]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/audit.c
Merge tag 'nfsd-4.11-1' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-artful-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61
62 #include <linux/audit.h>
63
64 #include <net/sock.h>
65 #include <net/netlink.h>
66 #include <linux/skbuff.h>
67 #ifdef CONFIG_SECURITY
68 #include <linux/security.h>
69 #endif
70 #include <linux/freezer.h>
71 #include <linux/pid_namespace.h>
72 #include <net/netns/generic.h>
73
74 #include "audit.h"
75
76 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
77 * (Initialization happens after skb_init is called.) */
78 #define AUDIT_DISABLED -1
79 #define AUDIT_UNINITIALIZED 0
80 #define AUDIT_INITIALIZED 1
81 static int audit_initialized;
82
83 #define AUDIT_OFF 0
84 #define AUDIT_ON 1
85 #define AUDIT_LOCKED 2
86 u32 audit_enabled;
87 u32 audit_ever_enabled;
88
89 EXPORT_SYMBOL_GPL(audit_enabled);
90
91 /* Default state when kernel boots without any parameters. */
92 static u32 audit_default;
93
94 /* If auditing cannot proceed, audit_failure selects what happens. */
95 static u32 audit_failure = AUDIT_FAIL_PRINTK;
96
97 /* private audit network namespace index */
98 static unsigned int audit_net_id;
99
100 /**
101 * struct audit_net - audit private network namespace data
102 * @sk: communication socket
103 */
104 struct audit_net {
105 struct sock *sk;
106 };
107
108 /**
109 * struct auditd_connection - kernel/auditd connection state
110 * @pid: auditd PID
111 * @portid: netlink portid
112 * @net: the associated network namespace
113 * @lock: spinlock to protect write access
114 *
115 * Description:
116 * This struct is RCU protected; you must either hold the RCU lock for reading
117 * or the included spinlock for writing.
118 */
119 static struct auditd_connection {
120 int pid;
121 u32 portid;
122 struct net *net;
123 spinlock_t lock;
124 } auditd_conn;
125
126 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
127 * to that number per second. This prevents DoS attacks, but results in
128 * audit records being dropped. */
129 static u32 audit_rate_limit;
130
131 /* Number of outstanding audit_buffers allowed.
132 * When set to zero, this means unlimited. */
133 static u32 audit_backlog_limit = 64;
134 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
135 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
136
137 /* The identity of the user shutting down the audit system. */
138 kuid_t audit_sig_uid = INVALID_UID;
139 pid_t audit_sig_pid = -1;
140 u32 audit_sig_sid = 0;
141
142 /* Records can be lost in several ways:
143 0) [suppressed in audit_alloc]
144 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
145 2) out of memory in audit_log_move [alloc_skb]
146 3) suppressed due to audit_rate_limit
147 4) suppressed due to audit_backlog_limit
148 */
149 static atomic_t audit_lost = ATOMIC_INIT(0);
150
151 /* Hash for inode-based rules */
152 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
153
154 /* The audit_freelist is a list of pre-allocated audit buffers (if more
155 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
156 * being placed on the freelist). */
157 static DEFINE_SPINLOCK(audit_freelist_lock);
158 static int audit_freelist_count;
159 static LIST_HEAD(audit_freelist);
160
161 /* queue msgs to send via kauditd_task */
162 static struct sk_buff_head audit_queue;
163 static void kauditd_hold_skb(struct sk_buff *skb);
164 /* queue msgs due to temporary unicast send problems */
165 static struct sk_buff_head audit_retry_queue;
166 /* queue msgs waiting for new auditd connection */
167 static struct sk_buff_head audit_hold_queue;
168
169 /* queue servicing thread */
170 static struct task_struct *kauditd_task;
171 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
172
173 /* waitqueue for callers who are blocked on the audit backlog */
174 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
175
176 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
177 .mask = -1,
178 .features = 0,
179 .lock = 0,};
180
181 static char *audit_feature_names[2] = {
182 "only_unset_loginuid",
183 "loginuid_immutable",
184 };
185
186
187 /* Serialize requests from userspace. */
188 DEFINE_MUTEX(audit_cmd_mutex);
189
190 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
191 * audit records. Since printk uses a 1024 byte buffer, this buffer
192 * should be at least that large. */
193 #define AUDIT_BUFSIZ 1024
194
195 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
196 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
197 #define AUDIT_MAXFREE (2*NR_CPUS)
198
199 /* The audit_buffer is used when formatting an audit record. The caller
200 * locks briefly to get the record off the freelist or to allocate the
201 * buffer, and locks briefly to send the buffer to the netlink layer or
202 * to place it on a transmit queue. Multiple audit_buffers can be in
203 * use simultaneously. */
204 struct audit_buffer {
205 struct list_head list;
206 struct sk_buff *skb; /* formatted skb ready to send */
207 struct audit_context *ctx; /* NULL or associated context */
208 gfp_t gfp_mask;
209 };
210
211 struct audit_reply {
212 __u32 portid;
213 struct net *net;
214 struct sk_buff *skb;
215 };
216
217 /**
218 * auditd_test_task - Check to see if a given task is an audit daemon
219 * @task: the task to check
220 *
221 * Description:
222 * Return 1 if the task is a registered audit daemon, 0 otherwise.
223 */
224 int auditd_test_task(const struct task_struct *task)
225 {
226 int rc;
227
228 rcu_read_lock();
229 rc = (auditd_conn.pid && task->tgid == auditd_conn.pid ? 1 : 0);
230 rcu_read_unlock();
231
232 return rc;
233 }
234
235 /**
236 * audit_get_sk - Return the audit socket for the given network namespace
237 * @net: the destination network namespace
238 *
239 * Description:
240 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
241 * that a reference is held for the network namespace while the sock is in use.
242 */
243 static struct sock *audit_get_sk(const struct net *net)
244 {
245 struct audit_net *aunet;
246
247 if (!net)
248 return NULL;
249
250 aunet = net_generic(net, audit_net_id);
251 return aunet->sk;
252 }
253
254 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
255 {
256 if (ab) {
257 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
258 nlh->nlmsg_pid = portid;
259 }
260 }
261
262 void audit_panic(const char *message)
263 {
264 switch (audit_failure) {
265 case AUDIT_FAIL_SILENT:
266 break;
267 case AUDIT_FAIL_PRINTK:
268 if (printk_ratelimit())
269 pr_err("%s\n", message);
270 break;
271 case AUDIT_FAIL_PANIC:
272 panic("audit: %s\n", message);
273 break;
274 }
275 }
276
277 static inline int audit_rate_check(void)
278 {
279 static unsigned long last_check = 0;
280 static int messages = 0;
281 static DEFINE_SPINLOCK(lock);
282 unsigned long flags;
283 unsigned long now;
284 unsigned long elapsed;
285 int retval = 0;
286
287 if (!audit_rate_limit) return 1;
288
289 spin_lock_irqsave(&lock, flags);
290 if (++messages < audit_rate_limit) {
291 retval = 1;
292 } else {
293 now = jiffies;
294 elapsed = now - last_check;
295 if (elapsed > HZ) {
296 last_check = now;
297 messages = 0;
298 retval = 1;
299 }
300 }
301 spin_unlock_irqrestore(&lock, flags);
302
303 return retval;
304 }
305
306 /**
307 * audit_log_lost - conditionally log lost audit message event
308 * @message: the message stating reason for lost audit message
309 *
310 * Emit at least 1 message per second, even if audit_rate_check is
311 * throttling.
312 * Always increment the lost messages counter.
