]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/audit.c
Merge branch 'drm-next-4.12' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-artful-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61 #include <linux/pid.h>
62 #include <linux/slab.h>
63
64 #include <linux/audit.h>
65
66 #include <net/sock.h>
67 #include <net/netlink.h>
68 #include <linux/skbuff.h>
69 #ifdef CONFIG_SECURITY
70 #include <linux/security.h>
71 #endif
72 #include <linux/freezer.h>
73 #include <linux/pid_namespace.h>
74 #include <net/netns/generic.h>
75
76 #include "audit.h"
77
78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
79 * (Initialization happens after skb_init is called.) */
80 #define AUDIT_DISABLED -1
81 #define AUDIT_UNINITIALIZED 0
82 #define AUDIT_INITIALIZED 1
83 static int audit_initialized;
84
85 #define AUDIT_OFF 0
86 #define AUDIT_ON 1
87 #define AUDIT_LOCKED 2
88 u32 audit_enabled;
89 u32 audit_ever_enabled;
90
91 EXPORT_SYMBOL_GPL(audit_enabled);
92
93 /* Default state when kernel boots without any parameters. */
94 static u32 audit_default;
95
96 /* If auditing cannot proceed, audit_failure selects what happens. */
97 static u32 audit_failure = AUDIT_FAIL_PRINTK;
98
99 /* private audit network namespace index */
100 static unsigned int audit_net_id;
101
102 /**
103 * struct audit_net - audit private network namespace data
104 * @sk: communication socket
105 */
106 struct audit_net {
107 struct sock *sk;
108 };
109
110 /**
111 * struct auditd_connection - kernel/auditd connection state
112 * @pid: auditd PID
113 * @portid: netlink portid
114 * @net: the associated network namespace
115 * @rcu: RCU head
116 *
117 * Description:
118 * This struct is RCU protected; you must either hold the RCU lock for reading
119 * or the associated spinlock for writing.
120 */
121 static struct auditd_connection {
122 struct pid *pid;
123 u32 portid;
124 struct net *net;
125 struct rcu_head rcu;
126 } *auditd_conn = NULL;
127 static DEFINE_SPINLOCK(auditd_conn_lock);
128
129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
130 * to that number per second. This prevents DoS attacks, but results in
131 * audit records being dropped. */
132 static u32 audit_rate_limit;
133
134 /* Number of outstanding audit_buffers allowed.
135 * When set to zero, this means unlimited. */
136 static u32 audit_backlog_limit = 64;
137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
138 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
139
140 /* The identity of the user shutting down the audit system. */
141 kuid_t audit_sig_uid = INVALID_UID;
142 pid_t audit_sig_pid = -1;
143 u32 audit_sig_sid = 0;
144
145 /* Records can be lost in several ways:
146 0) [suppressed in audit_alloc]
147 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
148 2) out of memory in audit_log_move [alloc_skb]
149 3) suppressed due to audit_rate_limit
150 4) suppressed due to audit_backlog_limit
151 */
152 static atomic_t audit_lost = ATOMIC_INIT(0);
153
154 /* Hash for inode-based rules */
155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
156
157 static struct kmem_cache *audit_buffer_cache;
158
159 /* queue msgs to send via kauditd_task */
160 static struct sk_buff_head audit_queue;
161 /* queue msgs due to temporary unicast send problems */
162 static struct sk_buff_head audit_retry_queue;
163 /* queue msgs waiting for new auditd connection */
164 static struct sk_buff_head audit_hold_queue;
165
166 /* queue servicing thread */
167 static struct task_struct *kauditd_task;
168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
169
170 /* waitqueue for callers who are blocked on the audit backlog */
171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
172
173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
174 .mask = -1,
175 .features = 0,
176 .lock = 0,};
177
178 static char *audit_feature_names[2] = {
179 "only_unset_loginuid",
180 "loginuid_immutable",
181 };
182
183
184 /* Serialize requests from userspace. */
185 DEFINE_MUTEX(audit_cmd_mutex);
186
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records. Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191
192 /* The audit_buffer is used when formatting an audit record. The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue. Multiple audit_buffers can be in
196 * use simultaneously. */
197 struct audit_buffer {
198 struct sk_buff *skb; /* formatted skb ready to send */
199 struct audit_context *ctx; /* NULL or associated context */
200 gfp_t gfp_mask;
201 };
202
203 struct audit_reply {
204 __u32 portid;
205 struct net *net;
206 struct sk_buff *skb;
207 };
208
209 /**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
216 int auditd_test_task(struct task_struct *task)
217 {
218 int rc;
219 struct auditd_connection *ac;
220
221 rcu_read_lock();
222 ac = rcu_dereference(auditd_conn);
223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 rcu_read_unlock();
225
226 return rc;
227 }
228
229 /**
230 * auditd_pid_vnr - Return the auditd PID relative to the namespace
231 *
232 * Description:
233 * Returns the PID in relation to the namespace, 0 on failure.
234 */
235 static pid_t auditd_pid_vnr(void)
236 {
237 pid_t pid;
238 const struct auditd_connection *ac;
239
240 rcu_read_lock();
241 ac = rcu_dereference(auditd_conn);
242 if (!ac || !ac->pid)
243 pid = 0;
244 else
245 pid = pid_vnr(ac->pid);
246 rcu_read_unlock();
247
248 return pid;
249 }
250
251 /**
252 * audit_get_sk - Return the audit socket for the given network namespace
253 * @net: the destination network namespace
254 *
255 * Description:
256 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
257 * that a reference is held for the network namespace while the sock is in use.
258 */
259 static struct sock *audit_get_sk(const struct net *net)
260 {
261 struct audit_net *aunet;
262
263 if (!net)
264 return NULL;
265
266 aunet = net_generic(net, audit_net_id);
267 return aunet->sk;
268 }
269
270 void audit_panic(const char *message)
271 {
272 switch (audit_failure) {
273 case AUDIT_FAIL_SILENT:
274 break;
275 case AUDIT_FAIL_PRINTK:
276 if (printk_ratelimit())
277 pr_err("%s\n", message);
278 break;
279 case AUDIT_FAIL_PANIC:
280 panic("audit: %s\n", message);
281 break;
282 }
283 }
284
285 static inline int audit_rate_check(void)
286 {
287 static unsigned long last_check = 0;
288 static int messages = 0;
289 static DEFINE_SPINLOCK(lock);
290 unsigned long flags;
291 unsigned long now;
292 unsigned long elapsed;
293 int retval = 0;
294
295 if (!audit_rate_limit) return 1;
296
297 spin_lock_irqsave(&lock, flags);
298 if (++messages < audit_rate_limit) {
299 retval = 1;
300 } else {
301 now = jiffies;
302 elapsed = now - last_check;
303 if (elapsed > HZ) {
304 last_check = now;
305 messages = 0;
306 retval = 1;
307 }
308 }
309 spin_unlock_irqrestore(&lock, flags);
310
311 return retval;
312 }
313
314 /**
315 * audit_log_lost - conditionally log lost audit message event
316 * @message: the message stating reason for lost audit message
317 *
318 * Emit at least 1 message per second, even if audit_rate_check is
319 * throttling.
320 * Always increment the lost messages counter.
321 */
322 void audit_log_lost(const char *message)
323 {
324 static unsigned long last_msg = 0;
325 static DEFINE_SPINLOCK(lock);
326 unsigned long flags;
327 unsigned long now;
328 int print;
329
330 atomic_inc(&audit_lost);
331
332 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
333
334 if (!print) {
335 spin_lock_irqsave(&lock, flags);
336 now = jiffies;
337 if (now - last_msg > HZ) {
338 print = 1;
339 last_msg = now;
340 }
341 spin_unlock_irqrestore(&lock, flags);
342 }
343
344 if (print) {
345 if (printk_ratelimit())
346 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
347 atomic_read(&audit_lost),
348 audit_rate_limit,
349 audit_backlog_limit);
350 audit_panic(message);
351 }
352 }
353
354 static int audit_log_config_change(char *function_name, u32 new, u32 old,
355 int allow_changes)
356 {
357 struct audit_buffer *ab;
358 int rc = 0;
359
360 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
361 if (unlikely(!ab))
362 return rc;
363 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
364 audit_log_session_info(ab);
365 rc = audit_log_task_context(ab);
366 if (rc)
367 allow_changes = 0; /* Something weird, deny request */
368 audit_log_format(ab, " res=%d", allow_changes);
369 audit_log_end(ab);
370 return rc;
371 }
372
373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
374 {
375 int allow_changes, rc = 0;
376 u32 old = *to_change;
377
378 /* check if we are locked */
379 if (audit_enabled == AUDIT_LOCKED)
380 allow_changes = 0;
381 else
382 allow_changes = 1;
383
384 if (audit_enabled != AUDIT_OFF) {
385 rc = audit_log_config_change(function_name, new, old, allow_changes);
386 if (rc)
387 allow_changes = 0;
388 }
389
390 /* If we are allowed, make the change */
391 if (allow_changes == 1)
392 *to_change = new;
393 /* Not allowed, update reason */
394 else if (rc == 0)
395 rc = -EPERM;
396 return rc;
397 }
398
399 static int audit_set_rate_limit(u32 limit)
400 {
401 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
402 }
403
404 static int audit_set_backlog_limit(u32 limit)
405 {
406 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
407 }
408
409 static int audit_set_backlog_wait_time(u32 timeout)
410 {
411 return audit_do_config_change("audit_backlog_wait_time",
412 &audit_backlog_wait_time, timeout);
413 }
414
415 static int audit_set_enabled(u32 state)
416 {
417 int rc;
418 if (state > AUDIT_LOCKED)
419 return -EINVAL;
420
421 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
422 if (!rc)
423 audit_ever_enabled |= !!state;
424
425 return rc;
426 }
427
428 static int audit_set_failure(u32 state)
429 {
430 if (state != AUDIT_FAIL_SILENT
431 && state != AUDIT_FAIL_PRINTK
432 && state != AUDIT_FAIL_PANIC)
433 return -EINVAL;
434
435 return audit_do_config_change("audit_failure", &audit_failure, state);
436 }
437
438 /**
439 * auditd_conn_free - RCU helper to release an auditd connection struct
440 * @rcu: RCU head
441 *
442 * Description:
443 * Drop any references inside the auditd connection tracking struct and free
444 * the memory.
