]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/audit.c
audit: reduce mmap_sem hold for mm->exe_file
[mirror_ubuntu-zesty-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70
71 #include "audit.h"
72
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED -1
76 #define AUDIT_UNINITIALIZED 0
77 #define AUDIT_INITIALIZED 1
78 static int audit_initialized;
79
80 #define AUDIT_OFF 0
81 #define AUDIT_ON 1
82 #define AUDIT_LOCKED 2
83 u32 audit_enabled;
84 u32 audit_ever_enabled;
85
86 EXPORT_SYMBOL_GPL(audit_enabled);
87
88 /* Default state when kernel boots without any parameters. */
89 static u32 audit_default;
90
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94 /*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99 int audit_pid;
100 static __u32 audit_nlk_portid;
101
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105 static u32 audit_rate_limit;
106
107 /* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109 static u32 audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113 static u32 audit_backlog_wait_overflow = 0;
114
115 /* The identity of the user shutting down the audit system. */
116 kuid_t audit_sig_uid = INVALID_UID;
117 pid_t audit_sig_pid = -1;
118 u32 audit_sig_sid = 0;
119
120 /* Records can be lost in several ways:
121 0) [suppressed in audit_alloc]
122 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
123 2) out of memory in audit_log_move [alloc_skb]
124 3) suppressed due to audit_rate_limit
125 4) suppressed due to audit_backlog_limit
126 */
127 static atomic_t audit_lost = ATOMIC_INIT(0);
128
129 /* The netlink socket. */
130 static struct sock *audit_sock;
131 static int audit_net_id;
132
133 /* Hash for inode-based rules */
134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
135
136 /* The audit_freelist is a list of pre-allocated audit buffers (if more
137 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
138 * being placed on the freelist). */
139 static DEFINE_SPINLOCK(audit_freelist_lock);
140 static int audit_freelist_count;
141 static LIST_HEAD(audit_freelist);
142
143 static struct sk_buff_head audit_skb_queue;
144 /* queue of skbs to send to auditd when/if it comes back */
145 static struct sk_buff_head audit_skb_hold_queue;
146 static struct task_struct *kauditd_task;
147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
149
150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
151 .mask = -1,
152 .features = 0,
153 .lock = 0,};
154
155 static char *audit_feature_names[2] = {
156 "only_unset_loginuid",
157 "loginuid_immutable",
158 };
159
160
161 /* Serialize requests from userspace. */
162 DEFINE_MUTEX(audit_cmd_mutex);
163
164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
165 * audit records. Since printk uses a 1024 byte buffer, this buffer
166 * should be at least that large. */
167 #define AUDIT_BUFSIZ 1024
168
169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
170 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
171 #define AUDIT_MAXFREE (2*NR_CPUS)
172
173 /* The audit_buffer is used when formatting an audit record. The caller
174 * locks briefly to get the record off the freelist or to allocate the
175 * buffer, and locks briefly to send the buffer to the netlink layer or
176 * to place it on a transmit queue. Multiple audit_buffers can be in
177 * use simultaneously. */
178 struct audit_buffer {
179 struct list_head list;
180 struct sk_buff *skb; /* formatted skb ready to send */
181 struct audit_context *ctx; /* NULL or associated context */
182 gfp_t gfp_mask;
183 };
184
185 struct audit_reply {
186 __u32 portid;
187 struct net *net;
188 struct sk_buff *skb;
189 };
190
191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
192 {
193 if (ab) {
194 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
195 nlh->nlmsg_pid = portid;
196 }
197 }
198
199 void audit_panic(const char *message)
200 {
201 switch (audit_failure) {
202 case AUDIT_FAIL_SILENT:
203 break;
204 case AUDIT_FAIL_PRINTK:
205 if (printk_ratelimit())
206 pr_err("%s\n", message);
207 break;
208 case AUDIT_FAIL_PANIC:
209 /* test audit_pid since printk is always losey, why bother? */
210 if (audit_pid)
211 panic("audit: %s\n", message);
212 break;
213 }
214 }
215
216 static inline int audit_rate_check(void)
217 {
218 static unsigned long last_check = 0;
219 static int messages = 0;
220 static DEFINE_SPINLOCK(lock);
221 unsigned long flags;
222 unsigned long now;
223 unsigned long elapsed;
224 int retval = 0;
225
226 if (!audit_rate_limit) return 1;
227
228 spin_lock_irqsave(&lock, flags);
229 if (++messages < audit_rate_limit) {
230 retval = 1;
231 } else {
232 now = jiffies;
233 elapsed = now - last_check;
234 if (elapsed > HZ) {
235 last_check = now;
236 messages = 0;
237 retval = 1;
238 }
239 }
240 spin_unlock_irqrestore(&lock, flags);
241
242 return retval;
243 }
244
245 /**
246 * audit_log_lost - conditionally log lost audit message event
247 * @message: the message stating reason for lost audit message
248 *
249 * Emit at least 1 message per second, even if audit_rate_check is
250 * throttling.
251 * Always increment the lost messages counter.
252 */
253 void audit_log_lost(const char *message)
254 {
255 static unsigned long last_msg = 0;
256 static DEFINE_SPINLOCK(lock);
257 unsigned long flags;
258 unsigned long now;
259 int print;
260
261 atomic_inc(&audit_lost);
262
263 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
264
265 if (!print) {
266 spin_lock_irqsave(&lock, flags);
267 now = jiffies;
268 if (now - last_msg > HZ) {
269 print = 1;
270 last_msg = now;
271 }
272 spin_unlock_irqrestore(&lock, flags);
273 }
274
275 if (print) {
276 if (printk_ratelimit())
277 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
278 atomic_read(&audit_lost),
279 audit_rate_limit,
280 audit_backlog_limit);
281 audit_panic(message);
282 }
283 }
284
285 static int audit_log_config_change(char *function_name, u32 new, u32 old,
286 int allow_changes)
287 {
288 struct audit_buffer *ab;
289 int rc = 0;
290
291 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
292 if (unlikely(!ab))
293 return rc;
294 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
295 audit_log_session_info(ab);
296 rc = audit_log_task_context(ab);
297 if (rc)
298 allow_changes = 0; /* Something weird, deny request */
299 audit_log_format(ab, " res=%d", allow_changes);
300 audit_log_end(ab);
301 return rc;
302 }
303
304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
305 {
306 int allow_changes, rc = 0;
307 u32 old = *to_change;
308
309 /* check if we are locked */
310 if (audit_enabled == AUDIT_LOCKED)
311 allow_changes = 0;
312 else
313 allow_changes = 1;
314
315 if (audit_enabled != AUDIT_OFF) {
316 rc = audit_log_config_change(function_name, new, old, allow_changes);
317 if (rc)
318 allow_changes = 0;
319 }
320
321 /* If we are allowed, make the change */
322 if (allow_changes == 1)
323 *to_change = new;
324 /* Not allowed, update reason */
325 else if (rc == 0)
326 rc = -EPERM;
327 return rc;
328 }
329
330 static int audit_set_rate_limit(u32 limit)
331 {
332 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 }
334
335 static int audit_set_backlog_limit(u32 limit)
336 {
337 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 }
339
340 static int audit_set_backlog_wait_time(u32 timeout)
341 {
342 return audit_do_config_change("audit_backlog_wait_time",
343 &audit_backlog_wait_time_master, timeout);
344 }
345
346 static int audit_set_enabled(u32 state)
347 {
348 int rc;
349 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
350 return -EINVAL;
351
352 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
353 if (!rc)
354 audit_ever_enabled |= !!state;
355
356 return rc;
357 }
358
359 static int audit_set_failure(u32 state)
360 {
361 if (state != AUDIT_FAIL_SILENT
362 && state != AUDIT_FAIL_PRINTK
363 && state != AUDIT_FAIL_PANIC)
364 return -EINVAL;
365
366 return audit_do_config_change("audit_failure", &audit_failure, state);
367 }
368
369 /*
370 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
371 * already have been sent via prink/syslog and so if these messages are dropped
372 * it is not a huge concern since we already passed the audit_log_lost()
373 * notification and stuff. This is just nice to get audit messages during
374 * boot before auditd is running or messages generated while auditd is stopped.
