]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/auditsc.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79
80 #include "audit.h"
81
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93
94 /* number of audit rules */
95 int audit_n_rules;
96
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99
100 struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103 };
104
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
107
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 struct lsmblob target_lsm[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117 };
118
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125 };
126
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130 };
131
132 struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
134 const char *s;
135 };
136
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
158 };
159
160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 unsigned n;
163 if (unlikely(!ctx))
164 return 0;
165 n = ctx->major;
166
167 switch (audit_classify_syscall(ctx->arch, n)) {
168 case 0: /* native */
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE, n))
171 return 1;
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ, n))
174 return 1;
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR, n))
177 return 1;
178 return 0;
179 case 1: /* 32bit on biarch */
180 if ((mask & AUDIT_PERM_WRITE) &&
181 audit_match_class(AUDIT_CLASS_WRITE_32, n))
182 return 1;
183 if ((mask & AUDIT_PERM_READ) &&
184 audit_match_class(AUDIT_CLASS_READ_32, n))
185 return 1;
186 if ((mask & AUDIT_PERM_ATTR) &&
187 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
188 return 1;
189 return 0;
190 case 2: /* open */
191 return mask & ACC_MODE(ctx->argv[1]);
192 case 3: /* openat */
193 return mask & ACC_MODE(ctx->argv[2]);
194 case 4: /* socketcall */
195 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
196 case 5: /* execve */
197 return mask & AUDIT_PERM_EXEC;
198 default:
199 return 0;
200 }
201 }
202
203 static int audit_match_filetype(struct audit_context *ctx, int val)
204 {
205 struct audit_names *n;
206 umode_t mode = (umode_t)val;
207
208 if (unlikely(!ctx))
209 return 0;
210
211 list_for_each_entry(n, &ctx->names_list, list) {
212 if ((n->ino != AUDIT_INO_UNSET) &&
213 ((n->mode & S_IFMT) == mode))
214 return 1;
215 }
216
217 return 0;
218 }
219
220 /*
221 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
222 * ->first_trees points to its beginning, ->trees - to the current end of data.
223 * ->tree_count is the number of free entries in array pointed to by ->trees.
224 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
225 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
226 * it's going to remain 1-element for almost any setup) until we free context itself.
227 * References in it _are_ dropped - at the same time we free/drop aux stuff.
228 */
229
230 static void audit_set_auditable(struct audit_context *ctx)
231 {
232 if (!ctx->prio) {
233 ctx->prio = 1;
234 ctx->current_state = AUDIT_RECORD_CONTEXT;
235 }
236 }
237
238 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
239 {
240 struct audit_tree_refs *p = ctx->trees;
241 int left = ctx->tree_count;
242 if (likely(left)) {
243 p->c[--left] = chunk;
244 ctx->tree_count = left;
245 return 1;
246 }
247 if (!p)
248 return 0;
249 p = p->next;
250 if (p) {
251 p->c[30] = chunk;
252 ctx->trees = p;
253 ctx->tree_count = 30;
254 return 1;
255 }
256 return 0;
257 }
258
259 static int grow_tree_refs(struct audit_context *ctx)
260 {
261 struct audit_tree_refs *p = ctx->trees;
262 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
263 if (!ctx->trees) {
264 ctx->trees = p;
265 return 0;
266 }
267 if (p)
268 p->next = ctx->trees;
269 else
270 ctx->first_trees = ctx->trees;
271 ctx->tree_count = 31;
272 return 1;
273 }
274
275 static void unroll_tree_refs(struct audit_context *ctx,
276 struct audit_tree_refs *p, int count)
277 {
278 struct audit_tree_refs *q;
279 int n;
280 if (!p) {
281 /* we started with empty chain */
282 p = ctx->first_trees;
283 count = 31;
284 /* if the very first allocation has failed, nothing to do */
285 if (!p)
286 return;
287 }
288 n = count;
289 for (q = p; q != ctx->trees; q = q->next, n = 31) {
290 while (n--) {
291 audit_put_chunk(q->c[n]);
292 q->c[n] = NULL;
293 }
294 }
295 while (n-- > ctx->tree_count) {
296 audit_put_chunk(q->c[n]);
297 q->c[n] = NULL;
298 }
299 ctx->trees = p;
300 ctx->tree_count = count;
301 }
302
303 static void free_tree_refs(struct audit_context *ctx)
304 {
305 struct audit_tree_refs *p, *q;
306 for (p = ctx->first_trees; p; p = q) {
307 q = p->next;
308 kfree(p);
309 }
310 }
311
312 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
313 {
314 struct audit_tree_refs *p;
315 int n;
316 if (!tree)
317 return 0;
318 /* full ones */
319 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
320 for (n = 0; n < 31; n++)
321 if (audit_tree_match(p->c[n], tree))
322 return 1;
323 }
324 /* partial */
325 if (p) {
326 for (n = ctx->tree_count; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
328 return 1;
329 }
330 return 0;
331 }
332
333 static int audit_compare_uid(kuid_t uid,
334 struct audit_names *name,
335 struct audit_field *f,
336 struct audit_context *ctx)
337 {
338 struct audit_names *n;
339 int rc;
340
341 if (name) {
342 rc = audit_uid_comparator(uid, f->op, name->uid);
343 if (rc)
344 return rc;
345 }
346
347 if (ctx) {
348 list_for_each_entry(n, &ctx->names_list, list) {
349 rc = audit_uid_comparator(uid, f->op, n->uid);
350 if (rc)
351 return rc;
352 }
353 }
354 return 0;
355 }
356
357 static int audit_compare_gid(kgid_t gid,
358 struct audit_names *name,
359 struct audit_field *f,
360 struct audit_context *ctx)
361 {
362 struct audit_names *n;
363 int rc;
364
365 if (name) {
366 rc = audit_gid_comparator(gid, f->op, name->gid);
367 if (rc)
368 return rc;
369 }
370
371 if (ctx) {
372 list_for_each_entry(n, &ctx->names_list, list) {
373 rc = audit_gid_comparator(gid, f->op, n->gid);
374 if (rc)
375 return rc;
376 }
377 }
378 return 0;
379 }
380
381 static int audit_field_compare(struct task_struct *tsk,
382 const struct cred *cred,
383 struct audit_field *f,
384 struct audit_context *ctx,
385 struct audit_names *name)
386 {
387 switch (f->val) {
388 /* process to file object comparisons */
389 case AUDIT_COMPARE_UID_TO_OBJ_UID:
390 return audit_compare_uid(cred->uid, name, f, ctx);
391 case AUDIT_COMPARE_GID_TO_OBJ_GID:
392 return audit_compare_gid(cred->gid, name, f, ctx);
393 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
394 return audit_compare_uid(cred->euid, name, f, ctx);
395 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
396 return audit_compare_gid(cred->egid, name, f, ctx);
397 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
398 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
399 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->suid, name, f, ctx);
401 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->sgid, name, f, ctx);
403 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
404 return audit_compare_uid(cred->fsuid, name, f, ctx);
405 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
406 return audit_compare_gid(cred->fsgid, name, f, ctx);
407 /* uid comparisons */
408 case AUDIT_COMPARE_UID_TO_AUID:
409 return audit_uid_comparator(cred->uid, f->op,
410 audit_get_loginuid(tsk));
411 case AUDIT_COMPARE_UID_TO_EUID:
412 return audit_uid_comparator(cred->uid, f->op, cred->euid);
413 case AUDIT_COMPARE_UID_TO_SUID:
414 return audit_uid_comparator(cred->uid, f->op, cred->suid);
415 case AUDIT_COMPARE_UID_TO_FSUID:
416 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
417 /* auid comparisons */
418 case AUDIT_COMPARE_AUID_TO_EUID:
419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
420 cred->euid);
421 case AUDIT_COMPARE_AUID_TO_SUID:
422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
423 cred->suid);
424 case AUDIT_COMPARE_AUID_TO_FSUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 cred->fsuid);
427 /* euid comparisons */
428 case AUDIT_COMPARE_EUID_TO_SUID:
429 return audit_uid_comparator(cred->euid, f->op, cred->suid);
430 case AUDIT_COMPARE_EUID_TO_FSUID:
431 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
432 /* suid comparisons */
433 case AUDIT_COMPARE_SUID_TO_FSUID:
434 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
435 /* gid comparisons */
436 case AUDIT_COMPARE_GID_TO_EGID:
437 return audit_gid_comparator(cred->gid, f->op, cred->egid);
438 case AUDIT_COMPARE_GID_TO_SGID:
439 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
440 case AUDIT_COMPARE_GID_TO_FSGID:
441 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
442 /* egid comparisons */
443 case AUDIT_COMPARE_EGID_TO_SGID:
444 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
445 case AUDIT_COMPARE_EGID_TO_FSGID:
446 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
447 /* sgid comparison */
448 case AUDIT_COMPARE_SGID_TO_FSGID:
449 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
450 default:
451 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
452 return 0;
453 }
454 return 0;
455 }
456
457 /* Determine if any context name data matches a rule's watch data */
458 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
459 * otherwise.
