]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/audit.c
Merge tag 'for-linus-timers-conversion-final-v4.15-rc1' of git://git.kernel.org/pub...
[mirror_ubuntu-bionic-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61 #include <linux/pid.h>
62 #include <linux/slab.h>
63
64 #include <linux/audit.h>
65
66 #include <net/sock.h>
67 #include <net/netlink.h>
68 #include <linux/skbuff.h>
69 #ifdef CONFIG_SECURITY
70 #include <linux/security.h>
71 #endif
72 #include <linux/freezer.h>
73 #include <linux/pid_namespace.h>
74 #include <net/netns/generic.h>
75
76 #include "audit.h"
77
78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
79 * (Initialization happens after skb_init is called.) */
80 #define AUDIT_DISABLED -1
81 #define AUDIT_UNINITIALIZED 0
82 #define AUDIT_INITIALIZED 1
83 static int audit_initialized;
84
85 #define AUDIT_OFF 0
86 #define AUDIT_ON 1
87 #define AUDIT_LOCKED 2
88 u32 audit_enabled = AUDIT_OFF;
89 bool audit_ever_enabled = !!AUDIT_OFF;
90
91 EXPORT_SYMBOL_GPL(audit_enabled);
92
93 /* Default state when kernel boots without any parameters. */
94 static u32 audit_default = AUDIT_OFF;
95
96 /* If auditing cannot proceed, audit_failure selects what happens. */
97 static u32 audit_failure = AUDIT_FAIL_PRINTK;
98
99 /* private audit network namespace index */
100 static unsigned int audit_net_id;
101
102 /**
103 * struct audit_net - audit private network namespace data
104 * @sk: communication socket
105 */
106 struct audit_net {
107 struct sock *sk;
108 };
109
110 /**
111 * struct auditd_connection - kernel/auditd connection state
112 * @pid: auditd PID
113 * @portid: netlink portid
114 * @net: the associated network namespace
115 * @rcu: RCU head
116 *
117 * Description:
118 * This struct is RCU protected; you must either hold the RCU lock for reading
119 * or the associated spinlock for writing.
120 */
121 static struct auditd_connection {
122 struct pid *pid;
123 u32 portid;
124 struct net *net;
125 struct rcu_head rcu;
126 } *auditd_conn = NULL;
127 static DEFINE_SPINLOCK(auditd_conn_lock);
128
129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
130 * to that number per second. This prevents DoS attacks, but results in
131 * audit records being dropped. */
132 static u32 audit_rate_limit;
133
134 /* Number of outstanding audit_buffers allowed.
135 * When set to zero, this means unlimited. */
136 static u32 audit_backlog_limit = 64;
137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
138 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
139
140 /* The identity of the user shutting down the audit system. */
141 kuid_t audit_sig_uid = INVALID_UID;
142 pid_t audit_sig_pid = -1;
143 u32 audit_sig_sid = 0;
144
145 /* Records can be lost in several ways:
146 0) [suppressed in audit_alloc]
147 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
148 2) out of memory in audit_log_move [alloc_skb]
149 3) suppressed due to audit_rate_limit
150 4) suppressed due to audit_backlog_limit
151 */
152 static atomic_t audit_lost = ATOMIC_INIT(0);
153
154 /* Hash for inode-based rules */
155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
156
157 static struct kmem_cache *audit_buffer_cache;
158
159 /* queue msgs to send via kauditd_task */
160 static struct sk_buff_head audit_queue;
161 /* queue msgs due to temporary unicast send problems */
162 static struct sk_buff_head audit_retry_queue;
163 /* queue msgs waiting for new auditd connection */
164 static struct sk_buff_head audit_hold_queue;
165
166 /* queue servicing thread */
167 static struct task_struct *kauditd_task;
168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
169
170 /* waitqueue for callers who are blocked on the audit backlog */
171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
172
173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
174 .mask = -1,
175 .features = 0,
176 .lock = 0,};
177
178 static char *audit_feature_names[2] = {
179 "only_unset_loginuid",
180 "loginuid_immutable",
181 };
182
183
184 /* Serialize requests from userspace. */
185 DEFINE_MUTEX(audit_cmd_mutex);
186
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records. Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191
192 /* The audit_buffer is used when formatting an audit record. The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue. Multiple audit_buffers can be in
196 * use simultaneously. */
197 struct audit_buffer {
198 struct sk_buff *skb; /* formatted skb ready to send */
199 struct audit_context *ctx; /* NULL or associated context */
200 gfp_t gfp_mask;
201 };
202
203 struct audit_reply {
204 __u32 portid;
205 struct net *net;
206 struct sk_buff *skb;
207 };
208
209 /**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
216 int auditd_test_task(struct task_struct *task)
217 {
218 int rc;
219 struct auditd_connection *ac;
220
221 rcu_read_lock();
222 ac = rcu_dereference(auditd_conn);
223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 rcu_read_unlock();
225
226 return rc;
227 }
228
229 /**
230 * auditd_pid_vnr - Return the auditd PID relative to the namespace
231 *
232 * Description:
233 * Returns the PID in relation to the namespace, 0 on failure.
234 */
235 static pid_t auditd_pid_vnr(void)
236 {
237 pid_t pid;
238 const struct auditd_connection *ac;
239
240 rcu_read_lock();
241 ac = rcu_dereference(auditd_conn);
242 if (!ac || !ac->pid)
243 pid = 0;
244 else
245 pid = pid_vnr(ac->pid);
246 rcu_read_unlock();
247
248 return pid;
249 }
250
251 /**
252 * audit_get_sk - Return the audit socket for the given network namespace
253 * @net: the destination network namespace
254 *
255 * Description:
256 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
257 * that a reference is held for the network namespace while the sock is in use.
258 */
259 static struct sock *audit_get_sk(const struct net *net)
260 {
261 struct audit_net *aunet;
262
263 if (!net)
264 return NULL;
265
266 aunet = net_generic(net, audit_net_id);
267 return aunet->sk;
268 }
269
270 void audit_panic(const char *message)
271 {
272 switch (audit_failure) {
273 case AUDIT_FAIL_SILENT:
274 break;
275 case AUDIT_FAIL_PRINTK:
276 if (printk_ratelimit())
277 pr_err("%s\n", message);
278 break;
279 case AUDIT_FAIL_PANIC:
280 panic("audit: %s\n", message);
281 break;
282 }
283 }
284
285 static inline int audit_rate_check(void)
286 {
287 static unsigned long last_check = 0;
288 static int messages = 0;
289 static DEFINE_SPINLOCK(lock);
290 unsigned long flags;
291 unsigned long now;
292 unsigned long elapsed;
293 int retval = 0;
294
295 if (!audit_rate_limit) return 1;
296
297 spin_lock_irqsave(&lock, flags);
298 if (++messages < audit_rate_limit) {
299 retval = 1;
300 } else {
301 now = jiffies;
302 elapsed = now - last_check;
303 if (elapsed > HZ) {
304 last_check = now;
305 messages = 0;
306 retval = 1;
307 }
308 }
309 spin_unlock_irqrestore(&lock, flags);
310
311 return retval;
312 }
313
314 /**
315 * audit_log_lost - conditionally log lost audit message event
316 * @message: the message stating reason for lost audit message
317 *
318 * Emit at least 1 message per second, even if audit_rate_check is
319 * throttling.
320 * Always increment the lost messages counter.