375 * This only holds messages is audit_default is set, aka booting with audit=1
376 * or building your kernel that way.
377 */
378 static void audit_hold_skb(struct sk_buff *skb)
379 {
380 if (audit_default &&
381 (!audit_backlog_limit ||
382 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
383 skb_queue_tail(&audit_skb_hold_queue, skb);
384 else
385 kfree_skb(skb);
386 }
387
388 /*
389 * For one reason or another this nlh isn't getting delivered to the userspace
390 * audit daemon, just send it to printk.
391 */
392 static void audit_printk_skb(struct sk_buff *skb)
393 {
394 struct nlmsghdr *nlh = nlmsg_hdr(skb);
395 char *data = nlmsg_data(nlh);
396
397 if (nlh->nlmsg_type != AUDIT_EOE) {
398 if (printk_ratelimit())
399 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
400 else
401 audit_log_lost("printk limit exceeded");
402 }
403
404 audit_hold_skb(skb);
405 }
406
407 static void kauditd_send_skb(struct sk_buff *skb)
408 {
409 int err;
410 /* take a reference in case we can't send it and we want to hold it */
411 skb_get(skb);
412 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
413 if (err < 0) {
414 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
415 if (audit_pid) {
416 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
417 audit_log_lost("auditd disappeared");
418 audit_pid = 0;
419 audit_sock = NULL;
420 }
421 /* we might get lucky and get this in the next auditd */
422 audit_hold_skb(skb);
423 } else
424 /* drop the extra reference if sent ok */
425 consume_skb(skb);
426 }
427
428 /*
429 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
430 *
431 * This function doesn't consume an skb as might be expected since it has to
432 * copy it anyways.
433 */
434 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
435 {
436 struct sk_buff *copy;
437 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
438 struct sock *sock = aunet->nlsk;
439
440 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
441 return;
442
443 /*
444 * The seemingly wasteful skb_copy() rather than bumping the refcount
445 * using skb_get() is necessary because non-standard mods are made to
446 * the skb by the original kaudit unicast socket send routine. The
447 * existing auditd daemon assumes this breakage. Fixing this would
448 * require co-ordinating a change in the established protocol between
449 * the kaudit kernel subsystem and the auditd userspace code. There is
450 * no reason for new multicast clients to continue with this
451 * non-compliance.
452 */
453 copy = skb_copy(skb, gfp_mask);
454 if (!copy)
455 return;
456
457 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
458 }
459
460 /*
461 * flush_hold_queue - empty the hold queue if auditd appears
462 *
463 * If auditd just started, drain the queue of messages already
464 * sent to syslog/printk. Remember loss here is ok. We already
465 * called audit_log_lost() if it didn't go out normally. so the
466 * race between the skb_dequeue and the next check for audit_pid
467 * doesn't matter.
468 *
469 * If you ever find kauditd to be too slow we can get a perf win
470 * by doing our own locking and keeping better track if there
471 * are messages in this queue. I don't see the need now, but
472 * in 5 years when I want to play with this again I'll see this
473 * note and still have no friggin idea what i'm thinking today.
474 */
475 static void flush_hold_queue(void)
476 {
477 struct sk_buff *skb;
478
479 if (!audit_default || !audit_pid)
480 return;
481
482 skb = skb_dequeue(&audit_skb_hold_queue);
483 if (likely(!skb))
484 return;
485
486 while (skb && audit_pid) {
487 kauditd_send_skb(skb);
488 skb = skb_dequeue(&audit_skb_hold_queue);
489 }
490
491 /*
492 * if auditd just disappeared but we
493 * dequeued an skb we need to drop ref
494 */
495 if (skb)
496 consume_skb(skb);
497 }
498
499 static int kauditd_thread(void *dummy)
500 {
501 set_freezable();
502 while (!kthread_should_stop()) {
503 struct sk_buff *skb;
504 DECLARE_WAITQUEUE(wait, current);
505
506 flush_hold_queue();
507
508 skb = skb_dequeue(&audit_skb_queue);
509
510 if (skb) {
511 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
512 wake_up(&audit_backlog_wait);
513 if (audit_pid)
514 kauditd_send_skb(skb);
515 else
516 audit_printk_skb(skb);
517 continue;
518 }
519 set_current_state(TASK_INTERRUPTIBLE);
520 add_wait_queue(&kauditd_wait, &wait);
521
522 if (!skb_queue_len(&audit_skb_queue)) {
523 try_to_freeze();
524 schedule();
525 }
526
527 __set_current_state(TASK_RUNNING);
528 remove_wait_queue(&kauditd_wait, &wait);
529 }
530 return 0;
531 }
532
533 int audit_send_list(void *_dest)
534 {
535 struct audit_netlink_list *dest = _dest;
536 struct sk_buff *skb;
537 struct net *net = dest->net;
538 struct audit_net *aunet = net_generic(net, audit_net_id);
539
540 /* wait for parent to finish and send an ACK */
541 mutex_lock(&audit_cmd_mutex);
542 mutex_unlock(&audit_cmd_mutex);
543
544 while ((skb = __skb_dequeue(&dest->q)) != NULL)
545 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
546
547 put_net(net);
548 kfree(dest);
549
550 return 0;
551 }
552
553 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
554 int multi, const void *payload, int size)
555 {
556 struct sk_buff *skb;
557 struct nlmsghdr *nlh;
558 void *data;
559 int flags = multi ? NLM_F_MULTI : 0;
560 int t = done ? NLMSG_DONE : type;
561
562 skb = nlmsg_new(size, GFP_KERNEL);
563 if (!skb)
564 return NULL;
565
566 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
567 if (!nlh)
568 goto out_kfree_skb;
569 data = nlmsg_data(nlh);
570 memcpy(data, payload, size);
571 return skb;
572
573 out_kfree_skb:
574 kfree_skb(skb);
575 return NULL;
576 }
577
578 static int audit_send_reply_thread(void *arg)
579 {
580 struct audit_reply *reply = (struct audit_reply *)arg;
581 struct net *net = reply->net;
582 struct audit_net *aunet = net_generic(net, audit_net_id);
583
584 mutex_lock(&audit_cmd_mutex);
585 mutex_unlock(&audit_cmd_mutex);
586
587 /* Ignore failure. It'll only happen if the sender goes away,
588 because our timeout is set to infinite. */
589 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
590 put_net(net);
591 kfree(reply);
592 return 0;
593 }
594 /**
595 * audit_send_reply - send an audit reply message via netlink
596 * @request_skb: skb of request we are replying to (used to target the reply)
597 * @seq: sequence number
598 * @type: audit message type
599 * @done: done (last) flag
600 * @multi: multi-part message flag
601 * @payload: payload data
602 * @size: payload size
603 *
604 * Allocates an skb, builds the netlink message, and sends it to the port id.
