx, len);
2175 return 0;
2176
2177 error_path:
2178 audit_panic("error in audit_log_task_context");
2179 return error;
2180 }
2181 EXPORT_SYMBOL(audit_log_task_context);
2182
2183 void audit_log_d_path_exe(struct audit_buffer *ab,
2184 struct mm_struct *mm)
2185 {
2186 struct file *exe_file;
2187
2188 if (!mm)
2189 goto out_null;
2190
2191 exe_file = get_mm_exe_file(mm);
2192 if (!exe_file)
2193 goto out_null;
2194
2195 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2196 fput(exe_file);
2197 return;
2198 out_null:
2199 audit_log_format(ab, " exe=(null)");
2200 }
2201
2202 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2203 {
2204 struct tty_struct *tty = NULL;
2205 unsigned long flags;
2206
2207 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2208 if (tsk->signal)
2209 tty = tty_kref_get(tsk->signal->tty);
2210 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2211 return tty;
2212 }
2213
2214 void audit_put_tty(struct tty_struct *tty)
2215 {
2216 tty_kref_put(tty);
2217 }
2218
2219 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2220 {
2221 const struct cred *cred;
2222 char comm[sizeof(tsk->comm)];
2223 struct tty_struct *tty;
2224
2225 if (!ab)
2226 return;
2227
2228 /* tsk == current */
2229 cred = current_cred();
2230 tty = audit_get_tty(tsk);
2231 audit_log_format(ab,
2232 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2233 " euid=%u suid=%u fsuid=%u"
2234 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2235 task_ppid_nr(tsk),
2236 task_tgid_nr(tsk),
2237 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2238 from_kuid(&init_user_ns, cred->uid),
2239 from_kgid(&init_user_ns, cred->gid),
2240 from_kuid(&init_user_ns, cred->euid),
2241 from_kuid(&init_user_ns, cred->suid),
2242 from_kuid(&init_user_ns, cred->fsuid),
2243 from_kgid(&init_user_ns, cred->egid),
2244 from_kgid(&init_user_ns, cred->sgid),
2245 from_kgid(&init_user_ns, cred->fsgid),
2246 tty ? tty_name(tty) : "(none)",
2247 audit_get_sessionid(tsk));
2248 audit_put_tty(tty);
2249 audit_log_format(ab, " comm=");
2250 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2251 audit_log_d_path_exe(ab, tsk->mm);
2252 audit_log_task_context(ab);
2253 }
2254 EXPORT_SYMBOL(audit_log_task_info);
2255
2256 /**
2257 * audit_log_link_denied - report a link restriction denial
2258 * @operation: specific link operation
2259 * @link: the path that triggered the restriction
2260 */
2261 void audit_log_link_denied(const char *operation, const struct path *link)
2262 {
2263 struct audit_buffer *ab;
2264 struct audit_names *name;
2265
2266 name = kzalloc(sizeof(*name), GFP_NOFS);
2267 if (!name)
2268 return;
2269
2270 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2271 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2272 AUDIT_ANOM_LINK);
2273 if (!ab)
2274 goto out;
2275 audit_log_format(ab, "op=%s", operation);
2276 audit_log_task_info(ab, current);
2277 audit_log_format(ab, " res=0");
2278 audit_log_end(ab);
2279
2280 /* Generate AUDIT_PATH record with object. */
2281 name->type = AUDIT_TYPE_NORMAL;
2282 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2283 audit_log_name(current->audit_context, name, link, 0, NULL);
2284 out:
2285 kfree(name);
2286 }
2287
2288 /**
2289 * audit_log_end - end one audit record
2290 * @ab: the audit_buffer
2291 *
2292 * We can not do a netlink send inside an irq context because it blocks (last
2293 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2294 * queue and a tasklet is scheduled to remove them from the queue outside the
2295 * irq context. May be called in any context.
2296 */
2297 void audit_log_end(struct audit_buffer *ab)
2298 {
2299 struct sk_buff *skb;
2300 struct nlmsghdr *nlh;
2301
2302 if (!ab)
2303 return;
2304
2305 if (audit_rate_check()) {
2306 skb = ab->skb;
2307 ab->skb = NULL;
2308
2309 /* setup the netlink header, see the comments in
2310 * kauditd_send_multicast_skb() for length quirks */
2311 nlh = nlmsg_hdr(skb);
2312 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2313
2314 /* queue the netlink packet and poke the kauditd thread */
2315 skb_queue_tail(&audit_queue, skb);
2316 wake_up_interruptible(&kauditd_wait);
2317 } else
2318 audit_log_lost("rate limit exceeded");
2319
2320 audit_buffer_free(ab);
2321 }
2322
2323 /**
2324 * audit_log - Log an audit record
2325 * @ctx: audit context
2326 * @gfp_mask: type of allocation
2327 * @type: audit message type
2328 * @fmt: format string to use
2329 * @...: variable parameters matching the format string
2330 *
2331 * This is a convenience function that calls audit_log_start,
2332 * audit_log_vformat, and audit_log_end. It may be called
2333 * in any context.
2334 */
2335 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2336 const char *fmt, ...)
2337 {
2338 struct audit_buffer *ab;
2339 va_list args;
2340
2341 ab = audit_log_start(ctx, gfp_mask, type);
2342 if (ab) {
2343 va_start(args, fmt);
2344 audit_log_vformat(ab, fmt, args);
2345 va_end(args);
2346 audit_log_end(ab);
2347 }
2348 }
2349
2350 EXPORT_SYMBOL(audit_log_start);
2351 EXPORT_SYMBOL(audit_log_end);
2352 EXPORT_SYMBOL(audit_log_format);
2353 EXPORT_SYMBOL(audit_log);