321 */
322 void audit_log_lost(const char *message)
323 {
324 static unsigned long last_msg = 0;
325 static DEFINE_SPINLOCK(lock);
326 unsigned long flags;
327 unsigned long now;
328 int print;
329
330 atomic_inc(&audit_lost);
331
332 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
333
334 if (!print) {
335 spin_lock_irqsave(&lock, flags);
336 now = jiffies;
337 if (now - last_msg > HZ) {
338 print = 1;
339 last_msg = now;
340 }
341 spin_unlock_irqrestore(&lock, flags);
342 }
343
344 if (print) {
345 if (printk_ratelimit())
346 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
347 atomic_read(&audit_lost),
348 audit_rate_limit,
349 audit_backlog_limit);
350 audit_panic(message);
351 }
352 }
353
354 static int audit_log_config_change(char *function_name, u32 new, u32 old,
355 int allow_changes)
356 {
357 struct audit_buffer *ab;
358 int rc = 0;
359
360 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
361 if (unlikely(!ab))
362 return rc;
363 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
364 audit_log_session_info(ab);
365 rc = audit_log_task_context(ab);
366 if (rc)
367 allow_changes = 0; /* Something weird, deny request */
368 audit_log_format(ab, " res=%d", allow_changes);
369 audit_log_end(ab);
370 return rc;
371 }
372
373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
374 {
375 int allow_changes, rc = 0;
376 u32 old = *to_change;
377
378 /* check if we are locked */
379 if (audit_enabled == AUDIT_LOCKED)
380 allow_changes = 0;
381 else
382 allow_changes = 1;
383
384 if (audit_enabled != AUDIT_OFF) {
385 rc = audit_log_config_change(function_name, new, old, allow_changes);
386 if (rc)
387 allow_changes = 0;
388 }
389
390 /* If we are allowed, make the change */
391 if (allow_changes == 1)
392 *to_change = new;
393 /* Not allowed, update reason */
394 else if (rc == 0)
395 rc = -EPERM;
396 return rc;
397 }
398
399 static int audit_set_rate_limit(u32 limit)
400 {
401 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
402 }
403
404 static int audit_set_backlog_limit(u32 limit)
405 {
406 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
407 }
408
409 static int audit_set_backlog_wait_time(u32 timeout)
410 {
411 return audit_do_config_change("audit_backlog_wait_time",
412 &audit_backlog_wait_time, timeout);
413 }
414
415 static int audit_set_enabled(u32 state)
416 {
417 int rc;
418 if (state > AUDIT_LOCKED)
419 return -EINVAL;
420
421 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
422 if (!rc)
423 audit_ever_enabled |= !!state;
424
425 return rc;
426 }
427
428 static int audit_set_failure(u32 state)
429 {
430 if (state != AUDIT_FAIL_SILENT
431 && state != AUDIT_FAIL_PRINTK
432 && state != AUDIT_FAIL_PANIC)
433 return -EINVAL;
434
435 return audit_do_config_change("audit_failure", &audit_failure, state);
436 }
437
438 /**
439 * auditd_conn_free - RCU helper to release an auditd connection struct
440 * @rcu: RCU head
441 *
442 * Description:
443 * Drop any references inside the auditd connection tracking struct and free
444 * the memory.
445 */
446 static void auditd_conn_free(struct rcu_head *rcu)
447 {
448 struct auditd_connection *ac;
449
450 ac = container_of(rcu, struct auditd_connection, rcu);
451 put_pid(ac->pid);
452 put_net(ac->net);
453 kfree(ac);
454 }
455
456 /**
457 * auditd_set - Set/Reset the auditd connection state
458 * @pid: auditd PID
459 * @portid: auditd netlink portid
460 * @net: auditd network namespace pointer
461 *
462 * Description:
463 * This function will obtain and drop network namespace references as
464 * necessary. Returns zero on success, negative values on failure.
465 */
466 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
467 {
468 unsigned long flags;
469 struct auditd_connection *ac_old, *ac_new;
470
471 if (!pid || !net)
472 return -EINVAL;
473
474 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
475 if (!ac_new)
476 return -ENOMEM;
477 ac_new->pid = get_pid(pid);
478 ac_new->portid = portid;
479 ac_new->net = get_net(net);
480
481 spin_lock_irqsave(&auditd_conn_lock, flags);
482 ac_old = rcu_dereference_protected(auditd_conn,
483 lockdep_is_held(&auditd_conn_lock));
484 rcu_assign_pointer(auditd_conn, ac_new);
485 spin_unlock_irqrestore(&auditd_conn_lock, flags);
486
487 if (ac_old)
488 call_rcu(&ac_old->rcu, auditd_conn_free);
489
490 return 0;
491 }
492
493 /**
494 * kauditd_print_skb - Print the audit record to the ring buffer
495 * @skb: audit record
496 *
497 * Whatever the reason, this packet may not make it to the auditd connection
498 * so write it via printk so the information isn't completely lost.
499 */
500 static void kauditd_printk_skb(struct sk_buff *skb)
501 {
502 struct nlmsghdr *nlh = nlmsg_hdr(skb);
503 char *data = nlmsg_data(nlh);
504
505 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
506 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
507 }
508
509 /**
510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
511 * @skb: audit record
512 *
513 * Description:
514 * This should only be used by the kauditd_thread when it fails to flush the
515 * hold queue.
516 */
517 static void kauditd_rehold_skb(struct sk_buff *skb)
518 {
519 /* put the record back in the queue at the same place */
520 skb_queue_head(&audit_hold_queue, skb);
521 }
522
523 /**
524 * kauditd_hold_skb - Queue an audit record, waiting for auditd
525 * @skb: audit record
526 *
527 * Description:
528 * Queue the audit record, waiting for an instance of auditd. When this
529 * function is called we haven't given up yet on sending the record, but things
530 * are not looking good. The first thing we want to do is try to write the
531 * record via printk and then see if we want to try and hold on to the record
532 * and queue it, if we have room. If we want to hold on to the record, but we
533 * don't have room, record a record lost message.
534 */
535 static void kauditd_hold_skb(struct sk_buff *skb)
536 {
537 /* at this point it is uncertain if we will ever send this to auditd so
538 * try to send the message via printk before we go any further */
539 kauditd_printk_skb(skb);
540
541 /* can we just silently drop the message? */
542 if (!audit_default) {
543 kfree_skb(skb);
544 return;
545 }
546
547 /* if we have room, queue the message */
548 if (!audit_backlog_limit ||
549 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
550 skb_queue_tail(&audit_hold_queue, skb);
551 return;
552 }
553
554 /* we have no other options - drop the message */
555 audit_log_lost("kauditd hold queue overflow");
556 kfree_skb(skb);
557 }
558
559 /**
560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
561 * @skb: audit record
562 *
563 * Description:
564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
565 * but for some reason we are having problems sending it audit records so
566 * queue the given record and attempt to resend.
567 */
568 static void kauditd_retry_skb(struct sk_buff *skb)
569 {
570 /* NOTE: because records should only live in the retry queue for a
571 * short period of time, before either being sent or moved to the hold
572 * queue, we don't currently enforce a limit on this queue */
573 skb_queue_tail(&audit_retry_queue, skb);
574 }
575
576 /**
577 * auditd_reset - Disconnect the auditd connection
578 * @ac: auditd connection state
579 *
580 * Description:
581 * Break the auditd/kauditd connection and move all the queued records into the
582 * hold queue in case auditd reconnects. It is important to note that the @ac
583 * pointer should never be dereferenced inside this function as it may be NULL
584 * or invalid, you can only compare the memory address! If @ac is NULL then
585 * the connection will always be reset.
586 */
587 static void auditd_reset(const struct auditd_connection *ac)
588 {
589 unsigned long flags;
590 struct sk_buff *skb;
591 struct auditd_connection *ac_old;
592
593 /* if it isn't already broken, break the connection */
594 spin_lock_irqsave(&auditd_conn_lock, flags);
595 ac_old = rcu_dereference_protected(auditd_conn,
596 lockdep_is_held(&auditd_conn_lock));
597 if (ac && ac != ac_old) {
598 /* someone already registered a new auditd connection */
599 spin_unlock_irqrestore(&auditd_conn_lock, flags);
600 return;
601 }
602 rcu_assign_pointer(auditd_conn, NULL);
603 spin_unlock_irqrestore(&auditd_conn_lock, flags);
604
605 if (ac_old)
606 call_rcu(&ac_old->rcu, auditd_conn_free);
607
608 /* flush the retry queue to the hold queue, but don't touch the main
609 * queue since we need to process that normally for multicast */
610 while ((skb = skb_dequeue(&audit_retry_queue)))
611 kauditd_hold_skb(skb);
612 }
613
614 /**
615 * auditd_send_unicast_skb - Send a record via unicast to auditd
616 * @skb: audit record
617 *
618 * Description:
619 * Send a skb to the audit daemon, returns positive/zero values on success and
620 * negative values on failure; in all cases the skb will be consumed by this
621 * function. If the send results in -ECONNREFUSED the connection with auditd
622 * will be reset. This function may sleep so callers should not hold any locks
623 * where this would cause a problem.
624 */
625 static int auditd_send_unicast_skb(struct sk_buff *skb)
626 {
627 int rc;
628 u32 portid;
629 struct net *net;
630 struct sock *sk;
631 struct auditd_connection *ac;
632
633 /* NOTE: we can't call netlink_unicast while in the RCU section so
634 * take a reference to the network namespace and grab local
635 * copies of the namespace, the sock, and the portid; the
636 * namespace and sock aren't going to go away while we hold a
637 * reference and if the portid does become invalid after the RCU
638 * section netlink_unicast() should safely return an error */
639
640 rcu_read_lock();
641 ac = rcu_dereference(auditd_conn);
642 if (!ac) {
643 rcu_read_unlock();
644 kfree_skb(skb);
645 rc = -ECONNREFUSED;
646 goto err;
647 }
648 net = get_net(ac->net);
649 sk = audit_get_sk(net);
650 portid = ac->portid;
651 rcu_read_unlock();
652
653 rc = netlink_unicast(sk, skb, portid, 0);
654 put_net(net);
655 if (rc < 0)
656 goto err;
657
658 return rc;
659
660 err:
661 if (ac && rc == -ECONNREFUSED)
662 auditd_reset(ac);
663 return rc;
664 }
665
666 /**
667 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
668 * @sk: the sending sock
669 * @portid: the netlink destination
670 * @queue: the skb queue to process
671 * @retry_limit: limit on number of netlink unicast failures
672 * @skb_hook: per-skb hook for additional processing
673 * @err_hook: hook called if the skb fails the netlink unicast send
674 *
675 * Description:
676 * Run through the given queue and attempt to send the audit records to auditd,
677 * returns zero on success, negative values on failure. It is up to the caller
678 * to ensure that the @sk is valid for the duration of this function.
