]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/audit_tree.c
Merge remote-tracking branch 'mkp-scsi/4.10/scsi-fixes' into fixes
[mirror_ubuntu-zesty-kernel.git] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7
8 struct audit_tree;
9 struct audit_chunk;
10
11 struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
21 };
22
23 struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
36 };
37
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 static struct task_struct *prune_thread;
41
42 /*
43 * One struct chunk is attached to each inode of interest.
44 * We replace struct chunk on tagging/untagging.
45 * Rules have pointer to struct audit_tree.
46 * Rules have struct list_head rlist forming a list of rules over
47 * the same tree.
48 * References to struct chunk are collected at audit_inode{,_child}()
49 * time and used in AUDIT_TREE rule matching.
50 * These references are dropped at the same time we are calling
51 * audit_free_names(), etc.
52 *
53 * Cyclic lists galore:
54 * tree.chunks anchors chunk.owners[].list hash_lock
55 * tree.rules anchors rule.rlist audit_filter_mutex
56 * chunk.trees anchors tree.same_root hash_lock
57 * chunk.hash is a hash with middle bits of watch.inode as
58 * a hash function. RCU, hash_lock
59 *
60 * tree is refcounted; one reference for "some rules on rules_list refer to
61 * it", one for each chunk with pointer to it.
62 *
63 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64 * of watch contributes 1 to .refs).
65 *
66 * node.index allows to get from node.list to containing chunk.
67 * MSB of that sucker is stolen to mark taggings that we might have to
68 * revert - several operations have very unpleasant cleanup logics and
69 * that makes a difference. Some.
70 */
71
72 static struct fsnotify_group *audit_tree_group;
73
74 static struct audit_tree *alloc_tree(const char *s)
75 {
76 struct audit_tree *tree;
77
78 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
79 if (tree) {
80 atomic_set(&tree->count, 1);
81 tree->goner = 0;
82 INIT_LIST_HEAD(&tree->chunks);
83 INIT_LIST_HEAD(&tree->rules);
84 INIT_LIST_HEAD(&tree->list);
85 INIT_LIST_HEAD(&tree->same_root);
86 tree->root = NULL;
87 strcpy(tree->pathname, s);
88 }
89 return tree;
90 }
91
92 static inline void get_tree(struct audit_tree *tree)
93 {
94 atomic_inc(&tree->count);
95 }
96
97 static inline void put_tree(struct audit_tree *tree)
98 {
99 if (atomic_dec_and_test(&tree->count))
100 kfree_rcu(tree, head);
101 }
102
103 /* to avoid bringing the entire thing in audit.h */
104 const char *audit_tree_path(struct audit_tree *tree)
105 {
106 return tree->pathname;
107 }
108
109 static void free_chunk(struct audit_chunk *chunk)
110 {
111 int i;
112
113 for (i = 0; i < chunk->count; i++) {
114 if (chunk->owners[i].owner)
115 put_tree(chunk->owners[i].owner);
116 }
117 kfree(chunk);
118 }
119
120 void audit_put_chunk(struct audit_chunk *chunk)
121 {
122 if (atomic_long_dec_and_test(&chunk->refs))
123 free_chunk(chunk);
124 }
125
126 static void __put_chunk(struct rcu_head *rcu)
127 {
128 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129 audit_put_chunk(chunk);
130 }
131
132 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133 {
134 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135 call_rcu(&chunk->head, __put_chunk);
136 }
137
138 static struct audit_chunk *alloc_chunk(int count)
139 {
140 struct audit_chunk *chunk;
141 size_t size;
142 int i;
143
144 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145 chunk = kzalloc(size, GFP_KERNEL);
146 if (!chunk)
147 return NULL;
148
149 INIT_LIST_HEAD(&chunk->hash);
150 INIT_LIST_HEAD(&chunk->trees);
151 chunk->count = count;