313 */
314 void audit_log_lost(const char *message)
315 {
316 static unsigned long last_msg = 0;
317 static DEFINE_SPINLOCK(lock);
318 unsigned long flags;
319 unsigned long now;
320 int print;
321
322 atomic_inc(&audit_lost);
323
324 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
325
326 if (!print) {
327 spin_lock_irqsave(&lock, flags);
328 now = jiffies;
329 if (now - last_msg > HZ) {
330 print = 1;
331 last_msg = now;
332 }
333 spin_unlock_irqrestore(&lock, flags);
334 }
335
336 if (print) {
337 if (printk_ratelimit())
338 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
339 atomic_read(&audit_lost),
340 audit_rate_limit,
341 audit_backlog_limit);
342 audit_panic(message);
343 }
344 }
345
346 static int audit_log_config_change(char *function_name, u32 new, u32 old,
347 int allow_changes)
348 {
349 struct audit_buffer *ab;
350 int rc = 0;
351
352 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
353 if (unlikely(!ab))
354 return rc;
355 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
356 audit_log_session_info(ab);
357 rc = audit_log_task_context(ab);
358 if (rc)
359 allow_changes = 0; /* Something weird, deny request */
360 audit_log_format(ab, " res=%d", allow_changes);
361 audit_log_end(ab);
362 return rc;
363 }
364
365 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
366 {
367 int allow_changes, rc = 0;
368 u32 old = *to_change;
369
370 /* check if we are locked */
371 if (audit_enabled == AUDIT_LOCKED)
372 allow_changes = 0;
373 else
374 allow_changes = 1;
375
376 if (audit_enabled != AUDIT_OFF) {
377 rc = audit_log_config_change(function_name, new, old, allow_changes);
378 if (rc)
379 allow_changes = 0;
380 }
381
382 /* If we are allowed, make the change */
383 if (allow_changes == 1)
384 *to_change = new;
385 /* Not allowed, update reason */
386 else if (rc == 0)
387 rc = -EPERM;
388 return rc;
389 }
390
391 static int audit_set_rate_limit(u32 limit)
392 {
393 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
394 }
395
396 static int audit_set_backlog_limit(u32 limit)
397 {
398 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
399 }
400
401 static int audit_set_backlog_wait_time(u32 timeout)
402 {
403 return audit_do_config_change("audit_backlog_wait_time",
404 &audit_backlog_wait_time, timeout);
405 }
406
407 static int audit_set_enabled(u32 state)
408 {
409 int rc;
410 if (state > AUDIT_LOCKED)
411 return -EINVAL;
412
413 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
414 if (!rc)
415 audit_ever_enabled |= !!state;
416
417 return rc;
418 }
419
420 static int audit_set_failure(u32 state)
421 {
422 if (state != AUDIT_FAIL_SILENT
423 && state != AUDIT_FAIL_PRINTK
424 && state != AUDIT_FAIL_PANIC)
425 return -EINVAL;
426
427 return audit_do_config_change("audit_failure", &audit_failure, state);
428 }
429
430 /**
431 * auditd_set - Set/Reset the auditd connection state
432 * @pid: auditd PID
433 * @portid: auditd netlink portid
434 * @net: auditd network namespace pointer
435 *
436 * Description:
437 * This function will obtain and drop network namespace references as
438 * necessary.
439 */
440 static void auditd_set(int pid, u32 portid, struct net *net)
441 {
442 unsigned long flags;
443
444 spin_lock_irqsave(&auditd_conn.lock, flags);
445 auditd_conn.pid = pid;
446 auditd_conn.portid = portid;
447 if (auditd_conn.net)
448 put_net(auditd_conn.net);
449 if (net)
450 auditd_conn.net = get_net(net);
451 else
452 auditd_conn.net = NULL;
453 spin_unlock_irqrestore(&auditd_conn.lock, flags);
454 }
455
456 /**
457 * auditd_reset - Disconnect the auditd connection
458 *
459 * Description:
460 * Break the auditd/kauditd connection and move all the queued records into the
461 * hold queue in case auditd reconnects.
462 */
463 static void auditd_reset(void)
464 {
465 struct sk_buff *skb;
466
467 /* if it isn't already broken, break the connection */
468 rcu_read_lock();
469 if (auditd_conn.pid)
470 auditd_set(0, 0, NULL);
471 rcu_read_unlock();
472
473 /* flush all of the main and retry queues to the hold queue */
474 while ((skb = skb_dequeue(&audit_retry_queue)))
475 kauditd_hold_skb(skb);
476 while ((skb = skb_dequeue(&audit_queue)))
477 kauditd_hold_skb(skb);
478 }
479
480 /**
481 * kauditd_print_skb - Print the audit record to the ring buffer
482 * @skb: audit record
483 *
484 * Whatever the reason, this packet may not make it to the auditd connection
485 * so write it via printk so the information isn't completely lost.
486 */
487 static void kauditd_printk_skb(struct sk_buff *skb)
488 {
489 struct nlmsghdr *nlh = nlmsg_hdr(skb);
490 char *data = nlmsg_data(nlh);
491
492 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
493 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
494 }
495
496 /**
497 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
498 * @skb: audit record
499 *
500 * Description:
501 * This should only be used by the kauditd_thread when it fails to flush the
502 * hold queue.
503 */
504 static void kauditd_rehold_skb(struct sk_buff *skb)
505 {
506 /* put the record back in the queue at the same place */
507 skb_queue_head(&audit_hold_queue, skb);
508
509 /* fail the auditd connection */
510 auditd_reset();
511 }
512
513 /**
514 * kauditd_hold_skb - Queue an audit record, waiting for auditd
515 * @skb: audit record
516 *
517 * Description:
518 * Queue the audit record, waiting for an instance of auditd. When this
519 * function is called we haven't given up yet on sending the record, but things
520 * are not looking good. The first thing we want to do is try to write the
521 * record via printk and then see if we want to try and hold on to the record
522 * and queue it, if we have room. If we want to hold on to the record, but we
523 * don't have room, record a record lost message.
524 */
525 static void kauditd_hold_skb(struct sk_buff *skb)
526 {
527 /* at this point it is uncertain if we will ever send this to auditd so
528 * try to send the message via printk before we go any further */
529 kauditd_printk_skb(skb);
530
531 /* can we just silently drop the message? */
532 if (!audit_default) {
533 kfree_skb(skb);
534 return;
535 }
536
537 /* if we have room, queue the message */
538 if (!audit_backlog_limit ||
539 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
540 skb_queue_tail(&audit_hold_queue, skb);
541 return;
542 }
543
544 /* we have no other options - drop the message */
545 audit_log_lost("kauditd hold queue overflow");
546 kfree_skb(skb);
547
548 /* fail the auditd connection */
549 auditd_reset();
550 }
551
552 /**
553 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
554 * @skb: audit record
555 *
556 * Description:
557 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
558 * but for some reason we are having problems sending it audit records so
559 * queue the given record and attempt to resend.
560 */
561 static void kauditd_retry_skb(struct sk_buff *skb)
562 {
563 /* NOTE: because records should only live in the retry queue for a
564 * short period of time, before either being sent or moved to the hold
565 * queue, we don't currently enforce a limit on this queue */
566 skb_queue_tail(&audit_retry_queue, skb);
567 }
568
569 /**
570 * auditd_send_unicast_skb - Send a record via unicast to auditd
571 * @skb: audit record
572 *
573 * Description:
574 * Send a skb to the audit daemon, returns positive/zero values on success and
575 * negative values on failure; in all cases the skb will be consumed by this
576 * function. If the send results in -ECONNREFUSED the connection with auditd
577 * will be reset. This function may sleep so callers should not hold any locks
578 * where this would cause a problem.
579 */
580 static int auditd_send_unicast_skb(struct sk_buff *skb)
581 {
582 int rc;
583 u32 portid;
584 struct net *net;
585 struct sock *sk;
586
587 /* NOTE: we can't call netlink_unicast while in the RCU section so
588 * take a reference to the network namespace and grab local
589 * copies of the namespace, the sock, and the portid; the
590 * namespace and sock aren't going to go away while we hold a
591 * reference and if the portid does become invalid after the RCU
592 * section netlink_unicast() should safely return an error */
593
594 rcu_read_lock();
595 if (!auditd_conn.pid) {
596 rcu_read_unlock();
597 rc = -ECONNREFUSED;
598 goto err;
599 }
600 net = auditd_conn.net;
601 get_net(net);
602 sk = audit_get_sk(net);
603 portid = auditd_conn.portid;
604 rcu_read_unlock();
605
606 rc = netlink_unicast(sk, skb, portid, 0);
607 put_net(net);
608 if (rc < 0)
609 goto err;
610
611 return rc;
612
613 err:
614 if (rc == -ECONNREFUSED)
615 auditd_reset();
616 return rc;
617 }
618
619 /**
620 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
621 * @sk: the sending sock
622 * @portid: the netlink destination
623 * @queue: the skb queue to process
624 * @retry_limit: limit on number of netlink unicast failures
625 * @skb_hook: per-skb hook for additional processing
626 * @err_hook: hook called if the skb fails the netlink unicast send
627 *
628 * Description:
629 * Run through the given queue and attempt to send the audit records to auditd,
630 * returns zero on success, negative values on failure. It is up to the caller
631 * to ensure that the @sk is valid for the duration of this function.