460 *
461 * If task_creation is true, this is an explicit indication that we are
462 * filtering a task rule at task creation time. This and tsk == current are
463 * the only situations where tsk->cred may be accessed without an rcu read lock.
464 */
465 static int audit_filter_rules(struct task_struct *tsk,
466 struct audit_krule *rule,
467 struct audit_context *ctx,
468 struct audit_names *name,
469 enum audit_state *state,
470 bool task_creation)
471 {
472 const struct cred *cred;
473 int i, need_sid = 1;
474 struct lsmblob blob = { };
475 unsigned int sessionid;
476
477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
478
479 for (i = 0; i < rule->field_count; i++) {
480 struct audit_field *f = &rule->fields[i];
481 struct audit_names *n;
482 int result = 0;
483 pid_t pid;
484
485 switch (f->type) {
486 case AUDIT_PID:
487 pid = task_tgid_nr(tsk);
488 result = audit_comparator(pid, f->op, f->val);
489 break;
490 case AUDIT_PPID:
491 if (ctx) {
492 if (!ctx->ppid)
493 ctx->ppid = task_ppid_nr(tsk);
494 result = audit_comparator(ctx->ppid, f->op, f->val);
495 }
496 break;
497 case AUDIT_EXE:
498 result = audit_exe_compare(tsk, rule->exe);
499 if (f->op == Audit_not_equal)
500 result = !result;
501 break;
502 case AUDIT_UID:
503 result = audit_uid_comparator(cred->uid, f->op, f->uid);
504 break;
505 case AUDIT_EUID:
506 result = audit_uid_comparator(cred->euid, f->op, f->uid);
507 break;
508 case AUDIT_SUID:
509 result = audit_uid_comparator(cred->suid, f->op, f->uid);
510 break;
511 case AUDIT_FSUID:
512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
513 break;
514 case AUDIT_GID:
515 result = audit_gid_comparator(cred->gid, f->op, f->gid);
516 if (f->op == Audit_equal) {
517 if (!result)
518 result = groups_search(cred->group_info, f->gid);
519 } else if (f->op == Audit_not_equal) {
520 if (result)
521 result = !groups_search(cred->group_info, f->gid);
522 }
523 break;
524 case AUDIT_EGID:
525 result = audit_gid_comparator(cred->egid, f->op, f->gid);
526 if (f->op == Audit_equal) {
527 if (!result)
528 result = groups_search(cred->group_info, f->gid);
529 } else if (f->op == Audit_not_equal) {
530 if (result)
531 result = !groups_search(cred->group_info, f->gid);
532 }
533 break;
534 case AUDIT_SGID:
535 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
536 break;
537 case AUDIT_FSGID:
538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
539 break;
540 case AUDIT_SESSIONID:
541 sessionid = audit_get_sessionid(tsk);
542 result = audit_comparator(sessionid, f->op, f->val);
543 break;
544 case AUDIT_PERS:
545 result = audit_comparator(tsk->personality, f->op, f->val);
546 break;
547 case AUDIT_ARCH:
548 if (ctx)
549 result = audit_comparator(ctx->arch, f->op, f->val);
550 break;
551
552 case AUDIT_EXIT:
553 if (ctx && ctx->return_valid != AUDITSC_INVALID)
554 result = audit_comparator(ctx->return_code, f->op, f->val);
555 break;
556 case AUDIT_SUCCESS:
557 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
558 if (f->val)
559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
560 else
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
562 }
563 break;
564 case AUDIT_DEVMAJOR:
565 if (name) {
566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
567 audit_comparator(MAJOR(name->rdev), f->op, f->val))
568 ++result;
569 } else if (ctx) {
570 list_for_each_entry(n, &ctx->names_list, list) {
571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_DEVMINOR:
580 if (name) {
581 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
582 audit_comparator(MINOR(name->rdev), f->op, f->val))
583 ++result;
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
587 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
588 ++result;
589 break;
590 }
591 }
592 }
593 break;
594 case AUDIT_INODE:
595 if (name)
596 result = audit_comparator(name->ino, f->op, f->val);
597 else if (ctx) {
598 list_for_each_entry(n, &ctx->names_list, list) {
599 if (audit_comparator(n->ino, f->op, f->val)) {
600 ++result;
601 break;
602 }
603 }
604 }
605 break;
606 case AUDIT_OBJ_UID:
607 if (name) {
608 result = audit_uid_comparator(name->uid, f->op, f->uid);
609 } else if (ctx) {
610 list_for_each_entry(n, &ctx->names_list, list) {
611 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
612 ++result;
613 break;
614 }
615 }
616 }
617 break;
618 case AUDIT_OBJ_GID:
619 if (name) {
620 result = audit_gid_comparator(name->gid, f->op, f->gid);
621 } else if (ctx) {
622 list_for_each_entry(n, &ctx->names_list, list) {
623 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
624 ++result;
625 break;
626 }
627 }
628 }
629 break;
630 case AUDIT_WATCH:
631 if (name) {
632 result = audit_watch_compare(rule->watch,
633 name->ino,
634 name->dev);
635 if (f->op == Audit_not_equal)
636 result = !result;
637 }
638 break;
639 case AUDIT_DIR:
640 if (ctx) {
641 result = match_tree_refs(ctx, rule->tree);
642 if (f->op == Audit_not_equal)
643 result = !result;
644 }
645 break;
646 case AUDIT_LOGINUID:
647 result = audit_uid_comparator(audit_get_loginuid(tsk),
648 f->op, f->uid);
649 break;
650 case AUDIT_LOGINUID_SET:
651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
652 break;
653 case AUDIT_SADDR_FAM:
654 if (ctx->sockaddr)
655 result = audit_comparator(ctx->sockaddr->ss_family,
656 f->op, f->val);
657 break;
658 case AUDIT_SUBJ_USER:
659 case AUDIT_SUBJ_ROLE:
660 case AUDIT_SUBJ_TYPE:
661 case AUDIT_SUBJ_SEN:
662 case AUDIT_SUBJ_CLR:
663 /* NOTE: this may return negative values indicating
664 a temporary error. We simply treat this as a
665 match for now to avoid losing information that
666 may be wanted. An error message will also be
667 logged upon error */
668 if (f->lsm_isset) {
669 if (need_sid) {
670 security_task_getsecid(tsk, &blob);
671 need_sid = 0;
672 }
673 result = security_audit_rule_match(&blob,
674 f->type,
675 f->op,
676 f->lsm_rules);
677 }
678 break;
679 case AUDIT_OBJ_USER:
680 case AUDIT_OBJ_ROLE:
681 case AUDIT_OBJ_TYPE:
682 case AUDIT_OBJ_LEV_LOW:
683 case AUDIT_OBJ_LEV_HIGH:
684 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
685 also applies here */
686 if (f->lsm_isset) {
687 /* Find files that match */
688 if (name) {
689 result = security_audit_rule_match(
690 &blob,
691 f->type,
692 f->op,
693 f->lsm_rules);
694 } else if (ctx) {
695 list_for_each_entry(n, &ctx->names_list, list) {
696 if (security_audit_rule_match(
697 &blob,
698 f->type,
699 f->op,
700 f->lsm_rules)) {
701 ++result;
702 break;
703 }
704 }
705 }
706 /* Find ipc objects that match */
707 if (!ctx || ctx->type != AUDIT_IPC)
708 break;
709 if (security_audit_rule_match(&ctx->ipc.oblob,
710 f->type, f->op,
711 f->lsm_rules))
712 ++result;
713 }
714 break;
715 case AUDIT_ARG0:
716 case AUDIT_ARG1:
717 case AUDIT_ARG2:
718 case AUDIT_ARG3:
719 if (ctx)
720 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
721 break;
722 case AUDIT_FILTERKEY:
723 /* ignore this field for filtering */
724 result = 1;
725 break;
726 case AUDIT_PERM:
727 result = audit_match_perm(ctx, f->val);
728 if (f->op == Audit_not_equal)
729 result = !result;
730 break;
731 case AUDIT_FILETYPE:
732 result = audit_match_filetype(ctx, f->val);
733 if (f->op == Audit_not_equal)
734 result = !result;
735 break;
736 case AUDIT_FIELD_COMPARE:
737 result = audit_field_compare(tsk, cred, f, ctx, name);
738 break;
739 }
740 if (!result)
741 return 0;
742 }
743
744 if (ctx) {
745 if (rule->prio <= ctx->prio)
746 return 0;
747 if (rule->filterkey) {
748 kfree(ctx->filterkey);
749 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
750 }
751 ctx->prio = rule->prio;
752 }
753 switch (rule->action) {
754 case AUDIT_NEVER:
755 *state = AUDIT_DISABLED;
756 break;
757 case AUDIT_ALWAYS:
758 *state = AUDIT_RECORD_CONTEXT;
759 break;
760 }
761 return 1;
762 }
763
764 /* At process creation time, we can determine if system-call auditing is
765 * completely disabled for this task. Since we only have the task
766 * structure at this point, we can only check uid and gid.