679 *
680 */
681 static int kauditd_send_queue(struct sock *sk, u32 portid,
682 struct sk_buff_head *queue,
683 unsigned int retry_limit,
684 void (*skb_hook)(struct sk_buff *skb),
685 void (*err_hook)(struct sk_buff *skb))
686 {
687 int rc = 0;
688 struct sk_buff *skb;
689 static unsigned int failed = 0;
690
691 /* NOTE: kauditd_thread takes care of all our locking, we just use
692 * the netlink info passed to us (e.g. sk and portid) */
693
694 while ((skb = skb_dequeue(queue))) {
695 /* call the skb_hook for each skb we touch */
696 if (skb_hook)
697 (*skb_hook)(skb);
698
699 /* can we send to anyone via unicast? */
700 if (!sk) {
701 if (err_hook)
702 (*err_hook)(skb);
703 continue;
704 }
705
706 /* grab an extra skb reference in case of error */
707 skb_get(skb);
708 rc = netlink_unicast(sk, skb, portid, 0);
709 if (rc < 0) {
710 /* fatal failure for our queue flush attempt? */
711 if (++failed >= retry_limit ||
712 rc == -ECONNREFUSED || rc == -EPERM) {
713 /* yes - error processing for the queue */
714 sk = NULL;
715 if (err_hook)
716 (*err_hook)(skb);
717 if (!skb_hook)
718 goto out;
719 /* keep processing with the skb_hook */
720 continue;
721 } else
722 /* no - requeue to preserve ordering */
723 skb_queue_head(queue, skb);
724 } else {
725 /* it worked - drop the extra reference and continue */
726 consume_skb(skb);
727 failed = 0;
728 }
729 }
730
731 out:
732 return (rc >= 0 ? 0 : rc);
733 }
734
735 /*
736 * kauditd_send_multicast_skb - Send a record to any multicast listeners
737 * @skb: audit record
738 *
739 * Description:
740 * Write a multicast message to anyone listening in the initial network
741 * namespace. This function doesn't consume an skb as might be expected since
742 * it has to copy it anyways.
743 */
744 static void kauditd_send_multicast_skb(struct sk_buff *skb)
745 {
746 struct sk_buff *copy;
747 struct sock *sock = audit_get_sk(&init_net);
748 struct nlmsghdr *nlh;
749
750 /* NOTE: we are not taking an additional reference for init_net since
751 * we don't have to worry about it going away */
752
753 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
754 return;
755
756 /*
757 * The seemingly wasteful skb_copy() rather than bumping the refcount
758 * using skb_get() is necessary because non-standard mods are made to
759 * the skb by the original kaudit unicast socket send routine. The
760 * existing auditd daemon assumes this breakage. Fixing this would
761 * require co-ordinating a change in the established protocol between
762 * the kaudit kernel subsystem and the auditd userspace code. There is
763 * no reason for new multicast clients to continue with this
764 * non-compliance.
765 */
766 copy = skb_copy(skb, GFP_KERNEL);
767 if (!copy)
768 return;
769 nlh = nlmsg_hdr(copy);
770 nlh->nlmsg_len = skb->len;
771
772 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
773 }
774
775 /**
776 * kauditd_thread - Worker thread to send audit records to userspace
777 * @dummy: unused
778 */
779 static int kauditd_thread(void *dummy)
780 {
781 int rc;
782 u32 portid = 0;
783 struct net *net = NULL;
784 struct sock *sk = NULL;
785 struct auditd_connection *ac;
786
787 #define UNICAST_RETRIES 5
788
789 set_freezable();
790 while (!kthread_should_stop()) {
791 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
792 rcu_read_lock();
793 ac = rcu_dereference(auditd_conn);
794 if (!ac) {
795 rcu_read_unlock();
796 goto main_queue;
797 }
798 net = get_net(ac->net);
799 sk = audit_get_sk(net);
800 portid = ac->portid;
801 rcu_read_unlock();
802
803 /* attempt to flush the hold queue */
804 rc = kauditd_send_queue(sk, portid,
805 &audit_hold_queue, UNICAST_RETRIES,
806 NULL, kauditd_rehold_skb);
807 if (ac && rc < 0) {
808 sk = NULL;
809 auditd_reset(ac);
810 goto main_queue;
811 }
812
813 /* attempt to flush the retry queue */
814 rc = kauditd_send_queue(sk, portid,
815 &audit_retry_queue, UNICAST_RETRIES,
816 NULL, kauditd_hold_skb);
817 if (ac && rc < 0) {
818 sk = NULL;
819 auditd_reset(ac);
820 goto main_queue;
821 }
822
823 main_queue:
824 /* process the main queue - do the multicast send and attempt
825 * unicast, dump failed record sends to the retry queue; if
826 * sk == NULL due to previous failures we will just do the
827 * multicast send and move the record to the hold queue */
828 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
829 kauditd_send_multicast_skb,
830 (sk ?
831 kauditd_retry_skb : kauditd_hold_skb));
832 if (ac && rc < 0)
833 auditd_reset(ac);
834 sk = NULL;
835
836 /* drop our netns reference, no auditd sends past this line */
837 if (net) {
838 put_net(net);
839 net = NULL;
840 }
841
842 /* we have processed all the queues so wake everyone */
843 wake_up(&audit_backlog_wait);
844
845 /* NOTE: we want to wake up if there is anything on the queue,
846 * regardless of if an auditd is connected, as we need to
847 * do the multicast send and rotate records from the
848 * main queue to the retry/hold queues */
849 wait_event_freezable(kauditd_wait,
850 (skb_queue_len(&audit_queue) ? 1 : 0));
851 }
852
853 return 0;
854 }
855
856 int audit_send_list(void *_dest)
857 {
858 struct audit_netlink_list *dest = _dest;
859 struct sk_buff *skb;
860 struct sock *sk = audit_get_sk(dest->net);
861
862 /* wait for parent to finish and send an ACK */
863 mutex_lock(&audit_cmd_mutex);
864 mutex_unlock(&audit_cmd_mutex);
865
866 while ((skb = __skb_dequeue(&dest->q)) != NULL)
867 netlink_unicast(sk, skb, dest->portid, 0);
868
869 put_net(dest->net);
870 kfree(dest);
871
872 return 0;
873 }
874
875 struct sk_buff *audit_make_reply(int seq, int type, int done,
876 int multi, const void *payload, int size)
877 {
878 struct sk_buff *skb;
879 struct nlmsghdr *nlh;
880 void *data;
881 int flags = multi ? NLM_F_MULTI : 0;
882 int t = done ? NLMSG_DONE : type;
883
884 skb = nlmsg_new(size, GFP_KERNEL);
885 if (!skb)
886 return NULL;
887
888 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
889 if (!nlh)
890 goto out_kfree_skb;
891 data = nlmsg_data(nlh);
892 memcpy(data, payload, size);
893 return skb;
894
895 out_kfree_skb:
896 kfree_skb(skb);
897 return NULL;
898 }
899
900 static int audit_send_reply_thread(void *arg)
901 {
902 struct audit_reply *reply = (struct audit_reply *)arg;
903 struct sock *sk = audit_get_sk(reply->net);
904
905 mutex_lock(&audit_cmd_mutex);
906 mutex_unlock(&audit_cmd_mutex);
907
908 /* Ignore failure. It'll only happen if the sender goes away,
909 because our timeout is set to infinite. */
910 netlink_unicast(sk, reply->skb, reply->portid, 0);
911 put_net(reply->net);
912 kfree(reply);
913 return 0;
914 }
915
916 /**
917 * audit_send_reply - send an audit reply message via netlink
918 * @request_skb: skb of request we are replying to (used to target the reply)
919 * @seq: sequence number
920 * @type: audit message type
921 * @done: done (last) flag
922 * @multi: multi-part message flag
923 * @payload: payload data
924 * @size: payload size
925 *
926 * Allocates an skb, builds the netlink message, and sends it to the port id.
927 * No failure notifications.