632 *
633 */
634 static int kauditd_send_queue(struct sock *sk, u32 portid,
635 struct sk_buff_head *queue,
636 unsigned int retry_limit,
637 void (*skb_hook)(struct sk_buff *skb),
638 void (*err_hook)(struct sk_buff *skb))
639 {
640 int rc = 0;
641 struct sk_buff *skb;
642 static unsigned int failed = 0;
643
644 /* NOTE: kauditd_thread takes care of all our locking, we just use
645 * the netlink info passed to us (e.g. sk and portid) */
646
647 while ((skb = skb_dequeue(queue))) {
648 /* call the skb_hook for each skb we touch */
649 if (skb_hook)
650 (*skb_hook)(skb);
651
652 /* can we send to anyone via unicast? */
653 if (!sk) {
654 if (err_hook)
655 (*err_hook)(skb);
656 continue;
657 }
658
659 /* grab an extra skb reference in case of error */
660 skb_get(skb);
661 rc = netlink_unicast(sk, skb, portid, 0);
662 if (rc < 0) {
663 /* fatal failure for our queue flush attempt? */
664 if (++failed >= retry_limit ||
665 rc == -ECONNREFUSED || rc == -EPERM) {
666 /* yes - error processing for the queue */
667 sk = NULL;
668 if (err_hook)
669 (*err_hook)(skb);
670 if (!skb_hook)
671 goto out;
672 /* keep processing with the skb_hook */
673 continue;
674 } else
675 /* no - requeue to preserve ordering */
676 skb_queue_head(queue, skb);
677 } else {
678 /* it worked - drop the extra reference and continue */
679 consume_skb(skb);
680 failed = 0;
681 }
682 }
683
684 out:
685 return (rc >= 0 ? 0 : rc);
686 }
687
688 /*
689 * kauditd_send_multicast_skb - Send a record to any multicast listeners
690 * @skb: audit record
691 *
692 * Description:
693 * Write a multicast message to anyone listening in the initial network
694 * namespace. This function doesn't consume an skb as might be expected since
695 * it has to copy it anyways.
696 */
697 static void kauditd_send_multicast_skb(struct sk_buff *skb)
698 {
699 struct sk_buff *copy;
700 struct sock *sock = audit_get_sk(&init_net);
701 struct nlmsghdr *nlh;
702
703 /* NOTE: we are not taking an additional reference for init_net since
704 * we don't have to worry about it going away */
705
706 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
707 return;
708
709 /*
710 * The seemingly wasteful skb_copy() rather than bumping the refcount
711 * using skb_get() is necessary because non-standard mods are made to
712 * the skb by the original kaudit unicast socket send routine. The
713 * existing auditd daemon assumes this breakage. Fixing this would
714 * require co-ordinating a change in the established protocol between
715 * the kaudit kernel subsystem and the auditd userspace code. There is
716 * no reason for new multicast clients to continue with this
717 * non-compliance.
718 */
719 copy = skb_copy(skb, GFP_KERNEL);
720 if (!copy)
721 return;
722 nlh = nlmsg_hdr(copy);
723 nlh->nlmsg_len = skb->len;
724
725 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
726 }
727
728 /**
729 * kauditd_thread - Worker thread to send audit records to userspace
730 * @dummy: unused
731 */
732 static int kauditd_thread(void *dummy)
733 {
734 int rc;
735 u32 portid = 0;
736 struct net *net = NULL;
737 struct sock *sk = NULL;
738
739 #define UNICAST_RETRIES 5
740
741 set_freezable();
742 while (!kthread_should_stop()) {
743 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
744 rcu_read_lock();
745 if (!auditd_conn.pid) {
746 rcu_read_unlock();
747 goto main_queue;
748 }
749 net = auditd_conn.net;
750 get_net(net);
751 sk = audit_get_sk(net);
752 portid = auditd_conn.portid;
753 rcu_read_unlock();
754
755 /* attempt to flush the hold queue */
756 rc = kauditd_send_queue(sk, portid,
757 &audit_hold_queue, UNICAST_RETRIES,
758 NULL, kauditd_rehold_skb);
759 if (rc < 0) {
760 sk = NULL;
761 goto main_queue;
762 }
763
764 /* attempt to flush the retry queue */
765 rc = kauditd_send_queue(sk, portid,
766 &audit_retry_queue, UNICAST_RETRIES,
767 NULL, kauditd_hold_skb);
768 if (rc < 0) {
769 sk = NULL;
770 goto main_queue;
771 }
772
773 main_queue:
774 /* process the main queue - do the multicast send and attempt
775 * unicast, dump failed record sends to the retry queue; if
776 * sk == NULL due to previous failures we will just do the
777 * multicast send and move the record to the retry queue */
778 kauditd_send_queue(sk, portid, &audit_queue, 1,
779 kauditd_send_multicast_skb,
780 kauditd_retry_skb);
781
782 /* drop our netns reference, no auditd sends past this line */
783 if (net) {
784 put_net(net);
785 net = NULL;
786 }
787 sk = NULL;
788
789 /* we have processed all the queues so wake everyone */
790 wake_up(&audit_backlog_wait);
791
792 /* NOTE: we want to wake up if there is anything on the queue,
793 * regardless of if an auditd is connected, as we need to
794 * do the multicast send and rotate records from the
795 * main queue to the retry/hold queues */
796 wait_event_freezable(kauditd_wait,
797 (skb_queue_len(&audit_queue) ? 1 : 0));
798 }
799
800 return 0;
801 }
802
803 int audit_send_list(void *_dest)
804 {
805 struct audit_netlink_list *dest = _dest;
806 struct sk_buff *skb;
807 struct sock *sk = audit_get_sk(dest->net);
808
809 /* wait for parent to finish and send an ACK */
810 mutex_lock(&audit_cmd_mutex);
811 mutex_unlock(&audit_cmd_mutex);
812
813 while ((skb = __skb_dequeue(&dest->q)) != NULL)
814 netlink_unicast(sk, skb, dest->portid, 0);
815
816 put_net(dest->net);
817 kfree(dest);
818
819 return 0;
820 }
821
822 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
823 int multi, const void *payload, int size)
824 {
825 struct sk_buff *skb;
826 struct nlmsghdr *nlh;
827 void *data;
828 int flags = multi ? NLM_F_MULTI : 0;
829 int t = done ? NLMSG_DONE : type;
830
831 skb = nlmsg_new(size, GFP_KERNEL);
832 if (!skb)
833 return NULL;
834
835 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
836 if (!nlh)
837 goto out_kfree_skb;
838 data = nlmsg_data(nlh);
839 memcpy(data, payload, size);
840 return skb;
841
842 out_kfree_skb:
843 kfree_skb(skb);
844 return NULL;
845 }
846
847 static int audit_send_reply_thread(void *arg)
848 {
849 struct audit_reply *reply = (struct audit_reply *)arg;
850 struct sock *sk = audit_get_sk(reply->net);
851
852 mutex_lock(&audit_cmd_mutex);
853 mutex_unlock(&audit_cmd_mutex);
854
855 /* Ignore failure. It'll only happen if the sender goes away,
856 because our timeout is set to infinite. */
857 netlink_unicast(sk, reply->skb, reply->portid, 0);
858 put_net(reply->net);
859 kfree(reply);
860 return 0;
861 }
862
863 /**
864 * audit_send_reply - send an audit reply message via netlink
865 * @request_skb: skb of request we are replying to (used to target the reply)
866 * @seq: sequence number
867 * @type: audit message type
868 * @done: done (last) flag
869 * @multi: multi-part message flag
870 * @payload: payload data
871 * @size: payload size
872 *
873 * Allocates an skb, builds the netlink message, and sends it to the port id.
874 * No failure notifications.
875 */
876 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
877 int multi, const void *payload, int size)
878 {
879 u32 portid = NETLINK_CB(request_skb).portid;
880 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
881 struct sk_buff *skb;
882 struct task_struct *tsk;
883 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
884 GFP_KERNEL);
885
886 if (!reply)
887 return;
888
889 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
890 if (!skb)
891 goto out;
892
893 reply->net = get_net(net);
894 reply->portid = portid;
895 reply->skb = skb;
896
897 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
898 if (!IS_ERR(tsk))
899 return;
900 kfree_skb(skb);
901 out:
902 kfree(reply);
903 }
904
905 /*
906 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
907 * control messages.
908 */
909 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
910 {
911 int err = 0;
912
913 /* Only support initial user namespace for now. */
914 /*
915 * We return ECONNREFUSED because it tricks userspace into thinking
916 * that audit was not configured into the kernel. Lots of users
917 * configure their PAM stack (because that's what the distro does)
918 * to reject login if unable to send messages to audit. If we return
919 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
920 * configured in and will let login proceed. If we return EPERM
921 * userspace will reject all logins. This should be removed when we
922 * support non init namespaces!!