445 */
446 static void auditd_conn_free(struct rcu_head *rcu)
447 {
448 struct auditd_connection *ac;
449
450 ac = container_of(rcu, struct auditd_connection, rcu);
451 put_pid(ac->pid);
452 put_net(ac->net);
453 kfree(ac);
454 }
455
456 /**
457 * auditd_set - Set/Reset the auditd connection state
458 * @pid: auditd PID
459 * @portid: auditd netlink portid
460 * @net: auditd network namespace pointer
461 *
462 * Description:
463 * This function will obtain and drop network namespace references as
464 * necessary. Returns zero on success, negative values on failure.
465 */
466 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
467 {
468 unsigned long flags;
469 struct auditd_connection *ac_old, *ac_new;
470
471 if (!pid || !net)
472 return -EINVAL;
473
474 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
475 if (!ac_new)
476 return -ENOMEM;
477 ac_new->pid = get_pid(pid);
478 ac_new->portid = portid;
479 ac_new->net = get_net(net);
480
481 spin_lock_irqsave(&auditd_conn_lock, flags);
482 ac_old = rcu_dereference_protected(auditd_conn,
483 lockdep_is_held(&auditd_conn_lock));
484 rcu_assign_pointer(auditd_conn, ac_new);
485 spin_unlock_irqrestore(&auditd_conn_lock, flags);
486
487 if (ac_old)
488 call_rcu(&ac_old->rcu, auditd_conn_free);
489
490 return 0;
491 }
492
493 /**
494 * kauditd_print_skb - Print the audit record to the ring buffer
495 * @skb: audit record
496 *
497 * Whatever the reason, this packet may not make it to the auditd connection
498 * so write it via printk so the information isn't completely lost.
499 */
500 static void kauditd_printk_skb(struct sk_buff *skb)
501 {
502 struct nlmsghdr *nlh = nlmsg_hdr(skb);
503 char *data = nlmsg_data(nlh);
504
505 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
506 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
507 }
508
509 /**
510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
511 * @skb: audit record
512 *
513 * Description:
514 * This should only be used by the kauditd_thread when it fails to flush the
515 * hold queue.
516 */
517 static void kauditd_rehold_skb(struct sk_buff *skb)
518 {
519 /* put the record back in the queue at the same place */
520 skb_queue_head(&audit_hold_queue, skb);
521 }
522
523 /**
524 * kauditd_hold_skb - Queue an audit record, waiting for auditd
525 * @skb: audit record
526 *
527 * Description:
528 * Queue the audit record, waiting for an instance of auditd. When this
529 * function is called we haven't given up yet on sending the record, but things
530 * are not looking good. The first thing we want to do is try to write the
531 * record via printk and then see if we want to try and hold on to the record
532 * and queue it, if we have room. If we want to hold on to the record, but we
533 * don't have room, record a record lost message.
534 */
535 static void kauditd_hold_skb(struct sk_buff *skb)
536 {
537 /* at this point it is uncertain if we will ever send this to auditd so
538 * try to send the message via printk before we go any further */
539 kauditd_printk_skb(skb);
540
541 /* can we just silently drop the message? */
542 if (!audit_default) {
543 kfree_skb(skb);
544 return;
545 }
546
547 /* if we have room, queue the message */
548 if (!audit_backlog_limit ||
549 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
550 skb_queue_tail(&audit_hold_queue, skb);
551 return;
552 }
553
554 /* we have no other options - drop the message */
555 audit_log_lost("kauditd hold queue overflow");
556 kfree_skb(skb);
557 }
558
559 /**
560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
561 * @skb: audit record
562 *
563 * Description:
564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
565 * but for some reason we are having problems sending it audit records so
566 * queue the given record and attempt to resend.
567 */
568 static void kauditd_retry_skb(struct sk_buff *skb)
569 {
570 /* NOTE: because records should only live in the retry queue for a
571 * short period of time, before either being sent or moved to the hold
572 * queue, we don't currently enforce a limit on this queue */
573 skb_queue_tail(&audit_retry_queue, skb);
574 }
575
576 /**
577 * auditd_reset - Disconnect the auditd connection
578 *
579 * Description:
580 * Break the auditd/kauditd connection and move all the queued records into the
581 * hold queue in case auditd reconnects.
582 */
583 static void auditd_reset(void)
584 {
585 unsigned long flags;
586 struct sk_buff *skb;
587 struct auditd_connection *ac_old;
588
589 /* if it isn't already broken, break the connection */
590 spin_lock_irqsave(&auditd_conn_lock, flags);
591 ac_old = rcu_dereference_protected(auditd_conn,
592 lockdep_is_held(&auditd_conn_lock));
593 rcu_assign_pointer(auditd_conn, NULL);
594 spin_unlock_irqrestore(&auditd_conn_lock, flags);
595
596 if (ac_old)
597 call_rcu(&ac_old->rcu, auditd_conn_free);
598
599 /* flush all of the main and retry queues to the hold queue */
600 while ((skb = skb_dequeue(&audit_retry_queue)))
601 kauditd_hold_skb(skb);
602 while ((skb = skb_dequeue(&audit_queue)))
603 kauditd_hold_skb(skb);
604 }
605
606 /**
607 * auditd_send_unicast_skb - Send a record via unicast to auditd
608 * @skb: audit record
609 *
610 * Description:
611 * Send a skb to the audit daemon, returns positive/zero values on success and
612 * negative values on failure; in all cases the skb will be consumed by this
613 * function. If the send results in -ECONNREFUSED the connection with auditd
614 * will be reset. This function may sleep so callers should not hold any locks
615 * where this would cause a problem.
616 */
617 static int auditd_send_unicast_skb(struct sk_buff *skb)
618 {
619 int rc;
620 u32 portid;
621 struct net *net;
622 struct sock *sk;
623 struct auditd_connection *ac;
624
625 /* NOTE: we can't call netlink_unicast while in the RCU section so
626 * take a reference to the network namespace and grab local
627 * copies of the namespace, the sock, and the portid; the
628 * namespace and sock aren't going to go away while we hold a
629 * reference and if the portid does become invalid after the RCU
630 * section netlink_unicast() should safely return an error */
631
632 rcu_read_lock();
633 ac = rcu_dereference(auditd_conn);
634 if (!ac) {
635 rcu_read_unlock();
636 rc = -ECONNREFUSED;
637 goto err;
638 }
639 net = get_net(ac->net);
640 sk = audit_get_sk(net);
641 portid = ac->portid;
642 rcu_read_unlock();
643
644 rc = netlink_unicast(sk, skb, portid, 0);
645 put_net(net);
646 if (rc < 0)
647 goto err;
648
649 return rc;
650
651 err:
652 if (rc == -ECONNREFUSED)
653 auditd_reset();
654 return rc;
655 }
656
657 /**
658 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
659 * @sk: the sending sock
660 * @portid: the netlink destination
661 * @queue: the skb queue to process
662 * @retry_limit: limit on number of netlink unicast failures
663 * @skb_hook: per-skb hook for additional processing
664 * @err_hook: hook called if the skb fails the netlink unicast send
665 *
666 * Description:
667 * Run through the given queue and attempt to send the audit records to auditd,
668 * returns zero on success, negative values on failure. It is up to the caller
669 * to ensure that the @sk is valid for the duration of this function.