605 * No failure notifications.
606 */
607 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
608 int multi, const void *payload, int size)
609 {
610 u32 portid = NETLINK_CB(request_skb).portid;
611 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
612 struct sk_buff *skb;
613 struct task_struct *tsk;
614 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
615 GFP_KERNEL);
616
617 if (!reply)
618 return;
619
620 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
621 if (!skb)
622 goto out;
623
624 reply->net = get_net(net);
625 reply->portid = portid;
626 reply->skb = skb;
627
628 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
629 if (!IS_ERR(tsk))
630 return;
631 kfree_skb(skb);
632 out:
633 kfree(reply);
634 }
635
636 /*
637 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
638 * control messages.
639 */
640 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
641 {
642 int err = 0;
643
644 /* Only support initial user namespace for now. */
645 /*
646 * We return ECONNREFUSED because it tricks userspace into thinking
647 * that audit was not configured into the kernel. Lots of users
648 * configure their PAM stack (because that's what the distro does)
649 * to reject login if unable to send messages to audit. If we return
650 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
651 * configured in and will let login proceed. If we return EPERM
652 * userspace will reject all logins. This should be removed when we
653 * support non init namespaces!!
654 */
655 if (current_user_ns() != &init_user_ns)
656 return -ECONNREFUSED;
657
658 switch (msg_type) {
659 case AUDIT_LIST:
660 case AUDIT_ADD:
661 case AUDIT_DEL:
662 return -EOPNOTSUPP;
663 case AUDIT_GET:
664 case AUDIT_SET:
665 case AUDIT_GET_FEATURE:
666 case AUDIT_SET_FEATURE:
667 case AUDIT_LIST_RULES:
668 case AUDIT_ADD_RULE:
669 case AUDIT_DEL_RULE:
670 case AUDIT_SIGNAL_INFO:
671 case AUDIT_TTY_GET:
672 case AUDIT_TTY_SET:
673 case AUDIT_TRIM:
674 case AUDIT_MAKE_EQUIV:
675 /* Only support auditd and auditctl in initial pid namespace
676 * for now. */
677 if (task_active_pid_ns(current) != &init_pid_ns)
678 return -EPERM;
679
680 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
681 err = -EPERM;
682 break;
683 case AUDIT_USER:
684 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
685 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
686 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
687 err = -EPERM;
688 break;
689 default: /* bad msg */
690 err = -EINVAL;
691 }
692
693 return err;
694 }
695
696 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
697 {
698 int rc = 0;
699 uid_t uid = from_kuid(&init_user_ns, current_uid());
700 pid_t pid = task_tgid_nr(current);
701
702 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
703 *ab = NULL;
704 return rc;
705 }
706
707 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
708 if (unlikely(!*ab))
709 return rc;
710 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
711 audit_log_session_info(*ab);
712 audit_log_task_context(*ab);
713
714 return rc;
715 }
716
717 int is_audit_feature_set(int i)
718 {
719 return af.features & AUDIT_FEATURE_TO_MASK(i);
720 }
721
722
723 static int audit_get_feature(struct sk_buff *skb)
724 {
725 u32 seq;
726
727 seq = nlmsg_hdr(skb)->nlmsg_seq;
728
729 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
730
731 return 0;
732 }
733
734 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
735 u32 old_lock, u32 new_lock, int res)
736 {
737 struct audit_buffer *ab;
738
739 if (audit_enabled == AUDIT_OFF)
740 return;
741
742 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
743 audit_log_task_info(ab, current);
744 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
745 audit_feature_names[which], !!old_feature, !!new_feature,
746 !!old_lock, !!new_lock, res);
747 audit_log_end(ab);
748 }
749
750 static int audit_set_feature(struct sk_buff *skb)
751 {
752 struct audit_features *uaf;
753 int i;
754
755 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
756 uaf = nlmsg_data(nlmsg_hdr(skb));
757
758 /* if there is ever a version 2 we should handle that here */
759
760 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
761 u32 feature = AUDIT_FEATURE_TO_MASK(i);
762 u32 old_feature, new_feature, old_lock, new_lock;
763
764 /* if we are not changing this feature, move along */
765 if (!(feature & uaf->mask))
766 continue;
767
768 old_feature = af.features & feature;
769 new_feature = uaf->features & feature;
770 new_lock = (uaf->lock | af.lock) & feature;
771 old_lock = af.lock & feature;
772
773 /* are we changing a locked feature? */
774 if (old_lock && (new_feature != old_feature)) {
775 audit_log_feature_change(i, old_feature, new_feature,
776 old_lock, new_lock, 0);
777 return -EPERM;
778 }
779 }
780 /* nothing invalid, do the changes */
781 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
782 u32 feature = AUDIT_FEATURE_TO_MASK(i);
783 u32 old_feature, new_feature, old_lock, new_lock;
784
785 /* if we are not changing this feature, move along */
786 if (!(feature & uaf->mask))
787 continue;
788
789 old_feature = af.features & feature;
790 new_feature = uaf->features & feature;
791 old_lock = af.lock & feature;
792 new_lock = (uaf->lock | af.lock) & feature;
793
794 if (new_feature != old_feature)
795 audit_log_feature_change(i, old_feature, new_feature,
796 old_lock, new_lock, 1);
797
798 if (new_feature)
799 af.features |= feature;
800 else
801 af.features &= ~feature;
802 af.lock |= new_lock;
803 }
804
805 return 0;
806 }
807
808 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
809 {
810 u32 seq;
811 void *data;
812 int err;
813 struct audit_buffer *ab;
814 u16 msg_type = nlh->nlmsg_type;
815 struct audit_sig_info *sig_data;
816 char *ctx = NULL;
817 u32 len;
818
819 err = audit_netlink_ok(skb, msg_type);
820 if (err)
821 return err;
822
823 /* As soon as there's any sign of userspace auditd,
824 * start kauditd to talk to it */
825 if (!kauditd_task) {
826 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
827 if (IS_ERR(kauditd_task)) {
828 err = PTR_ERR(kauditd_task);
829 kauditd_task = NULL;
830 return err;
831 }
832 }
833 seq = nlh->nlmsg_seq;
834 data = nlmsg_data(nlh);
835
836 switch (msg_type) {
837 case AUDIT_GET: {
838 struct audit_status s;
839 memset(&s, 0, sizeof(s));
840 s.enabled = audit_enabled;
841 s.failure = audit_failure;
842 s.pid = audit_pid;
843 s.rate_limit = audit_rate_limit;
844 s.backlog_limit = audit_backlog_limit;
845 s.lost = atomic_read(&audit_lost);
846 s.backlog = skb_queue_len(&audit_skb_queue);
847 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
848 s.backlog_wait_time = audit_backlog_wait_time_master;