928 */
929 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
930 int multi, const void *payload, int size)
931 {
932 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
933 struct sk_buff *skb;
934 struct task_struct *tsk;
935 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
936 GFP_KERNEL);
937
938 if (!reply)
939 return;
940
941 skb = audit_make_reply(seq, type, done, multi, payload, size);
942 if (!skb)
943 goto out;
944
945 reply->net = get_net(net);
946 reply->portid = NETLINK_CB(request_skb).portid;
947 reply->skb = skb;
948
949 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
950 if (!IS_ERR(tsk))
951 return;
952 kfree_skb(skb);
953 out:
954 kfree(reply);
955 }
956
957 /*
958 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
959 * control messages.
960 */
961 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
962 {
963 int err = 0;
964
965 /* Only support initial user namespace for now. */
966 /*
967 * We return ECONNREFUSED because it tricks userspace into thinking
968 * that audit was not configured into the kernel. Lots of users
969 * configure their PAM stack (because that's what the distro does)
970 * to reject login if unable to send messages to audit. If we return
971 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
972 * configured in and will let login proceed. If we return EPERM
973 * userspace will reject all logins. This should be removed when we
974 * support non init namespaces!!
975 */
976 if (current_user_ns() != &init_user_ns)
977 return -ECONNREFUSED;
978
979 switch (msg_type) {
980 case AUDIT_LIST:
981 case AUDIT_ADD:
982 case AUDIT_DEL:
983 return -EOPNOTSUPP;
984 case AUDIT_GET:
985 case AUDIT_SET:
986 case AUDIT_GET_FEATURE:
987 case AUDIT_SET_FEATURE:
988 case AUDIT_LIST_RULES:
989 case AUDIT_ADD_RULE:
990 case AUDIT_DEL_RULE:
991 case AUDIT_SIGNAL_INFO:
992 case AUDIT_TTY_GET:
993 case AUDIT_TTY_SET:
994 case AUDIT_TRIM:
995 case AUDIT_MAKE_EQUIV:
996 /* Only support auditd and auditctl in initial pid namespace
997 * for now. */
998 if (task_active_pid_ns(current) != &init_pid_ns)
999 return -EPERM;
1000
1001 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1002 err = -EPERM;
1003 break;
1004 case AUDIT_USER:
1005 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1006 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1007 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1008 err = -EPERM;
1009 break;
1010 default: /* bad msg */
1011 err = -EINVAL;
1012 }
1013
1014 return err;
1015 }
1016
1017 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1018 {
1019 uid_t uid = from_kuid(&init_user_ns, current_uid());
1020 pid_t pid = task_tgid_nr(current);
1021
1022 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1023 *ab = NULL;
1024 return;
1025 }
1026
1027 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1028 if (unlikely(!*ab))
1029 return;
1030 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1031 audit_log_session_info(*ab);
1032 audit_log_task_context(*ab);
1033 }
1034
1035 int is_audit_feature_set(int i)
1036 {
1037 return af.features & AUDIT_FEATURE_TO_MASK(i);
1038 }
1039
1040
1041 static int audit_get_feature(struct sk_buff *skb)
1042 {
1043 u32 seq;
1044
1045 seq = nlmsg_hdr(skb)->nlmsg_seq;
1046
1047 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1048
1049 return 0;
1050 }
1051
1052 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1053 u32 old_lock, u32 new_lock, int res)
1054 {
1055 struct audit_buffer *ab;
1056
1057 if (audit_enabled == AUDIT_OFF)
1058 return;
1059
1060 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1061 audit_log_task_info(ab, current);
1062 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1063 audit_feature_names[which], !!old_feature, !!new_feature,
1064 !!old_lock, !!new_lock, res);
1065 audit_log_end(ab);
1066 }
1067
1068 static int audit_set_feature(struct sk_buff *skb)
1069 {
1070 struct audit_features *uaf;
1071 int i;
1072
1073 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1074 uaf = nlmsg_data(nlmsg_hdr(skb));
1075
1076 /* if there is ever a version 2 we should handle that here */
1077
1078 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1079 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1080 u32 old_feature, new_feature, old_lock, new_lock;
1081
1082 /* if we are not changing this feature, move along */
1083 if (!(feature & uaf->mask))
1084 continue;
1085
1086 old_feature = af.features & feature;
1087 new_feature = uaf->features & feature;
1088 new_lock = (uaf->lock | af.lock) & feature;
1089 old_lock = af.lock & feature;
1090
1091 /* are we changing a locked feature? */
1092 if (old_lock && (new_feature != old_feature)) {
1093 audit_log_feature_change(i, old_feature, new_feature,
1094 old_lock, new_lock, 0);
1095 return -EPERM;
1096 }
1097 }
1098 /* nothing invalid, do the changes */
1099 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1100 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1101 u32 old_feature, new_feature, old_lock, new_lock;
1102
1103 /* if we are not changing this feature, move along */
1104 if (!(feature & uaf->mask))
1105 continue;
1106
1107 old_feature = af.features & feature;
1108 new_feature = uaf->features & feature;
1109 old_lock = af.lock & feature;
1110 new_lock = (uaf->lock | af.lock) & feature;
1111
1112 if (new_feature != old_feature)
1113 audit_log_feature_change(i, old_feature, new_feature,
1114 old_lock, new_lock, 1);
1115
1116 if (new_feature)
1117 af.features |= feature;
1118 else
1119 af.features &= ~feature;
1120 af.lock |= new_lock;
1121 }
1122
1123 return 0;
1124 }
1125
1126 static int audit_replace(struct pid *pid)
1127 {
1128 pid_t pvnr;
1129 struct sk_buff *skb;
1130
1131 pvnr = pid_vnr(pid);
1132 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1133 if (!skb)
1134 return -ENOMEM;
1135 return auditd_send_unicast_skb(skb);
1136 }
1137
1138 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1139 {
1140 u32 seq;
1141 void *data;
1142 int err;
1143 struct audit_buffer *ab;
1144 u16 msg_type = nlh->nlmsg_type;
1145 struct audit_sig_info *sig_data;
1146 char *ctx = NULL;
1147 u32 len;
1148
1149 err = audit_netlink_ok(skb, msg_type);
1150 if (err)
1151 return err;
1152
1153 seq = nlh->nlmsg_seq;
1154 data = nlmsg_data(nlh);
1155
1156 switch (msg_type) {
1157 case AUDIT_GET: {
1158 struct audit_status s;
1159 memset(&s, 0, sizeof(s));
1160 s.enabled = audit_enabled;
1161 s.failure = audit_failure;
1162 /* NOTE: use pid_vnr() so the PID is relative to the current
1163 * namespace */
1164 s.pid = auditd_pid_vnr();
1165 s.rate_limit = audit_rate_limit;
1166 s.backlog_limit = audit_backlog_limit;
1167 s.lost = atomic_read(&audit_lost);
1168 s.backlog = skb_queue_len(&audit_queue);
1169 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1170 s.backlog_wait_time = audit_backlog_wait_time;
1171 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1172 break;
1173 }
1174 case AUDIT_SET: {
1175 struct audit_status s;
1176 memset(&s, 0, sizeof(s));
1177 /* guard against past and future API changes */
1178 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1179 if (s.mask & AUDIT_STATUS_ENABLED) {
1180 err = audit_set_enabled(s.enabled);
1181 if (err < 0)
1182 return err;
1183 }
1184 if (s.mask & AUDIT_STATUS_FAILURE) {
1185 err = audit_set_failure(s.failure);
1186 if (err < 0)
1187 return err;
1188 }
1189 if (s.mask & AUDIT_STATUS_PID) {
1190 /* NOTE: we are using the vnr PID functions below
1191 * because the s.pid value is relative to the