670 *
671 */
672 static int kauditd_send_queue(struct sock *sk, u32 portid,
673 struct sk_buff_head *queue,
674 unsigned int retry_limit,
675 void (*skb_hook)(struct sk_buff *skb),
676 void (*err_hook)(struct sk_buff *skb))
677 {
678 int rc = 0;
679 struct sk_buff *skb;
680 static unsigned int failed = 0;
681
682 /* NOTE: kauditd_thread takes care of all our locking, we just use
683 * the netlink info passed to us (e.g. sk and portid) */
684
685 while ((skb = skb_dequeue(queue))) {
686 /* call the skb_hook for each skb we touch */
687 if (skb_hook)
688 (*skb_hook)(skb);
689
690 /* can we send to anyone via unicast? */
691 if (!sk) {
692 if (err_hook)
693 (*err_hook)(skb);
694 continue;
695 }
696
697 /* grab an extra skb reference in case of error */
698 skb_get(skb);
699 rc = netlink_unicast(sk, skb, portid, 0);
700 if (rc < 0) {
701 /* fatal failure for our queue flush attempt? */
702 if (++failed >= retry_limit ||
703 rc == -ECONNREFUSED || rc == -EPERM) {
704 /* yes - error processing for the queue */
705 sk = NULL;
706 if (err_hook)
707 (*err_hook)(skb);
708 if (!skb_hook)
709 goto out;
710 /* keep processing with the skb_hook */
711 continue;
712 } else
713 /* no - requeue to preserve ordering */
714 skb_queue_head(queue, skb);
715 } else {
716 /* it worked - drop the extra reference and continue */
717 consume_skb(skb);
718 failed = 0;
719 }
720 }
721
722 out:
723 return (rc >= 0 ? 0 : rc);
724 }
725
726 /*
727 * kauditd_send_multicast_skb - Send a record to any multicast listeners
728 * @skb: audit record
729 *
730 * Description:
731 * Write a multicast message to anyone listening in the initial network
732 * namespace. This function doesn't consume an skb as might be expected since
733 * it has to copy it anyways.
734 */
735 static void kauditd_send_multicast_skb(struct sk_buff *skb)
736 {
737 struct sk_buff *copy;
738 struct sock *sock = audit_get_sk(&init_net);
739 struct nlmsghdr *nlh;
740
741 /* NOTE: we are not taking an additional reference for init_net since
742 * we don't have to worry about it going away */
743
744 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
745 return;
746
747 /*
748 * The seemingly wasteful skb_copy() rather than bumping the refcount
749 * using skb_get() is necessary because non-standard mods are made to
750 * the skb by the original kaudit unicast socket send routine. The
751 * existing auditd daemon assumes this breakage. Fixing this would
752 * require co-ordinating a change in the established protocol between
753 * the kaudit kernel subsystem and the auditd userspace code. There is
754 * no reason for new multicast clients to continue with this
755 * non-compliance.
756 */
757 copy = skb_copy(skb, GFP_KERNEL);
758 if (!copy)
759 return;
760 nlh = nlmsg_hdr(copy);
761 nlh->nlmsg_len = skb->len;
762
763 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
764 }
765
766 /**
767 * kauditd_thread - Worker thread to send audit records to userspace
768 * @dummy: unused
769 */
770 static int kauditd_thread(void *dummy)
771 {
772 int rc;
773 u32 portid = 0;
774 struct net *net = NULL;
775 struct sock *sk = NULL;
776 struct auditd_connection *ac;
777
778 #define UNICAST_RETRIES 5
779
780 set_freezable();
781 while (!kthread_should_stop()) {
782 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
783 rcu_read_lock();
784 ac = rcu_dereference(auditd_conn);
785 if (!ac) {
786 rcu_read_unlock();
787 goto main_queue;
788 }
789 net = get_net(ac->net);
790 sk = audit_get_sk(net);
791 portid = ac->portid;
792 rcu_read_unlock();
793
794 /* attempt to flush the hold queue */
795 rc = kauditd_send_queue(sk, portid,
796 &audit_hold_queue, UNICAST_RETRIES,
797 NULL, kauditd_rehold_skb);
798 if (rc < 0) {
799 sk = NULL;
800 auditd_reset();
801 goto main_queue;
802 }
803
804 /* attempt to flush the retry queue */
805 rc = kauditd_send_queue(sk, portid,
806 &audit_retry_queue, UNICAST_RETRIES,
807 NULL, kauditd_hold_skb);
808 if (rc < 0) {
809 sk = NULL;
810 auditd_reset();
811 goto main_queue;
812 }
813
814 main_queue:
815 /* process the main queue - do the multicast send and attempt
816 * unicast, dump failed record sends to the retry queue; if
817 * sk == NULL due to previous failures we will just do the
818 * multicast send and move the record to the retry queue */
819 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
820 kauditd_send_multicast_skb,
821 kauditd_retry_skb);
822 if (sk == NULL || rc < 0)
823 auditd_reset();
824 sk = NULL;
825
826 /* drop our netns reference, no auditd sends past this line */
827 if (net) {
828 put_net(net);
829 net = NULL;
830 }
831
832 /* we have processed all the queues so wake everyone */
833 wake_up(&audit_backlog_wait);
834
835 /* NOTE: we want to wake up if there is anything on the queue,
836 * regardless of if an auditd is connected, as we need to
837 * do the multicast send and rotate records from the
838 * main queue to the retry/hold queues */
839 wait_event_freezable(kauditd_wait,
840 (skb_queue_len(&audit_queue) ? 1 : 0));
841 }
842
843 return 0;
844 }
845
846 int audit_send_list(void *_dest)
847 {
848 struct audit_netlink_list *dest = _dest;
849 struct sk_buff *skb;
850 struct sock *sk = audit_get_sk(dest->net);
851
852 /* wait for parent to finish and send an ACK */
853 mutex_lock(&audit_cmd_mutex);
854 mutex_unlock(&audit_cmd_mutex);
855
856 while ((skb = __skb_dequeue(&dest->q)) != NULL)
857 netlink_unicast(sk, skb, dest->portid, 0);
858
859 put_net(dest->net);
860 kfree(dest);
861
862 return 0;
863 }
864
865 struct sk_buff *audit_make_reply(int seq, int type, int done,
866 int multi, const void *payload, int size)
867 {
868 struct sk_buff *skb;
869 struct nlmsghdr *nlh;
870 void *data;
871 int flags = multi ? NLM_F_MULTI : 0;
872 int t = done ? NLMSG_DONE : type;
873
874 skb = nlmsg_new(size, GFP_KERNEL);
875 if (!skb)
876 return NULL;
877
878 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
879 if (!nlh)
880 goto out_kfree_skb;
881 data = nlmsg_data(nlh);
882 memcpy(data, payload, size);
883 return skb;
884
885 out_kfree_skb:
886 kfree_skb(skb);
887 return NULL;
888 }
889
890 static int audit_send_reply_thread(void *arg)
891 {
892 struct audit_reply *reply = (struct audit_reply *)arg;
893 struct sock *sk = audit_get_sk(reply->net);
894
895 mutex_lock(&audit_cmd_mutex);
896 mutex_unlock(&audit_cmd_mutex);
897
898 /* Ignore failure. It'll only happen if the sender goes away,
899 because our timeout is set to infinite. */
900 netlink_unicast(sk, reply->skb, reply->portid, 0);
901 put_net(reply->net);
902 kfree(reply);
903 return 0;
904 }
905
906 /**
907 * audit_send_reply - send an audit reply message via netlink
908 * @request_skb: skb of request we are replying to (used to target the reply)
909 * @seq: sequence number
910 * @type: audit message type
911 * @done: done (last) flag
912 * @multi: multi-part message flag
913 * @payload: payload data
914 * @size: payload size
915 *
916 * Allocates an skb, builds the netlink message, and sends it to the port id.
917 * No failure notifications.
918 */
919 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
920 int multi, const void *payload, int size)
921 {
922 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
923 struct sk_buff *skb;
924 struct task_struct *tsk;
925 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
926 GFP_KERNEL);
927
928 if (!reply)
929 return;
930
931 skb = audit_make_reply(seq, type, done, multi, payload, size);
932 if (!skb)
933 goto out;
934
935 reply->net = get_net(net);
936 reply->portid = NETLINK_CB(request_skb).portid;
937 reply->skb = skb;
938
939 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
940 if (!IS_ERR(tsk))
941 return;
942 kfree_skb(skb);
943 out:
944 kfree(reply);
945 }
946
947 /*
948 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
949 * control messages.
950 */
951 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
952 {
953 int err = 0;
954
955 /* Only support initial user namespace for now. */
956 /*
957 * We return ECONNREFUSED because it tricks userspace into thinking
958 * that audit was not configured into the kernel. Lots of users
959 * configure their PAM stack (because that's what the distro does)
960 * to reject login if unable to send messages to audit. If we return
961 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
962 * configured in and will let login proceed. If we return EPERM
963 * userspace will reject all logins. This should be removed when we
964 * support non init namespaces!!