849 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
850 break;
851 }
852 case AUDIT_SET: {
853 struct audit_status s;
854 memset(&s, 0, sizeof(s));
855 /* guard against past and future API changes */
856 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
857 if (s.mask & AUDIT_STATUS_ENABLED) {
858 err = audit_set_enabled(s.enabled);
859 if (err < 0)
860 return err;
861 }
862 if (s.mask & AUDIT_STATUS_FAILURE) {
863 err = audit_set_failure(s.failure);
864 if (err < 0)
865 return err;
866 }
867 if (s.mask & AUDIT_STATUS_PID) {
868 int new_pid = s.pid;
869
870 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
871 return -EACCES;
872 if (audit_enabled != AUDIT_OFF)
873 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
874 audit_pid = new_pid;
875 audit_nlk_portid = NETLINK_CB(skb).portid;
876 audit_sock = skb->sk;
877 }
878 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
879 err = audit_set_rate_limit(s.rate_limit);
880 if (err < 0)
881 return err;
882 }
883 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
884 err = audit_set_backlog_limit(s.backlog_limit);
885 if (err < 0)
886 return err;
887 }
888 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
889 if (sizeof(s) > (size_t)nlh->nlmsg_len)
890 return -EINVAL;
891 if (s.backlog_wait_time < 0 ||
892 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
893 return -EINVAL;
894 err = audit_set_backlog_wait_time(s.backlog_wait_time);
895 if (err < 0)
896 return err;
897 }
898 break;
899 }
900 case AUDIT_GET_FEATURE:
901 err = audit_get_feature(skb);
902 if (err)
903 return err;
904 break;
905 case AUDIT_SET_FEATURE:
906 err = audit_set_feature(skb);
907 if (err)
908 return err;
909 break;
910 case AUDIT_USER:
911 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
912 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
913 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
914 return 0;
915
916 err = audit_filter_user(msg_type);
917 if (err == 1) { /* match or error */
918 err = 0;
919 if (msg_type == AUDIT_USER_TTY) {
920 err = tty_audit_push_current();
921 if (err)
922 break;
923 }
924 mutex_unlock(&audit_cmd_mutex);
925 audit_log_common_recv_msg(&ab, msg_type);
926 if (msg_type != AUDIT_USER_TTY)
927 audit_log_format(ab, " msg='%.*s'",
928 AUDIT_MESSAGE_TEXT_MAX,
929 (char *)data);
930 else {
931 int size;
932
933 audit_log_format(ab, " data=");
934 size = nlmsg_len(nlh);
935 if (size > 0 &&
936 ((unsigned char *)data)[size - 1] == '\0')
937 size--;
938 audit_log_n_untrustedstring(ab, data, size);
939 }
940 audit_set_portid(ab, NETLINK_CB(skb).portid);
941 audit_log_end(ab);
942 mutex_lock(&audit_cmd_mutex);
943 }
944 break;
945 case AUDIT_ADD_RULE:
946 case AUDIT_DEL_RULE:
947 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
948 return -EINVAL;
949 if (audit_enabled == AUDIT_LOCKED) {
950 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
951 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
952 audit_log_end(ab);
953 return -EPERM;
954 }
955 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
956 seq, data, nlmsg_len(nlh));
957 break;
958 case AUDIT_LIST_RULES:
959 err = audit_list_rules_send(skb, seq);
960 break;
961 case AUDIT_TRIM:
962 audit_trim_trees();
963 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
964 audit_log_format(ab, " op=trim res=1");
965 audit_log_end(ab);
966 break;
967 case AUDIT_MAKE_EQUIV: {
968 void *bufp = data;
969 u32 sizes[2];
970 size_t msglen = nlmsg_len(nlh);
971 char *old, *new;
972
973 err = -EINVAL;
974 if (msglen < 2 * sizeof(u32))
975 break;
976 memcpy(sizes, bufp, 2 * sizeof(u32));
977 bufp += 2 * sizeof(u32);
978 msglen -= 2 * sizeof(u32);
979 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
980 if (IS_ERR(old)) {
981 err = PTR_ERR(old);
982 break;
983 }
984 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
985 if (IS_ERR(new)) {
986 err = PTR_ERR(new);
987 kfree(old);
988 break;
989 }
990 /* OK, here comes... */
991 err = audit_tag_tree(old, new);
992
993 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
994
995 audit_log_format(ab, " op=make_equiv old=");
996 audit_log_untrustedstring(ab, old);
997 audit_log_format(ab, " new=");
998 audit_log_untrustedstring(ab, new);
999 audit_log_format(ab, " res=%d", !err);
1000 audit_log_end(ab);
1001 kfree(old);
1002 kfree(new);
1003 break;
1004 }
1005 case AUDIT_SIGNAL_INFO:
1006 len = 0;
1007 if (audit_sig_sid) {
1008 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1009 if (err)
1010 return err;
1011 }
1012 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1013 if (!sig_data) {
1014 if (audit_sig_sid)
1015 security_release_secctx(ctx, len);
1016 return -ENOMEM;
1017 }
1018 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1019 sig_data->pid = audit_sig_pid;
1020 if (audit_sig_sid) {
1021 memcpy(sig_data->ctx, ctx, len);
1022 security_release_secctx(ctx, len);
1023 }
1024 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1025 sig_data, sizeof(*sig_data) + len);
1026 kfree(sig_data);
1027 break;
1028 case AUDIT_TTY_GET: {
1029 struct audit_tty_status s;
1030 struct task_struct *tsk = current;
1031
1032 spin_lock(&tsk->sighand->siglock);
1033 s.enabled = tsk->signal->audit_tty;
1034 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1035 spin_unlock(&tsk->sighand->siglock);
1036
1037 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1038 break;
1039 }
1040 case AUDIT_TTY_SET: {
1041 struct audit_tty_status s, old;
1042 struct task_struct *tsk = current;
1043 struct audit_buffer *ab;
1044
1045 memset(&s, 0, sizeof(s));
1046 /* guard against past and future API changes */
1047 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1048 /* check if new data is valid */
1049 if ((s.enabled != 0 && s.enabled != 1) ||
1050 (s.log_passwd != 0 && s.log_passwd != 1))
1051 err = -EINVAL;
1052
1053 spin_lock(&tsk->sighand->siglock);
1054 old.enabled = tsk->signal->audit_tty;
1055 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1056 if (!err) {
1057 tsk->signal->audit_tty = s.enabled;
1058 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1059 }
1060 spin_unlock(&tsk->sighand->siglock);
1061
1062 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1063 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1064 " old-log_passwd=%d new-log_passwd=%d res=%d",
1065 old.enabled, s.enabled, old.log_passwd,
1066 s.log_passwd, !err);
1067 audit_log_end(ab);
1068 break;
1069 }
1070 default:
1071 err = -EINVAL;
1072 break;
1073 }
1074
1075 return err < 0 ? err : 0;
1076 }
1077
1078 /*
1079 * Get message from skb. Each message is processed by audit_receive_msg.
1080 * Malformed skbs with wrong length are discarded silently.