152 atomic_long_set(&chunk->refs, 1);
153 for (i = 0; i < count; i++) {
154 INIT_LIST_HEAD(&chunk->owners[i].list);
155 chunk->owners[i].index = i;
156 }
157 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158 chunk->mark.mask = FS_IN_IGNORED;
159 return chunk;
160 }
161
162 enum {HASH_SIZE = 128};
163 static struct list_head chunk_hash_heads[HASH_SIZE];
164 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
165
166 static inline struct list_head *chunk_hash(const struct inode *inode)
167 {
168 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
169 return chunk_hash_heads + n % HASH_SIZE;
170 }
171
172 /* hash_lock & entry->lock is held by caller */
173 static void insert_hash(struct audit_chunk *chunk)
174 {
175 struct fsnotify_mark *entry = &chunk->mark;
176 struct list_head *list;
177
178 if (!entry->inode)
179 return;
180 list = chunk_hash(entry->inode);
181 list_add_rcu(&chunk->hash, list);
182 }
183
184 /* called under rcu_read_lock */
185 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
186 {
187 struct list_head *list = chunk_hash(inode);
188 struct audit_chunk *p;
189
190 list_for_each_entry_rcu(p, list, hash) {
191 /* mark.inode may have gone NULL, but who cares? */
192 if (p->mark.inode == inode) {
193 atomic_long_inc(&p->refs);
194 return p;
195 }
196 }
197 return NULL;
198 }
199
200 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
201 {
202 int n;
203 for (n = 0; n < chunk->count; n++)
204 if (chunk->owners[n].owner == tree)
205 return true;
206 return false;
207 }
208
209 /* tagging and untagging inodes with trees */
210
211 static struct audit_chunk *find_chunk(struct node *p)
212 {
213 int index = p->index & ~(1U<<31);
214 p -= index;
215 return container_of(p, struct audit_chunk, owners[0]);
216 }
217
218 static void untag_chunk(struct node *p)
219 {
220 struct audit_chunk *chunk = find_chunk(p);
221 struct fsnotify_mark *entry = &chunk->mark;
222 struct audit_chunk *new = NULL;
223 struct audit_tree *owner;
224 int size = chunk->count - 1;
225 int i, j;
226
227 fsnotify_get_mark(entry);
228
229 spin_unlock(&hash_lock);
230
231 if (size)
232 new = alloc_chunk(size);
233
234 spin_lock(&entry->lock);
235 if (chunk->dead || !entry->inode) {
236 spin_unlock(&entry->lock);
237 if (new)
238 free_chunk(new);
239 goto out;
240 }
241
242 owner = p->owner;
243
244 if (!size) {
245 chunk->dead = 1;
246 spin_lock(&hash_lock);
247 list_del_init(&chunk->trees);
248 if (owner->root == chunk)
249 owner->root = NULL;
250 list_del_init(&p->list);
251 list_del_rcu(&chunk->hash);
252 spin_unlock(&hash_lock);
253 spin_unlock(&entry->lock);
254 fsnotify_destroy_mark(entry, audit_tree_group);
255 goto out;
256 }
257
258 if (!new)
259 goto Fallback;
260
261 fsnotify_duplicate_mark(&new->mark, entry);
262 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.inode, NULL, 1)) {
263 fsnotify_put_mark(&new->mark);
264 goto Fallback;
265 }
266
267 chunk->dead = 1;
268 spin_lock(&hash_lock);
269 list_replace_init(&chunk->trees, &new->trees);
270 if (owner->root == chunk) {
271 list_del_init(&owner->same_root);
272 owner->root = NULL;
273 }
274
275 for (i = j = 0; j <= size; i++, j++) {
276 struct audit_tree *s;
277 if (&chunk->owners[j] == p) {
278 list_del_init(&p->list);
279 i--;
280 continue;
281 }
282 s = chunk->owners[j].owner;
283 new->owners[i].owner = s;
284 new->owners[i].index = chunk->owners[j].index - j + i;
285 if (!s) /* result of earlier fallback */
286 continue;
287 get_tree(s);
288 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
289 }
290
291 list_replace_rcu(&chunk->hash, &new->hash);
292 list_for_each_entry(owner, &new->trees, same_root)
293 owner->root = new;