767 */
768 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
769 {
770 struct audit_entry *e;
771 enum audit_state state;
772
773 rcu_read_lock();
774 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
775 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
776 &state, true)) {
777 if (state == AUDIT_RECORD_CONTEXT)
778 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
779 rcu_read_unlock();
780 return state;
781 }
782 }
783 rcu_read_unlock();
784 return AUDIT_BUILD_CONTEXT;
785 }
786
787 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
788 {
789 int word, bit;
790
791 if (val > 0xffffffff)
792 return false;
793
794 word = AUDIT_WORD(val);
795 if (word >= AUDIT_BITMASK_SIZE)
796 return false;
797
798 bit = AUDIT_BIT(val);
799
800 return rule->mask[word] & bit;
801 }
802
803 /* At syscall entry and exit time, this filter is called if the
804 * audit_state is not low enough that auditing cannot take place, but is
805 * also not high enough that we already know we have to write an audit
806 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
807 */
808 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
809 struct audit_context *ctx,
810 struct list_head *list)
811 {
812 struct audit_entry *e;
813 enum audit_state state;
814
815 if (auditd_test_task(tsk))
816 return AUDIT_DISABLED;
817
818 rcu_read_lock();
819 list_for_each_entry_rcu(e, list, list) {
820 if (audit_in_mask(&e->rule, ctx->major) &&
821 audit_filter_rules(tsk, &e->rule, ctx, NULL,
822 &state, false)) {
823 rcu_read_unlock();
824 ctx->current_state = state;
825 return state;
826 }
827 }
828 rcu_read_unlock();
829 return AUDIT_BUILD_CONTEXT;
830 }
831
832 /*
833 * Given an audit_name check the inode hash table to see if they match.
834 * Called holding the rcu read lock to protect the use of audit_inode_hash
835 */
836 static int audit_filter_inode_name(struct task_struct *tsk,
837 struct audit_names *n,
838 struct audit_context *ctx) {
839 int h = audit_hash_ino((u32)n->ino);
840 struct list_head *list = &audit_inode_hash[h];
841 struct audit_entry *e;
842 enum audit_state state;
843
844 list_for_each_entry_rcu(e, list, list) {
845 if (audit_in_mask(&e->rule, ctx->major) &&
846 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
847 ctx->current_state = state;
848 return 1;
849 }
850 }
851 return 0;
852 }
853
854 /* At syscall exit time, this filter is called if any audit_names have been
855 * collected during syscall processing. We only check rules in sublists at hash
856 * buckets applicable to the inode numbers in audit_names.
857 * Regarding audit_state, same rules apply as for audit_filter_syscall().
858 */
859 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
860 {
861 struct audit_names *n;
862
863 if (auditd_test_task(tsk))
864 return;
865
866 rcu_read_lock();
867
868 list_for_each_entry(n, &ctx->names_list, list) {
869 if (audit_filter_inode_name(tsk, n, ctx))
870 break;
871 }
872 rcu_read_unlock();
873 }
874
875 static inline void audit_proctitle_free(struct audit_context *context)
876 {
877 kfree(context->proctitle.value);
878 context->proctitle.value = NULL;
879 context->proctitle.len = 0;
880 }
881
882 static inline void audit_free_module(struct audit_context *context)
883 {
884 if (context->type == AUDIT_KERN_MODULE) {
885 kfree(context->module.name);
886 context->module.name = NULL;
887 }
888 }
889 static inline void audit_free_names(struct audit_context *context)
890 {
891 struct audit_names *n, *next;
892
893 list_for_each_entry_safe(n, next, &context->names_list, list) {
894 list_del(&n->list);
895 if (n->name)
896 putname(n->name);
897 if (n->should_free)
898 kfree(n);
899 }
900 context->name_count = 0;
901 path_put(&context->pwd);
902 context->pwd.dentry = NULL;
903 context->pwd.mnt = NULL;
904 }
905
906 static inline void audit_free_aux(struct audit_context *context)
907 {
908 struct audit_aux_data *aux;
909
910 while ((aux = context->aux)) {
911 context->aux = aux->next;
912 kfree(aux);
913 }
914 while ((aux = context->aux_pids)) {
915 context->aux_pids = aux->next;
916 kfree(aux);
917 }
918 }
919
920 static inline struct audit_context *audit_alloc_context(enum audit_state state)
921 {
922 struct audit_context *context;
923
924 context = kzalloc(sizeof(*context), GFP_KERNEL);
925 if (!context)
926 return NULL;
927 context->state = state;
928 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
929 INIT_LIST_HEAD(&context->killed_trees);
930 INIT_LIST_HEAD(&context->names_list);
931 context->fds[0] = -1;
932 context->return_valid = AUDITSC_INVALID;
933 return context;
934 }
935
936 /**
937 * audit_alloc - allocate an audit context block for a task
938 * @tsk: task
939 *
940 * Filter on the task information and allocate a per-task audit context
941 * if necessary. Doing so turns on system call auditing for the
942 * specified task. This is called from copy_process, so no lock is
943 * needed.
944 */
945 int audit_alloc(struct task_struct *tsk)
946 {
947 struct audit_context *context;
948 enum audit_state state;
949 char *key = NULL;
950
951 if (likely(!audit_ever_enabled))
952 return 0; /* Return if not auditing. */
953
954 state = audit_filter_task(tsk, &key);
955 if (!lsm_multiple_contexts() && state == AUDIT_DISABLED) {
956 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
957 return 0;
958 }
959 if (state == AUDIT_DISABLED)
960 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
961
962 if (!(context = audit_alloc_context(state))) {
963 kfree(key);
964 audit_log_lost("out of memory in audit_alloc");
965 return -ENOMEM;
966 }
967 context->filterkey = key;
968
969 audit_set_context(tsk, context);
970 set_task_syscall_work(tsk, SYSCALL_AUDIT);
971 return 0;
972 }
973
974 static inline void audit_free_context(struct audit_context *context)
975 {
976 audit_free_module(context);
977 audit_free_names(context);
978 unroll_tree_refs(context, NULL, 0);
979 free_tree_refs(context);
980 audit_free_aux(context);
981 kfree(context->filterkey);
982 kfree(context->sockaddr);
983 audit_proctitle_free(context);
984 kfree(context);
985 }
986
987 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
988 kuid_t auid, kuid_t uid,
989 unsigned int sessionid,
990 struct lsmblob *blob, char *comm)
991 {
992 struct audit_buffer *ab;
993 int rc = 0;
994
995 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
996 if (!ab)
997 return rc;
998
999 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1000 from_kuid(&init_user_ns, auid),
1001 from_kuid(&init_user_ns, uid), sessionid);
1002 rc = audit_log_object_context(ab, blob);
1003 audit_log_format(ab, " ocomm=");
1004 audit_log_untrustedstring(ab, comm);
1005 audit_log_end(ab);
1006
1007 return rc;
1008 }
1009
1010 static void audit_log_execve_info(struct audit_context *context,
1011 struct audit_buffer **ab)
1012 {
1013 long len_max;
1014 long len_rem;
1015 long len_full;
1016 long len_buf;
1017 long len_abuf = 0;
1018 long len_tmp;
1019 bool require_data;
1020 bool encode;
1021 unsigned int iter;
1022 unsigned int arg;
1023 char *buf_head;
1024 char *buf;
1025 const char __user *p = (const char __user *)current->mm->arg_start;
1026
1027 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1028 * data we put in the audit record for this argument (see the
1029 * code below) ... at this point in time 96 is plenty */
1030 char abuf[96];
1031
1032 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1033 * current value of 7500 is not as important as the fact that it
1034 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1035 * room if we go over a little bit in the logging below */
1036 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1037 len_max = MAX_EXECVE_AUDIT_LEN;
1038
1039 /* scratch buffer to hold the userspace args */
1040 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1041 if (!buf_head) {
1042 audit_panic("out of memory for argv string");
1043 return;
1044 }
1045 buf = buf_head;
1046
1047 audit_log_format(*ab, "argc=%d", context->execve.argc);
1048
1049 len_rem = len_max;
1050 len_buf = 0;
1051 len_full = 0;
1052 require_data = true;
1053 encode = false;
1054 iter = 0;
1055 arg = 0;
1056 do {
1057 /* NOTE: we don't ever want to trust this value for anything
1058 * serious, but the audit record format insists we
1059 * provide an argument length for really long arguments,
1060 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1061 * to use strncpy_from_user() to obtain this value for
1062 * recording in the log, although we don't use it
1063 * anywhere here to avoid a double-fetch problem */
1064 if (len_full == 0)
1065 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1066
1067 /* read more data from userspace */
1068 if (require_data) {
1069 /* can we make more room in the buffer? */
1070 if (buf != buf_head) {
1071 memmove(buf_head, buf, len_buf);
1072 buf = buf_head;
1073 }
1074
1075 /* fetch as much as we can of the argument */
1076 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1077 len_max - len_buf);
1078 if (len_tmp == -EFAULT) {
1079 /* unable to copy from userspace */
1080 send_sig(SIGKILL, current, 0);
1081 goto out;
1082 } else if (len_tmp == (len_max - len_buf)) {
1083 /* buffer is not large enough */
1084 require_data = true;
1085 /* NOTE: if we are going to span multiple
1086 * buffers force the encoding so we stand
1087 * a chance at a sane len_full value and
1088 * consistent record encoding */
1089 encode = true;
1090 len_full = len_full * 2;
1091 p += len_tmp;
1092 } else {
1093 require_data = false;
1094 if (!encode)
1095 encode = audit_string_contains_control(
1096 buf, len_tmp);
1097 /* try to use a trusted value for len_full */
1098 if (len_full < len_max)
1099 len_full = (encode ?