923 */
924 if (current_user_ns() != &init_user_ns)
925 return -ECONNREFUSED;
926
927 switch (msg_type) {
928 case AUDIT_LIST:
929 case AUDIT_ADD:
930 case AUDIT_DEL:
931 return -EOPNOTSUPP;
932 case AUDIT_GET:
933 case AUDIT_SET:
934 case AUDIT_GET_FEATURE:
935 case AUDIT_SET_FEATURE:
936 case AUDIT_LIST_RULES:
937 case AUDIT_ADD_RULE:
938 case AUDIT_DEL_RULE:
939 case AUDIT_SIGNAL_INFO:
940 case AUDIT_TTY_GET:
941 case AUDIT_TTY_SET:
942 case AUDIT_TRIM:
943 case AUDIT_MAKE_EQUIV:
944 /* Only support auditd and auditctl in initial pid namespace
945 * for now. */
946 if (task_active_pid_ns(current) != &init_pid_ns)
947 return -EPERM;
948
949 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
950 err = -EPERM;
951 break;
952 case AUDIT_USER:
953 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
954 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
955 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
956 err = -EPERM;
957 break;
958 default: /* bad msg */
959 err = -EINVAL;
960 }
961
962 return err;
963 }
964
965 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
966 {
967 uid_t uid = from_kuid(&init_user_ns, current_uid());
968 pid_t pid = task_tgid_nr(current);
969
970 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
971 *ab = NULL;
972 return;
973 }
974
975 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
976 if (unlikely(!*ab))
977 return;
978 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
979 audit_log_session_info(*ab);
980 audit_log_task_context(*ab);
981 }
982
983 int is_audit_feature_set(int i)
984 {
985 return af.features & AUDIT_FEATURE_TO_MASK(i);
986 }
987
988
989 static int audit_get_feature(struct sk_buff *skb)
990 {
991 u32 seq;
992
993 seq = nlmsg_hdr(skb)->nlmsg_seq;
994
995 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
996
997 return 0;
998 }
999
1000 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1001 u32 old_lock, u32 new_lock, int res)
1002 {
1003 struct audit_buffer *ab;
1004
1005 if (audit_enabled == AUDIT_OFF)
1006 return;
1007
1008 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1009 audit_log_task_info(ab, current);
1010 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1011 audit_feature_names[which], !!old_feature, !!new_feature,
1012 !!old_lock, !!new_lock, res);
1013 audit_log_end(ab);
1014 }
1015
1016 static int audit_set_feature(struct sk_buff *skb)
1017 {
1018 struct audit_features *uaf;
1019 int i;
1020
1021 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1022 uaf = nlmsg_data(nlmsg_hdr(skb));
1023
1024 /* if there is ever a version 2 we should handle that here */
1025
1026 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1027 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1028 u32 old_feature, new_feature, old_lock, new_lock;
1029
1030 /* if we are not changing this feature, move along */
1031 if (!(feature & uaf->mask))
1032 continue;
1033
1034 old_feature = af.features & feature;
1035 new_feature = uaf->features & feature;
1036 new_lock = (uaf->lock | af.lock) & feature;
1037 old_lock = af.lock & feature;
1038
1039 /* are we changing a locked feature? */
1040 if (old_lock && (new_feature != old_feature)) {
1041 audit_log_feature_change(i, old_feature, new_feature,
1042 old_lock, new_lock, 0);
1043 return -EPERM;
1044 }
1045 }
1046 /* nothing invalid, do the changes */
1047 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1048 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1049 u32 old_feature, new_feature, old_lock, new_lock;
1050
1051 /* if we are not changing this feature, move along */
1052 if (!(feature & uaf->mask))
1053 continue;
1054
1055 old_feature = af.features & feature;
1056 new_feature = uaf->features & feature;
1057 old_lock = af.lock & feature;
1058 new_lock = (uaf->lock | af.lock) & feature;
1059
1060 if (new_feature != old_feature)
1061 audit_log_feature_change(i, old_feature, new_feature,
1062 old_lock, new_lock, 1);
1063
1064 if (new_feature)
1065 af.features |= feature;
1066 else
1067 af.features &= ~feature;
1068 af.lock |= new_lock;
1069 }
1070
1071 return 0;
1072 }
1073
1074 static int audit_replace(pid_t pid)
1075 {
1076 struct sk_buff *skb;
1077
1078 skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, &pid, sizeof(pid));
1079 if (!skb)
1080 return -ENOMEM;
1081 return auditd_send_unicast_skb(skb);
1082 }
1083
1084 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1085 {
1086 u32 seq;
1087 void *data;
1088 int err;
1089 struct audit_buffer *ab;
1090 u16 msg_type = nlh->nlmsg_type;
1091 struct audit_sig_info *sig_data;
1092 char *ctx = NULL;
1093 u32 len;
1094
1095 err = audit_netlink_ok(skb, msg_type);
1096 if (err)
1097 return err;
1098
1099 seq = nlh->nlmsg_seq;
1100 data = nlmsg_data(nlh);
1101
1102 switch (msg_type) {
1103 case AUDIT_GET: {
1104 struct audit_status s;
1105 memset(&s, 0, sizeof(s));
1106 s.enabled = audit_enabled;
1107 s.failure = audit_failure;
1108 rcu_read_lock();
1109 s.pid = auditd_conn.pid;
1110 rcu_read_unlock();
1111 s.rate_limit = audit_rate_limit;
1112 s.backlog_limit = audit_backlog_limit;
1113 s.lost = atomic_read(&audit_lost);
1114 s.backlog = skb_queue_len(&audit_queue);
1115 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1116 s.backlog_wait_time = audit_backlog_wait_time;
1117 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1118 break;
1119 }
1120 case AUDIT_SET: {
1121 struct audit_status s;
1122 memset(&s, 0, sizeof(s));
1123 /* guard against past and future API changes */
1124 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1125 if (s.mask & AUDIT_STATUS_ENABLED) {
1126 err = audit_set_enabled(s.enabled);
1127 if (err < 0)
1128 return err;
1129 }
1130 if (s.mask & AUDIT_STATUS_FAILURE) {
1131 err = audit_set_failure(s.failure);
1132 if (err < 0)
1133 return err;
1134 }
1135 if (s.mask & AUDIT_STATUS_PID) {
1136 /* NOTE: we are using task_tgid_vnr() below because
1137 * the s.pid value is relative to the namespace
1138 * of the caller; at present this doesn't matter
1139 * much since you can really only run auditd
1140 * from the initial pid namespace, but something
1141 * to keep in mind if this changes */
1142 int new_pid = s.pid;
1143 pid_t auditd_pid;
1144 pid_t requesting_pid = task_tgid_vnr(current);
1145
1146 /* test the auditd connection */
1147 audit_replace(requesting_pid);
1148
1149 rcu_read_lock();
1150 auditd_pid = auditd_conn.pid;
1151 /* only the current auditd can unregister itself */
1152 if ((!new_pid) && (requesting_pid != auditd_pid)) {
1153 rcu_read_unlock();
1154 audit_log_config_change("audit_pid", new_pid,
1155 auditd_pid, 0);
1156 return -EACCES;
1157 }
1158 /* replacing a healthy auditd is not allowed */
1159 if (auditd_pid && new_pid) {
1160 rcu_read_unlock();
1161 audit_log_config_change("audit_pid", new_pid,
1162 auditd_pid, 0);
1163 return -EEXIST;
1164 }
1165 rcu_read_unlock();
1166
1167 if (audit_enabled != AUDIT_OFF)
1168 audit_log_config_change("audit_pid", new_pid,
1169 auditd_pid, 1);
1170
1171 if (new_pid) {
1172 /* register a new auditd connection */
1173 auditd_set(new_pid,
1174 NETLINK_CB(skb).portid,
1175 sock_net(NETLINK_CB(skb).sk));
1176 /* try to process any backlog */
1177 wake_up_interruptible(&kauditd_wait);
1178 } else
1179 /* unregister the auditd connection */
1180 auditd_reset();
1181 }
1182 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1183 err = audit_set_rate_limit(s.rate_limit);
1184 if (err < 0)
1185 return err;
1186 }
1187 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1188 err = audit_set_backlog_limit(s.backlog_limit);
1189 if (err < 0)
1190 return err;
1191 }
1192 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1193 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1194 return -EINVAL;
1195 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1196 return -EINVAL;
1197 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1198 if (err < 0)
1199 return err;
1200 }
1201 if (s.mask == AUDIT_STATUS_LOST) {
1202 u32 lost = atomic_xchg(&audit_lost, 0);
1203
1204 audit_log_config_change("lost", 0, lost, 1);
1205 return lost;
1206 }
1207 break;
1208 }
1209 case AUDIT_GET_FEATURE:
1210 err = audit_get_feature(skb);
1211 if (err)
1212 return err;
1213 break;
1214 case AUDIT_SET_FEATURE:
1215 err = audit_set_feature(skb);
1216 if (err)
1217 return err;
1218 break;
1219 case AUDIT_USER:
