]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/audit.c
audit: Simply AUDIT_TTY_SET and AUDIT_TTY_GET
[mirror_ubuntu-zesty-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52
53 #include <linux/audit.h>
54
55 #include <net/sock.h>
56 #include <net/netlink.h>
57 #include <linux/skbuff.h>
58 #ifdef CONFIG_SECURITY
59 #include <linux/security.h>
60 #endif
61 #include <linux/netlink.h>
62 #include <linux/freezer.h>
63 #include <linux/tty.h>
64 #include <linux/pid_namespace.h>
65
66 #include "audit.h"
67
68 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
69 * (Initialization happens after skb_init is called.) */
70 #define AUDIT_DISABLED -1
71 #define AUDIT_UNINITIALIZED 0
72 #define AUDIT_INITIALIZED 1
73 static int audit_initialized;
74
75 #define AUDIT_OFF 0
76 #define AUDIT_ON 1
77 #define AUDIT_LOCKED 2
78 int audit_enabled;
79 int audit_ever_enabled;
80
81 EXPORT_SYMBOL_GPL(audit_enabled);
82
83 /* Default state when kernel boots without any parameters. */
84 static int audit_default;
85
86 /* If auditing cannot proceed, audit_failure selects what happens. */
87 static int audit_failure = AUDIT_FAIL_PRINTK;
88
89 /*
90 * If audit records are to be written to the netlink socket, audit_pid
91 * contains the pid of the auditd process and audit_nlk_pid contains
92 * the pid to use to send netlink messages to that process.
93 */
94 int audit_pid;
95 static int audit_nlk_pid;
96
97 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
98 * to that number per second. This prevents DoS attacks, but results in
99 * audit records being dropped. */
100 static int audit_rate_limit;
101
102 /* Number of outstanding audit_buffers allowed. */
103 static int audit_backlog_limit = 64;
104 static int audit_backlog_wait_time = 60 * HZ;
105 static int audit_backlog_wait_overflow = 0;
106
107 /* The identity of the user shutting down the audit system. */
108 uid_t audit_sig_uid = -1;
109 pid_t audit_sig_pid = -1;
110 u32 audit_sig_sid = 0;
111
112 /* Records can be lost in several ways:
113 0) [suppressed in audit_alloc]
114 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
115 2) out of memory in audit_log_move [alloc_skb]
116 3) suppressed due to audit_rate_limit
117 4) suppressed due to audit_backlog_limit
118 */
119 static atomic_t audit_lost = ATOMIC_INIT(0);
120
121 /* The netlink socket. */
122 static struct sock *audit_sock;
123
124 /* Hash for inode-based rules */
125 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
126
127 /* The audit_freelist is a list of pre-allocated audit buffers (if more
128 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
129 * being placed on the freelist). */
130 static DEFINE_SPINLOCK(audit_freelist_lock);
131 static int audit_freelist_count;
132 static LIST_HEAD(audit_freelist);
133
134 static struct sk_buff_head audit_skb_queue;
135 /* queue of skbs to send to auditd when/if it comes back */
136 static struct sk_buff_head audit_skb_hold_queue;
137 static struct task_struct *kauditd_task;
138 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
139 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
140
141 /* Serialize requests from userspace. */
142 DEFINE_MUTEX(audit_cmd_mutex);
143
144 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
145 * audit records. Since printk uses a 1024 byte buffer, this buffer
146 * should be at least that large. */
147 #define AUDIT_BUFSIZ 1024
148
149 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
150 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
151 #define AUDIT_MAXFREE (2*NR_CPUS)
152
153 /* The audit_buffer is used when formatting an audit record. The caller
154 * locks briefly to get the record off the freelist or to allocate the
155 * buffer, and locks briefly to send the buffer to the netlink layer or
156 * to place it on a transmit queue. Multiple audit_buffers can be in
157 * use simultaneously. */
158 struct audit_buffer {
159 struct list_head list;
160 struct sk_buff *skb; /* formatted skb ready to send */
161 struct audit_context *ctx; /* NULL or associated context */
162 gfp_t gfp_mask;
163 };
164
165 struct audit_reply {
166 int pid;
167 struct sk_buff *skb;
168 };
169
170 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
171 {
172 if (ab) {
173 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
174 nlh->nlmsg_pid = pid;
175 }
176 }
177
178 void audit_panic(const char *message)
179 {
180 switch (audit_failure)
181 {
182 case AUDIT_FAIL_SILENT:
183 break;
184 case AUDIT_FAIL_PRINTK:
185 if (printk_ratelimit())
186 printk(KERN_ERR "audit: %s\n", message);
187 break;
188 case AUDIT_FAIL_PANIC:
189 /* test audit_pid since printk is always losey, why bother? */
190 if (audit_pid)
191 panic("audit: %s\n", message);
192 break;
193 }
194 }
195
196 static inline int audit_rate_check(void)
197 {
198 static unsigned long last_check = 0;
199 static int messages = 0;
200 static DEFINE_SPINLOCK(lock);
201 unsigned long flags;
202 unsigned long now;
203 unsigned long elapsed;
204 int retval = 0;
205
206 if (!audit_rate_limit) return 1;
207
208 spin_lock_irqsave(&lock, flags);
209 if (++messages < audit_rate_limit) {
210 retval = 1;
211 } else {
212 now = jiffies;
213 elapsed = now - last_check;
214 if (elapsed > HZ) {
215 last_check = now;
216 messages = 0;
217 retval = 1;
218 }
219 }
220 spin_unlock_irqrestore(&lock, flags);
221
222 return retval;
223 }
224
225 /**
226 * audit_log_lost - conditionally log lost audit message event
227 * @message: the message stating reason for lost audit message
228 *
229 * Emit at least 1 message per second, even if audit_rate_check is
230 * throttling.