1100 len_tmp * 2 : len_tmp);
1101 p += len_tmp + 1;
1102 }
1103 len_buf += len_tmp;
1104 buf_head[len_buf] = '\0';
1105
1106 /* length of the buffer in the audit record? */
1107 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1108 }
1109
1110 /* write as much as we can to the audit log */
1111 if (len_buf >= 0) {
1112 /* NOTE: some magic numbers here - basically if we
1113 * can't fit a reasonable amount of data into the
1114 * existing audit buffer, flush it and start with
1115 * a new buffer */
1116 if ((sizeof(abuf) + 8) > len_rem) {
1117 len_rem = len_max;
1118 audit_log_end(*ab);
1119 *ab = audit_log_start(context,
1120 GFP_KERNEL, AUDIT_EXECVE);
1121 if (!*ab)
1122 goto out;
1123 }
1124
1125 /* create the non-arg portion of the arg record */
1126 len_tmp = 0;
1127 if (require_data || (iter > 0) ||
1128 ((len_abuf + sizeof(abuf)) > len_rem)) {
1129 if (iter == 0) {
1130 len_tmp += snprintf(&abuf[len_tmp],
1131 sizeof(abuf) - len_tmp,
1132 " a%d_len=%lu",
1133 arg, len_full);
1134 }
1135 len_tmp += snprintf(&abuf[len_tmp],
1136 sizeof(abuf) - len_tmp,
1137 " a%d[%d]=", arg, iter++);
1138 } else
1139 len_tmp += snprintf(&abuf[len_tmp],
1140 sizeof(abuf) - len_tmp,
1141 " a%d=", arg);
1142 WARN_ON(len_tmp >= sizeof(abuf));
1143 abuf[sizeof(abuf) - 1] = '\0';
1144
1145 /* log the arg in the audit record */
1146 audit_log_format(*ab, "%s", abuf);
1147 len_rem -= len_tmp;
1148 len_tmp = len_buf;
1149 if (encode) {
1150 if (len_abuf > len_rem)
1151 len_tmp = len_rem / 2; /* encoding */
1152 audit_log_n_hex(*ab, buf, len_tmp);
1153 len_rem -= len_tmp * 2;
1154 len_abuf -= len_tmp * 2;
1155 } else {
1156 if (len_abuf > len_rem)
1157 len_tmp = len_rem - 2; /* quotes */
1158 audit_log_n_string(*ab, buf, len_tmp);
1159 len_rem -= len_tmp + 2;
1160 /* don't subtract the "2" because we still need
1161 * to add quotes to the remaining string */
1162 len_abuf -= len_tmp;
1163 }
1164 len_buf -= len_tmp;
1165 buf += len_tmp;
1166 }
1167
1168 /* ready to move to the next argument? */
1169 if ((len_buf == 0) && !require_data) {
1170 arg++;
1171 iter = 0;
1172 len_full = 0;
1173 require_data = true;
1174 encode = false;
1175 }
1176 } while (arg < context->execve.argc);
1177
1178 /* NOTE: the caller handles the final audit_log_end() call */
1179
1180 out:
1181 kfree(buf_head);
1182 }
1183
1184 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1185 kernel_cap_t *cap)
1186 {
1187 int i;
1188
1189 if (cap_isclear(*cap)) {
1190 audit_log_format(ab, " %s=0", prefix);
1191 return;
1192 }
1193 audit_log_format(ab, " %s=", prefix);
1194 CAP_FOR_EACH_U32(i)
1195 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1196 }
1197
1198 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1199 {
1200 if (name->fcap_ver == -1) {
1201 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1202 return;
1203 }
1204 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1205 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1206 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1207 name->fcap.fE, name->fcap_ver,
1208 from_kuid(&init_user_ns, name->fcap.rootid));
1209 }
1210
1211 static void show_special(struct audit_context *context, int *call_panic)
1212 {
1213 struct audit_buffer *ab;
1214 int i;
1215
1216 ab = audit_log_start(context, GFP_KERNEL, context->type);
1217 if (!ab)
1218 return;
1219
1220 switch (context->type) {
1221 case AUDIT_SOCKETCALL: {
1222 int nargs = context->socketcall.nargs;
1223 audit_log_format(ab, "nargs=%d", nargs);
1224 for (i = 0; i < nargs; i++)
1225 audit_log_format(ab, " a%d=%lx", i,
1226 context->socketcall.args[i]);
1227 break; }
1228 case AUDIT_IPC: {
1229 struct lsmblob *oblob = &context->ipc.oblob;
1230
1231 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1232 from_kuid(&init_user_ns, context->ipc.uid),
1233 from_kgid(&init_user_ns, context->ipc.gid),
1234 context->ipc.mode);
1235 if (audit_log_object_context(ab, oblob))
1236 *call_panic = 1;
1237 if (context->ipc.has_perm) {
1238 audit_log_end(ab);
1239 ab = audit_log_start(context, GFP_KERNEL,
1240 AUDIT_IPC_SET_PERM);
1241 if (unlikely(!ab))
1242 return;
1243 audit_log_format(ab,
1244 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1245 context->ipc.qbytes,
1246 context->ipc.perm_uid,
1247 context->ipc.perm_gid,
1248 context->ipc.perm_mode);
1249 }
1250 break; }
1251 case AUDIT_MQ_OPEN:
1252 audit_log_format(ab,
1253 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1254 "mq_msgsize=%ld mq_curmsgs=%ld",
1255 context->mq_open.oflag, context->mq_open.mode,
1256 context->mq_open.attr.mq_flags,
1257 context->mq_open.attr.mq_maxmsg,
1258 context->mq_open.attr.mq_msgsize,
1259 context->mq_open.attr.mq_curmsgs);
1260 break;
1261 case AUDIT_MQ_SENDRECV:
1262 audit_log_format(ab,
1263 "mqdes=%d msg_len=%zd msg_prio=%u "
1264 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1265 context->mq_sendrecv.mqdes,
1266 context->mq_sendrecv.msg_len,
1267 context->mq_sendrecv.msg_prio,
1268 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1269 context->mq_sendrecv.abs_timeout.tv_nsec);
1270 break;
1271 case AUDIT_MQ_NOTIFY:
1272 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1273 context->mq_notify.mqdes,
1274 context->mq_notify.sigev_signo);
1275 break;
1276 case AUDIT_MQ_GETSETATTR: {
1277 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1278 audit_log_format(ab,
1279 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1280 "mq_curmsgs=%ld ",
1281 context->mq_getsetattr.mqdes,
1282 attr->mq_flags, attr->mq_maxmsg,
1283 attr->mq_msgsize, attr->mq_curmsgs);
1284 break; }
1285 case AUDIT_CAPSET:
1286 audit_log_format(ab, "pid=%d", context->capset.pid);
1287 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1288 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1289 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1290 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1291 break;
1292 case AUDIT_MMAP:
1293 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1294 context->mmap.flags);
1295 break;
1296 case AUDIT_EXECVE:
1297 audit_log_execve_info(context, &ab);
1298 break;
1299 case AUDIT_KERN_MODULE:
1300 audit_log_format(ab, "name=");
1301 if (context->module.name) {
1302 audit_log_untrustedstring(ab, context->module.name);
1303 } else
1304 audit_log_format(ab, "(null)");
1305
1306 break;
1307 }
1308 audit_log_end(ab);
1309 }
1310
1311 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1312 {
1313 char *end = proctitle + len - 1;
1314 while (end > proctitle && !isprint(*end))
1315 end--;
1316
1317 /* catch the case where proctitle is only 1 non-print character */
1318 len = end - proctitle + 1;
1319 len -= isprint(proctitle[len-1]) == 0;
1320 return len;
1321 }
1322
1323 /*
1324 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1325 * @context: audit_context for the task
1326 * @n: audit_names structure with reportable details
1327 * @path: optional path to report instead of audit_names->name
1328 * @record_num: record number to report when handling a list of names
1329 * @call_panic: optional pointer to int that will be updated if secid fails
1330 */
1331 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1332 const struct path *path, int record_num, int *call_panic)
1333 {
1334 struct audit_buffer *ab;
1335
1336 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1337 if (!ab)
1338 return;
1339
1340 audit_log_format(ab, "item=%d", record_num);
1341
1342 if (path)
1343 audit_log_d_path(ab, " name=", path);
1344 else if (n->name) {
1345 switch (n->name_len) {
1346 case AUDIT_NAME_FULL:
1347 /* log the full path */
1348 audit_log_format(ab, " name=");
1349 audit_log_untrustedstring(ab, n->name->name);
1350 break;
1351 case 0:
1352 /* name was specified as a relative path and the
1353 * directory component is the cwd
1354 */
1355 if (context->pwd.dentry && context->pwd.mnt)
1356 audit_log_d_path(ab, " name=", &context->pwd);
1357 else
1358 audit_log_format(ab, " name=(null)");
1359 break;
1360 default:
1361 /* log the name's directory component */
1362 audit_log_format(ab, " name=");
1363 audit_log_n_untrustedstring(ab, n->name->name,
1364 n->name_len);