1081 */
1082 static void audit_receive_skb(struct sk_buff *skb)
1083 {
1084 struct nlmsghdr *nlh;
1085 /*
1086 * len MUST be signed for nlmsg_next to be able to dec it below 0
1087 * if the nlmsg_len was not aligned
1088 */
1089 int len;
1090 int err;
1091
1092 nlh = nlmsg_hdr(skb);
1093 len = skb->len;
1094
1095 while (nlmsg_ok(nlh, len)) {
1096 err = audit_receive_msg(skb, nlh);
1097 /* if err or if this message says it wants a response */
1098 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1099 netlink_ack(skb, nlh, err);
1100
1101 nlh = nlmsg_next(nlh, &len);
1102 }
1103 }
1104
1105 /* Receive messages from netlink socket. */
1106 static void audit_receive(struct sk_buff *skb)
1107 {
1108 mutex_lock(&audit_cmd_mutex);
1109 audit_receive_skb(skb);
1110 mutex_unlock(&audit_cmd_mutex);
1111 }
1112
1113 /* Run custom bind function on netlink socket group connect or bind requests. */
1114 static int audit_bind(int group)
1115 {
1116 if (!capable(CAP_AUDIT_READ))
1117 return -EPERM;
1118
1119 return 0;
1120 }
1121
1122 static int __net_init audit_net_init(struct net *net)
1123 {
1124 struct netlink_kernel_cfg cfg = {
1125 .input = audit_receive,
1126 .bind = audit_bind,
1127 .flags = NL_CFG_F_NONROOT_RECV,
1128 .groups = AUDIT_NLGRP_MAX,
1129 };
1130
1131 struct audit_net *aunet = net_generic(net, audit_net_id);
1132
1133 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1134 if (aunet->nlsk == NULL) {
1135 audit_panic("cannot initialize netlink socket in namespace");
1136 return -ENOMEM;
1137 }
1138 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1139 return 0;
1140 }
1141
1142 static void __net_exit audit_net_exit(struct net *net)
1143 {
1144 struct audit_net *aunet = net_generic(net, audit_net_id);
1145 struct sock *sock = aunet->nlsk;
1146 if (sock == audit_sock) {
1147 audit_pid = 0;
1148 audit_sock = NULL;
1149 }
1150
1151 RCU_INIT_POINTER(aunet->nlsk, NULL);
1152 synchronize_net();
1153 netlink_kernel_release(sock);
1154 }
1155
1156 static struct pernet_operations audit_net_ops __net_initdata = {
1157 .init = audit_net_init,
1158 .exit = audit_net_exit,
1159 .id = &audit_net_id,
1160 .size = sizeof(struct audit_net),
1161 };
1162
1163 /* Initialize audit support at boot time. */
1164 static int __init audit_init(void)
1165 {
1166 int i;
1167
1168 if (audit_initialized == AUDIT_DISABLED)
1169 return 0;
1170
1171 pr_info("initializing netlink subsys (%s)\n",
1172 audit_default ? "enabled" : "disabled");
1173 register_pernet_subsys(&audit_net_ops);
1174
1175 skb_queue_head_init(&audit_skb_queue);
1176 skb_queue_head_init(&audit_skb_hold_queue);
1177 audit_initialized = AUDIT_INITIALIZED;
1178 audit_enabled = audit_default;
1179 audit_ever_enabled |= !!audit_default;
1180
1181 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1182
1183 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1184 INIT_LIST_HEAD(&audit_inode_hash[i]);
1185
1186 return 0;
1187 }
1188 __initcall(audit_init);
1189
1190 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1191 static int __init audit_enable(char *str)
1192 {
1193 audit_default = !!simple_strtol(str, NULL, 0);
1194 if (!audit_default)
1195 audit_initialized = AUDIT_DISABLED;
1196
1197 pr_info("%s\n", audit_default ?
1198 "enabled (after initialization)" : "disabled (until reboot)");
1199
1200 return 1;
1201 }
1202 __setup("audit=", audit_enable);
1203
1204 /* Process kernel command-line parameter at boot time.
1205 * audit_backlog_limit=<n> */
1206 static int __init audit_backlog_limit_set(char *str)
1207 {
1208 u32 audit_backlog_limit_arg;
1209
1210 pr_info("audit_backlog_limit: ");
1211 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1212 pr_cont("using default of %u, unable to parse %s\n",
1213 audit_backlog_limit, str);
1214 return 1;
1215 }
1216
1217 audit_backlog_limit = audit_backlog_limit_arg;
1218 pr_cont("%d\n", audit_backlog_limit);
1219
1220 return 1;
1221 }
1222 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1223
1224 static void audit_buffer_free(struct audit_buffer *ab)
1225 {
1226 unsigned long flags;
1227
1228 if (!ab)
1229 return;
1230
1231 if (ab->skb)
1232 kfree_skb(ab->skb);
1233
1234 spin_lock_irqsave(&audit_freelist_lock, flags);
1235 if (audit_freelist_count > AUDIT_MAXFREE)
1236 kfree(ab);
1237 else {
1238 audit_freelist_count++;
1239 list_add(&ab->list, &audit_freelist);
1240 }
1241 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1242 }
1243
1244 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1245 gfp_t gfp_mask, int type)
1246 {
1247 unsigned long flags;
1248 struct audit_buffer *ab = NULL;
1249 struct nlmsghdr *nlh;
1250
1251 spin_lock_irqsave(&audit_freelist_lock, flags);
1252 if (!list_empty(&audit_freelist)) {
1253 ab = list_entry(audit_freelist.next,
1254 struct audit_buffer, list);
1255 list_del(&ab->list);
1256 --audit_freelist_count;
1257 }
1258 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1259
1260 if (!ab) {
1261 ab = kmalloc(sizeof(*ab), gfp_mask);
1262 if (!ab)
1263 goto err;
1264 }
1265
1266 ab->ctx = ctx;
1267 ab->gfp_mask = gfp_mask;
1268
1269 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1270 if (!ab->skb)
1271 goto err;
1272
1273 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1274 if (!nlh)
1275 goto out_kfree_skb;
1276
1277 return ab;
1278
1279 out_kfree_skb:
1280 kfree_skb(ab->skb);
1281 ab->skb = NULL;
1282 err:
1283 audit_buffer_free(ab);
1284 return NULL;
1285 }
1286
1287 /**
1288 * audit_serial - compute a serial number for the audit record
1289 *
1290 * Compute a serial number for the audit record. Audit records are
1291 * written to user-space as soon as they are generated, so a complete
1292 * audit record may be written in several pieces. The timestamp of the
1293 * record and this serial number are used by the user-space tools to
1294 * determine which pieces belong to the same audit record. The
1295 * (timestamp,serial) tuple is unique for each syscall and is live from
1296 * syscall entry to syscall exit.
1297 *
1298 * NOTE: Another possibility is to store the formatted records off the
1299 * audit context (for those records that have a context), and emit them
1300 * all at syscall exit. However, this could delay the reporting of
1301 * significant errors until syscall exit (or never, if the system
1302 * halts).
1303 */
1304 unsigned int audit_serial(void)
1305 {
1306 static atomic_t serial = ATOMIC_INIT(0);
1307
1308 return atomic_add_return(1, &serial);
1309 }
1310
1311 static inline void audit_get_stamp(struct audit_context *ctx,
1312 struct timespec *t, unsigned int *serial)
1313 {
1314 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1315 *t = CURRENT_TIME;
1316 *serial = audit_serial();
1317 }
1318 }
1319
1320 /*
1321 * Wait for auditd to drain the queue a little
1322 */
1323 static long wait_for_auditd(long sleep_time)
1324 {
1325 DECLARE_WAITQUEUE(wait, current);
1326 set_current_state(TASK_UNINTERRUPTIBLE);
1327 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1328
1329 if (audit_backlog_limit &&
1330 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1331 sleep_time = schedule_timeout(sleep_time);
1332
1333 __set_current_state(TASK_RUNNING);
1334 remove_wait_queue(&audit_backlog_wait, &wait);
1335
1336 return sleep_time;
1337 }
1338
1339 /**
1340 * audit_log_start - obtain an audit buffer
1341 * @ctx: audit_context (may be NULL)
1342 * @gfp_mask: type of allocation
1343 * @type: audit message type
1344 *
1345 * Returns audit_buffer pointer on success or NULL on error.