1192 * namespace of the caller; at present this
1193 * doesn't matter much since you can really only
1194 * run auditd from the initial pid namespace, but
1195 * something to keep in mind if this changes */
1196 pid_t new_pid = s.pid;
1197 pid_t auditd_pid;
1198 struct pid *req_pid = task_tgid(current);
1199
1200 /* Sanity check - PID values must match. Setting
1201 * pid to 0 is how auditd ends auditing. */
1202 if (new_pid && (new_pid != pid_vnr(req_pid)))
1203 return -EINVAL;
1204
1205 /* test the auditd connection */
1206 audit_replace(req_pid);
1207
1208 auditd_pid = auditd_pid_vnr();
1209 if (auditd_pid) {
1210 /* replacing a healthy auditd is not allowed */
1211 if (new_pid) {
1212 audit_log_config_change("audit_pid",
1213 new_pid, auditd_pid, 0);
1214 return -EEXIST;
1215 }
1216 /* only current auditd can unregister itself */
1217 if (pid_vnr(req_pid) != auditd_pid) {
1218 audit_log_config_change("audit_pid",
1219 new_pid, auditd_pid, 0);
1220 return -EACCES;
1221 }
1222 }
1223
1224 if (new_pid) {
1225 /* register a new auditd connection */
1226 err = auditd_set(req_pid,
1227 NETLINK_CB(skb).portid,
1228 sock_net(NETLINK_CB(skb).sk));
1229 if (audit_enabled != AUDIT_OFF)
1230 audit_log_config_change("audit_pid",
1231 new_pid,
1232 auditd_pid,
1233 err ? 0 : 1);
1234 if (err)
1235 return err;
1236
1237 /* try to process any backlog */
1238 wake_up_interruptible(&kauditd_wait);
1239 } else {
1240 if (audit_enabled != AUDIT_OFF)
1241 audit_log_config_change("audit_pid",
1242 new_pid,
1243 auditd_pid, 1);
1244
1245 /* unregister the auditd connection */
1246 auditd_reset(NULL);
1247 }
1248 }
1249 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1250 err = audit_set_rate_limit(s.rate_limit);
1251 if (err < 0)
1252 return err;
1253 }
1254 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1255 err = audit_set_backlog_limit(s.backlog_limit);
1256 if (err < 0)
1257 return err;
1258 }
1259 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1260 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1261 return -EINVAL;
1262 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1263 return -EINVAL;
1264 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1265 if (err < 0)
1266 return err;
1267 }
1268 if (s.mask == AUDIT_STATUS_LOST) {
1269 u32 lost = atomic_xchg(&audit_lost, 0);
1270
1271 audit_log_config_change("lost", 0, lost, 1);
1272 return lost;
1273 }
1274 break;
1275 }
1276 case AUDIT_GET_FEATURE:
1277 err = audit_get_feature(skb);
1278 if (err)
1279 return err;
1280 break;
1281 case AUDIT_SET_FEATURE:
1282 err = audit_set_feature(skb);
1283 if (err)
1284 return err;
1285 break;
1286 case AUDIT_USER:
1287 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1288 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1289 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1290 return 0;
1291
1292 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1293 if (err == 1) { /* match or error */
1294 err = 0;
1295 if (msg_type == AUDIT_USER_TTY) {
1296 err = tty_audit_push();
1297 if (err)
1298 break;
1299 }
1300 audit_log_common_recv_msg(&ab, msg_type);
1301 if (msg_type != AUDIT_USER_TTY)
1302 audit_log_format(ab, " msg='%.*s'",
1303 AUDIT_MESSAGE_TEXT_MAX,
1304 (char *)data);
1305 else {
1306 int size;
1307
1308 audit_log_format(ab, " data=");
1309 size = nlmsg_len(nlh);
1310 if (size > 0 &&
1311 ((unsigned char *)data)[size - 1] == '\0')
1312 size--;
1313 audit_log_n_untrustedstring(ab, data, size);
1314 }
1315 audit_log_end(ab);
1316 }
1317 break;
1318 case AUDIT_ADD_RULE:
1319 case AUDIT_DEL_RULE:
1320 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1321 return -EINVAL;
1322 if (audit_enabled == AUDIT_LOCKED) {
1323 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1324 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1325 audit_log_end(ab);
1326 return -EPERM;
1327 }
1328 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1329 break;
1330 case AUDIT_LIST_RULES:
1331 err = audit_list_rules_send(skb, seq);
1332 break;
1333 case AUDIT_TRIM:
1334 audit_trim_trees();
1335 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1336 audit_log_format(ab, " op=trim res=1");
1337 audit_log_end(ab);
1338 break;
1339 case AUDIT_MAKE_EQUIV: {
1340 void *bufp = data;
1341 u32 sizes[2];
1342 size_t msglen = nlmsg_len(nlh);
1343 char *old, *new;
1344
1345 err = -EINVAL;
1346 if (msglen < 2 * sizeof(u32))
1347 break;
1348 memcpy(sizes, bufp, 2 * sizeof(u32));
1349 bufp += 2 * sizeof(u32);
1350 msglen -= 2 * sizeof(u32);
1351 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1352 if (IS_ERR(old)) {
1353 err = PTR_ERR(old);
1354 break;
1355 }
1356 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1357 if (IS_ERR(new)) {
1358 err = PTR_ERR(new);
1359 kfree(old);
1360 break;
1361 }
1362 /* OK, here comes... */
1363 err = audit_tag_tree(old, new);
1364
1365 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1366
1367 audit_log_format(ab, " op=make_equiv old=");
1368 audit_log_untrustedstring(ab, old);
1369 audit_log_format(ab, " new=");
1370 audit_log_untrustedstring(ab, new);
1371 audit_log_format(ab, " res=%d", !err);
1372 audit_log_end(ab);
1373 kfree(old);
1374 kfree(new);
1375 break;
1376 }
1377 case AUDIT_SIGNAL_INFO:
1378 len = 0;
1379 if (audit_sig_sid) {
1380 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1381 if (err)
1382 return err;
1383 }
1384 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1385 if (!sig_data) {
1386 if (audit_sig_sid)
1387 security_release_secctx(ctx, len);
1388 return -ENOMEM;
1389 }
1390 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1391 sig_data->pid = audit_sig_pid;
1392 if (audit_sig_sid) {
1393 memcpy(sig_data->ctx, ctx, len);
1394 security_release_secctx(ctx, len);
1395 }
1396 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1397 sig_data, sizeof(*sig_data) + len);
1398 kfree(sig_data);
1399 break;
1400 case AUDIT_TTY_GET: {
1401 struct audit_tty_status s;
1402 unsigned int t;
1403
1404 t = READ_ONCE(current->signal->audit_tty);
1405 s.enabled = t & AUDIT_TTY_ENABLE;
1406 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1407
1408 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1409 break;
1410 }
1411 case AUDIT_TTY_SET: {
1412 struct audit_tty_status s, old;
1413 struct audit_buffer *ab;
1414 unsigned int t;
1415
1416 memset(&s, 0, sizeof(s));
1417 /* guard against past and future API changes */
1418 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1419 /* check if new data is valid */
1420 if ((s.enabled != 0 && s.enabled != 1) ||
1421 (s.log_passwd != 0 && s.log_passwd != 1))
1422 err = -EINVAL;
1423
1424 if (err)
1425 t = READ_ONCE(current->signal->audit_tty);
1426 else {
1427 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1428 t = xchg(&current->signal->audit_tty, t);
1429 }
1430 old.enabled = t & AUDIT_TTY_ENABLE;
1431 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1432
1433 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1434 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1435 " old-log_passwd=%d new-log_passwd=%d res=%d",
1436 old.enabled, s.enabled, old.log_passwd,
1437 s.log_passwd, !err);
1438 audit_log_end(ab);
1439 break;
1440 }
1441 default:
1442 err = -EINVAL;
1443 break;
1444 }
1445
1446 return err < 0 ? err : 0;
1447 }
1448
1449 /**
1450 * audit_receive - receive messages from a netlink control socket
1451 * @skb: the message buffer
1452 *
1453 * Parse the provided skb and deal with any messages that may be present,
1454 * malformed skbs are discarded.