1365 }
1366 } else
1367 audit_log_format(ab, " name=(null)");
1368
1369 if (n->ino != AUDIT_INO_UNSET)
1370 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1371 n->ino,
1372 MAJOR(n->dev),
1373 MINOR(n->dev),
1374 n->mode,
1375 from_kuid(&init_user_ns, n->uid),
1376 from_kgid(&init_user_ns, n->gid),
1377 MAJOR(n->rdev),
1378 MINOR(n->rdev));
1379 if (audit_log_object_context(ab, &n->oblob) && call_panic)
1380 *call_panic = 2;
1381
1382 /* log the audit_names record type */
1383 switch (n->type) {
1384 case AUDIT_TYPE_NORMAL:
1385 audit_log_format(ab, " nametype=NORMAL");
1386 break;
1387 case AUDIT_TYPE_PARENT:
1388 audit_log_format(ab, " nametype=PARENT");
1389 break;
1390 case AUDIT_TYPE_CHILD_DELETE:
1391 audit_log_format(ab, " nametype=DELETE");
1392 break;
1393 case AUDIT_TYPE_CHILD_CREATE:
1394 audit_log_format(ab, " nametype=CREATE");
1395 break;
1396 default:
1397 audit_log_format(ab, " nametype=UNKNOWN");
1398 break;
1399 }
1400
1401 audit_log_fcaps(ab, n);
1402 audit_log_end(ab);
1403 }
1404
1405 static void audit_log_proctitle(void)
1406 {
1407 int res;
1408 char *buf;
1409 char *msg = "(null)";
1410 int len = strlen(msg);
1411 struct audit_context *context = audit_context();
1412 struct audit_buffer *ab;
1413
1414 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1415 if (!ab)
1416 return; /* audit_panic or being filtered */
1417
1418 audit_log_format(ab, "proctitle=");
1419
1420 /* Not cached */
1421 if (!context->proctitle.value) {
1422 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1423 if (!buf)
1424 goto out;
1425 /* Historically called this from procfs naming */
1426 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1427 if (res == 0) {
1428 kfree(buf);
1429 goto out;
1430 }
1431 res = audit_proctitle_rtrim(buf, res);
1432 if (res == 0) {
1433 kfree(buf);
1434 goto out;
1435 }
1436 context->proctitle.value = buf;
1437 context->proctitle.len = res;
1438 }
1439 msg = context->proctitle.value;
1440 len = context->proctitle.len;
1441 out:
1442 audit_log_n_untrustedstring(ab, msg, len);
1443 audit_log_end(ab);
1444 }
1445
1446 void audit_log_lsm(struct lsmblob *blob, bool exiting)
1447 {
1448 struct audit_context *context = audit_context();
1449 struct lsmcontext lsmdata;
1450 struct audit_buffer *ab;
1451 struct lsmblob localblob;
1452 bool sep = false;
1453 int error;
1454 int i;
1455
1456 if (!lsm_multiple_contexts())
1457 return;
1458
1459 if (context && context->in_syscall && !exiting)
1460 return;
1461
1462 ab = audit_log_start(context, GFP_ATOMIC, AUDIT_MAC_TASK_CONTEXTS);
1463 if (!ab)
1464 return; /* audit_panic or being filtered */
1465
1466 if (blob == NULL) {
1467 security_task_getsecid(current, &localblob);
1468 if (!lsmblob_is_set(&localblob))
1469 return;
1470 blob = &localblob;
1471 }
1472
1473 for (i = 0; i < LSMBLOB_ENTRIES; i++) {
1474 if (blob->secid[i] == 0)
1475 continue;
1476 error = security_secid_to_secctx(blob, &lsmdata, i);
1477 if (error && error != -EINVAL) {
1478 audit_panic("error in audit_log_lsm");
1479 return;
1480 }
1481
1482 audit_log_format(ab, "%ssubj_%s=%s", sep ? " " : "",
1483 security_lsm_slot_name(i), lsmdata.context);
1484 sep = true;
1485
1486 security_release_secctx(&lsmdata);
1487 }
1488
1489 audit_log_end(ab);
1490 }
1491
1492 static void audit_log_exit(void)
1493 {
1494 int i, call_panic = 0;
1495 struct audit_context *context = audit_context();
1496 struct audit_buffer *ab;
1497 struct audit_aux_data *aux;
1498 struct audit_names *n;
1499
1500 context->personality = current->personality;
1501
1502 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1503 if (!ab)
1504 return; /* audit_panic has been called */
1505 audit_log_format(ab, "arch=%x syscall=%d",
1506 context->arch, context->major);
1507 if (context->personality != PER_LINUX)
1508 audit_log_format(ab, " per=%lx", context->personality);
1509 if (context->return_valid != AUDITSC_INVALID)
1510 audit_log_format(ab, " success=%s exit=%ld",
1511 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1512 context->return_code);
1513
1514 audit_log_format(ab,
1515 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1516 context->argv[0],
1517 context->argv[1],
1518 context->argv[2],
1519 context->argv[3],
1520 context->name_count);
1521
1522 audit_log_task_info(ab);
1523 audit_log_key(ab, context->filterkey);
1524 audit_log_end(ab);
1525
1526 for (aux = context->aux; aux; aux = aux->next) {
1527
1528 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1529 if (!ab)
1530 continue; /* audit_panic has been called */
1531
1532 switch (aux->type) {
1533
1534 case AUDIT_BPRM_FCAPS: {
1535 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1536 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1537 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1538 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1539 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1540 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1541 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1542 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1543 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1544 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1545 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1546 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1547 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1548 audit_log_format(ab, " frootid=%d",
1549 from_kuid(&init_user_ns,
1550 axs->fcap.rootid));
1551 break; }
1552
1553 }
1554 audit_log_end(ab);
1555 }
1556
1557 if (context->type)
1558 show_special(context, &call_panic);
1559
1560 if (context->fds[0] >= 0) {
1561 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1562 if (ab) {
1563 audit_log_format(ab, "fd0=%d fd1=%d",
1564 context->fds[0], context->fds[1]);
1565 audit_log_end(ab);
1566 }
1567 }
1568
1569 if (context->sockaddr_len) {
1570 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1571 if (ab) {
1572 audit_log_format(ab, "saddr=");
1573 audit_log_n_hex(ab, (void *)context->sockaddr,
1574 context->sockaddr_len);
1575 audit_log_end(ab);
1576 }
1577 }
1578
1579 for (aux = context->aux_pids; aux; aux = aux->next) {
1580 struct audit_aux_data_pids *axs = (void *)aux;
1581
1582 for (i = 0; i < axs->pid_count; i++)
1583 if (audit_log_pid_context(context, axs->target_pid[i],
1584 axs->target_auid[i],
1585 axs->target_uid[i],
1586 axs->target_sessionid[i],
1587 &axs->target_lsm[i],
1588 axs->target_comm[i]))
1589 call_panic = 1;
1590 }
1591
1592 if (context->target_pid &&
1593 audit_log_pid_context(context, context->target_pid,
1594 context->target_auid, context->target_uid,
1595 context->target_sessionid,
1596 &context->target_lsm, context->target_comm))
1597 call_panic = 1;
1598
1599 if (context->pwd.dentry && context->pwd.mnt) {
1600 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1601 if (ab) {
1602 audit_log_d_path(ab, "cwd=", &context->pwd);
1603 audit_log_end(ab);
1604 }
1605 }
1606
1607 i = 0;
1608 list_for_each_entry(n, &context->names_list, list) {
1609 if (n->hidden)
1610 continue;
1611 audit_log_name(context, n, NULL, i++, &call_panic);
1612 }
1613
1614 audit_log_proctitle();
1615 audit_log_lsm(NULL, true);
1616
1617 /* Send end of event record to help user space know we are finished */
1618 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1619 if (ab)
1620 audit_log_end(ab);
1621 if (call_panic)
1622 audit_panic("error converting sid to string");
1623 }
1624
1625 /**
1626 * __audit_free - free a per-task audit context
1627 * @tsk: task whose audit context block to free
1628 *
1629 * Called from copy_process and do_exit
1630 */
1631 void __audit_free(struct task_struct *tsk)
1632 {
1633 struct audit_context *context = tsk->audit_context;
1634
1635 if (!context)
1636 return;
1637
1638 if (!list_empty(&context->killed_trees))
1639 audit_kill_trees(context);
1640
1641 /* We are called either by do_exit() or the fork() error handling code;
1642 * in the former case tsk == current and in the latter tsk is a
1643 * random task_struct that doesn't doesn't have any meaningful data we
1644 * need to log via audit_log_exit().