965 */
966 if (current_user_ns() != &init_user_ns)
967 return -ECONNREFUSED;
968
969 switch (msg_type) {
970 case AUDIT_LIST:
971 case AUDIT_ADD:
972 case AUDIT_DEL:
973 return -EOPNOTSUPP;
974 case AUDIT_GET:
975 case AUDIT_SET:
976 case AUDIT_GET_FEATURE:
977 case AUDIT_SET_FEATURE:
978 case AUDIT_LIST_RULES:
979 case AUDIT_ADD_RULE:
980 case AUDIT_DEL_RULE:
981 case AUDIT_SIGNAL_INFO:
982 case AUDIT_TTY_GET:
983 case AUDIT_TTY_SET:
984 case AUDIT_TRIM:
985 case AUDIT_MAKE_EQUIV:
986 /* Only support auditd and auditctl in initial pid namespace
987 * for now. */
988 if (task_active_pid_ns(current) != &init_pid_ns)
989 return -EPERM;
990
991 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
992 err = -EPERM;
993 break;
994 case AUDIT_USER:
995 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
996 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
997 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
998 err = -EPERM;
999 break;
1000 default: /* bad msg */
1001 err = -EINVAL;
1002 }
1003
1004 return err;
1005 }
1006
1007 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1008 {
1009 uid_t uid = from_kuid(&init_user_ns, current_uid());
1010 pid_t pid = task_tgid_nr(current);
1011
1012 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1013 *ab = NULL;
1014 return;
1015 }
1016
1017 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1018 if (unlikely(!*ab))
1019 return;
1020 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1021 audit_log_session_info(*ab);
1022 audit_log_task_context(*ab);
1023 }
1024
1025 int is_audit_feature_set(int i)
1026 {
1027 return af.features & AUDIT_FEATURE_TO_MASK(i);
1028 }
1029
1030
1031 static int audit_get_feature(struct sk_buff *skb)
1032 {
1033 u32 seq;
1034
1035 seq = nlmsg_hdr(skb)->nlmsg_seq;
1036
1037 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1038
1039 return 0;
1040 }
1041
1042 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1043 u32 old_lock, u32 new_lock, int res)
1044 {
1045 struct audit_buffer *ab;
1046
1047 if (audit_enabled == AUDIT_OFF)
1048 return;
1049
1050 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1051 audit_log_task_info(ab, current);
1052 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1053 audit_feature_names[which], !!old_feature, !!new_feature,
1054 !!old_lock, !!new_lock, res);
1055 audit_log_end(ab);
1056 }
1057
1058 static int audit_set_feature(struct sk_buff *skb)
1059 {
1060 struct audit_features *uaf;
1061 int i;
1062
1063 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1064 uaf = nlmsg_data(nlmsg_hdr(skb));
1065
1066 /* if there is ever a version 2 we should handle that here */
1067
1068 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1069 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1070 u32 old_feature, new_feature, old_lock, new_lock;
1071
1072 /* if we are not changing this feature, move along */
1073 if (!(feature & uaf->mask))
1074 continue;
1075
1076 old_feature = af.features & feature;
1077 new_feature = uaf->features & feature;
1078 new_lock = (uaf->lock | af.lock) & feature;
1079 old_lock = af.lock & feature;
1080
1081 /* are we changing a locked feature? */
1082 if (old_lock && (new_feature != old_feature)) {
1083 audit_log_feature_change(i, old_feature, new_feature,
1084 old_lock, new_lock, 0);
1085 return -EPERM;
1086 }
1087 }
1088 /* nothing invalid, do the changes */
1089 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1090 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1091 u32 old_feature, new_feature, old_lock, new_lock;
1092
1093 /* if we are not changing this feature, move along */
1094 if (!(feature & uaf->mask))
1095 continue;
1096
1097 old_feature = af.features & feature;
1098 new_feature = uaf->features & feature;
1099 old_lock = af.lock & feature;
1100 new_lock = (uaf->lock | af.lock) & feature;
1101
1102 if (new_feature != old_feature)
1103 audit_log_feature_change(i, old_feature, new_feature,
1104 old_lock, new_lock, 1);
1105
1106 if (new_feature)
1107 af.features |= feature;
1108 else
1109 af.features &= ~feature;
1110 af.lock |= new_lock;
1111 }
1112
1113 return 0;
1114 }
1115
1116 static int audit_replace(struct pid *pid)
1117 {
1118 pid_t pvnr;
1119 struct sk_buff *skb;
1120
1121 pvnr = pid_vnr(pid);
1122 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1123 if (!skb)
1124 return -ENOMEM;
1125 return auditd_send_unicast_skb(skb);
1126 }
1127
1128 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1129 {
1130 u32 seq;
1131 void *data;
1132 int err;
1133 struct audit_buffer *ab;
1134 u16 msg_type = nlh->nlmsg_type;
1135 struct audit_sig_info *sig_data;
1136 char *ctx = NULL;
1137 u32 len;
1138
1139 err = audit_netlink_ok(skb, msg_type);
1140 if (err)
1141 return err;
1142
1143 seq = nlh->nlmsg_seq;
1144 data = nlmsg_data(nlh);
1145
1146 switch (msg_type) {
1147 case AUDIT_GET: {
1148 struct audit_status s;
1149 memset(&s, 0, sizeof(s));
1150 s.enabled = audit_enabled;
1151 s.failure = audit_failure;
1152 /* NOTE: use pid_vnr() so the PID is relative to the current
1153 * namespace */
1154 s.pid = auditd_pid_vnr();
1155 s.rate_limit = audit_rate_limit;
1156 s.backlog_limit = audit_backlog_limit;
1157 s.lost = atomic_read(&audit_lost);
1158 s.backlog = skb_queue_len(&audit_queue);
1159 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1160 s.backlog_wait_time = audit_backlog_wait_time;
1161 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1162 break;
1163 }
1164 case AUDIT_SET: {
1165 struct audit_status s;
1166 memset(&s, 0, sizeof(s));
1167 /* guard against past and future API changes */
1168 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1169 if (s.mask & AUDIT_STATUS_ENABLED) {
1170 err = audit_set_enabled(s.enabled);
1171 if (err < 0)
1172 return err;
1173 }
1174 if (s.mask & AUDIT_STATUS_FAILURE) {
1175 err = audit_set_failure(s.failure);
1176 if (err < 0)
1177 return err;
1178 }
1179 if (s.mask & AUDIT_STATUS_PID) {
1180 /* NOTE: we are using the vnr PID functions below
1181 * because the s.pid value is relative to the
1182 * namespace of the caller; at present this
1183 * doesn't matter much since you can really only
1184 * run auditd from the initial pid namespace, but
1185 * something to keep in mind if this changes */
1186 pid_t new_pid = s.pid;
1187 pid_t auditd_pid;
1188 struct pid *req_pid = task_tgid(current);
1189
1190 /* sanity check - PID values must match */
1191 if (new_pid != pid_vnr(req_pid))
1192 return -EINVAL;
1193
1194 /* test the auditd connection */
1195 audit_replace(req_pid);
1196
1197 auditd_pid = auditd_pid_vnr();
1198 /* only the current auditd can unregister itself */
1199 if ((!new_pid) && (new_pid != auditd_pid)) {
1200 audit_log_config_change("audit_pid", new_pid,
1201 auditd_pid, 0);
1202 return -EACCES;
1203 }
1204 /* replacing a healthy auditd is not allowed */
1205 if (auditd_pid && new_pid) {
1206 audit_log_config_change("audit_pid", new_pid,
1207 auditd_pid, 0);
1208 return -EEXIST;
1209 }
1210
1211 if (new_pid) {
1212 /* register a new auditd connection */
1213 err = auditd_set(req_pid,
1214 NETLINK_CB(skb).portid,
1215 sock_net(NETLINK_CB(skb).sk));
1216 if (audit_enabled != AUDIT_OFF)
1217 audit_log_config_change("audit_pid",
1218 new_pid,
1219 auditd_pid,
1220 err ? 0 : 1);
1221 if (err)
1222 return err;
1223
1224 /* try to process any backlog */
1225 wake_up_interruptible(&kauditd_wait);
1226 } else {
1227 if (audit_enabled != AUDIT_OFF)
1228 audit_log_config_change("audit_pid",
1229 new_pid,
1230 auditd_pid, 1);
1231
1232 /* unregister the auditd connection */
1233 auditd_reset();
1234 }
1235 }
1236 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1237 err = audit_set_rate_limit(s.rate_limit);
1238 if (err < 0)
1239 return err;
1240 }
1241 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1242 err = audit_set_backlog_limit(s.backlog_limit);
1243 if (err < 0)
1244 return err;
1245 }
1246 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1247 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1248 return -EINVAL;
1249 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1250 return -EINVAL;
1251 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1252 if (err < 0)
1253 return err;
1254 }
1255 if (s.mask == AUDIT_STATUS_LOST) {
1256 u32 lost = atomic_xchg(&audit_lost, 0);
1257
1258 audit_log_config_change("lost", 0, lost, 1);
1259 return lost;
1260 }
1261 break;
1262 }
1263 case AUDIT_GET_FEATURE:
1264 err = audit_get_feature(skb);
1265 if (err)
1266 return err;
1267 break;
1268 case AUDIT_SET_FEATURE:
1269 err = audit_set_feature(skb);
1270 if (err)
1271 return err;
1272 break;