1455 */
1456 static void audit_receive(struct sk_buff *skb)
1457 {
1458 struct nlmsghdr *nlh;
1459 /*
1460 * len MUST be signed for nlmsg_next to be able to dec it below 0
1461 * if the nlmsg_len was not aligned
1462 */
1463 int len;
1464 int err;
1465
1466 nlh = nlmsg_hdr(skb);
1467 len = skb->len;
1468
1469 mutex_lock(&audit_cmd_mutex);
1470 while (nlmsg_ok(nlh, len)) {
1471 err = audit_receive_msg(skb, nlh);
1472 /* if err or if this message says it wants a response */
1473 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1474 netlink_ack(skb, nlh, err, NULL);
1475
1476 nlh = nlmsg_next(nlh, &len);
1477 }
1478 mutex_unlock(&audit_cmd_mutex);
1479 }
1480
1481 /* Run custom bind function on netlink socket group connect or bind requests. */
1482 static int audit_bind(struct net *net, int group)
1483 {
1484 if (!capable(CAP_AUDIT_READ))
1485 return -EPERM;
1486
1487 return 0;
1488 }
1489
1490 static int __net_init audit_net_init(struct net *net)
1491 {
1492 struct netlink_kernel_cfg cfg = {
1493 .input = audit_receive,
1494 .bind = audit_bind,
1495 .flags = NL_CFG_F_NONROOT_RECV,
1496 .groups = AUDIT_NLGRP_MAX,
1497 };
1498
1499 struct audit_net *aunet = net_generic(net, audit_net_id);
1500
1501 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1502 if (aunet->sk == NULL) {
1503 audit_panic("cannot initialize netlink socket in namespace");
1504 return -ENOMEM;
1505 }
1506 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1507
1508 return 0;
1509 }
1510
1511 static void __net_exit audit_net_exit(struct net *net)
1512 {
1513 struct audit_net *aunet = net_generic(net, audit_net_id);
1514
1515 /* NOTE: you would think that we would want to check the auditd
1516 * connection and potentially reset it here if it lives in this
1517 * namespace, but since the auditd connection tracking struct holds a
1518 * reference to this namespace (see auditd_set()) we are only ever
1519 * going to get here after that connection has been released */
1520
1521 netlink_kernel_release(aunet->sk);
1522 }
1523
1524 static struct pernet_operations audit_net_ops __net_initdata = {
1525 .init = audit_net_init,
1526 .exit = audit_net_exit,
1527 .id = &audit_net_id,
1528 .size = sizeof(struct audit_net),
1529 };
1530
1531 /* Initialize audit support at boot time. */
1532 static int __init audit_init(void)
1533 {
1534 int i;
1535
1536 if (audit_initialized == AUDIT_DISABLED)
1537 return 0;
1538
1539 audit_buffer_cache = kmem_cache_create("audit_buffer",
1540 sizeof(struct audit_buffer),
1541 0, SLAB_PANIC, NULL);
1542
1543 skb_queue_head_init(&audit_queue);
1544 skb_queue_head_init(&audit_retry_queue);
1545 skb_queue_head_init(&audit_hold_queue);
1546
1547 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1548 INIT_LIST_HEAD(&audit_inode_hash[i]);
1549
1550 pr_info("initializing netlink subsys (%s)\n",
1551 audit_default ? "enabled" : "disabled");
1552 register_pernet_subsys(&audit_net_ops);
1553
1554 audit_initialized = AUDIT_INITIALIZED;
1555
1556 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1557 if (IS_ERR(kauditd_task)) {
1558 int err = PTR_ERR(kauditd_task);
1559 panic("audit: failed to start the kauditd thread (%d)\n", err);
1560 }
1561
1562 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1563 "state=initialized audit_enabled=%u res=1",
1564 audit_enabled);
1565
1566 return 0;
1567 }
1568 postcore_initcall(audit_init);
1569
1570 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1571 static int __init audit_enable(char *str)
1572 {
1573 long val;
1574
1575 if (kstrtol(str, 0, &val))
1576 panic("audit: invalid 'audit' parameter value (%s)\n", str);
1577 audit_default = (val ? AUDIT_ON : AUDIT_OFF);
1578
1579 if (audit_default == AUDIT_OFF)
1580 audit_initialized = AUDIT_DISABLED;
1581 if (audit_set_enabled(audit_default))
1582 panic("audit: error setting audit state (%d)\n", audit_default);
1583
1584 pr_info("%s\n", audit_default ?
1585 "enabled (after initialization)" : "disabled (until reboot)");
1586
1587 return 1;
1588 }
1589 __setup("audit=", audit_enable);
1590
1591 /* Process kernel command-line parameter at boot time.
1592 * audit_backlog_limit=<n> */
1593 static int __init audit_backlog_limit_set(char *str)
1594 {
1595 u32 audit_backlog_limit_arg;
1596
1597 pr_info("audit_backlog_limit: ");
1598 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1599 pr_cont("using default of %u, unable to parse %s\n",
1600 audit_backlog_limit, str);
1601 return 1;
1602 }
1603
1604 audit_backlog_limit = audit_backlog_limit_arg;
1605 pr_cont("%d\n", audit_backlog_limit);
1606
1607 return 1;
1608 }
1609 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1610
1611 static void audit_buffer_free(struct audit_buffer *ab)
1612 {
1613 if (!ab)
1614 return;
1615
1616 kfree_skb(ab->skb);
1617 kmem_cache_free(audit_buffer_cache, ab);
1618 }
1619
1620 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1621 gfp_t gfp_mask, int type)
1622 {
1623 struct audit_buffer *ab;
1624
1625 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1626 if (!ab)
1627 return NULL;
1628
1629 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1630 if (!ab->skb)
1631 goto err;
1632 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1633 goto err;
1634
1635 ab->ctx = ctx;
1636 ab->gfp_mask = gfp_mask;
1637
1638 return ab;
1639
1640 err:
1641 audit_buffer_free(ab);
1642 return NULL;
1643 }
1644
1645 /**
1646 * audit_serial - compute a serial number for the audit record
1647 *
1648 * Compute a serial number for the audit record. Audit records are
1649 * written to user-space as soon as they are generated, so a complete
1650 * audit record may be written in several pieces. The timestamp of the
1651 * record and this serial number are used by the user-space tools to
1652 * determine which pieces belong to the same audit record. The
1653 * (timestamp,serial) tuple is unique for each syscall and is live from
1654 * syscall entry to syscall exit.
1655 *
1656 * NOTE: Another possibility is to store the formatted records off the
1657 * audit context (for those records that have a context), and emit them
1658 * all at syscall exit. However, this could delay the reporting of
1659 * significant errors until syscall exit (or never, if the system
1660 * halts).
1661 */
1662 unsigned int audit_serial(void)
1663 {
1664 static atomic_t serial = ATOMIC_INIT(0);
1665
1666 return atomic_add_return(1, &serial);
1667 }
1668
1669 static inline void audit_get_stamp(struct audit_context *ctx,
1670 struct timespec64 *t, unsigned int *serial)
1671 {
1672 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1673 *t = current_kernel_time64();
1674 *serial = audit_serial();
1675 }
1676 }
1677
1678 /**
1679 * audit_log_start - obtain an audit buffer
1680 * @ctx: audit_context (may be NULL)
1681 * @gfp_mask: type of allocation
1682 * @type: audit message type
1683 *
1684 * Returns audit_buffer pointer on success or NULL on error.
1685 *
1686 * Obtain an audit buffer. This routine does locking to obtain the
1687 * audit buffer, but then no locking is required for calls to
1688 * audit_log_*format. If the task (ctx) is a task that is currently in a
1689 * syscall, then the syscall is marked as auditable and an audit record
1690 * will be written at syscall exit. If there is no associated task, then
1691 * task context (ctx) should be NULL.
1692 */
1693 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1694 int type)
1695 {
1696 struct audit_buffer *ab;
1697 struct timespec64 t;
1698 unsigned int uninitialized_var(serial);
1699
1700 if (audit_initialized != AUDIT_INITIALIZED)
1701 return NULL;
1702
1703 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1704 return NULL;
1705
1706 /* NOTE: don't ever fail/sleep on these two conditions:
1707 * 1. auditd generated record - since we need auditd to drain the
1708 * queue; also, when we are checking for auditd, compare PIDs using
1709 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1710 * using a PID anchored in the caller's namespace
1711 * 2. generator holding the audit_cmd_mutex - we don't want to block
1712 * while holding the mutex */
1713 if (!(auditd_test_task(current) ||
1714 (current == __mutex_owner(&audit_cmd_mutex)))) {
1715 long stime = audit_backlog_wait_time;
1716
1717 while (audit_backlog_limit &&
1718 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1719 /* wake kauditd to try and flush the queue */
1720 wake_up_interruptible(&kauditd_wait);
1721
1722 /* sleep if we are allowed and we haven't exhausted our
1723 * backlog wait limit */
1724 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1725 DECLARE_WAITQUEUE(wait, current);
1726
1727 add_wait_queue_exclusive(&audit_backlog_wait,
1728 &wait);
1729 set_current_state(TASK_UNINTERRUPTIBLE);
1730 stime = schedule_timeout(stime);
1731 remove_wait_queue(&audit_backlog_wait, &wait);
1732 } else {
1733 if (audit_rate_check() && printk_ratelimit())
1734 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1735 skb_queue_len(&audit_queue),
1736 audit_backlog_limit);
1737 audit_log_lost("backlog limit exceeded");
1738 return NULL;
1739 }
1740 }
1741 }
1742
1743 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1744 if (!ab) {
1745 audit_log_lost("out of memory in audit_log_start");
1746 return NULL;
1747 }
1748
1749 audit_get_stamp(ab->ctx, &t, &serial);
1750 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1751 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1752
1753 return ab;
1754 }
1755
1756 /**
1757 * audit_expand - expand skb in the audit buffer
1758 * @ab: audit_buffer
1759 * @extra: space to add at tail of the skb
1760 *
1761 * Returns 0 (no space) on failed expansion, or available space if
1762 * successful.
1763 */
1764 static inline int audit_expand(struct audit_buffer *ab, int extra)
1765 {
1766 struct sk_buff *skb = ab->skb;
1767 int oldtail = skb_tailroom(skb);
1768 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1769 int newtail = skb_tailroom(skb);
1770
1771 if (ret < 0) {
1772 audit_log_lost("out of memory in audit_expand");
1773 return 0;
1774 }
1775
1776 skb->truesize += newtail - oldtail;
1777 return newtail;
1778 }
1779
1780 /*
1781 * Format an audit message into the audit buffer. If there isn't enough
1782 * room in the audit buffer, more room will be allocated and vsnprint
1783 * will be called a second time. Currently, we assume that a printk
1784 * can't format message larger than 1024 bytes, so we don't either.