294 spin_unlock(&hash_lock);
295 spin_unlock(&entry->lock);
296 fsnotify_destroy_mark(entry, audit_tree_group);
297 fsnotify_put_mark(&new->mark); /* drop initial reference */
298 goto out;
299
300 Fallback:
301 // do the best we can
302 spin_lock(&hash_lock);
303 if (owner->root == chunk) {
304 list_del_init(&owner->same_root);
305 owner->root = NULL;
306 }
307 list_del_init(&p->list);
308 p->owner = NULL;
309 put_tree(owner);
310 spin_unlock(&hash_lock);
311 spin_unlock(&entry->lock);
312 out:
313 fsnotify_put_mark(entry);
314 spin_lock(&hash_lock);
315 }
316
317 static int create_chunk(struct inode *inode, struct audit_tree *tree)
318 {
319 struct fsnotify_mark *entry;
320 struct audit_chunk *chunk = alloc_chunk(1);
321 if (!chunk)
322 return -ENOMEM;
323
324 entry = &chunk->mark;
325 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
326 fsnotify_put_mark(entry);
327 return -ENOSPC;
328 }
329
330 spin_lock(&entry->lock);
331 spin_lock(&hash_lock);
332 if (tree->goner) {
333 spin_unlock(&hash_lock);
334 chunk->dead = 1;
335 spin_unlock(&entry->lock);
336 fsnotify_destroy_mark(entry, audit_tree_group);
337 fsnotify_put_mark(entry);
338 return 0;
339 }
340 chunk->owners[0].index = (1U << 31);
341 chunk->owners[0].owner = tree;
342 get_tree(tree);
343 list_add(&chunk->owners[0].list, &tree->chunks);
344 if (!tree->root) {
345 tree->root = chunk;
346 list_add(&tree->same_root, &chunk->trees);
347 }
348 insert_hash(chunk);
349 spin_unlock(&hash_lock);
350 spin_unlock(&entry->lock);
351 fsnotify_put_mark(entry); /* drop initial reference */
352 return 0;
353 }
354
355 /* the first tagged inode becomes root of tree */
356 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
357 {
358 struct fsnotify_mark *old_entry, *chunk_entry;
359 struct audit_tree *owner;
360 struct audit_chunk *chunk, *old;
361 struct node *p;
362 int n;
363
364 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
365 if (!old_entry)
366 return create_chunk(inode, tree);
367
368 old = container_of(old_entry, struct audit_chunk, mark);
369
370 /* are we already there? */
371 spin_lock(&hash_lock);
372 for (n = 0; n < old->count; n++) {
373 if (old->owners[n].owner == tree) {
374 spin_unlock(&hash_lock);
375 fsnotify_put_mark(old_entry);
376 return 0;
377 }
378 }
379 spin_unlock(&hash_lock);
380
381 chunk = alloc_chunk(old->count + 1);
382 if (!chunk) {
383 fsnotify_put_mark(old_entry);
384 return -ENOMEM;
385 }
386
387 chunk_entry = &chunk->mark;
388
389 spin_lock(&old_entry->lock);
390 if (!old_entry->inode) {
391 /* old_entry is being shot, lets just lie */
392 spin_unlock(&old_entry->lock);
393 fsnotify_put_mark(old_entry);
394 free_chunk(chunk);
395 return -ENOENT;
396 }
397
398 fsnotify_duplicate_mark(chunk_entry, old_entry);
399 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->inode, NULL, 1)) {
400 spin_unlock(&old_entry->lock);
401 fsnotify_put_mark(chunk_entry);
402 fsnotify_put_mark(old_entry);
403 return -ENOSPC;
404 }
405
406 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
407 spin_lock(&chunk_entry->lock);
408 spin_lock(&hash_lock);
409
410 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
411 if (tree->goner) {
412 spin_unlock(&hash_lock);
413 chunk->dead = 1;
414 spin_unlock(&chunk_entry->lock);
415 spin_unlock(&old_entry->lock);
416
417 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
418
419 fsnotify_put_mark(chunk_entry);
420 fsnotify_put_mark(old_entry);
421 return 0;
422 }
423 list_replace_init(&old->trees, &chunk->trees);
424 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
425 struct audit_tree *s = old->owners[n].owner;
426 p->owner = s;
427 p->index = old->owners[n].index;