1273 case AUDIT_USER:
1274 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1275 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1276 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1277 return 0;
1278
1279 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1280 if (err == 1) { /* match or error */
1281 err = 0;
1282 if (msg_type == AUDIT_USER_TTY) {
1283 err = tty_audit_push();
1284 if (err)
1285 break;
1286 }
1287 audit_log_common_recv_msg(&ab, msg_type);
1288 if (msg_type != AUDIT_USER_TTY)
1289 audit_log_format(ab, " msg='%.*s'",
1290 AUDIT_MESSAGE_TEXT_MAX,
1291 (char *)data);
1292 else {
1293 int size;
1294
1295 audit_log_format(ab, " data=");
1296 size = nlmsg_len(nlh);
1297 if (size > 0 &&
1298 ((unsigned char *)data)[size - 1] == '\0')
1299 size--;
1300 audit_log_n_untrustedstring(ab, data, size);
1301 }
1302 audit_log_end(ab);
1303 }
1304 break;
1305 case AUDIT_ADD_RULE:
1306 case AUDIT_DEL_RULE:
1307 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1308 return -EINVAL;
1309 if (audit_enabled == AUDIT_LOCKED) {
1310 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1311 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1312 audit_log_end(ab);
1313 return -EPERM;
1314 }
1315 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1316 break;
1317 case AUDIT_LIST_RULES:
1318 err = audit_list_rules_send(skb, seq);
1319 break;
1320 case AUDIT_TRIM:
1321 audit_trim_trees();
1322 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1323 audit_log_format(ab, " op=trim res=1");
1324 audit_log_end(ab);
1325 break;
1326 case AUDIT_MAKE_EQUIV: {
1327 void *bufp = data;
1328 u32 sizes[2];
1329 size_t msglen = nlmsg_len(nlh);
1330 char *old, *new;
1331
1332 err = -EINVAL;
1333 if (msglen < 2 * sizeof(u32))
1334 break;
1335 memcpy(sizes, bufp, 2 * sizeof(u32));
1336 bufp += 2 * sizeof(u32);
1337 msglen -= 2 * sizeof(u32);
1338 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1339 if (IS_ERR(old)) {
1340 err = PTR_ERR(old);
1341 break;
1342 }
1343 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1344 if (IS_ERR(new)) {
1345 err = PTR_ERR(new);
1346 kfree(old);
1347 break;
1348 }
1349 /* OK, here comes... */
1350 err = audit_tag_tree(old, new);
1351
1352 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1353
1354 audit_log_format(ab, " op=make_equiv old=");
1355 audit_log_untrustedstring(ab, old);
1356 audit_log_format(ab, " new=");
1357 audit_log_untrustedstring(ab, new);
1358 audit_log_format(ab, " res=%d", !err);
1359 audit_log_end(ab);
1360 kfree(old);
1361 kfree(new);
1362 break;
1363 }
1364 case AUDIT_SIGNAL_INFO:
1365 len = 0;
1366 if (audit_sig_sid) {
1367 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1368 if (err)
1369 return err;
1370 }
1371 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1372 if (!sig_data) {
1373 if (audit_sig_sid)
1374 security_release_secctx(ctx, len);
1375 return -ENOMEM;
1376 }
1377 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1378 sig_data->pid = audit_sig_pid;
1379 if (audit_sig_sid) {
1380 memcpy(sig_data->ctx, ctx, len);
1381 security_release_secctx(ctx, len);
1382 }
1383 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1384 sig_data, sizeof(*sig_data) + len);
1385 kfree(sig_data);
1386 break;
1387 case AUDIT_TTY_GET: {
1388 struct audit_tty_status s;
1389 unsigned int t;
1390
1391 t = READ_ONCE(current->signal->audit_tty);
1392 s.enabled = t & AUDIT_TTY_ENABLE;
1393 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1394
1395 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1396 break;
1397 }
1398 case AUDIT_TTY_SET: {
1399 struct audit_tty_status s, old;
1400 struct audit_buffer *ab;
1401 unsigned int t;
1402
1403 memset(&s, 0, sizeof(s));
1404 /* guard against past and future API changes */
1405 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1406 /* check if new data is valid */
1407 if ((s.enabled != 0 && s.enabled != 1) ||
1408 (s.log_passwd != 0 && s.log_passwd != 1))
1409 err = -EINVAL;
1410
1411 if (err)
1412 t = READ_ONCE(current->signal->audit_tty);
1413 else {
1414 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1415 t = xchg(&current->signal->audit_tty, t);
1416 }
1417 old.enabled = t & AUDIT_TTY_ENABLE;
1418 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1419
1420 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1421 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1422 " old-log_passwd=%d new-log_passwd=%d res=%d",
1423 old.enabled, s.enabled, old.log_passwd,
1424 s.log_passwd, !err);
1425 audit_log_end(ab);
1426 break;
1427 }
1428 default:
1429 err = -EINVAL;
1430 break;
1431 }
1432
1433 return err < 0 ? err : 0;
1434 }
1435
1436 /**
1437 * audit_receive - receive messages from a netlink control socket
1438 * @skb: the message buffer
1439 *
1440 * Parse the provided skb and deal with any messages that may be present,
1441 * malformed skbs are discarded.
1442 */
1443 static void audit_receive(struct sk_buff *skb)
1444 {
1445 struct nlmsghdr *nlh;
1446 /*
1447 * len MUST be signed for nlmsg_next to be able to dec it below 0
1448 * if the nlmsg_len was not aligned
1449 */
1450 int len;
1451 int err;
1452
1453 nlh = nlmsg_hdr(skb);
1454 len = skb->len;
1455
1456 mutex_lock(&audit_cmd_mutex);
1457 while (nlmsg_ok(nlh, len)) {
1458 err = audit_receive_msg(skb, nlh);
1459 /* if err or if this message says it wants a response */
1460 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1461 netlink_ack(skb, nlh, err, NULL);
1462
1463 nlh = nlmsg_next(nlh, &len);
1464 }
1465 mutex_unlock(&audit_cmd_mutex);
1466 }
1467
1468 /* Run custom bind function on netlink socket group connect or bind requests. */
1469 static int audit_bind(struct net *net, int group)
1470 {
1471 if (!capable(CAP_AUDIT_READ))
1472 return -EPERM;
1473
1474 return 0;
1475 }
1476
1477 static int __net_init audit_net_init(struct net *net)
1478 {
1479 struct netlink_kernel_cfg cfg = {
1480 .input = audit_receive,
1481 .bind = audit_bind,
1482 .flags = NL_CFG_F_NONROOT_RECV,
1483 .groups = AUDIT_NLGRP_MAX,
1484 };
1485
1486 struct audit_net *aunet = net_generic(net, audit_net_id);
1487
1488 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1489 if (aunet->sk == NULL) {
1490 audit_panic("cannot initialize netlink socket in namespace");
1491 return -ENOMEM;
1492 }
1493 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1494
1495 return 0;
1496 }
1497
1498 static void __net_exit audit_net_exit(struct net *net)
1499 {
1500 struct audit_net *aunet = net_generic(net, audit_net_id);
1501
1502 /* NOTE: you would think that we would want to check the auditd
1503 * connection and potentially reset it here if it lives in this
1504 * namespace, but since the auditd connection tracking struct holds a
1505 * reference to this namespace (see auditd_set()) we are only ever
1506 * going to get here after that connection has been released */
1507
1508 netlink_kernel_release(aunet->sk);
1509 }
1510
1511 static struct pernet_operations audit_net_ops __net_initdata = {
1512 .init = audit_net_init,
1513 .exit = audit_net_exit,
1514 .id = &audit_net_id,
1515 .size = sizeof(struct audit_net),
1516 };
1517
1518 /* Initialize audit support at boot time. */
1519 static int __init audit_init(void)
1520 {
1521 int i;
1522
1523 if (audit_initialized == AUDIT_DISABLED)
1524 return 0;
1525
1526 audit_buffer_cache = kmem_cache_create("audit_buffer",
1527 sizeof(struct audit_buffer),
1528 0, SLAB_PANIC, NULL);
1529
1530 skb_queue_head_init(&audit_queue);
1531 skb_queue_head_init(&audit_retry_queue);
1532 skb_queue_head_init(&audit_hold_queue);
1533
1534 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1535 INIT_LIST_HEAD(&audit_inode_hash[i]);
1536
1537 pr_info("initializing netlink subsys (%s)\n",
1538 audit_default ? "enabled" : "disabled");
1539 register_pernet_subsys(&audit_net_ops);
1540
1541 audit_initialized = AUDIT_INITIALIZED;
1542 audit_enabled = audit_default;
1543 audit_ever_enabled |= !!audit_default;
1544
1545 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1546 if (IS_ERR(kauditd_task)) {
1547 int err = PTR_ERR(kauditd_task);
1548 panic("audit: failed to start the kauditd thread (%d)\n", err);
1549 }
1550
1551 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1552 "state=initialized audit_enabled=%u res=1",
1553 audit_enabled);
1554
1555 return 0;
1556 }
1557 __initcall(audit_init);
1558
1559 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1560 static int __init audit_enable(char *str)
1561 {
1562 audit_default = !!simple_strtol(str, NULL, 0);
1563 if (!audit_default)
1564 audit_initialized = AUDIT_DISABLED;
1565
1566 pr_info("%s\n", audit_default ?