1645 */
1646 if (tsk == current && !context->dummy && context->in_syscall) {
1647 context->return_valid = AUDITSC_INVALID;
1648 context->return_code = 0;
1649
1650 audit_filter_syscall(tsk, context,
1651 &audit_filter_list[AUDIT_FILTER_EXIT]);
1652 audit_filter_inodes(tsk, context);
1653 if (context->current_state == AUDIT_RECORD_CONTEXT)
1654 audit_log_exit();
1655 }
1656
1657 audit_set_context(tsk, NULL);
1658 audit_free_context(context);
1659 }
1660
1661 /**
1662 * __audit_syscall_entry - fill in an audit record at syscall entry
1663 * @major: major syscall type (function)
1664 * @a1: additional syscall register 1
1665 * @a2: additional syscall register 2
1666 * @a3: additional syscall register 3
1667 * @a4: additional syscall register 4
1668 *
1669 * Fill in audit context at syscall entry. This only happens if the
1670 * audit context was created when the task was created and the state or
1671 * filters demand the audit context be built. If the state from the
1672 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1673 * then the record will be written at syscall exit time (otherwise, it
1674 * will only be written if another part of the kernel requests that it
1675 * be written).
1676 */
1677 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1678 unsigned long a3, unsigned long a4)
1679 {
1680 struct audit_context *context = audit_context();
1681 enum audit_state state;
1682
1683 if (!audit_enabled || !context)
1684 return;
1685
1686 BUG_ON(context->in_syscall || context->name_count);
1687
1688 state = context->state;
1689 if (state == AUDIT_DISABLED)
1690 return;
1691
1692 context->dummy = !audit_n_rules;
1693 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1694 context->prio = 0;
1695 if (auditd_test_task(current))
1696 return;
1697 }
1698
1699 context->arch = syscall_get_arch(current);
1700 context->major = major;
1701 context->argv[0] = a1;
1702 context->argv[1] = a2;
1703 context->argv[2] = a3;
1704 context->argv[3] = a4;
1705 context->serial = 0;
1706 context->in_syscall = 1;
1707 context->current_state = state;
1708 context->ppid = 0;
1709 ktime_get_coarse_real_ts64(&context->ctime);
1710 }
1711
1712 /**
1713 * __audit_syscall_exit - deallocate audit context after a system call
1714 * @success: success value of the syscall
1715 * @return_code: return value of the syscall
1716 *
1717 * Tear down after system call. If the audit context has been marked as
1718 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1719 * filtering, or because some other part of the kernel wrote an audit
1720 * message), then write out the syscall information. In call cases,
1721 * free the names stored from getname().
1722 */
1723 void __audit_syscall_exit(int success, long return_code)
1724 {
1725 struct audit_context *context;
1726
1727 context = audit_context();
1728 if (!context)
1729 return;
1730
1731 if (!list_empty(&context->killed_trees))
1732 audit_kill_trees(context);
1733
1734 if (!context->dummy && context->in_syscall) {
1735 if (success)
1736 context->return_valid = AUDITSC_SUCCESS;
1737 else
1738 context->return_valid = AUDITSC_FAILURE;
1739
1740 /*
1741 * we need to fix up the return code in the audit logs if the
1742 * actual return codes are later going to be fixed up by the
1743 * arch specific signal handlers
1744 *
1745 * This is actually a test for:
1746 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1747 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1748 *
1749 * but is faster than a bunch of ||
1750 */
1751 if (unlikely(return_code <= -ERESTARTSYS) &&
1752 (return_code >= -ERESTART_RESTARTBLOCK) &&
1753 (return_code != -ENOIOCTLCMD))
1754 context->return_code = -EINTR;
1755 else
1756 context->return_code = return_code;
1757
1758 audit_filter_syscall(current, context,
1759 &audit_filter_list[AUDIT_FILTER_EXIT]);
1760 audit_filter_inodes(current, context);
1761 if (context->current_state == AUDIT_RECORD_CONTEXT)
1762 audit_log_exit();
1763 }
1764
1765 context->in_syscall = 0;
1766 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1767
1768 audit_free_module(context);
1769 audit_free_names(context);
1770 unroll_tree_refs(context, NULL, 0);
1771 audit_free_aux(context);
1772 context->aux = NULL;
1773 context->aux_pids = NULL;
1774 context->target_pid = 0;
1775 lsmblob_init(&context->target_lsm, 0);
1776 context->sockaddr_len = 0;
1777 context->type = 0;
1778 context->fds[0] = -1;
1779 if (context->state != AUDIT_RECORD_CONTEXT) {
1780 kfree(context->filterkey);
1781 context->filterkey = NULL;
1782 }
1783 }
1784
1785 static inline void handle_one(const struct inode *inode)
1786 {
1787 struct audit_context *context;
1788 struct audit_tree_refs *p;
1789 struct audit_chunk *chunk;
1790 int count;
1791 if (likely(!inode->i_fsnotify_marks))
1792 return;
1793 context = audit_context();
1794 p = context->trees;
1795 count = context->tree_count;
1796 rcu_read_lock();
1797 chunk = audit_tree_lookup(inode);
1798 rcu_read_unlock();
1799 if (!chunk)
1800 return;
1801 if (likely(put_tree_ref(context, chunk)))
1802 return;
1803 if (unlikely(!grow_tree_refs(context))) {
1804 pr_warn("out of memory, audit has lost a tree reference\n");
1805 audit_set_auditable(context);
1806 audit_put_chunk(chunk);
1807 unroll_tree_refs(context, p, count);
1808 return;
1809 }
1810 put_tree_ref(context, chunk);
1811 }
1812
1813 static void handle_path(const struct dentry *dentry)
1814 {
1815 struct audit_context *context;
1816 struct audit_tree_refs *p;
1817 const struct dentry *d, *parent;
1818 struct audit_chunk *drop;
1819 unsigned long seq;
1820 int count;
1821
1822 context = audit_context();
1823 p = context->trees;
1824 count = context->tree_count;
1825 retry:
1826 drop = NULL;
1827 d = dentry;
1828 rcu_read_lock();
1829 seq = read_seqbegin(&rename_lock);
1830 for(;;) {
1831 struct inode *inode = d_backing_inode(d);
1832 if (inode && unlikely(inode->i_fsnotify_marks)) {
1833 struct audit_chunk *chunk;
1834 chunk = audit_tree_lookup(inode);
1835 if (chunk) {
1836 if (unlikely(!put_tree_ref(context, chunk))) {
1837 drop = chunk;
1838 break;
1839 }
1840 }
1841 }
1842 parent = d->d_parent;
1843 if (parent == d)
1844 break;
1845 d = parent;
1846 }
1847 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1848 rcu_read_unlock();
1849 if (!drop) {
1850 /* just a race with rename */
1851 unroll_tree_refs(context, p, count);
1852 goto retry;
1853 }
1854 audit_put_chunk(drop);
1855 if (grow_tree_refs(context)) {
1856 /* OK, got more space */
1857 unroll_tree_refs(context, p, count);
1858 goto retry;
1859 }
1860 /* too bad */
1861 pr_warn("out of memory, audit has lost a tree reference\n");
1862 unroll_tree_refs(context, p, count);
1863 audit_set_auditable(context);
1864 return;
1865 }
1866 rcu_read_unlock();
1867 }
1868
1869 static struct audit_names *audit_alloc_name(struct audit_context *context,
1870 unsigned char type)
1871 {
1872 struct audit_names *aname;
1873
1874 if (context->name_count < AUDIT_NAMES) {
1875 aname = &context->preallocated_names[context->name_count];
1876 memset(aname, 0, sizeof(*aname));
1877 } else {
1878 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1879 if (!aname)
1880 return NULL;
1881 aname->should_free = true;
1882 }
1883
1884 aname->ino = AUDIT_INO_UNSET;
1885 aname->type = type;
1886 list_add_tail(&aname->list, &context->names_list);
1887
1888 context->name_count++;
1889 if (!context->pwd.dentry)
1890 get_fs_pwd(current->fs, &context->pwd);
1891 return aname;
1892 }
1893
1894 /**
1895 * __audit_reusename - fill out filename with info from existing entry
1896 * @uptr: userland ptr to pathname
1897 *
1898 * Search the audit_names list for the current audit context. If there is an
1899 * existing entry with a matching "uptr" then return the filename
1900 * associated with that audit_name. If not, return NULL.
1901 */
1902 struct filename *
1903 __audit_reusename(const __user char *uptr)
1904 {
1905 struct audit_context *context = audit_context();
1906 struct audit_names *n;
1907
1908 list_for_each_entry(n, &context->names_list, list) {
1909 if (!n->name)
1910 continue;
1911 if (n->name->uptr == uptr) {
1912 n->name->refcnt++;
1913 return n->name;
1914 }
1915 }
1916 return NULL;
1917 }
1918
1919 /**
1920 * __audit_getname - add a name to the list
1921 * @name: name to add
1922 *
1923 * Add a name to the list of audit names for this context.
1924 * Called from fs/namei.c:getname().