428 if (!s) /* result of fallback in untag */
429 continue;
430 get_tree(s);
431 list_replace_init(&old->owners[n].list, &p->list);
432 }
433 p->index = (chunk->count - 1) | (1U<<31);
434 p->owner = tree;
435 get_tree(tree);
436 list_add(&p->list, &tree->chunks);
437 list_replace_rcu(&old->hash, &chunk->hash);
438 list_for_each_entry(owner, &chunk->trees, same_root)
439 owner->root = chunk;
440 old->dead = 1;
441 if (!tree->root) {
442 tree->root = chunk;
443 list_add(&tree->same_root, &chunk->trees);
444 }
445 spin_unlock(&hash_lock);
446 spin_unlock(&chunk_entry->lock);
447 spin_unlock(&old_entry->lock);
448 fsnotify_destroy_mark(old_entry, audit_tree_group);
449 fsnotify_put_mark(chunk_entry); /* drop initial reference */
450 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
451 return 0;
452 }
453
454 static void audit_tree_log_remove_rule(struct audit_krule *rule)
455 {
456 struct audit_buffer *ab;
457
458 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
459 if (unlikely(!ab))
460 return;
461 audit_log_format(ab, "op=remove_rule");
462 audit_log_format(ab, " dir=");
463 audit_log_untrustedstring(ab, rule->tree->pathname);
464 audit_log_key(ab, rule->filterkey);
465 audit_log_format(ab, " list=%d res=1", rule->listnr);
466 audit_log_end(ab);
467 }
468
469 static void kill_rules(struct audit_tree *tree)
470 {
471 struct audit_krule *rule, *next;
472 struct audit_entry *entry;
473
474 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
475 entry = container_of(rule, struct audit_entry, rule);
476
477 list_del_init(&rule->rlist);
478 if (rule->tree) {
479 /* not a half-baked one */
480 audit_tree_log_remove_rule(rule);
481 if (entry->rule.exe)
482 audit_remove_mark(entry->rule.exe);
483 rule->tree = NULL;
484 list_del_rcu(&entry->list);
485 list_del(&entry->rule.list);
486 call_rcu(&entry->rcu, audit_free_rule_rcu);
487 }
488 }
489 }
490
491 /*
492 * finish killing struct audit_tree
493 */
494 static void prune_one(struct audit_tree *victim)
495 {
496 spin_lock(&hash_lock);
497 while (!list_empty(&victim->chunks)) {
498 struct node *p;
499
500 p = list_entry(victim->chunks.next, struct node, list);
501
502 untag_chunk(p);
503 }
504 spin_unlock(&hash_lock);
505 put_tree(victim);
506 }
507
508 /* trim the uncommitted chunks from tree */
509
510 static void trim_marked(struct audit_tree *tree)
511 {
512 struct list_head *p, *q;
513 spin_lock(&hash_lock);
514 if (tree->goner) {
515 spin_unlock(&hash_lock);
516 return;
517 }
518 /* reorder */
519 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
520 struct node *node = list_entry(p, struct node, list);
521 q = p->next;
522 if (node->index & (1U<<31)) {
523 list_del_init(p);
524 list_add(p, &tree->chunks);
525 }
526 }
527
528 while (!list_empty(&tree->chunks)) {
529 struct node *node;
530
531 node = list_entry(tree->chunks.next, struct node, list);
532
533 /* have we run out of marked? */
534 if (!(node->index & (1U<<31)))
535 break;
536
537 untag_chunk(node);
538 }
539 if (!tree->root && !tree->goner) {
540 tree->goner = 1;
541 spin_unlock(&hash_lock);
542 mutex_lock(&audit_filter_mutex);
543 kill_rules(tree);
544 list_del_init(&tree->list);
545 mutex_unlock(&audit_filter_mutex);
546 prune_one(tree);
547 } else {
548 spin_unlock(&hash_lock);
549 }
550 }
551
552 static void audit_schedule_prune(void);
553
554 /* called with audit_filter_mutex */
555 int audit_remove_tree_rule(struct audit_krule *rule)
556 {
557 struct audit_tree *tree;
558 tree = rule->tree;
559 if (tree) {
560 spin_lock(&hash_lock);
561 list_del_init(&rule->rlist);
562 if (list_empty(&tree->rules) && !tree->goner) {
563 tree->root = NULL;
564 list_del_init(&tree->same_root);
565 tree->goner = 1;