1346 *
1347 * Obtain an audit buffer. This routine does locking to obtain the
1348 * audit buffer, but then no locking is required for calls to
1349 * audit_log_*format. If the task (ctx) is a task that is currently in a
1350 * syscall, then the syscall is marked as auditable and an audit record
1351 * will be written at syscall exit. If there is no associated task, then
1352 * task context (ctx) should be NULL.
1353 */
1354 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1355 int type)
1356 {
1357 struct audit_buffer *ab = NULL;
1358 struct timespec t;
1359 unsigned int uninitialized_var(serial);
1360 int reserve = 5; /* Allow atomic callers to go up to five
1361 entries over the normal backlog limit */
1362 unsigned long timeout_start = jiffies;
1363
1364 if (audit_initialized != AUDIT_INITIALIZED)
1365 return NULL;
1366
1367 if (unlikely(audit_filter_type(type)))
1368 return NULL;
1369
1370 if (gfp_mask & __GFP_WAIT) {
1371 if (audit_pid && audit_pid == current->pid)
1372 gfp_mask &= ~__GFP_WAIT;
1373 else
1374 reserve = 0;
1375 }
1376
1377 while (audit_backlog_limit
1378 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1379 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1380 long sleep_time;
1381
1382 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1383 if (sleep_time > 0) {
1384 sleep_time = wait_for_auditd(sleep_time);
1385 if (sleep_time > 0)
1386 continue;
1387 }
1388 }
1389 if (audit_rate_check() && printk_ratelimit())
1390 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1391 skb_queue_len(&audit_skb_queue),
1392 audit_backlog_limit);
1393 audit_log_lost("backlog limit exceeded");
1394 audit_backlog_wait_time = audit_backlog_wait_overflow;
1395 wake_up(&audit_backlog_wait);
1396 return NULL;
1397 }
1398
1399 if (!reserve)
1400 audit_backlog_wait_time = audit_backlog_wait_time_master;
1401
1402 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1403 if (!ab) {
1404 audit_log_lost("out of memory in audit_log_start");
1405 return NULL;
1406 }
1407
1408 audit_get_stamp(ab->ctx, &t, &serial);
1409
1410 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1411 t.tv_sec, t.tv_nsec/1000000, serial);
1412 return ab;
1413 }
1414
1415 /**
1416 * audit_expand - expand skb in the audit buffer
1417 * @ab: audit_buffer
1418 * @extra: space to add at tail of the skb
1419 *
1420 * Returns 0 (no space) on failed expansion, or available space if
1421 * successful.
1422 */
1423 static inline int audit_expand(struct audit_buffer *ab, int extra)
1424 {
1425 struct sk_buff *skb = ab->skb;
1426 int oldtail = skb_tailroom(skb);
1427 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1428 int newtail = skb_tailroom(skb);
1429
1430 if (ret < 0) {
1431 audit_log_lost("out of memory in audit_expand");
1432 return 0;
1433 }
1434
1435 skb->truesize += newtail - oldtail;
1436 return newtail;
1437 }
1438
1439 /*
1440 * Format an audit message into the audit buffer. If there isn't enough
1441 * room in the audit buffer, more room will be allocated and vsnprint
1442 * will be called a second time. Currently, we assume that a printk
1443 * can't format message larger than 1024 bytes, so we don't either.
1444 */
1445 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1446 va_list args)
1447 {
1448 int len, avail;
1449 struct sk_buff *skb;
1450 va_list args2;
1451
1452 if (!ab)
1453 return;
1454
1455 BUG_ON(!ab->skb);
1456 skb = ab->skb;
1457 avail = skb_tailroom(skb);
1458 if (avail == 0) {
1459 avail = audit_expand(ab, AUDIT_BUFSIZ);
1460 if (!avail)
1461 goto out;
1462 }
1463 va_copy(args2, args);
1464 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1465 if (len >= avail) {
1466 /* The printk buffer is 1024 bytes long, so if we get
1467 * here and AUDIT_BUFSIZ is at least 1024, then we can
1468 * log everything that printk could have logged. */
1469 avail = audit_expand(ab,
1470 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1471 if (!avail)
1472 goto out_va_end;
1473 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1474 }
1475 if (len > 0)
1476 skb_put(skb, len);
1477 out_va_end:
1478 va_end(args2);
1479 out:
1480 return;
1481 }
1482
1483 /**
1484 * audit_log_format - format a message into the audit buffer.
1485 * @ab: audit_buffer
1486 * @fmt: format string
1487 * @...: optional parameters matching @fmt string
1488 *
1489 * All the work is done in audit_log_vformat.
1490 */
1491 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1492 {
1493 va_list args;
1494
1495 if (!ab)
1496 return;
1497 va_start(args, fmt);
1498 audit_log_vformat(ab, fmt, args);
1499 va_end(args);
1500 }
1501
1502 /**
1503 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1504 * @ab: the audit_buffer
1505 * @buf: buffer to convert to hex
1506 * @len: length of @buf to be converted
1507 *
1508 * No return value; failure to expand is silently ignored.
1509 *
1510 * This function will take the passed buf and convert it into a string of
1511 * ascii hex digits. The new string is placed onto the skb.
1512 */
1513 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1514 size_t len)
1515 {
1516 int i, avail, new_len;
1517 unsigned char *ptr;
1518 struct sk_buff *skb;
1519
1520 if (!ab)
1521 return;
1522
1523 BUG_ON(!ab->skb);
1524 skb = ab->skb;
1525 avail = skb_tailroom(skb);
1526 new_len = len<<1;
1527 if (new_len >= avail) {
1528 /* Round the buffer request up to the next multiple */
1529 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1530 avail = audit_expand(ab, new_len);
1531 if (!avail)
1532 return;
1533 }
1534
1535 ptr = skb_tail_pointer(skb);
1536 for (i = 0; i < len; i++)
1537 ptr = hex_byte_pack_upper(ptr, buf[i]);
1538 *ptr = 0;
1539 skb_put(skb, len << 1); /* new string is twice the old string */
1540 }
1541
1542 /*
1543 * Format a string of no more than slen characters into the audit buffer,
1544 * enclosed in quote marks.
1545 */
1546 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1547 size_t slen)
1548 {
1549 int avail, new_len;
1550 unsigned char *ptr;
1551 struct sk_buff *skb;
1552
1553 if (!ab)
1554 return;
1555
1556 BUG_ON(!ab->skb);
1557 skb = ab->skb;
1558 avail = skb_tailroom(skb);
1559 new_len = slen + 3; /* enclosing quotes + null terminator */
1560 if (new_len > avail) {
1561 avail = audit_expand(ab, new_len);
1562 if (!avail)
1563 return;
1564 }
1565 ptr = skb_tail_pointer(skb);
1566 *ptr++ = '"';
1567 memcpy(ptr, string, slen);
1568 ptr += slen;
1569 *ptr++ = '"';
1570 *ptr = 0;
1571 skb_put(skb, slen + 2); /* don't include null terminator */
1572 }
1573
1574 /**
1575 * audit_string_contains_control - does a string need to be logged in hex
1576 * @string: string to be checked
1577 * @len: max length of the string to check
1578 */
1579 int audit_string_contains_control(const char *string, size_t len)
1580 {
1581 const unsigned char *p;
1582 for (p = string; p < (const unsigned char *)string + len; p++) {
1583 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1584 return 1;
1585 }
1586 return 0;
1587 }
1588
1589 /**
1590 * audit_log_n_untrustedstring - log a string that may contain random characters
1591 * @ab: audit_buffer
1592 * @len: length of string (not including trailing null)
1593 * @string: string to be logged
1594 *
1595 * This code will escape a string that is passed to it if the string
1596 * contains a control character, unprintable character, double quote mark,
1597 * or a space. Unescaped strings will start and end with a double quote mark.