1785 */
1786 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1787 va_list args)
1788 {
1789 int len, avail;
1790 struct sk_buff *skb;
1791 va_list args2;
1792
1793 if (!ab)
1794 return;
1795
1796 BUG_ON(!ab->skb);
1797 skb = ab->skb;
1798 avail = skb_tailroom(skb);
1799 if (avail == 0) {
1800 avail = audit_expand(ab, AUDIT_BUFSIZ);
1801 if (!avail)
1802 goto out;
1803 }
1804 va_copy(args2, args);
1805 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1806 if (len >= avail) {
1807 /* The printk buffer is 1024 bytes long, so if we get
1808 * here and AUDIT_BUFSIZ is at least 1024, then we can
1809 * log everything that printk could have logged. */
1810 avail = audit_expand(ab,
1811 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1812 if (!avail)
1813 goto out_va_end;
1814 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1815 }
1816 if (len > 0)
1817 skb_put(skb, len);
1818 out_va_end:
1819 va_end(args2);
1820 out:
1821 return;
1822 }
1823
1824 /**
1825 * audit_log_format - format a message into the audit buffer.
1826 * @ab: audit_buffer
1827 * @fmt: format string
1828 * @...: optional parameters matching @fmt string
1829 *
1830 * All the work is done in audit_log_vformat.
1831 */
1832 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1833 {
1834 va_list args;
1835
1836 if (!ab)
1837 return;
1838 va_start(args, fmt);
1839 audit_log_vformat(ab, fmt, args);
1840 va_end(args);
1841 }
1842
1843 /**
1844 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1845 * @ab: the audit_buffer
1846 * @buf: buffer to convert to hex
1847 * @len: length of @buf to be converted
1848 *
1849 * No return value; failure to expand is silently ignored.
1850 *
1851 * This function will take the passed buf and convert it into a string of
1852 * ascii hex digits. The new string is placed onto the skb.
1853 */
1854 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1855 size_t len)
1856 {
1857 int i, avail, new_len;
1858 unsigned char *ptr;
1859 struct sk_buff *skb;
1860
1861 if (!ab)
1862 return;
1863
1864 BUG_ON(!ab->skb);
1865 skb = ab->skb;
1866 avail = skb_tailroom(skb);
1867 new_len = len<<1;
1868 if (new_len >= avail) {
1869 /* Round the buffer request up to the next multiple */
1870 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1871 avail = audit_expand(ab, new_len);
1872 if (!avail)
1873 return;
1874 }
1875
1876 ptr = skb_tail_pointer(skb);
1877 for (i = 0; i < len; i++)
1878 ptr = hex_byte_pack_upper(ptr, buf[i]);
1879 *ptr = 0;
1880 skb_put(skb, len << 1); /* new string is twice the old string */
1881 }
1882
1883 /*
1884 * Format a string of no more than slen characters into the audit buffer,
1885 * enclosed in quote marks.
1886 */
1887 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1888 size_t slen)
1889 {
1890 int avail, new_len;
1891 unsigned char *ptr;
1892 struct sk_buff *skb;
1893
1894 if (!ab)
1895 return;
1896
1897 BUG_ON(!ab->skb);
1898 skb = ab->skb;
1899 avail = skb_tailroom(skb);
1900 new_len = slen + 3; /* enclosing quotes + null terminator */
1901 if (new_len > avail) {
1902 avail = audit_expand(ab, new_len);
1903 if (!avail)
1904 return;
1905 }
1906 ptr = skb_tail_pointer(skb);
1907 *ptr++ = '"';
1908 memcpy(ptr, string, slen);
1909 ptr += slen;
1910 *ptr++ = '"';
1911 *ptr = 0;
1912 skb_put(skb, slen + 2); /* don't include null terminator */
1913 }
1914
1915 /**
1916 * audit_string_contains_control - does a string need to be logged in hex
1917 * @string: string to be checked
1918 * @len: max length of the string to check
1919 */
1920 bool audit_string_contains_control(const char *string, size_t len)
1921 {
1922 const unsigned char *p;
1923 for (p = string; p < (const unsigned char *)string + len; p++) {
1924 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1925 return true;
1926 }
1927 return false;
1928 }
1929
1930 /**
1931 * audit_log_n_untrustedstring - log a string that may contain random characters
1932 * @ab: audit_buffer
1933 * @len: length of string (not including trailing null)
1934 * @string: string to be logged
1935 *
1936 * This code will escape a string that is passed to it if the string
1937 * contains a control character, unprintable character, double quote mark,
1938 * or a space. Unescaped strings will start and end with a double quote mark.
1939 * Strings that are escaped are printed in hex (2 digits per char).
1940 *
1941 * The caller specifies the number of characters in the string to log, which may
1942 * or may not be the entire string.
1943 */
1944 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1945 size_t len)
1946 {
1947 if (audit_string_contains_control(string, len))
1948 audit_log_n_hex(ab, string, len);
1949 else
1950 audit_log_n_string(ab, string, len);
1951 }
1952
1953 /**
1954 * audit_log_untrustedstring - log a string that may contain random characters
1955 * @ab: audit_buffer
1956 * @string: string to be logged
1957 *
1958 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1959 * determine string length.
1960 */
1961 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1962 {
1963 audit_log_n_untrustedstring(ab, string, strlen(string));
1964 }
1965
1966 /* This is a helper-function to print the escaped d_path */
1967 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1968 const struct path *path)
1969 {
1970 char *p, *pathname;
1971
1972 if (prefix)
1973 audit_log_format(ab, "%s", prefix);
1974
1975 /* We will allow 11 spaces for ' (deleted)' to be appended */
1976 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1977 if (!pathname) {
1978 audit_log_string(ab, "<no_memory>");
1979 return;
1980 }
1981 p = d_path(path, pathname, PATH_MAX+11);
1982 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1983 /* FIXME: can we save some information here? */
1984 audit_log_string(ab, "<too_long>");
1985 } else
1986 audit_log_untrustedstring(ab, p);
1987 kfree(pathname);
1988 }
1989
1990 void audit_log_session_info(struct audit_buffer *ab)
1991 {
1992 unsigned int sessionid = audit_get_sessionid(current);
1993 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1994
1995 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1996 }
1997
1998 void audit_log_key(struct audit_buffer *ab, char *key)
1999 {
2000 audit_log_format(ab, " key=");
2001 if (key)
2002 audit_log_untrustedstring(ab, key);
2003 else
2004 audit_log_format(ab, "(null)");
2005 }
2006
2007 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2008 {
2009 int i;
2010
2011 audit_log_format(ab, " %s=", prefix);
2012 CAP_FOR_EACH_U32(i) {
2013 audit_log_format(ab, "%08x",
2014 cap->cap[CAP_LAST_U32 - i]);
2015 }
2016 }
2017
2018 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2019 {
2020 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2021 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2022 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2023 name->fcap.fE, name->fcap_ver);
2024 }
2025
2026 static inline int audit_copy_fcaps(struct audit_names *name,
2027 const struct dentry *dentry)
2028 {
2029 struct cpu_vfs_cap_data caps;
2030 int rc;
2031
2032 if (!dentry)
2033 return 0;
2034
2035 rc = get_vfs_caps_from_disk(dentry, &caps);
2036 if (rc)
2037 return rc;
2038
2039 name->fcap.permitted = caps.permitted;
2040 name->fcap.inheritable = caps.inheritable;
2041 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2042 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2043 VFS_CAP_REVISION_SHIFT;
2044
2045 return 0;
2046 }
2047
2048 /* Copy inode data into an audit_names. */
2049 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2050 struct inode *inode)
2051 {
2052 name->ino = inode->i_ino;
2053 name->dev = inode->i_sb->s_dev;
2054 name->mode = inode->i_mode;
2055 name->uid = inode->i_uid;
2056 name->gid = inode->i_gid;
2057 name->rdev = inode->i_rdev;
2058 security_inode_getsecid(inode, &name->osid);
2059 audit_copy_fcaps(name, dentry);
2060 }
2061
2062 /**
2063 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2064 * @context: audit_context for the task
2065 * @n: audit_names structure with reportable details