566 list_move(&tree->list, &prune_list);
567 rule->tree = NULL;
568 spin_unlock(&hash_lock);
569 audit_schedule_prune();
570 return 1;
571 }
572 rule->tree = NULL;
573 spin_unlock(&hash_lock);
574 return 1;
575 }
576 return 0;
577 }
578
579 static int compare_root(struct vfsmount *mnt, void *arg)
580 {
581 return d_backing_inode(mnt->mnt_root) == arg;
582 }
583
584 void audit_trim_trees(void)
585 {
586 struct list_head cursor;
587
588 mutex_lock(&audit_filter_mutex);
589 list_add(&cursor, &tree_list);
590 while (cursor.next != &tree_list) {
591 struct audit_tree *tree;
592 struct path path;
593 struct vfsmount *root_mnt;
594 struct node *node;
595 int err;
596
597 tree = container_of(cursor.next, struct audit_tree, list);
598 get_tree(tree);
599 list_del(&cursor);
600 list_add(&cursor, &tree->list);
601 mutex_unlock(&audit_filter_mutex);
602
603 err = kern_path(tree->pathname, 0, &path);
604 if (err)
605 goto skip_it;
606
607 root_mnt = collect_mounts(&path);
608 path_put(&path);
609 if (IS_ERR(root_mnt))
610 goto skip_it;
611
612 spin_lock(&hash_lock);
613 list_for_each_entry(node, &tree->chunks, list) {
614 struct audit_chunk *chunk = find_chunk(node);
615 /* this could be NULL if the watch is dying else where... */
616 struct inode *inode = chunk->mark.inode;
617 node->index |= 1U<<31;
618 if (iterate_mounts(compare_root, inode, root_mnt))
619 node->index &= ~(1U<<31);
620 }
621 spin_unlock(&hash_lock);
622 trim_marked(tree);
623 drop_collected_mounts(root_mnt);
624 skip_it:
625 put_tree(tree);
626 mutex_lock(&audit_filter_mutex);
627 }
628 list_del(&cursor);
629 mutex_unlock(&audit_filter_mutex);
630 }
631
632 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
633 {
634
635 if (pathname[0] != '/' ||
636 rule->listnr != AUDIT_FILTER_EXIT ||
637 op != Audit_equal ||
638 rule->inode_f || rule->watch || rule->tree)
639 return -EINVAL;
640 rule->tree = alloc_tree(pathname);
641 if (!rule->tree)
642 return -ENOMEM;
643 return 0;
644 }
645
646 void audit_put_tree(struct audit_tree *tree)
647 {
648 put_tree(tree);
649 }
650
651 static int tag_mount(struct vfsmount *mnt, void *arg)
652 {
653 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
654 }
655
656 /*
657 * That gets run when evict_chunk() ends up needing to kill audit_tree.
658 * Runs from a separate thread.
659 */
660 static int prune_tree_thread(void *unused)
661 {
662 for (;;) {
663 if (list_empty(&prune_list)) {
664 set_current_state(TASK_INTERRUPTIBLE);
665 schedule();
666 }
667
668 mutex_lock(&audit_cmd_mutex);
669 mutex_lock(&audit_filter_mutex);
670
671 while (!list_empty(&prune_list)) {
672 struct audit_tree *victim;
673
674 victim = list_entry(prune_list.next,
675 struct audit_tree, list);
676 list_del_init(&victim->list);
677
678 mutex_unlock(&audit_filter_mutex);
679
680 prune_one(victim);
681
682 mutex_lock(&audit_filter_mutex);
683 }
684
685 mutex_unlock(&audit_filter_mutex);
686 mutex_unlock(&audit_cmd_mutex);
687 }
688 return 0;
689 }
690
691 static int audit_launch_prune(void)
692 {
693 if (prune_thread)
694 return 0;
695 prune_thread = kthread_run(prune_tree_thread, NULL,
696 "audit_prune_tree");
697 if (IS_ERR(prune_thread)) {
698 pr_err("cannot start thread audit_prune_tree");
699 prune_thread = NULL;
700 return -ENOMEM;
701 }
702 return 0;
703 }
704
705 /* called with audit_filter_mutex */
706 int audit_add_tree_rule(struct audit_krule *rule)
707 {
708 struct audit_tree *seed = rule->tree, *tree;
709 struct path path;
710 struct vfsmount *mnt;
711 int err;
712
713 rule->tree = NULL;
714 list_for_each_entry(tree, &tree_list, list) {
715 if (!strcmp(seed->pathname, tree->pathname)) {
716 put_tree(seed);