1567 "enabled (after initialization)" : "disabled (until reboot)");
1568
1569 return 1;
1570 }
1571 __setup("audit=", audit_enable);
1572
1573 /* Process kernel command-line parameter at boot time.
1574 * audit_backlog_limit=<n> */
1575 static int __init audit_backlog_limit_set(char *str)
1576 {
1577 u32 audit_backlog_limit_arg;
1578
1579 pr_info("audit_backlog_limit: ");
1580 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1581 pr_cont("using default of %u, unable to parse %s\n",
1582 audit_backlog_limit, str);
1583 return 1;
1584 }
1585
1586 audit_backlog_limit = audit_backlog_limit_arg;
1587 pr_cont("%d\n", audit_backlog_limit);
1588
1589 return 1;
1590 }
1591 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1592
1593 static void audit_buffer_free(struct audit_buffer *ab)
1594 {
1595 if (!ab)
1596 return;
1597
1598 kfree_skb(ab->skb);
1599 kmem_cache_free(audit_buffer_cache, ab);
1600 }
1601
1602 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1603 gfp_t gfp_mask, int type)
1604 {
1605 struct audit_buffer *ab;
1606
1607 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1608 if (!ab)
1609 return NULL;
1610
1611 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1612 if (!ab->skb)
1613 goto err;
1614 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1615 goto err;
1616
1617 ab->ctx = ctx;
1618 ab->gfp_mask = gfp_mask;
1619
1620 return ab;
1621
1622 err:
1623 audit_buffer_free(ab);
1624 return NULL;
1625 }
1626
1627 /**
1628 * audit_serial - compute a serial number for the audit record
1629 *
1630 * Compute a serial number for the audit record. Audit records are
1631 * written to user-space as soon as they are generated, so a complete
1632 * audit record may be written in several pieces. The timestamp of the
1633 * record and this serial number are used by the user-space tools to
1634 * determine which pieces belong to the same audit record. The
1635 * (timestamp,serial) tuple is unique for each syscall and is live from
1636 * syscall entry to syscall exit.
1637 *
1638 * NOTE: Another possibility is to store the formatted records off the
1639 * audit context (for those records that have a context), and emit them
1640 * all at syscall exit. However, this could delay the reporting of
1641 * significant errors until syscall exit (or never, if the system
1642 * halts).
1643 */
1644 unsigned int audit_serial(void)
1645 {
1646 static atomic_t serial = ATOMIC_INIT(0);
1647
1648 return atomic_add_return(1, &serial);
1649 }
1650
1651 static inline void audit_get_stamp(struct audit_context *ctx,
1652 struct timespec64 *t, unsigned int *serial)
1653 {
1654 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1655 ktime_get_real_ts64(t);
1656 *serial = audit_serial();
1657 }
1658 }
1659
1660 /**
1661 * audit_log_start - obtain an audit buffer
1662 * @ctx: audit_context (may be NULL)
1663 * @gfp_mask: type of allocation
1664 * @type: audit message type
1665 *
1666 * Returns audit_buffer pointer on success or NULL on error.
1667 *
1668 * Obtain an audit buffer. This routine does locking to obtain the
1669 * audit buffer, but then no locking is required for calls to
1670 * audit_log_*format. If the task (ctx) is a task that is currently in a
1671 * syscall, then the syscall is marked as auditable and an audit record
1672 * will be written at syscall exit. If there is no associated task, then
1673 * task context (ctx) should be NULL.
1674 */
1675 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1676 int type)
1677 {
1678 struct audit_buffer *ab;
1679 struct timespec64 t;
1680 unsigned int uninitialized_var(serial);
1681
1682 if (audit_initialized != AUDIT_INITIALIZED)
1683 return NULL;
1684
1685 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1686 return NULL;
1687
1688 /* NOTE: don't ever fail/sleep on these two conditions:
1689 * 1. auditd generated record - since we need auditd to drain the
1690 * queue; also, when we are checking for auditd, compare PIDs using
1691 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1692 * using a PID anchored in the caller's namespace
1693 * 2. generator holding the audit_cmd_mutex - we don't want to block
1694 * while holding the mutex */
1695 if (!(auditd_test_task(current) ||
1696 (current == __mutex_owner(&audit_cmd_mutex)))) {
1697 long stime = audit_backlog_wait_time;
1698
1699 while (audit_backlog_limit &&
1700 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1701 /* wake kauditd to try and flush the queue */
1702 wake_up_interruptible(&kauditd_wait);
1703
1704 /* sleep if we are allowed and we haven't exhausted our
1705 * backlog wait limit */
1706 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1707 DECLARE_WAITQUEUE(wait, current);
1708
1709 add_wait_queue_exclusive(&audit_backlog_wait,
1710 &wait);
1711 set_current_state(TASK_UNINTERRUPTIBLE);
1712 stime = schedule_timeout(stime);
1713 remove_wait_queue(&audit_backlog_wait, &wait);
1714 } else {
1715 if (audit_rate_check() && printk_ratelimit())
1716 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1717 skb_queue_len(&audit_queue),
1718 audit_backlog_limit);
1719 audit_log_lost("backlog limit exceeded");
1720 return NULL;
1721 }
1722 }
1723 }
1724
1725 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1726 if (!ab) {
1727 audit_log_lost("out of memory in audit_log_start");
1728 return NULL;
1729 }
1730
1731 audit_get_stamp(ab->ctx, &t, &serial);
1732 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1733 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1734
1735 return ab;
1736 }
1737
1738 /**
1739 * audit_expand - expand skb in the audit buffer
1740 * @ab: audit_buffer
1741 * @extra: space to add at tail of the skb
1742 *
1743 * Returns 0 (no space) on failed expansion, or available space if
1744 * successful.
1745 */
1746 static inline int audit_expand(struct audit_buffer *ab, int extra)
1747 {
1748 struct sk_buff *skb = ab->skb;
1749 int oldtail = skb_tailroom(skb);
1750 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1751 int newtail = skb_tailroom(skb);
1752
1753 if (ret < 0) {
1754 audit_log_lost("out of memory in audit_expand");
1755 return 0;
1756 }
1757
1758 skb->truesize += newtail - oldtail;
1759 return newtail;
1760 }
1761
1762 /*
1763 * Format an audit message into the audit buffer. If there isn't enough
1764 * room in the audit buffer, more room will be allocated and vsnprint
1765 * will be called a second time. Currently, we assume that a printk
1766 * can't format message larger than 1024 bytes, so we don't either.
1767 */
1768 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1769 va_list args)
1770 {
1771 int len, avail;
1772 struct sk_buff *skb;
1773 va_list args2;
1774
1775 if (!ab)
1776 return;
1777
1778 BUG_ON(!ab->skb);
1779 skb = ab->skb;
1780 avail = skb_tailroom(skb);
1781 if (avail == 0) {
1782 avail = audit_expand(ab, AUDIT_BUFSIZ);
1783 if (!avail)
1784 goto out;
1785 }
1786 va_copy(args2, args);
1787 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1788 if (len >= avail) {
1789 /* The printk buffer is 1024 bytes long, so if we get
1790 * here and AUDIT_BUFSIZ is at least 1024, then we can
1791 * log everything that printk could have logged. */
1792 avail = audit_expand(ab,
1793 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1794 if (!avail)
1795 goto out_va_end;
1796 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1797 }
1798 if (len > 0)
1799 skb_put(skb, len);
1800 out_va_end:
1801 va_end(args2);
1802 out:
1803 return;
1804 }
1805
1806 /**
1807 * audit_log_format - format a message into the audit buffer.