1220 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1221 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1222 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1223 return 0;
1224
1225 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1226 if (err == 1) { /* match or error */
1227 err = 0;
1228 if (msg_type == AUDIT_USER_TTY) {
1229 err = tty_audit_push();
1230 if (err)
1231 break;
1232 }
1233 audit_log_common_recv_msg(&ab, msg_type);
1234 if (msg_type != AUDIT_USER_TTY)
1235 audit_log_format(ab, " msg='%.*s'",
1236 AUDIT_MESSAGE_TEXT_MAX,
1237 (char *)data);
1238 else {
1239 int size;
1240
1241 audit_log_format(ab, " data=");
1242 size = nlmsg_len(nlh);
1243 if (size > 0 &&
1244 ((unsigned char *)data)[size - 1] == '\0')
1245 size--;
1246 audit_log_n_untrustedstring(ab, data, size);
1247 }
1248 audit_set_portid(ab, NETLINK_CB(skb).portid);
1249 audit_log_end(ab);
1250 }
1251 break;
1252 case AUDIT_ADD_RULE:
1253 case AUDIT_DEL_RULE:
1254 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1255 return -EINVAL;
1256 if (audit_enabled == AUDIT_LOCKED) {
1257 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1258 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1259 audit_log_end(ab);
1260 return -EPERM;
1261 }
1262 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
1263 seq, data, nlmsg_len(nlh));
1264 break;
1265 case AUDIT_LIST_RULES:
1266 err = audit_list_rules_send(skb, seq);
1267 break;
1268 case AUDIT_TRIM:
1269 audit_trim_trees();
1270 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1271 audit_log_format(ab, " op=trim res=1");
1272 audit_log_end(ab);
1273 break;
1274 case AUDIT_MAKE_EQUIV: {
1275 void *bufp = data;
1276 u32 sizes[2];
1277 size_t msglen = nlmsg_len(nlh);
1278 char *old, *new;
1279
1280 err = -EINVAL;
1281 if (msglen < 2 * sizeof(u32))
1282 break;
1283 memcpy(sizes, bufp, 2 * sizeof(u32));
1284 bufp += 2 * sizeof(u32);
1285 msglen -= 2 * sizeof(u32);
1286 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1287 if (IS_ERR(old)) {
1288 err = PTR_ERR(old);
1289 break;
1290 }
1291 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1292 if (IS_ERR(new)) {
1293 err = PTR_ERR(new);
1294 kfree(old);
1295 break;
1296 }
1297 /* OK, here comes... */
1298 err = audit_tag_tree(old, new);
1299
1300 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1301
1302 audit_log_format(ab, " op=make_equiv old=");
1303 audit_log_untrustedstring(ab, old);
1304 audit_log_format(ab, " new=");
1305 audit_log_untrustedstring(ab, new);
1306 audit_log_format(ab, " res=%d", !err);
1307 audit_log_end(ab);
1308 kfree(old);
1309 kfree(new);
1310 break;
1311 }
1312 case AUDIT_SIGNAL_INFO:
1313 len = 0;
1314 if (audit_sig_sid) {
1315 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1316 if (err)
1317 return err;
1318 }
1319 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1320 if (!sig_data) {
1321 if (audit_sig_sid)
1322 security_release_secctx(ctx, len);
1323 return -ENOMEM;
1324 }
1325 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1326 sig_data->pid = audit_sig_pid;
1327 if (audit_sig_sid) {
1328 memcpy(sig_data->ctx, ctx, len);
1329 security_release_secctx(ctx, len);
1330 }
1331 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1332 sig_data, sizeof(*sig_data) + len);
1333 kfree(sig_data);
1334 break;
1335 case AUDIT_TTY_GET: {
1336 struct audit_tty_status s;
1337 unsigned int t;
1338
1339 t = READ_ONCE(current->signal->audit_tty);
1340 s.enabled = t & AUDIT_TTY_ENABLE;
1341 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1342
1343 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1344 break;
1345 }
1346 case AUDIT_TTY_SET: {
1347 struct audit_tty_status s, old;
1348 struct audit_buffer *ab;
1349 unsigned int t;
1350
1351 memset(&s, 0, sizeof(s));
1352 /* guard against past and future API changes */
1353 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1354 /* check if new data is valid */
1355 if ((s.enabled != 0 && s.enabled != 1) ||
1356 (s.log_passwd != 0 && s.log_passwd != 1))
1357 err = -EINVAL;
1358
1359 if (err)
1360 t = READ_ONCE(current->signal->audit_tty);
1361 else {
1362 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1363 t = xchg(&current->signal->audit_tty, t);
1364 }
1365 old.enabled = t & AUDIT_TTY_ENABLE;
1366 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1367
1368 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1369 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1370 " old-log_passwd=%d new-log_passwd=%d res=%d",
1371 old.enabled, s.enabled, old.log_passwd,
1372 s.log_passwd, !err);
1373 audit_log_end(ab);
1374 break;
1375 }
1376 default:
1377 err = -EINVAL;
1378 break;
1379 }
1380
1381 return err < 0 ? err : 0;
1382 }
1383
1384 /*
1385 * Get message from skb. Each message is processed by audit_receive_msg.
1386 * Malformed skbs with wrong length are discarded silently.
1387 */
1388 static void audit_receive_skb(struct sk_buff *skb)
1389 {
1390 struct nlmsghdr *nlh;
1391 /*
1392 * len MUST be signed for nlmsg_next to be able to dec it below 0
1393 * if the nlmsg_len was not aligned
1394 */
1395 int len;
1396 int err;
1397
1398 nlh = nlmsg_hdr(skb);
1399 len = skb->len;
1400
1401 while (nlmsg_ok(nlh, len)) {
1402 err = audit_receive_msg(skb, nlh);
1403 /* if err or if this message says it wants a response */
1404 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1405 netlink_ack(skb, nlh, err);
1406
1407 nlh = nlmsg_next(nlh, &len);
1408 }
1409 }
1410
1411 /* Receive messages from netlink socket. */
1412 static void audit_receive(struct sk_buff *skb)
1413 {
1414 mutex_lock(&audit_cmd_mutex);
1415 audit_receive_skb(skb);
1416 mutex_unlock(&audit_cmd_mutex);
1417 }
1418
1419 /* Run custom bind function on netlink socket group connect or bind requests. */
1420 static int audit_bind(struct net *net, int group)
1421 {
1422 if (!capable(CAP_AUDIT_READ))
1423 return -EPERM;
1424
1425 return 0;
1426 }
1427
1428 static int __net_init audit_net_init(struct net *net)
1429 {
1430 struct netlink_kernel_cfg cfg = {
1431 .input = audit_receive,
1432 .bind = audit_bind,
1433 .flags = NL_CFG_F_NONROOT_RECV,
1434 .groups = AUDIT_NLGRP_MAX,
1435 };
1436
1437 struct audit_net *aunet = net_generic(net, audit_net_id);
1438
1439 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1440 if (aunet->sk == NULL) {
1441 audit_panic("cannot initialize netlink socket in namespace");
1442 return -ENOMEM;
1443 }
1444 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1445
1446 return 0;
1447 }
1448
1449 static void __net_exit audit_net_exit(struct net *net)
1450 {
1451 struct audit_net *aunet = net_generic(net, audit_net_id);
1452
1453 rcu_read_lock();
1454 if (net == auditd_conn.net)
1455 auditd_reset();
1456 rcu_read_unlock();
1457
1458 netlink_kernel_release(aunet->sk);
1459 }
1460
1461 static struct pernet_operations audit_net_ops __net_initdata = {
1462 .init = audit_net_init,
1463 .exit = audit_net_exit,
1464 .id = &audit_net_id,
1465 .size = sizeof(struct audit_net),
1466 };
1467
1468 /* Initialize audit support at boot time. */
1469 static int __init audit_init(void)
1470 {
1471 int i;
1472
1473 if (audit_initialized == AUDIT_DISABLED)
1474 return 0;
1475
1476 memset(&auditd_conn, 0, sizeof(auditd_conn));
1477 spin_lock_init(&auditd_conn.lock);
1478
1479 skb_queue_head_init(&audit_queue);
1480 skb_queue_head_init(&audit_retry_queue);
1481 skb_queue_head_init(&audit_hold_queue);
1482
1483 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1484 INIT_LIST_HEAD(&audit_inode_hash[i]);
1485
1486 pr_info("initializing netlink subsys (%s)\n",
1487 audit_default ? "enabled" : "disabled");
1488 register_pernet_subsys(&audit_net_ops);
1489
1490 audit_initialized = AUDIT_INITIALIZED;
1491 audit_enabled = audit_default;
1492 audit_ever_enabled |= !!audit_default;
1493
1494 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1495 if (IS_ERR(kauditd_task)) {
1496 int err = PTR_ERR(kauditd_task);
1497 panic("audit: failed to start the kauditd thread (%d)\n", err);
1498 }
1499
1500 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1501 "state=initialized audit_enabled=%u res=1",
1502 audit_enabled);
1503
1504 return 0;
1505 }
1506 __initcall(audit_init);
1507
1508 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1509 static int __init audit_enable(char *str)
1510 {
1511 audit_default = !!simple_strtol(str, NULL, 0);
1512 if (!audit_default)
1513 audit_initialized = AUDIT_DISABLED;
1514
1515 pr_info("%s\n", audit_default ?