717 rule->tree = tree;
718 list_add(&rule->rlist, &tree->rules);
719 return 0;
720 }
721 }
722 tree = seed;
723 list_add(&tree->list, &tree_list);
724 list_add(&rule->rlist, &tree->rules);
725 /* do not set rule->tree yet */
726 mutex_unlock(&audit_filter_mutex);
727
728 if (unlikely(!prune_thread)) {
729 err = audit_launch_prune();
730 if (err)
731 goto Err;
732 }
733
734 err = kern_path(tree->pathname, 0, &path);
735 if (err)
736 goto Err;
737 mnt = collect_mounts(&path);
738 path_put(&path);
739 if (IS_ERR(mnt)) {
740 err = PTR_ERR(mnt);
741 goto Err;
742 }
743
744 get_tree(tree);
745 err = iterate_mounts(tag_mount, tree, mnt);
746 drop_collected_mounts(mnt);
747
748 if (!err) {
749 struct node *node;
750 spin_lock(&hash_lock);
751 list_for_each_entry(node, &tree->chunks, list)
752 node->index &= ~(1U<<31);
753 spin_unlock(&hash_lock);
754 } else {
755 trim_marked(tree);
756 goto Err;
757 }
758
759 mutex_lock(&audit_filter_mutex);
760 if (list_empty(&rule->rlist)) {
761 put_tree(tree);
762 return -ENOENT;
763 }
764 rule->tree = tree;
765 put_tree(tree);
766
767 return 0;
768 Err:
769 mutex_lock(&audit_filter_mutex);
770 list_del_init(&tree->list);
771 list_del_init(&tree->rules);
772 put_tree(tree);
773 return err;
774 }
775
776 int audit_tag_tree(char *old, char *new)
777 {
778 struct list_head cursor, barrier;
779 int failed = 0;
780 struct path path1, path2;
781 struct vfsmount *tagged;
782 int err;
783
784 err = kern_path(new, 0, &path2);
785 if (err)
786 return err;
787 tagged = collect_mounts(&path2);
788 path_put(&path2);
789 if (IS_ERR(tagged))
790 return PTR_ERR(tagged);
791
792 err = kern_path(old, 0, &path1);
793 if (err) {
794 drop_collected_mounts(tagged);
795 return err;
796 }
797
798 mutex_lock(&audit_filter_mutex);
799 list_add(&barrier, &tree_list);
800 list_add(&cursor, &barrier);
801
802 while (cursor.next != &tree_list) {
803 struct audit_tree *tree;
804 int good_one = 0;
805
806 tree = container_of(cursor.next, struct audit_tree, list);
807 get_tree(tree);
808 list_del(&cursor);
809 list_add(&cursor, &tree->list);
810 mutex_unlock(&audit_filter_mutex);
811
812 err = kern_path(tree->pathname, 0, &path2);
813 if (!err) {
814 good_one = path_is_under(&path1, &path2);
815 path_put(&path2);
816 }
817
818 if (!good_one) {
819 put_tree(tree);
820 mutex_lock(&audit_filter_mutex);
821 continue;
822 }
823
824 failed = iterate_mounts(tag_mount, tree, tagged);
825 if (failed) {
826 put_tree(tree);
827 mutex_lock(&audit_filter_mutex);
828 break;
829 }
830
831 mutex_lock(&audit_filter_mutex);
832 spin_lock(&hash_lock);
833 if (!tree->goner) {
834 list_del(&tree->list);
835 list_add(&tree->list, &tree_list);
836 }
837 spin_unlock(&hash_lock);
838 put_tree(tree);
839 }
840
841 while (barrier.prev != &tree_list) {
842 struct audit_tree *tree;
843
844 tree = container_of(barrier.prev, struct audit_tree, list);
845 get_tree(tree);
846 list_del(&tree->list);
847 list_add(&tree->list, &barrier);
848 mutex_unlock(&audit_filter_mutex);
849
850 if (!failed) {
851 struct node *node;
852 spin_lock(&hash_lock);
853 list_for_each_entry(node, &tree->chunks, list)
854 node->index &= ~(1U<<31);
855 spin_unlock(&hash_lock);
856 } else {
857 trim_marked(tree);
858 }
859
860 put_tree(tree);
861 mutex_lock(&audit_filter_mutex);
862 }
863 list_del(&barrier);
864 list_del(&cursor);
865 mutex_unlock(&audit_filter_mutex);
866 path_put(&path1);
867 drop_collected_mounts(tagged);
868 return failed;
869 }
870
871
872 static void audit_schedule_prune(void)
873 {
874 wake_up_process(prune_thread);
875 }
876
877 /*
878 * ... and that one is done if evict_chunk() decides to delay until the end
879 * of syscall. Runs synchronously.