231 * Always increment the lost messages counter.
232 */
233 void audit_log_lost(const char *message)
234 {
235 static unsigned long last_msg = 0;
236 static DEFINE_SPINLOCK(lock);
237 unsigned long flags;
238 unsigned long now;
239 int print;
240
241 atomic_inc(&audit_lost);
242
243 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
244
245 if (!print) {
246 spin_lock_irqsave(&lock, flags);
247 now = jiffies;
248 if (now - last_msg > HZ) {
249 print = 1;
250 last_msg = now;
251 }
252 spin_unlock_irqrestore(&lock, flags);
253 }
254
255 if (print) {
256 if (printk_ratelimit())
257 printk(KERN_WARNING
258 "audit: audit_lost=%d audit_rate_limit=%d "
259 "audit_backlog_limit=%d\n",
260 atomic_read(&audit_lost),
261 audit_rate_limit,
262 audit_backlog_limit);
263 audit_panic(message);
264 }
265 }
266
267 static int audit_log_config_change(char *function_name, int new, int old,
268 uid_t loginuid, u32 sessionid, u32 sid,
269 int allow_changes)
270 {
271 struct audit_buffer *ab;
272 int rc = 0;
273
274 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
275 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
276 old, loginuid, sessionid);
277 if (sid) {
278 char *ctx = NULL;
279 u32 len;
280
281 rc = security_secid_to_secctx(sid, &ctx, &len);
282 if (rc) {
283 audit_log_format(ab, " sid=%u", sid);
284 allow_changes = 0; /* Something weird, deny request */
285 } else {
286 audit_log_format(ab, " subj=%s", ctx);
287 security_release_secctx(ctx, len);
288 }
289 }
290 audit_log_format(ab, " res=%d", allow_changes);
291 audit_log_end(ab);
292 return rc;
293 }
294
295 static int audit_do_config_change(char *function_name, int *to_change,
296 int new, uid_t loginuid, u32 sessionid,
297 u32 sid)
298 {
299 int allow_changes, rc = 0, old = *to_change;
300
301 /* check if we are locked */
302 if (audit_enabled == AUDIT_LOCKED)
303 allow_changes = 0;
304 else
305 allow_changes = 1;
306
307 if (audit_enabled != AUDIT_OFF) {
308 rc = audit_log_config_change(function_name, new, old, loginuid,
309 sessionid, sid, allow_changes);
310 if (rc)
311 allow_changes = 0;
312 }
313
314 /* If we are allowed, make the change */
315 if (allow_changes == 1)
316 *to_change = new;
317 /* Not allowed, update reason */
318 else if (rc == 0)
319 rc = -EPERM;
320 return rc;
321 }
322
323 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
324 u32 sid)
325 {
326 return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
327 limit, loginuid, sessionid, sid);
328 }
329
330 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
331 u32 sid)
332 {
333 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
334 limit, loginuid, sessionid, sid);
335 }
336
337 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
338 {
339 int rc;
340 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
341 return -EINVAL;
342
343 rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
344 loginuid, sessionid, sid);
345
346 if (!rc)
347 audit_ever_enabled |= !!state;
348
349 return rc;
350 }
351
352 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
353 {
354 if (state != AUDIT_FAIL_SILENT
355 && state != AUDIT_FAIL_PRINTK
356 && state != AUDIT_FAIL_PANIC)
357 return -EINVAL;
358
359 return audit_do_config_change("audit_failure", &audit_failure, state,
360 loginuid, sessionid, sid);
361 }
362
363 /*
364 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
365 * already have been sent via prink/syslog and so if these messages are dropped
366 * it is not a huge concern since we already passed the audit_log_lost()
367 * notification and stuff. This is just nice to get audit messages during
368 * boot before auditd is running or messages generated while auditd is stopped.
369 * This only holds messages is audit_default is set, aka booting with audit=1
370 * or building your kernel that way.
371 */
372 static void audit_hold_skb(struct sk_buff *skb)
373 {
374 if (audit_default &&
375 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
376 skb_queue_tail(&audit_skb_hold_queue, skb);
377 else
378 kfree_skb(skb);
379 }
380
381 /*
382 * For one reason or another this nlh isn't getting delivered to the userspace
383 * audit daemon, just send it to printk.
384 */
385 static void audit_printk_skb(struct sk_buff *skb)
386 {
387 struct nlmsghdr *nlh = nlmsg_hdr(skb);
388 char *data = nlmsg_data(nlh);
389
390 if (nlh->nlmsg_type != AUDIT_EOE) {
391 if (printk_ratelimit())
392 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
393 else
394 audit_log_lost("printk limit exceeded\n");
395 }
396
397 audit_hold_skb(skb);
398 }
399
400 static void kauditd_send_skb(struct sk_buff *skb)
401 {
402 int err;
403 /* take a reference in case we can't send it and we want to hold it */
404 skb_get(skb);
405 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
406 if (err < 0) {
407 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
408 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
409 audit_log_lost("auditd disappeared\n");
410 audit_pid = 0;
411 /* we might get lucky and get this in the next auditd */
412 audit_hold_skb(skb);
413 } else
414 /* drop the extra reference if sent ok */
415 consume_skb(skb);
416 }
417
418 static int kauditd_thread(void *dummy)
419 {
420 struct sk_buff *skb;
421
422 set_freezable();
423 while (!kthread_should_stop()) {
424 /*
425 * if auditd just started drain the queue of messages already
426 * sent to syslog/printk. remember loss here is ok. we already
427 * called audit_log_lost() if it didn't go out normally. so the
428 * race between the skb_dequeue and the next check for audit_pid
429 * doesn't matter.