1516 "enabled (after initialization)" : "disabled (until reboot)");
1517
1518 return 1;
1519 }
1520 __setup("audit=", audit_enable);
1521
1522 /* Process kernel command-line parameter at boot time.
1523 * audit_backlog_limit=<n> */
1524 static int __init audit_backlog_limit_set(char *str)
1525 {
1526 u32 audit_backlog_limit_arg;
1527
1528 pr_info("audit_backlog_limit: ");
1529 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1530 pr_cont("using default of %u, unable to parse %s\n",
1531 audit_backlog_limit, str);
1532 return 1;
1533 }
1534
1535 audit_backlog_limit = audit_backlog_limit_arg;
1536 pr_cont("%d\n", audit_backlog_limit);
1537
1538 return 1;
1539 }
1540 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1541
1542 static void audit_buffer_free(struct audit_buffer *ab)
1543 {
1544 unsigned long flags;
1545
1546 if (!ab)
1547 return;
1548
1549 kfree_skb(ab->skb);
1550 spin_lock_irqsave(&audit_freelist_lock, flags);
1551 if (audit_freelist_count > AUDIT_MAXFREE)
1552 kfree(ab);
1553 else {
1554 audit_freelist_count++;
1555 list_add(&ab->list, &audit_freelist);
1556 }
1557 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1558 }
1559
1560 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1561 gfp_t gfp_mask, int type)
1562 {
1563 unsigned long flags;
1564 struct audit_buffer *ab = NULL;
1565 struct nlmsghdr *nlh;
1566
1567 spin_lock_irqsave(&audit_freelist_lock, flags);
1568 if (!list_empty(&audit_freelist)) {
1569 ab = list_entry(audit_freelist.next,
1570 struct audit_buffer, list);
1571 list_del(&ab->list);
1572 --audit_freelist_count;
1573 }
1574 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1575
1576 if (!ab) {
1577 ab = kmalloc(sizeof(*ab), gfp_mask);
1578 if (!ab)
1579 goto err;
1580 }
1581
1582 ab->ctx = ctx;
1583 ab->gfp_mask = gfp_mask;
1584
1585 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1586 if (!ab->skb)
1587 goto err;
1588
1589 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1590 if (!nlh)
1591 goto out_kfree_skb;
1592
1593 return ab;
1594
1595 out_kfree_skb:
1596 kfree_skb(ab->skb);
1597 ab->skb = NULL;
1598 err:
1599 audit_buffer_free(ab);
1600 return NULL;
1601 }
1602
1603 /**
1604 * audit_serial - compute a serial number for the audit record
1605 *
1606 * Compute a serial number for the audit record. Audit records are
1607 * written to user-space as soon as they are generated, so a complete
1608 * audit record may be written in several pieces. The timestamp of the
1609 * record and this serial number are used by the user-space tools to
1610 * determine which pieces belong to the same audit record. The
1611 * (timestamp,serial) tuple is unique for each syscall and is live from
1612 * syscall entry to syscall exit.
1613 *
1614 * NOTE: Another possibility is to store the formatted records off the
1615 * audit context (for those records that have a context), and emit them
1616 * all at syscall exit. However, this could delay the reporting of
1617 * significant errors until syscall exit (or never, if the system
1618 * halts).
1619 */
1620 unsigned int audit_serial(void)
1621 {
1622 static atomic_t serial = ATOMIC_INIT(0);
1623
1624 return atomic_add_return(1, &serial);
1625 }
1626
1627 static inline void audit_get_stamp(struct audit_context *ctx,
1628 struct timespec *t, unsigned int *serial)
1629 {
1630 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1631 *t = CURRENT_TIME;
1632 *serial = audit_serial();
1633 }
1634 }
1635
1636 /**
1637 * audit_log_start - obtain an audit buffer
1638 * @ctx: audit_context (may be NULL)
1639 * @gfp_mask: type of allocation
1640 * @type: audit message type
1641 *
1642 * Returns audit_buffer pointer on success or NULL on error.
1643 *
1644 * Obtain an audit buffer. This routine does locking to obtain the
1645 * audit buffer, but then no locking is required for calls to
1646 * audit_log_*format. If the task (ctx) is a task that is currently in a
1647 * syscall, then the syscall is marked as auditable and an audit record
1648 * will be written at syscall exit. If there is no associated task, then
1649 * task context (ctx) should be NULL.
1650 */
1651 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1652 int type)
1653 {
1654 struct audit_buffer *ab;
1655 struct timespec t;
1656 unsigned int uninitialized_var(serial);
1657
1658 if (audit_initialized != AUDIT_INITIALIZED)
1659 return NULL;
1660
1661 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1662 return NULL;
1663
1664 /* NOTE: don't ever fail/sleep on these two conditions:
1665 * 1. auditd generated record - since we need auditd to drain the
1666 * queue; also, when we are checking for auditd, compare PIDs using
1667 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1668 * using a PID anchored in the caller's namespace
1669 * 2. generator holding the audit_cmd_mutex - we don't want to block
1670 * while holding the mutex */
1671 if (!(auditd_test_task(current) ||
1672 (current == __mutex_owner(&audit_cmd_mutex)))) {
1673 long stime = audit_backlog_wait_time;
1674
1675 while (audit_backlog_limit &&
1676 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1677 /* wake kauditd to try and flush the queue */
1678 wake_up_interruptible(&kauditd_wait);
1679
1680 /* sleep if we are allowed and we haven't exhausted our
1681 * backlog wait limit */
1682 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1683 DECLARE_WAITQUEUE(wait, current);
1684
1685 add_wait_queue_exclusive(&audit_backlog_wait,
1686 &wait);
1687 set_current_state(TASK_UNINTERRUPTIBLE);
1688 stime = schedule_timeout(stime);
1689 remove_wait_queue(&audit_backlog_wait, &wait);
1690 } else {
1691 if (audit_rate_check() && printk_ratelimit())
1692 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1693 skb_queue_len(&audit_queue),
1694 audit_backlog_limit);
1695 audit_log_lost("backlog limit exceeded");
1696 return NULL;
1697 }
1698 }
1699 }
1700
1701 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1702 if (!ab) {
1703 audit_log_lost("out of memory in audit_log_start");
1704 return NULL;
1705 }
1706
1707 audit_get_stamp(ab->ctx, &t, &serial);
1708 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1709 t.tv_sec, t.tv_nsec/1000000, serial);
1710
1711 return ab;
1712 }
1713
1714 /**
1715 * audit_expand - expand skb in the audit buffer
1716 * @ab: audit_buffer
1717 * @extra: space to add at tail of the skb
1718 *
1719 * Returns 0 (no space) on failed expansion, or available space if
1720 * successful.
1721 */
1722 static inline int audit_expand(struct audit_buffer *ab, int extra)
1723 {
1724 struct sk_buff *skb = ab->skb;
1725 int oldtail = skb_tailroom(skb);
1726 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1727 int newtail = skb_tailroom(skb);
1728
1729 if (ret < 0) {
1730 audit_log_lost("out of memory in audit_expand");
1731 return 0;
1732 }
1733
1734 skb->truesize += newtail - oldtail;
1735 return newtail;
1736 }
1737
1738 /*
1739 * Format an audit message into the audit buffer. If there isn't enough
1740 * room in the audit buffer, more room will be allocated and vsnprint
1741 * will be called a second time. Currently, we assume that a printk
1742 * can't format message larger than 1024 bytes, so we don't either.
1743 */
1744 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1745 va_list args)
1746 {
1747 int len, avail;
1748 struct sk_buff *skb;
1749 va_list args2;
1750
1751 if (!ab)
1752 return;
1753
1754 BUG_ON(!ab->skb);
1755 skb = ab->skb;
1756 avail = skb_tailroom(skb);
1757 if (avail == 0) {
1758 avail = audit_expand(ab, AUDIT_BUFSIZ);
1759 if (!avail)
1760 goto out;
1761 }
1762 va_copy(args2, args);
1763 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1764 if (len >= avail) {
1765 /* The printk buffer is 1024 bytes long, so if we get
1766 * here and AUDIT_BUFSIZ is at least 1024, then we can
1767 * log everything that printk could have logged. */
1768 avail = audit_expand(ab,
1769 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1770 if (!avail)
1771 goto out_va_end;
1772 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1773 }
1774 if (len > 0)
1775 skb_put(skb, len);
1776 out_va_end:
1777 va_end(args2);
1778 out:
1779 return;
1780 }
1781
1782 /**
1783 * audit_log_format - format a message into the audit buffer.
1784 * @ab: audit_buffer
1785 * @fmt: format string
1786 * @...: optional parameters matching @fmt string
1787 *
1788 * All the work is done in audit_log_vformat.