1925 */
1926 void __audit_getname(struct filename *name)
1927 {
1928 struct audit_context *context = audit_context();
1929 struct audit_names *n;
1930
1931 if (!context->in_syscall)
1932 return;
1933
1934 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1935 if (!n)
1936 return;
1937
1938 n->name = name;
1939 n->name_len = AUDIT_NAME_FULL;
1940 name->aname = n;
1941 name->refcnt++;
1942 }
1943
1944 static inline int audit_copy_fcaps(struct audit_names *name,
1945 const struct dentry *dentry)
1946 {
1947 struct cpu_vfs_cap_data caps;
1948 int rc;
1949
1950 if (!dentry)
1951 return 0;
1952
1953 rc = get_vfs_caps_from_disk(dentry, &caps);
1954 if (rc)
1955 return rc;
1956
1957 name->fcap.permitted = caps.permitted;
1958 name->fcap.inheritable = caps.inheritable;
1959 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1960 name->fcap.rootid = caps.rootid;
1961 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1962 VFS_CAP_REVISION_SHIFT;
1963
1964 return 0;
1965 }
1966
1967 /* Copy inode data into an audit_names. */
1968 static void audit_copy_inode(struct audit_names *name,
1969 const struct dentry *dentry,
1970 struct inode *inode, unsigned int flags)
1971 {
1972 name->ino = inode->i_ino;
1973 name->dev = inode->i_sb->s_dev;
1974 name->mode = inode->i_mode;
1975 name->uid = inode->i_uid;
1976 name->gid = inode->i_gid;
1977 name->rdev = inode->i_rdev;
1978 security_inode_getsecid(inode, &name->oblob);
1979 if (flags & AUDIT_INODE_NOEVAL) {
1980 name->fcap_ver = -1;
1981 return;
1982 }
1983 audit_copy_fcaps(name, dentry);
1984 }
1985
1986 /**
1987 * __audit_inode - store the inode and device from a lookup
1988 * @name: name being audited
1989 * @dentry: dentry being audited
1990 * @flags: attributes for this particular entry
1991 */
1992 void __audit_inode(struct filename *name, const struct dentry *dentry,
1993 unsigned int flags)
1994 {
1995 struct audit_context *context = audit_context();
1996 struct inode *inode = d_backing_inode(dentry);
1997 struct audit_names *n;
1998 bool parent = flags & AUDIT_INODE_PARENT;
1999 struct audit_entry *e;
2000 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2001 int i;
2002
2003 if (!context->in_syscall)
2004 return;
2005
2006 rcu_read_lock();
2007 list_for_each_entry_rcu(e, list, list) {
2008 for (i = 0; i < e->rule.field_count; i++) {
2009 struct audit_field *f = &e->rule.fields[i];
2010
2011 if (f->type == AUDIT_FSTYPE
2012 && audit_comparator(inode->i_sb->s_magic,
2013 f->op, f->val)
2014 && e->rule.action == AUDIT_NEVER) {
2015 rcu_read_unlock();
2016 return;
2017 }
2018 }
2019 }
2020 rcu_read_unlock();
2021
2022 if (!name)
2023 goto out_alloc;
2024
2025 /*
2026 * If we have a pointer to an audit_names entry already, then we can
2027 * just use it directly if the type is correct.
2028 */
2029 n = name->aname;
2030 if (n) {
2031 if (parent) {
2032 if (n->type == AUDIT_TYPE_PARENT ||
2033 n->type == AUDIT_TYPE_UNKNOWN)
2034 goto out;
2035 } else {
2036 if (n->type != AUDIT_TYPE_PARENT)
2037 goto out;
2038 }
2039 }
2040
2041 list_for_each_entry_reverse(n, &context->names_list, list) {
2042 if (n->ino) {
2043 /* valid inode number, use that for the comparison */
2044 if (n->ino != inode->i_ino ||
2045 n->dev != inode->i_sb->s_dev)
2046 continue;
2047 } else if (n->name) {
2048 /* inode number has not been set, check the name */
2049 if (strcmp(n->name->name, name->name))
2050 continue;
2051 } else
2052 /* no inode and no name (?!) ... this is odd ... */
2053 continue;
2054
2055 /* match the correct record type */
2056 if (parent) {
2057 if (n->type == AUDIT_TYPE_PARENT ||
2058 n->type == AUDIT_TYPE_UNKNOWN)
2059 goto out;
2060 } else {
2061 if (n->type != AUDIT_TYPE_PARENT)
2062 goto out;
2063 }
2064 }
2065
2066 out_alloc:
2067 /* unable to find an entry with both a matching name and type */
2068 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2069 if (!n)
2070 return;
2071 if (name) {
2072 n->name = name;
2073 name->refcnt++;
2074 }
2075
2076 out:
2077 if (parent) {
2078 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2079 n->type = AUDIT_TYPE_PARENT;
2080 if (flags & AUDIT_INODE_HIDDEN)
2081 n->hidden = true;
2082 } else {
2083 n->name_len = AUDIT_NAME_FULL;
2084 n->type = AUDIT_TYPE_NORMAL;
2085 }
2086 handle_path(dentry);
2087 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2088 }
2089
2090 void __audit_file(const struct file *file)
2091 {
2092 __audit_inode(NULL, file->f_path.dentry, 0);
2093 }
2094
2095 /**
2096 * __audit_inode_child - collect inode info for created/removed objects
2097 * @parent: inode of dentry parent
2098 * @dentry: dentry being audited
2099 * @type: AUDIT_TYPE_* value that we're looking for
2100 *
2101 * For syscalls that create or remove filesystem objects, audit_inode
2102 * can only collect information for the filesystem object's parent.
2103 * This call updates the audit context with the child's information.
2104 * Syscalls that create a new filesystem object must be hooked after
2105 * the object is created. Syscalls that remove a filesystem object
2106 * must be hooked prior, in order to capture the target inode during
2107 * unsuccessful attempts.
2108 */
2109 void __audit_inode_child(struct inode *parent,
2110 const struct dentry *dentry,
2111 const unsigned char type)
2112 {
2113 struct audit_context *context = audit_context();
2114 struct inode *inode = d_backing_inode(dentry);
2115 const struct qstr *dname = &dentry->d_name;
2116 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2117 struct audit_entry *e;
2118 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2119 int i;
2120
2121 if (!context->in_syscall)
2122 return;
2123
2124 rcu_read_lock();
2125 list_for_each_entry_rcu(e, list, list) {
2126 for (i = 0; i < e->rule.field_count; i++) {
2127 struct audit_field *f = &e->rule.fields[i];
2128
2129 if (f->type == AUDIT_FSTYPE
2130 && audit_comparator(parent->i_sb->s_magic,
2131 f->op, f->val)
2132 && e->rule.action == AUDIT_NEVER) {
2133 rcu_read_unlock();
2134 return;
2135 }
2136 }
2137 }
2138 rcu_read_unlock();
2139
2140 if (inode)
2141 handle_one(inode);
2142
2143 /* look for a parent entry first */
2144 list_for_each_entry(n, &context->names_list, list) {
2145 if (!n->name ||
2146 (n->type != AUDIT_TYPE_PARENT &&
2147 n->type != AUDIT_TYPE_UNKNOWN))
2148 continue;
2149
2150 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2151 !audit_compare_dname_path(dname,
2152 n->name->name, n->name_len)) {
2153 if (n->type == AUDIT_TYPE_UNKNOWN)
2154 n->type = AUDIT_TYPE_PARENT;
2155 found_parent = n;
2156 break;
2157 }
2158 }
2159
2160 /* is there a matching child entry? */
2161 list_for_each_entry(n, &context->names_list, list) {
2162 /* can only match entries that have a name */
2163 if (!n->name ||
2164 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2165 continue;
2166
2167 if (!strcmp(dname->name, n->name->name) ||
2168 !audit_compare_dname_path(dname, n->name->name,
2169 found_parent ?
2170 found_parent->name_len :
2171 AUDIT_NAME_FULL)) {
2172 if (n->type == AUDIT_TYPE_UNKNOWN)
2173 n->type = type;
2174 found_child = n;
2175 break;
2176 }
2177 }
2178
2179 if (!found_parent) {
2180 /* create a new, "anonymous" parent record */
2181 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2182 if (!n)
2183 return;
2184 audit_copy_inode(n, NULL, parent, 0);
2185 }
2186
2187 if (!found_child) {
2188 found_child = audit_alloc_name(context, type);
2189 if (!found_child)
2190 return;
2191
2192 /* Re-use the name belonging to the slot for a matching parent
2193 * directory. All names for this context are relinquished in
2194 * audit_free_names() */
2195 if (found_parent) {
2196 found_child->name = found_parent->name;
2197 found_child->name_len = AUDIT_NAME_FULL;
2198 found_child->name->refcnt++;
2199 }
2200 }
2201
2202 if (inode)
2203 audit_copy_inode(found_child, dentry, inode, 0);
2204 else
2205 found_child->ino = AUDIT_INO_UNSET;
2206 }
2207 EXPORT_SYMBOL_GPL(__audit_inode_child);
2208
2209 /**
2210 * audit_stamp_context - set the timestamp+serial in an audit context
2211 * @ctx: audit_context to set
2212 */
2213 void audit_stamp_context(struct audit_context *ctx)
2214 {
2215 /* ctx will be NULL unless lsm_multiple_contexts() is true */
2216 if (!ctx)
2217 return;
2218
2219 ktime_get_coarse_real_ts64(&ctx->ctime);
2220 ctx->serial = audit_serial();
2221 ctx->current_state = AUDIT_BUILD_CONTEXT;
2222 }
2223
2224 /**
2225 * auditsc_get_stamp - get local copies of audit_context values
2226 * @ctx: audit_context for the task
2227 * @t: timespec64 to store time recorded in the audit_context
2228 * @serial: serial value that is recorded in the audit_context
2229 *
2230 * Also sets the context as auditable.