1598 * Strings that are escaped are printed in hex (2 digits per char).
1599 *
1600 * The caller specifies the number of characters in the string to log, which may
1601 * or may not be the entire string.
1602 */
1603 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1604 size_t len)
1605 {
1606 if (audit_string_contains_control(string, len))
1607 audit_log_n_hex(ab, string, len);
1608 else
1609 audit_log_n_string(ab, string, len);
1610 }
1611
1612 /**
1613 * audit_log_untrustedstring - log a string that may contain random characters
1614 * @ab: audit_buffer
1615 * @string: string to be logged
1616 *
1617 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1618 * determine string length.
1619 */
1620 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1621 {
1622 audit_log_n_untrustedstring(ab, string, strlen(string));
1623 }
1624
1625 /* This is a helper-function to print the escaped d_path */
1626 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1627 const struct path *path)
1628 {
1629 char *p, *pathname;
1630
1631 if (prefix)
1632 audit_log_format(ab, "%s", prefix);
1633
1634 /* We will allow 11 spaces for ' (deleted)' to be appended */
1635 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1636 if (!pathname) {
1637 audit_log_string(ab, "<no_memory>");
1638 return;
1639 }
1640 p = d_path(path, pathname, PATH_MAX+11);
1641 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1642 /* FIXME: can we save some information here? */
1643 audit_log_string(ab, "<too_long>");
1644 } else
1645 audit_log_untrustedstring(ab, p);
1646 kfree(pathname);
1647 }
1648
1649 void audit_log_session_info(struct audit_buffer *ab)
1650 {
1651 unsigned int sessionid = audit_get_sessionid(current);
1652 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1653
1654 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1655 }
1656
1657 void audit_log_key(struct audit_buffer *ab, char *key)
1658 {
1659 audit_log_format(ab, " key=");
1660 if (key)
1661 audit_log_untrustedstring(ab, key);
1662 else
1663 audit_log_format(ab, "(null)");
1664 }
1665
1666 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1667 {
1668 int i;
1669
1670 audit_log_format(ab, " %s=", prefix);
1671 CAP_FOR_EACH_U32(i) {
1672 audit_log_format(ab, "%08x",
1673 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1674 }
1675 }
1676
1677 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1678 {
1679 kernel_cap_t *perm = &name->fcap.permitted;
1680 kernel_cap_t *inh = &name->fcap.inheritable;
1681 int log = 0;
1682
1683 if (!cap_isclear(*perm)) {
1684 audit_log_cap(ab, "cap_fp", perm);
1685 log = 1;
1686 }
1687 if (!cap_isclear(*inh)) {
1688 audit_log_cap(ab, "cap_fi", inh);
1689 log = 1;
1690 }
1691
1692 if (log)
1693 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1694 name->fcap.fE, name->fcap_ver);
1695 }
1696
1697 static inline int audit_copy_fcaps(struct audit_names *name,
1698 const struct dentry *dentry)
1699 {
1700 struct cpu_vfs_cap_data caps;
1701 int rc;
1702
1703 if (!dentry)
1704 return 0;
1705
1706 rc = get_vfs_caps_from_disk(dentry, &caps);
1707 if (rc)
1708 return rc;
1709
1710 name->fcap.permitted = caps.permitted;
1711 name->fcap.inheritable = caps.inheritable;
1712 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1713 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1714 VFS_CAP_REVISION_SHIFT;
1715
1716 return 0;
1717 }
1718
1719 /* Copy inode data into an audit_names. */
1720 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1721 const struct inode *inode)
1722 {
1723 name->ino = inode->i_ino;
1724 name->dev = inode->i_sb->s_dev;
1725 name->mode = inode->i_mode;
1726 name->uid = inode->i_uid;
1727 name->gid = inode->i_gid;
1728 name->rdev = inode->i_rdev;
1729 security_inode_getsecid(inode, &name->osid);
1730 audit_copy_fcaps(name, dentry);
1731 }
1732
1733 /**
1734 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1735 * @context: audit_context for the task
1736 * @n: audit_names structure with reportable details
1737 * @path: optional path to report instead of audit_names->name
1738 * @record_num: record number to report when handling a list of names
1739 * @call_panic: optional pointer to int that will be updated if secid fails
1740 */
1741 void audit_log_name(struct audit_context *context, struct audit_names *n,
1742 struct path *path, int record_num, int *call_panic)
1743 {
1744 struct audit_buffer *ab;
1745 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1746 if (!ab)
1747 return;
1748
1749 audit_log_format(ab, "item=%d", record_num);
1750
1751 if (path)
1752 audit_log_d_path(ab, " name=", path);
1753 else if (n->name) {
1754 switch (n->name_len) {
1755 case AUDIT_NAME_FULL:
1756 /* log the full path */
1757 audit_log_format(ab, " name=");
1758 audit_log_untrustedstring(ab, n->name->name);
1759 break;
1760 case 0:
1761 /* name was specified as a relative path and the
1762 * directory component is the cwd */
1763 audit_log_d_path(ab, " name=", &context->pwd);
1764 break;
1765 default:
1766 /* log the name's directory component */
1767 audit_log_format(ab, " name=");
1768 audit_log_n_untrustedstring(ab, n->name->name,
1769 n->name_len);
1770 }
1771 } else
1772 audit_log_format(ab, " name=(null)");
1773
1774 if (n->ino != (unsigned long)-1)
1775 audit_log_format(ab, " inode=%lu"
1776 " dev=%02x:%02x mode=%#ho"
1777 " ouid=%u ogid=%u rdev=%02x:%02x",
1778 n->ino,
1779 MAJOR(n->dev),
1780 MINOR(n->dev),
1781 n->mode,
1782 from_kuid(&init_user_ns, n->uid),
1783 from_kgid(&init_user_ns, n->gid),
1784 MAJOR(n->rdev),
1785 MINOR(n->rdev));
1786 if (n->osid != 0) {
1787 char *ctx = NULL;
1788 u32 len;
1789 if (security_secid_to_secctx(
1790 n->osid, &ctx, &len)) {
1791 audit_log_format(ab, " osid=%u", n->osid);
1792 if (call_panic)
1793 *call_panic = 2;
1794 } else {
1795 audit_log_format(ab, " obj=%s", ctx);
1796 security_release_secctx(ctx, len);
1797 }
1798 }
1799
1800 /* log the audit_names record type */
1801 audit_log_format(ab, " nametype=");
1802 switch(n->type) {
1803 case AUDIT_TYPE_NORMAL:
1804 audit_log_format(ab, "NORMAL");
1805 break;
1806 case AUDIT_TYPE_PARENT:
1807 audit_log_format(ab, "PARENT");
1808 break;
1809 case AUDIT_TYPE_CHILD_DELETE:
1810 audit_log_format(ab, "DELETE");
1811 break;
1812 case AUDIT_TYPE_CHILD_CREATE:
1813 audit_log_format(ab, "CREATE");
1814 break;
1815 default:
1816 audit_log_format(ab, "UNKNOWN");
1817 break;
1818 }
1819
1820 audit_log_fcaps(ab, n);
1821 audit_log_end(ab);
1822 }
1823
1824 int audit_log_task_context(struct audit_buffer *ab)