1789 */
1790 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1791 {
1792 va_list args;
1793
1794 if (!ab)
1795 return;
1796 va_start(args, fmt);
1797 audit_log_vformat(ab, fmt, args);
1798 va_end(args);
1799 }
1800
1801 /**
1802 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1803 * @ab: the audit_buffer
1804 * @buf: buffer to convert to hex
1805 * @len: length of @buf to be converted
1806 *
1807 * No return value; failure to expand is silently ignored.
1808 *
1809 * This function will take the passed buf and convert it into a string of
1810 * ascii hex digits. The new string is placed onto the skb.
1811 */
1812 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1813 size_t len)
1814 {
1815 int i, avail, new_len;
1816 unsigned char *ptr;
1817 struct sk_buff *skb;
1818
1819 if (!ab)
1820 return;
1821
1822 BUG_ON(!ab->skb);
1823 skb = ab->skb;
1824 avail = skb_tailroom(skb);
1825 new_len = len<<1;
1826 if (new_len >= avail) {
1827 /* Round the buffer request up to the next multiple */
1828 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1829 avail = audit_expand(ab, new_len);
1830 if (!avail)
1831 return;
1832 }
1833
1834 ptr = skb_tail_pointer(skb);
1835 for (i = 0; i < len; i++)
1836 ptr = hex_byte_pack_upper(ptr, buf[i]);
1837 *ptr = 0;
1838 skb_put(skb, len << 1); /* new string is twice the old string */
1839 }
1840
1841 /*
1842 * Format a string of no more than slen characters into the audit buffer,
1843 * enclosed in quote marks.
1844 */
1845 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1846 size_t slen)
1847 {
1848 int avail, new_len;
1849 unsigned char *ptr;
1850 struct sk_buff *skb;
1851
1852 if (!ab)
1853 return;
1854
1855 BUG_ON(!ab->skb);
1856 skb = ab->skb;
1857 avail = skb_tailroom(skb);
1858 new_len = slen + 3; /* enclosing quotes + null terminator */
1859 if (new_len > avail) {
1860 avail = audit_expand(ab, new_len);
1861 if (!avail)
1862 return;
1863 }
1864 ptr = skb_tail_pointer(skb);
1865 *ptr++ = '"';
1866 memcpy(ptr, string, slen);
1867 ptr += slen;
1868 *ptr++ = '"';
1869 *ptr = 0;
1870 skb_put(skb, slen + 2); /* don't include null terminator */
1871 }
1872
1873 /**
1874 * audit_string_contains_control - does a string need to be logged in hex
1875 * @string: string to be checked
1876 * @len: max length of the string to check
1877 */
1878 bool audit_string_contains_control(const char *string, size_t len)
1879 {
1880 const unsigned char *p;
1881 for (p = string; p < (const unsigned char *)string + len; p++) {
1882 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1883 return true;
1884 }
1885 return false;
1886 }
1887
1888 /**
1889 * audit_log_n_untrustedstring - log a string that may contain random characters
1890 * @ab: audit_buffer
1891 * @len: length of string (not including trailing null)
1892 * @string: string to be logged
1893 *
1894 * This code will escape a string that is passed to it if the string
1895 * contains a control character, unprintable character, double quote mark,
1896 * or a space. Unescaped strings will start and end with a double quote mark.
1897 * Strings that are escaped are printed in hex (2 digits per char).
1898 *
1899 * The caller specifies the number of characters in the string to log, which may
1900 * or may not be the entire string.
1901 */
1902 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1903 size_t len)
1904 {
1905 if (audit_string_contains_control(string, len))
1906 audit_log_n_hex(ab, string, len);
1907 else
1908 audit_log_n_string(ab, string, len);
1909 }
1910
1911 /**
1912 * audit_log_untrustedstring - log a string that may contain random characters
1913 * @ab: audit_buffer
1914 * @string: string to be logged
1915 *
1916 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1917 * determine string length.
1918 */
1919 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1920 {
1921 audit_log_n_untrustedstring(ab, string, strlen(string));
1922 }
1923
1924 /* This is a helper-function to print the escaped d_path */
1925 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1926 const struct path *path)
1927 {
1928 char *p, *pathname;
1929
1930 if (prefix)
1931 audit_log_format(ab, "%s", prefix);
1932
1933 /* We will allow 11 spaces for ' (deleted)' to be appended */
1934 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1935 if (!pathname) {
1936 audit_log_string(ab, "<no_memory>");
1937 return;
1938 }
1939 p = d_path(path, pathname, PATH_MAX+11);
1940 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1941 /* FIXME: can we save some information here? */
1942 audit_log_string(ab, "<too_long>");
1943 } else
1944 audit_log_untrustedstring(ab, p);
1945 kfree(pathname);
1946 }
1947
1948 void audit_log_session_info(struct audit_buffer *ab)
1949 {
1950 unsigned int sessionid = audit_get_sessionid(current);
1951 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1952
1953 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1954 }
1955
1956 void audit_log_key(struct audit_buffer *ab, char *key)
1957 {
1958 audit_log_format(ab, " key=");
1959 if (key)
1960 audit_log_untrustedstring(ab, key);
1961 else
1962 audit_log_format(ab, "(null)");
1963 }
1964
1965 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1966 {
1967 int i;
1968
1969 audit_log_format(ab, " %s=", prefix);
1970 CAP_FOR_EACH_U32(i) {
1971 audit_log_format(ab, "%08x",
1972 cap->cap[CAP_LAST_U32 - i]);
1973 }
1974 }
1975
1976 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1977 {
1978 kernel_cap_t *perm = &name->fcap.permitted;
1979 kernel_cap_t *inh = &name->fcap.inheritable;
1980 int log = 0;
1981
1982 if (!cap_isclear(*perm)) {
1983 audit_log_cap(ab, "cap_fp", perm);
1984 log = 1;
1985 }
1986 if (!cap_isclear(*inh)) {
1987 audit_log_cap(ab, "cap_fi", inh);
1988 log = 1;
1989 }
1990
1991 if (log)
1992 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1993 name->fcap.fE, name->fcap_ver);
1994 }
1995
1996 static inline int audit_copy_fcaps(struct audit_names *name,
1997 const struct dentry *dentry)
1998 {
1999 struct cpu_vfs_cap_data caps;
2000 int rc;
2001
2002 if (!dentry)
2003 return 0;
2004
2005 rc = get_vfs_caps_from_disk(dentry, &caps);
2006 if (rc)
2007 return rc;
2008
2009 name->fcap.permitted = caps.permitted;
2010 name->fcap.inheritable = caps.inheritable;
2011 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2012 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2013 VFS_CAP_REVISION_SHIFT;
2014
2015 return 0;
2016 }
2017
2018 /* Copy inode data into an audit_names. */
2019 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2020 struct inode *inode)
2021 {
2022 name->ino = inode->i_ino;
2023 name->dev = inode->i_sb->s_dev;
2024 name->mode = inode->i_mode;
2025 name->uid = inode->i_uid;
2026 name->gid = inode->i_gid;
2027 name->rdev = inode->i_rdev;
2028 security_inode_getsecid(inode, &name->osid);
2029 audit_copy_fcaps(name, dentry);
2030 }
2031
2032 /**
2033 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2034 * @context: audit_context for the task
2035 * @n: audit_names structure with reportable details
2036 * @path: optional path to report instead of audit_names->name
2037 * @record_num: record number to report when handling a list of names
2038 * @call_panic: optional pointer to int that will be updated if secid fails
2039 */
2040 void audit_log_name(struct audit_context *context, struct audit_names *n,
2041 const struct path *path, int record_num, int *call_panic)
2042 {
2043 struct audit_buffer *ab;
2044 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2045 if (!ab)
2046 return;
2047
2048 audit_log_format(ab, "item=%d", record_num);
2049
2050 if (path)
2051 audit_log_d_path(ab, " name=", path);
2052 else if (n->name) {
2053 switch (n->name_len) {
2054 case AUDIT_NAME_FULL:
2055 /* log the full path */
2056 audit_log_format(ab, " name=");
2057 audit_log_untrustedstring(ab, n->name->name);
2058 break;
2059 case 0:
2060 /* name was specified as a relative path and the
2061 * directory component is the cwd */