430 *
431 * if you ever find kauditd to be too slow we can get a perf win
432 * by doing our own locking and keeping better track if there
433 * are messages in this queue. I don't see the need now, but
434 * in 5 years when I want to play with this again I'll see this
435 * note and still have no friggin idea what i'm thinking today.
436 */
437 if (audit_default && audit_pid) {
438 skb = skb_dequeue(&audit_skb_hold_queue);
439 if (unlikely(skb)) {
440 while (skb && audit_pid) {
441 kauditd_send_skb(skb);
442 skb = skb_dequeue(&audit_skb_hold_queue);
443 }
444 }
445 }
446
447 skb = skb_dequeue(&audit_skb_queue);
448 wake_up(&audit_backlog_wait);
449 if (skb) {
450 if (audit_pid)
451 kauditd_send_skb(skb);
452 else
453 audit_printk_skb(skb);
454 } else {
455 DECLARE_WAITQUEUE(wait, current);
456 set_current_state(TASK_INTERRUPTIBLE);
457 add_wait_queue(&kauditd_wait, &wait);
458
459 if (!skb_queue_len(&audit_skb_queue)) {
460 try_to_freeze();
461 schedule();
462 }
463
464 __set_current_state(TASK_RUNNING);
465 remove_wait_queue(&kauditd_wait, &wait);
466 }
467 }
468 return 0;
469 }
470
471 int audit_send_list(void *_dest)
472 {
473 struct audit_netlink_list *dest = _dest;
474 int pid = dest->pid;
475 struct sk_buff *skb;
476
477 /* wait for parent to finish and send an ACK */
478 mutex_lock(&audit_cmd_mutex);
479 mutex_unlock(&audit_cmd_mutex);
480
481 while ((skb = __skb_dequeue(&dest->q)) != NULL)
482 netlink_unicast(audit_sock, skb, pid, 0);
483
484 kfree(dest);
485
486 return 0;
487 }
488
489 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
490 int multi, const void *payload, int size)
491 {
492 struct sk_buff *skb;
493 struct nlmsghdr *nlh;
494 void *data;
495 int flags = multi ? NLM_F_MULTI : 0;
496 int t = done ? NLMSG_DONE : type;
497
498 skb = nlmsg_new(size, GFP_KERNEL);
499 if (!skb)
500 return NULL;
501
502 nlh = nlmsg_put(skb, pid, seq, t, size, flags);
503 if (!nlh)
504 goto out_kfree_skb;
505 data = nlmsg_data(nlh);
506 memcpy(data, payload, size);
507 return skb;
508
509 out_kfree_skb:
510 kfree_skb(skb);
511 return NULL;
512 }
513
514 static int audit_send_reply_thread(void *arg)
515 {
516 struct audit_reply *reply = (struct audit_reply *)arg;
517
518 mutex_lock(&audit_cmd_mutex);
519 mutex_unlock(&audit_cmd_mutex);
520
521 /* Ignore failure. It'll only happen if the sender goes away,
522 because our timeout is set to infinite. */
523 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
524 kfree(reply);
525 return 0;
526 }
527 /**
528 * audit_send_reply - send an audit reply message via netlink
529 * @pid: process id to send reply to
530 * @seq: sequence number
531 * @type: audit message type
532 * @done: done (last) flag
533 * @multi: multi-part message flag
534 * @payload: payload data
535 * @size: payload size
536 *
537 * Allocates an skb, builds the netlink message, and sends it to the pid.
538 * No failure notifications.
539 */
540 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
541 const void *payload, int size)
542 {
543 struct sk_buff *skb;
544 struct task_struct *tsk;
545 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
546 GFP_KERNEL);
547
548 if (!reply)
549 return;
550
551 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
552 if (!skb)
553 goto out;
554
555 reply->pid = pid;
556 reply->skb = skb;
557
558 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
559 if (!IS_ERR(tsk))
560 return;
561 kfree_skb(skb);
562 out:
563 kfree(reply);
564 }
565
566 /*
567 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
568 * control messages.
569 */
570 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
571 {
572 int err = 0;
573
574 /* Only support the initial namespaces for now. */
575 if ((current_user_ns() != &init_user_ns) ||
576 (task_active_pid_ns(current) != &init_pid_ns))
577 return -EPERM;
578
579 switch (msg_type) {
580 case AUDIT_GET:
581 case AUDIT_LIST:
582 case AUDIT_LIST_RULES:
583 case AUDIT_SET:
584 case AUDIT_ADD:
585 case AUDIT_ADD_RULE:
586 case AUDIT_DEL:
587 case AUDIT_DEL_RULE:
588 case AUDIT_SIGNAL_INFO:
589 case AUDIT_TTY_GET:
590 case AUDIT_TTY_SET:
591 case AUDIT_TRIM:
592 case AUDIT_MAKE_EQUIV:
593 if (!capable(CAP_AUDIT_CONTROL))
594 err = -EPERM;
595 break;
596 case AUDIT_USER:
597 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
598 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
599 if (!capable(CAP_AUDIT_WRITE))
600 err = -EPERM;
601 break;
602 default: /* bad msg */
603 err = -EINVAL;
604 }
605
606 return err;
607 }
608
609 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
610 u32 pid, u32 uid, uid_t auid, u32 ses,
611 u32 sid)
612 {
613 int rc = 0;
614 char *ctx = NULL;
615 u32 len;
616
617 if (!audit_enabled) {
618 *ab = NULL;
619 return rc;
620 }
621
622 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
623 audit_log_format(*ab, "pid=%d uid=%u auid=%u ses=%u",
624 pid, uid, auid, ses);
625 if (sid) {
626 rc = security_secid_to_secctx(sid, &ctx, &len);
627 if (rc)
628 audit_log_format(*ab, " ssid=%u", sid);
629 else {
630 audit_log_format(*ab, " subj=%s", ctx);
631 security_release_secctx(ctx, len);
632 }
633 }
634
635 return rc;
636 }
637
638 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
639 {
640 u32 uid, pid, seq, sid;
641 void *data;
642 struct audit_status *status_get, status_set;
643 int err;