880 */
881 void audit_kill_trees(struct list_head *list)
882 {
883 mutex_lock(&audit_cmd_mutex);
884 mutex_lock(&audit_filter_mutex);
885
886 while (!list_empty(list)) {
887 struct audit_tree *victim;
888
889 victim = list_entry(list->next, struct audit_tree, list);
890 kill_rules(victim);
891 list_del_init(&victim->list);
892
893 mutex_unlock(&audit_filter_mutex);
894
895 prune_one(victim);
896
897 mutex_lock(&audit_filter_mutex);
898 }
899
900 mutex_unlock(&audit_filter_mutex);
901 mutex_unlock(&audit_cmd_mutex);
902 }
903
904 /*
905 * Here comes the stuff asynchronous to auditctl operations
906 */
907
908 static void evict_chunk(struct audit_chunk *chunk)
909 {
910 struct audit_tree *owner;
911 struct list_head *postponed = audit_killed_trees();
912 int need_prune = 0;
913 int n;
914
915 if (chunk->dead)
916 return;
917
918 chunk->dead = 1;
919 mutex_lock(&audit_filter_mutex);
920 spin_lock(&hash_lock);
921 while (!list_empty(&chunk->trees)) {
922 owner = list_entry(chunk->trees.next,
923 struct audit_tree, same_root);
924 owner->goner = 1;
925 owner->root = NULL;
926 list_del_init(&owner->same_root);
927 spin_unlock(&hash_lock);
928 if (!postponed) {
929 kill_rules(owner);
930 list_move(&owner->list, &prune_list);
931 need_prune = 1;
932 } else {
933 list_move(&owner->list, postponed);
934 }
935 spin_lock(&hash_lock);
936 }
937 list_del_rcu(&chunk->hash);
938 for (n = 0; n < chunk->count; n++)
939 list_del_init(&chunk->owners[n].list);
940 spin_unlock(&hash_lock);
941 mutex_unlock(&audit_filter_mutex);
942 if (need_prune)
943 audit_schedule_prune();
944 }
945
946 static int audit_tree_handle_event(struct fsnotify_group *group,
947 struct inode *to_tell,
948 struct fsnotify_mark *inode_mark,
949 struct fsnotify_mark *vfsmount_mark,
950 u32 mask, const void *data, int data_type,
951 const unsigned char *file_name, u32 cookie)
952 {
953 return 0;
954 }
955
956 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
957 {
958 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
959
960 evict_chunk(chunk);
961
962 /*
963 * We are guaranteed to have at least one reference to the mark from
964 * either the inode or the caller of fsnotify_destroy_mark().
965 */
966 BUG_ON(atomic_read(&entry->refcnt) < 1);
967 }
968
969 static const struct fsnotify_ops audit_tree_ops = {
970 .handle_event = audit_tree_handle_event,
971 .freeing_mark = audit_tree_freeing_mark,
972 };
973
974 static int __init audit_tree_init(void)
975 {
976 int i;
977
978 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
979 if (IS_ERR(audit_tree_group))
980 audit_panic("cannot initialize fsnotify group for rectree watches");
981
982 for (i = 0; i < HASH_SIZE; i++)
983 INIT_LIST_HEAD(&chunk_hash_heads[i]);
984
985 return 0;
986 }
987 __initcall(audit_tree_init);