1808 * @ab: audit_buffer
1809 * @fmt: format string
1810 * @...: optional parameters matching @fmt string
1811 *
1812 * All the work is done in audit_log_vformat.
1813 */
1814 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1815 {
1816 va_list args;
1817
1818 if (!ab)
1819 return;
1820 va_start(args, fmt);
1821 audit_log_vformat(ab, fmt, args);
1822 va_end(args);
1823 }
1824
1825 /**
1826 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1827 * @ab: the audit_buffer
1828 * @buf: buffer to convert to hex
1829 * @len: length of @buf to be converted
1830 *
1831 * No return value; failure to expand is silently ignored.
1832 *
1833 * This function will take the passed buf and convert it into a string of
1834 * ascii hex digits. The new string is placed onto the skb.
1835 */
1836 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1837 size_t len)
1838 {
1839 int i, avail, new_len;
1840 unsigned char *ptr;
1841 struct sk_buff *skb;
1842
1843 if (!ab)
1844 return;
1845
1846 BUG_ON(!ab->skb);
1847 skb = ab->skb;
1848 avail = skb_tailroom(skb);
1849 new_len = len<<1;
1850 if (new_len >= avail) {
1851 /* Round the buffer request up to the next multiple */
1852 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1853 avail = audit_expand(ab, new_len);
1854 if (!avail)
1855 return;
1856 }
1857
1858 ptr = skb_tail_pointer(skb);
1859 for (i = 0; i < len; i++)
1860 ptr = hex_byte_pack_upper(ptr, buf[i]);
1861 *ptr = 0;
1862 skb_put(skb, len << 1); /* new string is twice the old string */
1863 }
1864
1865 /*
1866 * Format a string of no more than slen characters into the audit buffer,
1867 * enclosed in quote marks.
1868 */
1869 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1870 size_t slen)
1871 {
1872 int avail, new_len;
1873 unsigned char *ptr;
1874 struct sk_buff *skb;
1875
1876 if (!ab)
1877 return;
1878
1879 BUG_ON(!ab->skb);
1880 skb = ab->skb;
1881 avail = skb_tailroom(skb);
1882 new_len = slen + 3; /* enclosing quotes + null terminator */
1883 if (new_len > avail) {
1884 avail = audit_expand(ab, new_len);
1885 if (!avail)
1886 return;
1887 }
1888 ptr = skb_tail_pointer(skb);
1889 *ptr++ = '"';
1890 memcpy(ptr, string, slen);
1891 ptr += slen;
1892 *ptr++ = '"';
1893 *ptr = 0;
1894 skb_put(skb, slen + 2); /* don't include null terminator */
1895 }
1896
1897 /**
1898 * audit_string_contains_control - does a string need to be logged in hex
1899 * @string: string to be checked
1900 * @len: max length of the string to check
1901 */
1902 bool audit_string_contains_control(const char *string, size_t len)
1903 {
1904 const unsigned char *p;
1905 for (p = string; p < (const unsigned char *)string + len; p++) {
1906 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1907 return true;
1908 }
1909 return false;
1910 }
1911
1912 /**
1913 * audit_log_n_untrustedstring - log a string that may contain random characters
1914 * @ab: audit_buffer
1915 * @len: length of string (not including trailing null)
1916 * @string: string to be logged
1917 *
1918 * This code will escape a string that is passed to it if the string
1919 * contains a control character, unprintable character, double quote mark,
1920 * or a space. Unescaped strings will start and end with a double quote mark.
1921 * Strings that are escaped are printed in hex (2 digits per char).
1922 *
1923 * The caller specifies the number of characters in the string to log, which may
1924 * or may not be the entire string.
1925 */
1926 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1927 size_t len)
1928 {
1929 if (audit_string_contains_control(string, len))
1930 audit_log_n_hex(ab, string, len);
1931 else
1932 audit_log_n_string(ab, string, len);
1933 }
1934
1935 /**
1936 * audit_log_untrustedstring - log a string that may contain random characters
1937 * @ab: audit_buffer
1938 * @string: string to be logged
1939 *
1940 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1941 * determine string length.
1942 */
1943 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1944 {
1945 audit_log_n_untrustedstring(ab, string, strlen(string));
1946 }
1947
1948 /* This is a helper-function to print the escaped d_path */
1949 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1950 const struct path *path)
1951 {
1952 char *p, *pathname;
1953
1954 if (prefix)
1955 audit_log_format(ab, "%s", prefix);
1956
1957 /* We will allow 11 spaces for ' (deleted)' to be appended */
1958 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1959 if (!pathname) {
1960 audit_log_string(ab, "<no_memory>");
1961 return;
1962 }
1963 p = d_path(path, pathname, PATH_MAX+11);
1964 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1965 /* FIXME: can we save some information here? */
1966 audit_log_string(ab, "<too_long>");
1967 } else
1968 audit_log_untrustedstring(ab, p);
1969 kfree(pathname);
1970 }
1971
1972 void audit_log_session_info(struct audit_buffer *ab)
1973 {
1974 unsigned int sessionid = audit_get_sessionid(current);
1975 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1976
1977 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1978 }
1979
1980 void audit_log_key(struct audit_buffer *ab, char *key)
1981 {
1982 audit_log_format(ab, " key=");
1983 if (key)
1984 audit_log_untrustedstring(ab, key);
1985 else
1986 audit_log_format(ab, "(null)");
1987 }
1988
1989 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1990 {
1991 int i;
1992
1993 audit_log_format(ab, " %s=", prefix);
1994 CAP_FOR_EACH_U32(i) {
1995 audit_log_format(ab, "%08x",
1996 cap->cap[CAP_LAST_U32 - i]);
1997 }
1998 }
1999
2000 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2001 {
2002 kernel_cap_t *perm = &name->fcap.permitted;
2003 kernel_cap_t *inh = &name->fcap.inheritable;
2004 int log = 0;
2005
2006 if (!cap_isclear(*perm)) {
2007 audit_log_cap(ab, "cap_fp", perm);
2008 log = 1;
2009 }
2010 if (!cap_isclear(*inh)) {
2011 audit_log_cap(ab, "cap_fi", inh);
2012 log = 1;
2013 }
2014
2015 if (log)
2016 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2017 name->fcap.fE, name->fcap_ver);
2018 }
2019
2020 static inline int audit_copy_fcaps(struct audit_names *name,
2021 const struct dentry *dentry)
2022 {
2023 struct cpu_vfs_cap_data caps;
2024 int rc;
2025
2026 if (!dentry)
2027 return 0;
2028
2029 rc = get_vfs_caps_from_disk(dentry, &caps);
2030 if (rc)
2031 return rc;
2032
2033 name->fcap.permitted = caps.permitted;
2034 name->fcap.inheritable = caps.inheritable;
2035 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2036 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2037 VFS_CAP_REVISION_SHIFT;
2038
2039 return 0;
2040 }
2041
2042 /* Copy inode data into an audit_names. */
2043 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2044 struct inode *inode)
2045 {
2046 name->ino = inode->i_ino;
2047 name->dev = inode->i_sb->s_dev;
2048 name->mode = inode->i_mode;
2049 name->uid = inode->i_uid;
2050 name->gid = inode->i_gid;
2051 name->rdev = inode->i_rdev;
2052 security_inode_getsecid(inode, &name->osid);
2053 audit_copy_fcaps(name, dentry);
2054 }
2055
2056 /**
2057 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2058 * @context: audit_context for the task
2059 * @n: audit_names structure with reportable details
2060 * @path: optional path to report instead of audit_names->name
2061 * @record_num: record number to report when handling a list of names
2062 * @call_panic: optional pointer to int that will be updated if secid fails
2063 */
2064 void audit_log_name(struct audit_context *context, struct audit_names *n,
2065 const struct path *path, int record_num, int *call_panic)
2066 {
2067 struct audit_buffer *ab;
2068 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2069 if (!ab)
2070 return;
2071
2072 audit_log_format(ab, "item=%d", record_num);
2073
2074 if (path)
2075 audit_log_d_path(ab, " name=", path);
2076 else if (n->name) {
2077 switch (n->name_len) {
2078 case AUDIT_NAME_FULL:
2079 /* log the full path */
2080 audit_log_format(ab, " name=");
2081 audit_log_untrustedstring(ab, n->name->name);
2082 break;
2083 case 0:
2084 /* name was specified as a relative path and the