644 struct audit_buffer *ab;
645 u16 msg_type = nlh->nlmsg_type;
646 uid_t loginuid; /* loginuid of sender */
647 u32 sessionid;
648 struct audit_sig_info *sig_data;
649 char *ctx = NULL;
650 u32 len;
651
652 err = audit_netlink_ok(skb, msg_type);
653 if (err)
654 return err;
655
656 /* As soon as there's any sign of userspace auditd,
657 * start kauditd to talk to it */
658 if (!kauditd_task)
659 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
660 if (IS_ERR(kauditd_task)) {
661 err = PTR_ERR(kauditd_task);
662 kauditd_task = NULL;
663 return err;
664 }
665
666 pid = NETLINK_CREDS(skb)->pid;
667 uid = NETLINK_CREDS(skb)->uid;
668 loginuid = audit_get_loginuid(current);
669 sessionid = audit_get_sessionid(current);
670 security_task_getsecid(current, &sid);
671 seq = nlh->nlmsg_seq;
672 data = nlmsg_data(nlh);
673
674 switch (msg_type) {
675 case AUDIT_GET:
676 status_set.enabled = audit_enabled;
677 status_set.failure = audit_failure;
678 status_set.pid = audit_pid;
679 status_set.rate_limit = audit_rate_limit;
680 status_set.backlog_limit = audit_backlog_limit;
681 status_set.lost = atomic_read(&audit_lost);
682 status_set.backlog = skb_queue_len(&audit_skb_queue);
683 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
684 &status_set, sizeof(status_set));
685 break;
686 case AUDIT_SET:
687 if (nlh->nlmsg_len < sizeof(struct audit_status))
688 return -EINVAL;
689 status_get = (struct audit_status *)data;
690 if (status_get->mask & AUDIT_STATUS_ENABLED) {
691 err = audit_set_enabled(status_get->enabled,
692 loginuid, sessionid, sid);
693 if (err < 0)
694 return err;
695 }
696 if (status_get->mask & AUDIT_STATUS_FAILURE) {
697 err = audit_set_failure(status_get->failure,
698 loginuid, sessionid, sid);
699 if (err < 0)
700 return err;
701 }
702 if (status_get->mask & AUDIT_STATUS_PID) {
703 int new_pid = status_get->pid;
704
705 if (audit_enabled != AUDIT_OFF)
706 audit_log_config_change("audit_pid", new_pid,
707 audit_pid, loginuid,
708 sessionid, sid, 1);
709
710 audit_pid = new_pid;
711 audit_nlk_pid = NETLINK_CB(skb).pid;
712 }
713 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
714 err = audit_set_rate_limit(status_get->rate_limit,
715 loginuid, sessionid, sid);
716 if (err < 0)
717 return err;
718 }
719 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
720 err = audit_set_backlog_limit(status_get->backlog_limit,
721 loginuid, sessionid, sid);
722 break;
723 case AUDIT_USER:
724 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
725 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
726 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
727 return 0;
728
729 err = audit_filter_user();
730 if (err == 1) {
731 err = 0;
732 if (msg_type == AUDIT_USER_TTY) {
733 err = tty_audit_push_task(current, loginuid,
734 sessionid);
735 if (err)
736 break;
737 }
738 audit_log_common_recv_msg(&ab, msg_type, pid, uid,
739 loginuid, sessionid, sid);
740
741 if (msg_type != AUDIT_USER_TTY)
742 audit_log_format(ab, " msg='%.1024s'",
743 (char *)data);
744 else {
745 int size;
746
747 audit_log_format(ab, " msg=");
748 size = nlmsg_len(nlh);
749 if (size > 0 &&
750 ((unsigned char *)data)[size - 1] == '\0')
751 size--;
752 audit_log_n_untrustedstring(ab, data, size);
753 }
754 audit_set_pid(ab, pid);
755 audit_log_end(ab);
756 }
757 break;
758 case AUDIT_ADD:
759 case AUDIT_DEL:
760 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
761 return -EINVAL;
762 if (audit_enabled == AUDIT_LOCKED) {
763 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
764 uid, loginuid, sessionid, sid);
765
766 audit_log_format(ab, " audit_enabled=%d res=0",
767 audit_enabled);
768 audit_log_end(ab);
769 return -EPERM;
770 }
771 /* fallthrough */
772 case AUDIT_LIST:
773 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
774 uid, seq, data, nlmsg_len(nlh),
775 loginuid, sessionid, sid);
776 break;
777 case AUDIT_ADD_RULE:
778 case AUDIT_DEL_RULE:
779 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
780 return -EINVAL;
781 if (audit_enabled == AUDIT_LOCKED) {
782 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
783 uid, loginuid, sessionid, sid);
784
785 audit_log_format(ab, " audit_enabled=%d res=0",
786 audit_enabled);
787 audit_log_end(ab);
788 return -EPERM;
789 }
790 /* fallthrough */
791 case AUDIT_LIST_RULES:
792 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
793 uid, seq, data, nlmsg_len(nlh),
794 loginuid, sessionid, sid);
795 break;
796 case AUDIT_TRIM:
797 audit_trim_trees();
798
799 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
800 uid, loginuid, sessionid, sid);
801
802 audit_log_format(ab, " op=trim res=1");
803 audit_log_end(ab);
804 break;
805 case AUDIT_MAKE_EQUIV: {
806 void *bufp = data;
807 u32 sizes[2];
808 size_t msglen = nlmsg_len(nlh);
809 char *old, *new;
810
811 err = -EINVAL;
812 if (msglen < 2 * sizeof(u32))
813 break;
814 memcpy(sizes, bufp, 2 * sizeof(u32));
815 bufp += 2 * sizeof(u32);
816 msglen -= 2 * sizeof(u32);
817 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
818 if (IS_ERR(old)) {
819 err = PTR_ERR(old);
820 break;
821 }
822 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
823 if (IS_ERR(new)) {
824 err = PTR_ERR(new);
825 kfree(old);
826 break;
827 }
828 /* OK, here comes... */
829 err = audit_tag_tree(old, new);
830
831 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