1825 {
1826 char *ctx = NULL;
1827 unsigned len;
1828 int error;
1829 u32 sid;
1830
1831 security_task_getsecid(current, &sid);
1832 if (!sid)
1833 return 0;
1834
1835 error = security_secid_to_secctx(sid, &ctx, &len);
1836 if (error) {
1837 if (error != -EINVAL)
1838 goto error_path;
1839 return 0;
1840 }
1841
1842 audit_log_format(ab, " subj=%s", ctx);
1843 security_release_secctx(ctx, len);
1844 return 0;
1845
1846 error_path:
1847 audit_panic("error in audit_log_task_context");
1848 return error;
1849 }
1850 EXPORT_SYMBOL(audit_log_task_context);
1851
1852 void audit_log_d_path_exe(struct audit_buffer *ab,
1853 struct mm_struct *mm)
1854 {
1855 struct file *exe_file;
1856
1857 if (!mm)
1858 goto out_null;
1859
1860 exe_file = get_mm_exe_file(mm);
1861 if (!exe_file)
1862 goto out_null;
1863
1864 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1865 fput(exe_file);
1866 return;
1867 out_null:
1868 audit_log_format(ab, " exe=(null)");
1869 }
1870
1871 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1872 {
1873 const struct cred *cred;
1874 char comm[sizeof(tsk->comm)];
1875 char *tty;
1876
1877 if (!ab)
1878 return;
1879
1880 /* tsk == current */
1881 cred = current_cred();
1882
1883 spin_lock_irq(&tsk->sighand->siglock);
1884 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1885 tty = tsk->signal->tty->name;
1886 else
1887 tty = "(none)";
1888 spin_unlock_irq(&tsk->sighand->siglock);
1889
1890 audit_log_format(ab,
1891 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1892 " euid=%u suid=%u fsuid=%u"
1893 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1894 task_ppid_nr(tsk),
1895 task_pid_nr(tsk),
1896 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1897 from_kuid(&init_user_ns, cred->uid),
1898 from_kgid(&init_user_ns, cred->gid),
1899 from_kuid(&init_user_ns, cred->euid),
1900 from_kuid(&init_user_ns, cred->suid),
1901 from_kuid(&init_user_ns, cred->fsuid),
1902 from_kgid(&init_user_ns, cred->egid),
1903 from_kgid(&init_user_ns, cred->sgid),
1904 from_kgid(&init_user_ns, cred->fsgid),
1905 tty, audit_get_sessionid(tsk));
1906
1907 audit_log_format(ab, " comm=");
1908 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1909
1910 audit_log_d_path_exe(ab, tsk->mm);
1911 audit_log_task_context(ab);
1912 }
1913 EXPORT_SYMBOL(audit_log_task_info);
1914
1915 /**
1916 * audit_log_link_denied - report a link restriction denial
1917 * @operation: specific link opreation
1918 * @link: the path that triggered the restriction
1919 */
1920 void audit_log_link_denied(const char *operation, struct path *link)
1921 {
1922 struct audit_buffer *ab;
1923 struct audit_names *name;
1924
1925 name = kzalloc(sizeof(*name), GFP_NOFS);
1926 if (!name)
1927 return;
1928
1929 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1930 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1931 AUDIT_ANOM_LINK);
1932 if (!ab)
1933 goto out;
1934 audit_log_format(ab, "op=%s", operation);
1935 audit_log_task_info(ab, current);
1936 audit_log_format(ab, " res=0");
1937 audit_log_end(ab);
1938
1939 /* Generate AUDIT_PATH record with object. */
1940 name->type = AUDIT_TYPE_NORMAL;
1941 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1942 audit_log_name(current->audit_context, name, link, 0, NULL);
1943 out:
1944 kfree(name);
1945 }
1946
1947 /**
1948 * audit_log_end - end one audit record
1949 * @ab: the audit_buffer
1950 *
1951 * netlink_unicast() cannot be called inside an irq context because it blocks
1952 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1953 * on a queue and a tasklet is scheduled to remove them from the queue outside
1954 * the irq context. May be called in any context.
1955 */
1956 void audit_log_end(struct audit_buffer *ab)
1957 {
1958 if (!ab)
1959 return;
1960 if (!audit_rate_check()) {
1961 audit_log_lost("rate limit exceeded");
1962 } else {
1963 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1964
1965 nlh->nlmsg_len = ab->skb->len;
1966 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1967
1968 /*
1969 * The original kaudit unicast socket sends up messages with
1970 * nlmsg_len set to the payload length rather than the entire
1971 * message length. This breaks the standard set by netlink.
1972 * The existing auditd daemon assumes this breakage. Fixing
1973 * this would require co-ordinating a change in the established
1974 * protocol between the kaudit kernel subsystem and the auditd
1975 * userspace code.
1976 */
1977 nlh->nlmsg_len -= NLMSG_HDRLEN;
1978
1979 if (audit_pid) {
1980 skb_queue_tail(&audit_skb_queue, ab->skb);
1981 wake_up_interruptible(&kauditd_wait);
1982 } else {
1983 audit_printk_skb(ab->skb);
1984 }
1985 ab->skb = NULL;
1986 }
1987 audit_buffer_free(ab);
1988 }
1989
1990 /**
1991 * audit_log - Log an audit record
1992 * @ctx: audit context
1993 * @gfp_mask: type of allocation
1994 * @type: audit message type
1995 * @fmt: format string to use
1996 * @...: variable parameters matching the format string
1997 *
1998 * This is a convenience function that calls audit_log_start,
1999 * audit_log_vformat, and audit_log_end. It may be called
2000 * in any context.
2001 */
2002 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2003 const char *fmt, ...)
2004 {
2005 struct audit_buffer *ab;
2006 va_list args;
2007
2008 ab = audit_log_start(ctx, gfp_mask, type);
2009 if (ab) {
2010 va_start(args, fmt);
2011 audit_log_vformat(ab, fmt, args);
2012 va_end(args);
2013 audit_log_end(ab);
2014 }
2015 }
2016
2017 #ifdef CONFIG_SECURITY
2018 /**
2019 * audit_log_secctx - Converts and logs SELinux context
2020 * @ab: audit_buffer
2021 * @secid: security number
2022 *
2023 * This is a helper function that calls security_secid_to_secctx to convert
2024 * secid to secctx and then adds the (converted) SELinux context to the audit
2025 * log by calling audit_log_format, thus also preventing leak of internal secid
2026 * to userspace. If secid cannot be converted audit_panic is called.
2027 */
2028 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2029 {
2030 u32 len;
2031 char *secctx;
2032
2033 if (security_secid_to_secctx(secid, &secctx, &len)) {
2034 audit_panic("Cannot convert secid to context");
2035 } else {
2036 audit_log_format(ab, " obj=%s", secctx);
2037 security_release_secctx(secctx, len);
2038 }
2039 }
2040 EXPORT_SYMBOL(audit_log_secctx);
2041 #endif
2042
2043 EXPORT_SYMBOL(audit_log_start);
2044 EXPORT_SYMBOL(audit_log_end);
2045 EXPORT_SYMBOL(audit_log_format);
2046 EXPORT_SYMBOL(audit_log);