2066 * @path: optional path to report instead of audit_names->name
2067 * @record_num: record number to report when handling a list of names
2068 * @call_panic: optional pointer to int that will be updated if secid fails
2069 */
2070 void audit_log_name(struct audit_context *context, struct audit_names *n,
2071 const struct path *path, int record_num, int *call_panic)
2072 {
2073 struct audit_buffer *ab;
2074 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2075 if (!ab)
2076 return;
2077
2078 audit_log_format(ab, "item=%d", record_num);
2079
2080 if (path)
2081 audit_log_d_path(ab, " name=", path);
2082 else if (n->name) {
2083 switch (n->name_len) {
2084 case AUDIT_NAME_FULL:
2085 /* log the full path */
2086 audit_log_format(ab, " name=");
2087 audit_log_untrustedstring(ab, n->name->name);
2088 break;
2089 case 0:
2090 /* name was specified as a relative path and the
2091 * directory component is the cwd */
2092 audit_log_d_path(ab, " name=", &context->pwd);
2093 break;
2094 default:
2095 /* log the name's directory component */
2096 audit_log_format(ab, " name=");
2097 audit_log_n_untrustedstring(ab, n->name->name,
2098 n->name_len);
2099 }
2100 } else
2101 audit_log_format(ab, " name=(null)");
2102
2103 if (n->ino != AUDIT_INO_UNSET)
2104 audit_log_format(ab, " inode=%lu"
2105 " dev=%02x:%02x mode=%#ho"
2106 " ouid=%u ogid=%u rdev=%02x:%02x",
2107 n->ino,
2108 MAJOR(n->dev),
2109 MINOR(n->dev),
2110 n->mode,
2111 from_kuid(&init_user_ns, n->uid),
2112 from_kgid(&init_user_ns, n->gid),
2113 MAJOR(n->rdev),
2114 MINOR(n->rdev));
2115 if (n->osid != 0) {
2116 char *ctx = NULL;
2117 u32 len;
2118 if (security_secid_to_secctx(
2119 n->osid, &ctx, &len)) {
2120 audit_log_format(ab, " osid=%u", n->osid);
2121 if (call_panic)
2122 *call_panic = 2;
2123 } else {
2124 audit_log_format(ab, " obj=%s", ctx);
2125 security_release_secctx(ctx, len);
2126 }
2127 }
2128
2129 /* log the audit_names record type */
2130 audit_log_format(ab, " nametype=");
2131 switch(n->type) {
2132 case AUDIT_TYPE_NORMAL:
2133 audit_log_format(ab, "NORMAL");
2134 break;
2135 case AUDIT_TYPE_PARENT:
2136 audit_log_format(ab, "PARENT");
2137 break;
2138 case AUDIT_TYPE_CHILD_DELETE:
2139 audit_log_format(ab, "DELETE");
2140 break;
2141 case AUDIT_TYPE_CHILD_CREATE:
2142 audit_log_format(ab, "CREATE");
2143 break;
2144 default:
2145 audit_log_format(ab, "UNKNOWN");
2146 break;
2147 }
2148
2149 audit_log_fcaps(ab, n);
2150 audit_log_end(ab);
2151 }
2152
2153 int audit_log_task_context(struct audit_buffer *ab)
2154 {
2155 char *ctx = NULL;
2156 unsigned len;
2157 int error;
2158 u32 sid;
2159
2160 security_task_getsecid(current, &sid);
2161 if (!sid)
2162 return 0;
2163
2164 error = security_secid_to_secctx(sid, &ctx, &len);
2165 if (error) {
2166 if (error != -EINVAL)
2167 goto error_path;
2168 return 0;
2169 }
2170
2171 audit_log_format(ab, " subj=%s", ctx);
2172 security_release_secctx(ctx, len);
2173 return 0;
2174
2175 error_path:
2176 audit_panic("error in audit_log_task_context");
2177 return error;
2178 }
2179 EXPORT_SYMBOL(audit_log_task_context);
2180
2181 void audit_log_d_path_exe(struct audit_buffer *ab,
2182 struct mm_struct *mm)
2183 {
2184 struct file *exe_file;
2185
2186 if (!mm)
2187 goto out_null;
2188
2189 exe_file = get_mm_exe_file(mm);
2190 if (!exe_file)
2191 goto out_null;
2192
2193 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2194 fput(exe_file);
2195 return;
2196 out_null:
2197 audit_log_format(ab, " exe=(null)");
2198 }
2199
2200 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2201 {
2202 struct tty_struct *tty = NULL;
2203 unsigned long flags;
2204
2205 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2206 if (tsk->signal)
2207 tty = tty_kref_get(tsk->signal->tty);
2208 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2209 return tty;
2210 }
2211
2212 void audit_put_tty(struct tty_struct *tty)
2213 {
2214 tty_kref_put(tty);
2215 }
2216
2217 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2218 {
2219 const struct cred *cred;
2220 char comm[sizeof(tsk->comm)];
2221 struct tty_struct *tty;
2222
2223 if (!ab)
2224 return;
2225
2226 /* tsk == current */
2227 cred = current_cred();
2228 tty = audit_get_tty(tsk);
2229 audit_log_format(ab,
2230 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2231 " euid=%u suid=%u fsuid=%u"
2232 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2233 task_ppid_nr(tsk),
2234 task_tgid_nr(tsk),
2235 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2236 from_kuid(&init_user_ns, cred->uid),
2237 from_kgid(&init_user_ns, cred->gid),
2238 from_kuid(&init_user_ns, cred->euid),
2239 from_kuid(&init_user_ns, cred->suid),
2240 from_kuid(&init_user_ns, cred->fsuid),
2241 from_kgid(&init_user_ns, cred->egid),
2242 from_kgid(&init_user_ns, cred->sgid),
2243 from_kgid(&init_user_ns, cred->fsgid),
2244 tty ? tty_name(tty) : "(none)",
2245 audit_get_sessionid(tsk));
2246 audit_put_tty(tty);
2247 audit_log_format(ab, " comm=");
2248 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2249 audit_log_d_path_exe(ab, tsk->mm);
2250 audit_log_task_context(ab);
2251 }
2252 EXPORT_SYMBOL(audit_log_task_info);
2253
2254 /**
2255 * audit_log_link_denied - report a link restriction denial
2256 * @operation: specific link operation
2257 * @link: the path that triggered the restriction
2258 */
2259 void audit_log_link_denied(const char *operation, const struct path *link)
2260 {
2261 struct audit_buffer *ab;
2262 struct audit_names *name;
2263
2264 name = kzalloc(sizeof(*name), GFP_NOFS);
2265 if (!name)
2266 return;
2267
2268 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2269 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2270 AUDIT_ANOM_LINK);
2271 if (!ab)
2272 goto out;
2273 audit_log_format(ab, "op=%s", operation);
2274 audit_log_task_info(ab, current);
2275 audit_log_format(ab, " res=0");
2276 audit_log_end(ab);
2277
2278 /* Generate AUDIT_PATH record with object. */
2279 name->type = AUDIT_TYPE_NORMAL;
2280 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2281 audit_log_name(current->audit_context, name, link, 0, NULL);
2282 out:
2283 kfree(name);
2284 }
2285
2286 /**
2287 * audit_log_end - end one audit record
2288 * @ab: the audit_buffer
2289 *
2290 * We can not do a netlink send inside an irq context because it blocks (last
2291 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2292 * queue and a tasklet is scheduled to remove them from the queue outside the
2293 * irq context. May be called in any context.
2294 */
2295 void audit_log_end(struct audit_buffer *ab)
2296 {
2297 struct sk_buff *skb;
2298 struct nlmsghdr *nlh;
2299
2300 if (!ab)
2301 return;
2302
2303 if (audit_rate_check()) {
2304 skb = ab->skb;
2305 ab->skb = NULL;
2306
2307 /* setup the netlink header, see the comments in
2308 * kauditd_send_multicast_skb() for length quirks */
2309 nlh = nlmsg_hdr(skb);
2310 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2311
2312 /* queue the netlink packet and poke the kauditd thread */
2313 skb_queue_tail(&audit_queue, skb);
2314 wake_up_interruptible(&kauditd_wait);
2315 } else
2316 audit_log_lost("rate limit exceeded");
2317
2318 audit_buffer_free(ab);
2319 }
2320
2321 /**
2322 * audit_log - Log an audit record
2323 * @ctx: audit context
2324 * @gfp_mask: type of allocation
2325 * @type: audit message type
2326 * @fmt: format string to use
2327 * @...: variable parameters matching the format string
2328 *
2329 * This is a convenience function that calls audit_log_start,
2330 * audit_log_vformat, and audit_log_end. It may be called
2331 * in any context.
2332 */
2333 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2334 const char *fmt, ...)
2335 {
2336 struct audit_buffer *ab;
2337 va_list args;
2338
2339 ab = audit_log_start(ctx, gfp_mask, type);
2340 if (ab) {
2341 va_start(args, fmt);
2342 audit_log_vformat(ab, fmt, args);
2343 va_end(args);
2344 audit_log_end(ab);
2345 }
2346 }
2347
2348 EXPORT_SYMBOL(audit_log_start);
2349 EXPORT_SYMBOL(audit_log_end);
2350 EXPORT_SYMBOL(audit_log_format);
2351 EXPORT_SYMBOL(audit_log);