832 uid, loginuid, sessionid, sid);
833
834 audit_log_format(ab, " op=make_equiv old=");
835 audit_log_untrustedstring(ab, old);
836 audit_log_format(ab, " new=");
837 audit_log_untrustedstring(ab, new);
838 audit_log_format(ab, " res=%d", !err);
839 audit_log_end(ab);
840 kfree(old);
841 kfree(new);
842 break;
843 }
844 case AUDIT_SIGNAL_INFO:
845 len = 0;
846 if (audit_sig_sid) {
847 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
848 if (err)
849 return err;
850 }
851 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
852 if (!sig_data) {
853 if (audit_sig_sid)
854 security_release_secctx(ctx, len);
855 return -ENOMEM;
856 }
857 sig_data->uid = audit_sig_uid;
858 sig_data->pid = audit_sig_pid;
859 if (audit_sig_sid) {
860 memcpy(sig_data->ctx, ctx, len);
861 security_release_secctx(ctx, len);
862 }
863 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
864 0, 0, sig_data, sizeof(*sig_data) + len);
865 kfree(sig_data);
866 break;
867 case AUDIT_TTY_GET: {
868 struct audit_tty_status s;
869 struct task_struct *tsk = current;
870
871 spin_lock_irq(&tsk->sighand->siglock);
872 s.enabled = tsk->signal->audit_tty != 0;
873 spin_unlock_irq(&tsk->sighand->siglock);
874
875 audit_send_reply(NETLINK_CB(skb).pid, seq,
876 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
877 break;
878 }
879 case AUDIT_TTY_SET: {
880 struct audit_tty_status *s;
881 struct task_struct *tsk = current;
882
883 if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
884 return -EINVAL;
885 s = data;
886 if (s->enabled != 0 && s->enabled != 1)
887 return -EINVAL;
888
889 spin_lock_irq(&tsk->sighand->siglock);
890 tsk->signal->audit_tty = s->enabled != 0;
891 spin_unlock_irq(&tsk->sighand->siglock);
892 break;
893 }
894 default:
895 err = -EINVAL;
896 break;
897 }
898
899 return err < 0 ? err : 0;
900 }
901
902 /*
903 * Get message from skb. Each message is processed by audit_receive_msg.
904 * Malformed skbs with wrong length are discarded silently.
905 */
906 static void audit_receive_skb(struct sk_buff *skb)
907 {
908 struct nlmsghdr *nlh;
909 /*
910 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
911 * if the nlmsg_len was not aligned
912 */
913 int len;
914 int err;
915
916 nlh = nlmsg_hdr(skb);
917 len = skb->len;
918
919 while (NLMSG_OK(nlh, len)) {
920 err = audit_receive_msg(skb, nlh);
921 /* if err or if this message says it wants a response */
922 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
923 netlink_ack(skb, nlh, err);
924
925 nlh = NLMSG_NEXT(nlh, len);
926 }
927 }
928
929 /* Receive messages from netlink socket. */
930 static void audit_receive(struct sk_buff *skb)
931 {
932 mutex_lock(&audit_cmd_mutex);
933 audit_receive_skb(skb);
934 mutex_unlock(&audit_cmd_mutex);
935 }
936
937 /* Initialize audit support at boot time. */
938 static int __init audit_init(void)
939 {
940 int i;
941 struct netlink_kernel_cfg cfg = {
942 .input = audit_receive,
943 };
944
945 if (audit_initialized == AUDIT_DISABLED)
946 return 0;
947
948 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
949 audit_default ? "enabled" : "disabled");
950 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT,
951 THIS_MODULE, &cfg);
952 if (!audit_sock)
953 audit_panic("cannot initialize netlink socket");
954 else
955 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
956
957 skb_queue_head_init(&audit_skb_queue);
958 skb_queue_head_init(&audit_skb_hold_queue);
959 audit_initialized = AUDIT_INITIALIZED;
960 audit_enabled = audit_default;
961 audit_ever_enabled |= !!audit_default;
962
963 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
964
965 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
966 INIT_LIST_HEAD(&audit_inode_hash[i]);
967
968 return 0;
969 }
970 __initcall(audit_init);
971
972 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
973 static int __init audit_enable(char *str)
974 {
975 audit_default = !!simple_strtol(str, NULL, 0);
976 if (!audit_default)
977 audit_initialized = AUDIT_DISABLED;
978
979 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
980
981 if (audit_initialized == AUDIT_INITIALIZED) {
982 audit_enabled = audit_default;
983 audit_ever_enabled |= !!audit_default;
984 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
985 printk(" (after initialization)");
986 } else {
987 printk(" (until reboot)");
988 }
989 printk("\n");
990
991 return 1;
992 }
993
994 __setup("audit=", audit_enable);
995
996 static void audit_buffer_free(struct audit_buffer *ab)
997 {
998 unsigned long flags;
999
1000 if (!ab)
1001 return;
1002
1003 if (ab->skb)
1004 kfree_skb(ab->skb);
1005
1006 spin_lock_irqsave(&audit_freelist_lock, flags);
1007 if (audit_freelist_count > AUDIT_MAXFREE)
1008 kfree(ab);
1009 else {
1010 audit_freelist_count++;
1011 list_add(&ab->list, &audit_freelist);
1012 }
1013 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1014 }
1015
1016 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1017 gfp_t gfp_mask, int type)
1018 {
1019 unsigned long flags;
1020 struct audit_buffer *ab = NULL;
1021 struct nlmsghdr *nlh;
1022
1023 spin_lock_irqsave(&audit_freelist_lock, flags);
1024 if (!list_empty(&audit_freelist)) {
1025 ab = list_entry(audit_freelist.next,
1026 struct audit_buffer, list);
1027 list_del(&ab->list);
1028 --audit_freelist_count;
1029 }