2062 audit_log_d_path(ab, " name=", &context->pwd);
2063 break;
2064 default:
2065 /* log the name's directory component */
2066 audit_log_format(ab, " name=");
2067 audit_log_n_untrustedstring(ab, n->name->name,
2068 n->name_len);
2069 }
2070 } else
2071 audit_log_format(ab, " name=(null)");
2072
2073 if (n->ino != AUDIT_INO_UNSET)
2074 audit_log_format(ab, " inode=%lu"
2075 " dev=%02x:%02x mode=%#ho"
2076 " ouid=%u ogid=%u rdev=%02x:%02x",
2077 n->ino,
2078 MAJOR(n->dev),
2079 MINOR(n->dev),
2080 n->mode,
2081 from_kuid(&init_user_ns, n->uid),
2082 from_kgid(&init_user_ns, n->gid),
2083 MAJOR(n->rdev),
2084 MINOR(n->rdev));
2085 if (n->osid != 0) {
2086 char *ctx = NULL;
2087 u32 len;
2088 if (security_secid_to_secctx(
2089 n->osid, &ctx, &len)) {
2090 audit_log_format(ab, " osid=%u", n->osid);
2091 if (call_panic)
2092 *call_panic = 2;
2093 } else {
2094 audit_log_format(ab, " obj=%s", ctx);
2095 security_release_secctx(ctx, len);
2096 }
2097 }
2098
2099 /* log the audit_names record type */
2100 audit_log_format(ab, " nametype=");
2101 switch(n->type) {
2102 case AUDIT_TYPE_NORMAL:
2103 audit_log_format(ab, "NORMAL");
2104 break;
2105 case AUDIT_TYPE_PARENT:
2106 audit_log_format(ab, "PARENT");
2107 break;
2108 case AUDIT_TYPE_CHILD_DELETE:
2109 audit_log_format(ab, "DELETE");
2110 break;
2111 case AUDIT_TYPE_CHILD_CREATE:
2112 audit_log_format(ab, "CREATE");
2113 break;
2114 default:
2115 audit_log_format(ab, "UNKNOWN");
2116 break;
2117 }
2118
2119 audit_log_fcaps(ab, n);
2120 audit_log_end(ab);
2121 }
2122
2123 int audit_log_task_context(struct audit_buffer *ab)
2124 {
2125 char *ctx = NULL;
2126 unsigned len;
2127 int error;
2128 u32 sid;
2129
2130 security_task_getsecid(current, &sid);
2131 if (!sid)
2132 return 0;
2133
2134 error = security_secid_to_secctx(sid, &ctx, &len);
2135 if (error) {
2136 if (error != -EINVAL)
2137 goto error_path;
2138 return 0;
2139 }
2140
2141 audit_log_format(ab, " subj=%s", ctx);
2142 security_release_secctx(ctx, len);
2143 return 0;
2144
2145 error_path:
2146 audit_panic("error in audit_log_task_context");
2147 return error;
2148 }
2149 EXPORT_SYMBOL(audit_log_task_context);
2150
2151 void audit_log_d_path_exe(struct audit_buffer *ab,
2152 struct mm_struct *mm)
2153 {
2154 struct file *exe_file;
2155
2156 if (!mm)
2157 goto out_null;
2158
2159 exe_file = get_mm_exe_file(mm);
2160 if (!exe_file)
2161 goto out_null;
2162
2163 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2164 fput(exe_file);
2165 return;
2166 out_null:
2167 audit_log_format(ab, " exe=(null)");
2168 }
2169
2170 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2171 {
2172 struct tty_struct *tty = NULL;
2173 unsigned long flags;
2174
2175 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2176 if (tsk->signal)
2177 tty = tty_kref_get(tsk->signal->tty);
2178 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2179 return tty;
2180 }
2181
2182 void audit_put_tty(struct tty_struct *tty)
2183 {
2184 tty_kref_put(tty);
2185 }
2186
2187 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2188 {
2189 const struct cred *cred;
2190 char comm[sizeof(tsk->comm)];
2191 struct tty_struct *tty;
2192
2193 if (!ab)
2194 return;
2195
2196 /* tsk == current */
2197 cred = current_cred();
2198 tty = audit_get_tty(tsk);
2199 audit_log_format(ab,
2200 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2201 " euid=%u suid=%u fsuid=%u"
2202 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2203 task_ppid_nr(tsk),
2204 task_tgid_nr(tsk),
2205 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2206 from_kuid(&init_user_ns, cred->uid),
2207 from_kgid(&init_user_ns, cred->gid),
2208 from_kuid(&init_user_ns, cred->euid),
2209 from_kuid(&init_user_ns, cred->suid),
2210 from_kuid(&init_user_ns, cred->fsuid),
2211 from_kgid(&init_user_ns, cred->egid),
2212 from_kgid(&init_user_ns, cred->sgid),
2213 from_kgid(&init_user_ns, cred->fsgid),
2214 tty ? tty_name(tty) : "(none)",
2215 audit_get_sessionid(tsk));
2216 audit_put_tty(tty);
2217 audit_log_format(ab, " comm=");
2218 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2219 audit_log_d_path_exe(ab, tsk->mm);
2220 audit_log_task_context(ab);
2221 }
2222 EXPORT_SYMBOL(audit_log_task_info);
2223
2224 /**
2225 * audit_log_link_denied - report a link restriction denial
2226 * @operation: specific link operation
2227 * @link: the path that triggered the restriction
2228 */
2229 void audit_log_link_denied(const char *operation, const struct path *link)
2230 {
2231 struct audit_buffer *ab;
2232 struct audit_names *name;
2233
2234 name = kzalloc(sizeof(*name), GFP_NOFS);
2235 if (!name)
2236 return;
2237
2238 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2239 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2240 AUDIT_ANOM_LINK);
2241 if (!ab)
2242 goto out;
2243 audit_log_format(ab, "op=%s", operation);
2244 audit_log_task_info(ab, current);
2245 audit_log_format(ab, " res=0");
2246 audit_log_end(ab);
2247
2248 /* Generate AUDIT_PATH record with object. */
2249 name->type = AUDIT_TYPE_NORMAL;
2250 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2251 audit_log_name(current->audit_context, name, link, 0, NULL);
2252 out:
2253 kfree(name);
2254 }
2255
2256 /**
2257 * audit_log_end - end one audit record
2258 * @ab: the audit_buffer
2259 *
2260 * We can not do a netlink send inside an irq context because it blocks (last
2261 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2262 * queue and a tasklet is scheduled to remove them from the queue outside the
2263 * irq context. May be called in any context.
2264 */
2265 void audit_log_end(struct audit_buffer *ab)
2266 {
2267 struct sk_buff *skb;
2268 struct nlmsghdr *nlh;
2269
2270 if (!ab)
2271 return;
2272
2273 if (audit_rate_check()) {
2274 skb = ab->skb;
2275 ab->skb = NULL;
2276
2277 /* setup the netlink header, see the comments in
2278 * kauditd_send_multicast_skb() for length quirks */
2279 nlh = nlmsg_hdr(skb);
2280 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2281
2282 /* queue the netlink packet and poke the kauditd thread */
2283 skb_queue_tail(&audit_queue, skb);
2284 wake_up_interruptible(&kauditd_wait);
2285 } else
2286 audit_log_lost("rate limit exceeded");
2287
2288 audit_buffer_free(ab);
2289 }
2290
2291 /**
2292 * audit_log - Log an audit record
2293 * @ctx: audit context
2294 * @gfp_mask: type of allocation
2295 * @type: audit message type
2296 * @fmt: format string to use
2297 * @...: variable parameters matching the format string
2298 *
2299 * This is a convenience function that calls audit_log_start,
2300 * audit_log_vformat, and audit_log_end. It may be called
2301 * in any context.
2302 */
2303 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2304 const char *fmt, ...)
2305 {
2306 struct audit_buffer *ab;
2307 va_list args;
2308
2309 ab = audit_log_start(ctx, gfp_mask, type);
2310 if (ab) {
2311 va_start(args, fmt);
2312 audit_log_vformat(ab, fmt, args);
2313 va_end(args);
2314 audit_log_end(ab);
2315 }
2316 }
2317
2318 #ifdef CONFIG_SECURITY
2319 /**
2320 * audit_log_secctx - Converts and logs SELinux context
2321 * @ab: audit_buffer
2322 * @secid: security number
2323 *
2324 * This is a helper function that calls security_secid_to_secctx to convert
2325 * secid to secctx and then adds the (converted) SELinux context to the audit
2326 * log by calling audit_log_format, thus also preventing leak of internal secid
2327 * to userspace. If secid cannot be converted audit_panic is called.
2328 */
2329 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2330 {
2331 u32 len;
2332 char *secctx;
2333
2334 if (security_secid_to_secctx(secid, &secctx, &len)) {
2335 audit_panic("Cannot convert secid to context");
2336 } else {
2337 audit_log_format(ab, " obj=%s", secctx);
2338 security_release_secctx(secctx, len);
2339 }
2340 }
2341 EXPORT_SYMBOL(audit_log_secctx);
2342 #endif
2343
2344 EXPORT_SYMBOL(audit_log_start);
2345 EXPORT_SYMBOL(audit_log_end);
2346 EXPORT_SYMBOL(audit_log_format);
2347 EXPORT_SYMBOL(audit_log);