2085 * directory component is the cwd */
2086 audit_log_d_path(ab, " name=", &context->pwd);
2087 break;
2088 default:
2089 /* log the name's directory component */
2090 audit_log_format(ab, " name=");
2091 audit_log_n_untrustedstring(ab, n->name->name,
2092 n->name_len);
2093 }
2094 } else
2095 audit_log_format(ab, " name=(null)");
2096
2097 if (n->ino != AUDIT_INO_UNSET)
2098 audit_log_format(ab, " inode=%lu"
2099 " dev=%02x:%02x mode=%#ho"
2100 " ouid=%u ogid=%u rdev=%02x:%02x",
2101 n->ino,
2102 MAJOR(n->dev),
2103 MINOR(n->dev),
2104 n->mode,
2105 from_kuid(&init_user_ns, n->uid),
2106 from_kgid(&init_user_ns, n->gid),
2107 MAJOR(n->rdev),
2108 MINOR(n->rdev));
2109 if (n->osid != 0) {
2110 char *ctx = NULL;
2111 u32 len;
2112 if (security_secid_to_secctx(
2113 n->osid, &ctx, &len)) {
2114 audit_log_format(ab, " osid=%u", n->osid);
2115 if (call_panic)
2116 *call_panic = 2;
2117 } else {
2118 audit_log_format(ab, " obj=%s", ctx);
2119 security_release_secctx(ctx, len);
2120 }
2121 }
2122
2123 /* log the audit_names record type */
2124 audit_log_format(ab, " nametype=");
2125 switch(n->type) {
2126 case AUDIT_TYPE_NORMAL:
2127 audit_log_format(ab, "NORMAL");
2128 break;
2129 case AUDIT_TYPE_PARENT:
2130 audit_log_format(ab, "PARENT");
2131 break;
2132 case AUDIT_TYPE_CHILD_DELETE:
2133 audit_log_format(ab, "DELETE");
2134 break;
2135 case AUDIT_TYPE_CHILD_CREATE:
2136 audit_log_format(ab, "CREATE");
2137 break;
2138 default:
2139 audit_log_format(ab, "UNKNOWN");
2140 break;
2141 }
2142
2143 audit_log_fcaps(ab, n);
2144 audit_log_end(ab);
2145 }
2146
2147 int audit_log_task_context(struct audit_buffer *ab)
2148 {
2149 char *ctx = NULL;
2150 unsigned len;
2151 int error;
2152 u32 sid;
2153
2154 security_task_getsecid(current, &sid);
2155 if (!sid)
2156 return 0;
2157
2158 error = security_secid_to_secctx(sid, &ctx, &len);
2159 if (error) {
2160 if (error != -EINVAL)
2161 goto error_path;
2162 return 0;
2163 }
2164
2165 audit_log_format(ab, " subj=%s", ctx);
2166 security_release_secctx(ctx, len);
2167 return 0;
2168
2169 error_path:
2170 audit_panic("error in audit_log_task_context");
2171 return error;
2172 }
2173 EXPORT_SYMBOL(audit_log_task_context);
2174
2175 void audit_log_d_path_exe(struct audit_buffer *ab,
2176 struct mm_struct *mm)
2177 {
2178 struct file *exe_file;
2179
2180 if (!mm)
2181 goto out_null;
2182
2183 exe_file = get_mm_exe_file(mm);
2184 if (!exe_file)
2185 goto out_null;
2186
2187 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2188 fput(exe_file);
2189 return;
2190 out_null:
2191 audit_log_format(ab, " exe=(null)");
2192 }
2193
2194 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2195 {
2196 struct tty_struct *tty = NULL;
2197 unsigned long flags;
2198
2199 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2200 if (tsk->signal)
2201 tty = tty_kref_get(tsk->signal->tty);
2202 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2203 return tty;
2204 }
2205
2206 void audit_put_tty(struct tty_struct *tty)
2207 {
2208 tty_kref_put(tty);
2209 }
2210
2211 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2212 {
2213 const struct cred *cred;
2214 char comm[sizeof(tsk->comm)];
2215 struct tty_struct *tty;
2216
2217 if (!ab)
2218 return;
2219
2220 /* tsk == current */
2221 cred = current_cred();
2222 tty = audit_get_tty(tsk);
2223 audit_log_format(ab,
2224 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2225 " euid=%u suid=%u fsuid=%u"
2226 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2227 task_ppid_nr(tsk),
2228 task_tgid_nr(tsk),
2229 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2230 from_kuid(&init_user_ns, cred->uid),
2231 from_kgid(&init_user_ns, cred->gid),
2232 from_kuid(&init_user_ns, cred->euid),
2233 from_kuid(&init_user_ns, cred->suid),
2234 from_kuid(&init_user_ns, cred->fsuid),
2235 from_kgid(&init_user_ns, cred->egid),
2236 from_kgid(&init_user_ns, cred->sgid),
2237 from_kgid(&init_user_ns, cred->fsgid),
2238 tty ? tty_name(tty) : "(none)",
2239 audit_get_sessionid(tsk));
2240 audit_put_tty(tty);
2241 audit_log_format(ab, " comm=");
2242 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2243 audit_log_d_path_exe(ab, tsk->mm);
2244 audit_log_task_context(ab);
2245 }
2246 EXPORT_SYMBOL(audit_log_task_info);
2247
2248 /**
2249 * audit_log_link_denied - report a link restriction denial
2250 * @operation: specific link operation
2251 * @link: the path that triggered the restriction
2252 */
2253 void audit_log_link_denied(const char *operation, const struct path *link)
2254 {
2255 struct audit_buffer *ab;
2256 struct audit_names *name;
2257
2258 name = kzalloc(sizeof(*name), GFP_NOFS);
2259 if (!name)
2260 return;
2261
2262 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2263 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2264 AUDIT_ANOM_LINK);
2265 if (!ab)
2266 goto out;
2267 audit_log_format(ab, "op=%s", operation);
2268 audit_log_task_info(ab, current);
2269 audit_log_format(ab, " res=0");
2270 audit_log_end(ab);
2271
2272 /* Generate AUDIT_PATH record with object. */
2273 name->type = AUDIT_TYPE_NORMAL;
2274 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2275 audit_log_name(current->audit_context, name, link, 0, NULL);
2276 out:
2277 kfree(name);
2278 }
2279
2280 /**
2281 * audit_log_end - end one audit record
2282 * @ab: the audit_buffer
2283 *
2284 * We can not do a netlink send inside an irq context because it blocks (last
2285 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2286 * queue and a tasklet is scheduled to remove them from the queue outside the
2287 * irq context. May be called in any context.
2288 */
2289 void audit_log_end(struct audit_buffer *ab)
2290 {
2291 struct sk_buff *skb;
2292 struct nlmsghdr *nlh;
2293
2294 if (!ab)
2295 return;
2296
2297 if (audit_rate_check()) {
2298 skb = ab->skb;
2299 ab->skb = NULL;
2300
2301 /* setup the netlink header, see the comments in
2302 * kauditd_send_multicast_skb() for length quirks */
2303 nlh = nlmsg_hdr(skb);
2304 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2305
2306 /* queue the netlink packet and poke the kauditd thread */
2307 skb_queue_tail(&audit_queue, skb);
2308 wake_up_interruptible(&kauditd_wait);
2309 } else
2310 audit_log_lost("rate limit exceeded");
2311
2312 audit_buffer_free(ab);
2313 }
2314
2315 /**
2316 * audit_log - Log an audit record
2317 * @ctx: audit context
2318 * @gfp_mask: type of allocation
2319 * @type: audit message type
2320 * @fmt: format string to use
2321 * @...: variable parameters matching the format string
2322 *
2323 * This is a convenience function that calls audit_log_start,
2324 * audit_log_vformat, and audit_log_end. It may be called
2325 * in any context.
2326 */
2327 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2328 const char *fmt, ...)
2329 {
2330 struct audit_buffer *ab;
2331 va_list args;
2332
2333 ab = audit_log_start(ctx, gfp_mask, type);
2334 if (ab) {
2335 va_start(args, fmt);
2336 audit_log_vformat(ab, fmt, args);
2337 va_end(args);
2338 audit_log_end(ab);
2339 }
2340 }
2341
2342 #ifdef CONFIG_SECURITY
2343 /**
2344 * audit_log_secctx - Converts and logs SELinux context
2345 * @ab: audit_buffer
2346 * @secid: security number
2347 *
2348 * This is a helper function that calls security_secid_to_secctx to convert
2349 * secid to secctx and then adds the (converted) SELinux context to the audit
2350 * log by calling audit_log_format, thus also preventing leak of internal secid
2351 * to userspace. If secid cannot be converted audit_panic is called.
2352 */
2353 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2354 {
2355 u32 len;
2356 char *secctx;
2357
2358 if (security_secid_to_secctx(secid, &secctx, &len)) {
2359 audit_panic("Cannot convert secid to context");
2360 } else {
2361 audit_log_format(ab, " obj=%s", secctx);
2362 security_release_secctx(secctx, len);
2363 }
2364 }
2365 EXPORT_SYMBOL(audit_log_secctx);
2366 #endif
2367
2368 EXPORT_SYMBOL(audit_log_start);
2369 EXPORT_SYMBOL(audit_log_end);
2370 EXPORT_SYMBOL(audit_log_format);
2371 EXPORT_SYMBOL(audit_log);