1030 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1031
1032 if (!ab) {
1033 ab = kmalloc(sizeof(*ab), gfp_mask);
1034 if (!ab)
1035 goto err;
1036 }
1037
1038 ab->ctx = ctx;
1039 ab->gfp_mask = gfp_mask;
1040
1041 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1042 if (!ab->skb)
1043 goto err;
1044
1045 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1046 if (!nlh)
1047 goto out_kfree_skb;
1048
1049 return ab;
1050
1051 out_kfree_skb:
1052 kfree_skb(ab->skb);
1053 ab->skb = NULL;
1054 err:
1055 audit_buffer_free(ab);
1056 return NULL;
1057 }
1058
1059 /**
1060 * audit_serial - compute a serial number for the audit record
1061 *
1062 * Compute a serial number for the audit record. Audit records are
1063 * written to user-space as soon as they are generated, so a complete
1064 * audit record may be written in several pieces. The timestamp of the
1065 * record and this serial number are used by the user-space tools to
1066 * determine which pieces belong to the same audit record. The
1067 * (timestamp,serial) tuple is unique for each syscall and is live from
1068 * syscall entry to syscall exit.
1069 *
1070 * NOTE: Another possibility is to store the formatted records off the
1071 * audit context (for those records that have a context), and emit them
1072 * all at syscall exit. However, this could delay the reporting of
1073 * significant errors until syscall exit (or never, if the system
1074 * halts).
1075 */
1076 unsigned int audit_serial(void)
1077 {
1078 static DEFINE_SPINLOCK(serial_lock);
1079 static unsigned int serial = 0;
1080
1081 unsigned long flags;
1082 unsigned int ret;
1083
1084 spin_lock_irqsave(&serial_lock, flags);
1085 do {
1086 ret = ++serial;
1087 } while (unlikely(!ret));
1088 spin_unlock_irqrestore(&serial_lock, flags);
1089
1090 return ret;
1091 }
1092
1093 static inline void audit_get_stamp(struct audit_context *ctx,
1094 struct timespec *t, unsigned int *serial)
1095 {
1096 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1097 *t = CURRENT_TIME;
1098 *serial = audit_serial();
1099 }
1100 }
1101
1102 /* Obtain an audit buffer. This routine does locking to obtain the
1103 * audit buffer, but then no locking is required for calls to
1104 * audit_log_*format. If the tsk is a task that is currently in a
1105 * syscall, then the syscall is marked as auditable and an audit record
1106 * will be written at syscall exit. If there is no associated task, tsk
1107 * should be NULL. */
1108
1109 /**
1110 * audit_log_start - obtain an audit buffer
1111 * @ctx: audit_context (may be NULL)
1112 * @gfp_mask: type of allocation
1113 * @type: audit message type
1114 *
1115 * Returns audit_buffer pointer on success or NULL on error.
1116 *
1117 * Obtain an audit buffer. This routine does locking to obtain the
1118 * audit buffer, but then no locking is required for calls to
1119 * audit_log_*format. If the task (ctx) is a task that is currently in a
1120 * syscall, then the syscall is marked as auditable and an audit record
1121 * will be written at syscall exit. If there is no associated task, then
1122 * task context (ctx) should be NULL.
1123 */
1124 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1125 int type)
1126 {
1127 struct audit_buffer *ab = NULL;
1128 struct timespec t;
1129 unsigned int uninitialized_var(serial);
1130 int reserve;
1131 unsigned long timeout_start = jiffies;
1132
1133 if (audit_initialized != AUDIT_INITIALIZED)
1134 return NULL;
1135
1136 if (unlikely(audit_filter_type(type)))
1137 return NULL;
1138
1139 if (gfp_mask & __GFP_WAIT)
1140 reserve = 0;
1141 else
1142 reserve = 5; /* Allow atomic callers to go up to five
1143 entries over the normal backlog limit */
1144
1145 while (audit_backlog_limit
1146 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1147 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1148 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1149
1150 /* Wait for auditd to drain the queue a little */
1151 DECLARE_WAITQUEUE(wait, current);
1152 set_current_state(TASK_INTERRUPTIBLE);
1153 add_wait_queue(&audit_backlog_wait, &wait);
1154
1155 if (audit_backlog_limit &&
1156 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1157 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1158
1159 __set_current_state(TASK_RUNNING);
1160 remove_wait_queue(&audit_backlog_wait, &wait);
1161 continue;
1162 }
1163 if (audit_rate_check() && printk_ratelimit())
1164 printk(KERN_WARNING
1165 "audit: audit_backlog=%d > "
1166 "audit_backlog_limit=%d\n",
1167 skb_queue_len(&audit_skb_queue),
1168 audit_backlog_limit);
1169 audit_log_lost("backlog limit exceeded");
1170 audit_backlog_wait_time = audit_backlog_wait_overflow;
1171 wake_up(&audit_backlog_wait);
1172 return NULL;
1173 }
1174
1175 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1176 if (!ab) {
1177 audit_log_lost("out of memory in audit_log_start");
1178 return NULL;
1179 }
1180
1181 audit_get_stamp(ab->ctx, &t, &serial);
1182
1183 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1184 t.tv_sec, t.tv_nsec/1000000, serial);
1185 return ab;
1186 }
1187
1188 /**
1189 * audit_expand - expand skb in the audit buffer
1190 * @ab: audit_buffer
1191 * @extra: space to add at tail of the skb
1192 *
1193 * Returns 0 (no space) on failed expansion, or available space if
1194 * successful.
1195 */
1196 static inline int audit_expand(struct audit_buffer *ab, int extra)
1197 {
1198 struct sk_buff *skb = ab->skb;
1199 int oldtail = skb_tailroom(skb);
1200 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1201 int newtail = skb_tailroom(skb);
1202
1203 if (ret < 0) {
1204 audit_log_lost("out of memory in audit_expand");
1205 return 0;
1206 }
1207
1208 skb->truesize += newtail - oldtail;
1209 return newtail;
1210 }
1211
1212 /*
1213 * Format an audit message into the audit buffer. If there isn't enough
1214 * room in the audit buffer, more room will be allocated and vsnprint
1215 * will be called a second time. Currently, we assume that a printk
1216 * can't format message larger than 1024 bytes, so we don't either.
1217 */
1218 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1219 va_list args)
1220 {
1221 int len, avail;
1222 struct sk_buff *skb;
1223 va_list args2;
1224
1225 if (!ab)
1226 return;
1227
1228 BUG_ON(!ab->skb);
1229 skb = ab->skb;
1230 avail = skb_tailroom(skb);
1231 if (avail == 0) {
1232 avail = audit_expand(ab, AUDIT_BUFSIZ);
1233 if (!avail)
1234 goto out;
1235 }
1236 va_copy(args2, args);
1237 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1238 if (len >= avail) {
1239 /* The printk buffer is 1024 bytes long, so if we get
1240 * here and AUDIT_BUFSIZ is at least 1024, then we can
1241 * log everything that printk could have logged. */
1242 avail = audit_expand(ab,
1243 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1244 if (!avail)
1245 goto out_va_end;
1246 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1247 }
1248 if (len > 0)
1249 skb_put(skb, len);
1250 out_va_end:
1251 va_end(args2);
1252 out:
1253 return;
1254 }
1255
1256 /**
1257 * audit_log_format - format a message into the audit buffer.
1258 * @ab: audit_buffer
1259 * @fmt: format string
1260 * @...: optional parameters matching @fmt string
1261 *
1262 * All the work is done in audit_log_vformat.
1263 */
1264 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1265 {
1266 va_list args;
1267
1268 if (!ab)
1269 return;
1270 va_start(args, fmt);
1271 audit_log_vformat(ab, fmt, args);
1272 va_end(args);
1273 }
1274
1275 /**
1276 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1277 * @ab: the audit_buffer
1278 * @buf: buffer to convert to hex
1279 * @len: length of @buf to be converted
1280 *
1281 * No return value; failure to expand is silently ignored.
1282 *
1283 * This function will take the passed buf and convert it into a string of
1284 * ascii hex digits. The new string is placed onto the skb.
1285 */
1286 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1287 size_t len)
1288 {
1289 int i, avail, new_len;
1290 unsigned char *ptr;
1291 struct sk_buff *skb;
1292 static const unsigned char *hex = "0123456789ABCDEF";
1293
1294 if (!ab)
1295 return;
1296
1297 BUG_ON(!ab->skb);
1298 skb = ab->skb;
1299 avail = skb_tailroom(skb);
1300 new_len = len<<1;
1301 if (new_len >= avail) {
1302 /* Round the buffer request up to the next multiple */
1303 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1304 avail = audit_expand(ab, new_len);
1305 if (!avail)
1306 return;
1307 }
1308
1309 ptr = skb_tail_pointer(skb);
1310 for (i=0; i<len; i++) {
1311 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1312 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1313 }
1314 *ptr = 0;
1315 skb_put(skb, len << 1); /* new string is twice the old string */
1316 }
1317
1318 /*
1319 * Format a string of no more than slen characters into the audit buffer,
1320 * enclosed in quote marks.
1321 */
1322 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1323 size_t slen)
1324 {
1325 int avail, new_len;
1326 unsigned char *ptr;
1327 struct sk_buff *skb;
1328
1329 if (!ab)
1330 return;
1331
1332 BUG_ON(!ab->skb);
1333 skb = ab->skb;
1334 avail = skb_tailroom(skb);
1335 new_len = slen + 3; /* enclosing quotes + null terminator */
1336 if (new_len > avail) {
1337 avail = audit_expand(ab, new_len);
1338 if (!avail)
1339 return;
1340 }
1341 ptr = skb_tail_pointer(skb);
1342 *ptr++ = '"';
1343 memcpy(ptr, string, slen);
1344 ptr += slen;
1345 *ptr++ = '"';
1346 *ptr = 0;
1347 skb_put(skb, slen + 2); /* don't include null terminator */
1348 }
1349
1350 /**
1351 * audit_string_contains_control - does a string need to be logged in hex
1352 * @string: string to be checked
1353 * @len: max length of the string to check
1354 */
1355 int audit_string_contains_control(const char *string, size_t len)
1356 {
1357 const unsigned char *p;
1358 for (p = string; p < (const unsigned char *)string + len; p++) {
1359 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1360 return 1;
1361 }
1362 return 0;
1363 }
1364
1365 /**
1366 * audit_log_n_untrustedstring - log a string that may contain random characters
1367 * @ab: audit_buffer
1368 * @len: length of string (not including trailing null)
1369 * @string: string to be logged
1370 *
1371 * This code will escape a string that is passed to it if the string
1372 * contains a control character, unprintable character, double quote mark,
1373 * or a space. Unescaped strings will start and end with a double quote mark.
1374 * Strings that are escaped are printed in hex (2 digits per char).
1375 *
1376 * The caller specifies the number of characters in the string to log, which may
1377 * or may not be the entire string.
1378 */
1379 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1380 size_t len)
1381 {
1382 if (audit_string_contains_control(string, len))
1383 audit_log_n_hex(ab, string, len);
1384 else
1385 audit_log_n_string(ab, string, len);
1386 }
1387
1388 /**
1389 * audit_log_untrustedstring - log a string that may contain random characters
1390 * @ab: audit_buffer
1391 * @string: string to be logged
1392 *
1393 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1394 * determine string length.
1395 */
1396 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1397 {
1398 audit_log_n_untrustedstring(ab, string, strlen(string));
1399 }
1400
1401 /* This is a helper-function to print the escaped d_path */
1402 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1403 const struct path *path)
1404 {
1405 char *p, *pathname;
1406
1407 if (prefix)
1408 audit_log_format(ab, "%s", prefix);
1409
1410 /* We will allow 11 spaces for ' (deleted)' to be appended */
1411 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1412 if (!pathname) {
1413 audit_log_string(ab, "<no_memory>");
1414 return;
1415 }
1416 p = d_path(path, pathname, PATH_MAX+11);
1417 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1418 /* FIXME: can we save some information here? */
1419 audit_log_string(ab, "<too_long>");
1420 } else
1421 audit_log_untrustedstring(ab, p);
1422 kfree(pathname);
1423 }
1424
1425 void audit_log_key(struct audit_buffer *ab, char *key)
1426 {
1427 audit_log_format(ab, " key=");
1428 if (key)
1429 audit_log_untrustedstring(ab, key);
1430 else
1431 audit_log_format(ab, "(null)");
1432 }
1433
1434 /**
1435 * audit_log_link_denied - report a link restriction denial
1436 * @operation: specific link opreation
1437 * @link: the path that triggered the restriction
1438 */
1439 void audit_log_link_denied(const char *operation, struct path *link)
1440 {
1441 struct audit_buffer *ab;
1442
1443 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1444 AUDIT_ANOM_LINK);
1445 audit_log_format(ab, "op=%s action=denied", operation);
1446 audit_log_format(ab, " pid=%d comm=", current->pid);
1447 audit_log_untrustedstring(ab, current->comm);
1448 audit_log_d_path(ab, " path=", link);
1449 audit_log_format(ab, " dev=");
1450 audit_log_untrustedstring(ab, link->dentry->d_inode->i_sb->s_id);
1451 audit_log_format(ab, " ino=%lu", link->dentry->d_inode->i_ino);
1452 audit_log_end(ab);
1453 }
1454
1455 /**
1456 * audit_log_end - end one audit record
1457 * @ab: the audit_buffer
1458 *
1459 * The netlink_* functions cannot be called inside an irq context, so
1460 * the audit buffer is placed on a queue and a tasklet is scheduled to
1461 * remove them from the queue outside the irq context. May be called in
1462 * any context.
1463 */
1464 void audit_log_end(struct audit_buffer *ab)
1465 {
1466 if (!ab)
1467 return;
1468 if (!audit_rate_check()) {
1469 audit_log_lost("rate limit exceeded");
1470 } else {
1471 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1472 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1473
1474 if (audit_pid) {
1475 skb_queue_tail(&audit_skb_queue, ab->skb);
1476 wake_up_interruptible(&kauditd_wait);
1477 } else {
1478 audit_printk_skb(ab->skb);
1479 }
1480 ab->skb = NULL;
1481 }
1482 audit_buffer_free(ab);
1483 }
1484
1485 /**
1486 * audit_log - Log an audit record
1487 * @ctx: audit context
1488 * @gfp_mask: type of allocation
1489 * @type: audit message type
1490 * @fmt: format string to use
1491 * @...: variable parameters matching the format string
1492 *
1493 * This is a convenience function that calls audit_log_start,
1494 * audit_log_vformat, and audit_log_end. It may be called
1495 * in any context.
1496 */
1497 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1498 const char *fmt, ...)
1499 {
1500 struct audit_buffer *ab;
1501 va_list args;
1502
1503 ab = audit_log_start(ctx, gfp_mask, type);
1504 if (ab) {
1505 va_start(args, fmt);
1506 audit_log_vformat(ab, fmt, args);
1507 va_end(args);
1508 audit_log_end(ab);
1509 }
1510 }
1511
1512 #ifdef CONFIG_SECURITY
1513 /**
1514 * audit_log_secctx - Converts and logs SELinux context
1515 * @ab: audit_buffer
1516 * @secid: security number
1517 *
1518 * This is a helper function that calls security_secid_to_secctx to convert
1519 * secid to secctx and then adds the (converted) SELinux context to the audit
1520 * log by calling audit_log_format, thus also preventing leak of internal secid
1521 * to userspace. If secid cannot be converted audit_panic is called.
1522 */
1523 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1524 {
1525 u32 len;
1526 char *secctx;
1527
1528 if (security_secid_to_secctx(secid, &secctx, &len)) {
1529 audit_panic("Cannot convert secid to context");
1530 } else {
1531 audit_log_format(ab, " obj=%s", secctx);
1532 security_release_secctx(secctx, len);
1533 }
1534 }
1535 EXPORT_SYMBOL(audit_log_secctx);
1536 #endif
1537
1538 EXPORT_SYMBOL(audit_log_start);
1539 EXPORT_SYMBOL(audit_log_end);
1540 EXPORT_SYMBOL(audit_log_format);
1541 EXPORT_SYMBOL(audit_log);