2231 */
2232 int auditsc_get_stamp(struct audit_context *ctx,
2233 struct timespec64 *t, unsigned int *serial)
2234 {
2235 if (ctx->serial && !ctx->in_syscall) {
2236 t->tv_sec = ctx->ctime.tv_sec;
2237 t->tv_nsec = ctx->ctime.tv_nsec;
2238 *serial = ctx->serial;
2239 return 1;
2240 }
2241 if (!ctx->in_syscall)
2242 return 0;
2243 if (!ctx->serial)
2244 ctx->serial = audit_serial();
2245 t->tv_sec = ctx->ctime.tv_sec;
2246 t->tv_nsec = ctx->ctime.tv_nsec;
2247 *serial = ctx->serial;
2248 if (!ctx->prio) {
2249 ctx->prio = 1;
2250 ctx->current_state = AUDIT_RECORD_CONTEXT;
2251 }
2252 return 1;
2253 }
2254
2255 /**
2256 * __audit_mq_open - record audit data for a POSIX MQ open
2257 * @oflag: open flag
2258 * @mode: mode bits
2259 * @attr: queue attributes
2260 *
2261 */
2262 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2263 {
2264 struct audit_context *context = audit_context();
2265
2266 if (attr)
2267 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2268 else
2269 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2270
2271 context->mq_open.oflag = oflag;
2272 context->mq_open.mode = mode;
2273
2274 context->type = AUDIT_MQ_OPEN;
2275 }
2276
2277 /**
2278 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2279 * @mqdes: MQ descriptor
2280 * @msg_len: Message length
2281 * @msg_prio: Message priority
2282 * @abs_timeout: Message timeout in absolute time
2283 *
2284 */
2285 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2286 const struct timespec64 *abs_timeout)
2287 {
2288 struct audit_context *context = audit_context();
2289 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2290
2291 if (abs_timeout)
2292 memcpy(p, abs_timeout, sizeof(*p));
2293 else
2294 memset(p, 0, sizeof(*p));
2295
2296 context->mq_sendrecv.mqdes = mqdes;
2297 context->mq_sendrecv.msg_len = msg_len;
2298 context->mq_sendrecv.msg_prio = msg_prio;
2299
2300 context->type = AUDIT_MQ_SENDRECV;
2301 }
2302
2303 /**
2304 * __audit_mq_notify - record audit data for a POSIX MQ notify
2305 * @mqdes: MQ descriptor
2306 * @notification: Notification event
2307 *
2308 */
2309
2310 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2311 {
2312 struct audit_context *context = audit_context();
2313
2314 if (notification)
2315 context->mq_notify.sigev_signo = notification->sigev_signo;
2316 else
2317 context->mq_notify.sigev_signo = 0;
2318
2319 context->mq_notify.mqdes = mqdes;
2320 context->type = AUDIT_MQ_NOTIFY;
2321 }
2322
2323 /**
2324 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2325 * @mqdes: MQ descriptor
2326 * @mqstat: MQ flags
2327 *
2328 */
2329 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2330 {
2331 struct audit_context *context = audit_context();
2332 context->mq_getsetattr.mqdes = mqdes;
2333 context->mq_getsetattr.mqstat = *mqstat;
2334 context->type = AUDIT_MQ_GETSETATTR;
2335 }
2336
2337 /**
2338 * __audit_ipc_obj - record audit data for ipc object
2339 * @ipcp: ipc permissions
2340 *
2341 */
2342 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2343 {
2344 struct audit_context *context = audit_context();
2345 context->ipc.uid = ipcp->uid;
2346 context->ipc.gid = ipcp->gid;
2347 context->ipc.mode = ipcp->mode;
2348 context->ipc.has_perm = 0;
2349 security_ipc_getsecid(ipcp, &context->ipc.oblob);
2350 context->type = AUDIT_IPC;
2351 }
2352
2353 /**
2354 * __audit_ipc_set_perm - record audit data for new ipc permissions
2355 * @qbytes: msgq bytes
2356 * @uid: msgq user id
2357 * @gid: msgq group id
2358 * @mode: msgq mode (permissions)
2359 *
2360 * Called only after audit_ipc_obj().
2361 */
2362 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2363 {
2364 struct audit_context *context = audit_context();
2365
2366 context->ipc.qbytes = qbytes;
2367 context->ipc.perm_uid = uid;
2368 context->ipc.perm_gid = gid;
2369 context->ipc.perm_mode = mode;
2370 context->ipc.has_perm = 1;
2371 }
2372
2373 void __audit_bprm(struct linux_binprm *bprm)
2374 {
2375 struct audit_context *context = audit_context();
2376
2377 context->type = AUDIT_EXECVE;
2378 context->execve.argc = bprm->argc;
2379 }
2380
2381
2382 /**
2383 * __audit_socketcall - record audit data for sys_socketcall
2384 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2385 * @args: args array
2386 *
2387 */
2388 int __audit_socketcall(int nargs, unsigned long *args)
2389 {
2390 struct audit_context *context = audit_context();
2391
2392 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2393 return -EINVAL;
2394 context->type = AUDIT_SOCKETCALL;
2395 context->socketcall.nargs = nargs;
2396 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2397 return 0;
2398 }
2399
2400 /**
2401 * __audit_fd_pair - record audit data for pipe and socketpair
2402 * @fd1: the first file descriptor
2403 * @fd2: the second file descriptor
2404 *
2405 */
2406 void __audit_fd_pair(int fd1, int fd2)
2407 {
2408 struct audit_context *context = audit_context();
2409 context->fds[0] = fd1;
2410 context->fds[1] = fd2;
2411 }
2412
2413 /**
2414 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2415 * @len: data length in user space
2416 * @a: data address in kernel space
2417 *
2418 * Returns 0 for success or NULL context or < 0 on error.
2419 */
2420 int __audit_sockaddr(int len, void *a)
2421 {
2422 struct audit_context *context = audit_context();
2423
2424 if (!context->sockaddr) {
2425 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2426 if (!p)
2427 return -ENOMEM;
2428 context->sockaddr = p;
2429 }
2430
2431 context->sockaddr_len = len;
2432 memcpy(context->sockaddr, a, len);
2433 return 0;
2434 }
2435
2436 void __audit_ptrace(struct task_struct *t)
2437 {
2438 struct audit_context *context = audit_context();
2439
2440 context->target_pid = task_tgid_nr(t);
2441 context->target_auid = audit_get_loginuid(t);
2442 context->target_uid = task_uid(t);
2443 context->target_sessionid = audit_get_sessionid(t);
2444 security_task_getsecid(t, &context->target_lsm);
2445 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2446 }
2447
2448 /**
2449 * audit_signal_info_syscall - record signal info for syscalls
2450 * @t: task being signaled
2451 *
2452 * If the audit subsystem is being terminated, record the task (pid)
2453 * and uid that is doing that.
2454 */
2455 int audit_signal_info_syscall(struct task_struct *t)
2456 {
2457 struct audit_aux_data_pids *axp;
2458 struct audit_context *ctx = audit_context();
2459 kuid_t t_uid = task_uid(t);
2460
2461 if (!audit_signals || audit_dummy_context())
2462 return 0;
2463
2464 /* optimize the common case by putting first signal recipient directly
2465 * in audit_context */
2466 if (!ctx->target_pid) {
2467 ctx->target_pid = task_tgid_nr(t);
2468 ctx->target_auid = audit_get_loginuid(t);
2469 ctx->target_uid = t_uid;
2470 ctx->target_sessionid = audit_get_sessionid(t);
2471 security_task_getsecid(t, &ctx->target_lsm);
2472 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2473 return 0;
2474 }
2475
2476 axp = (void *)ctx->aux_pids;
2477 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2478 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2479 if (!axp)
2480 return -ENOMEM;
2481
2482 axp->d.type = AUDIT_OBJ_PID;
2483 axp->d.next = ctx->aux_pids;
2484 ctx->aux_pids = (void *)axp;
2485 }
2486 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2487
2488 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2489 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2490 axp->target_uid[axp->pid_count] = t_uid;
2491 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2492 security_task_getsecid(t, &axp->target_lsm[axp->pid_count]);
2493 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2494 axp->pid_count++;
2495
2496 return 0;
2497 }
2498
2499 /**
2500 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2501 * @bprm: pointer to the bprm being processed
2502 * @new: the proposed new credentials
2503 * @old: the old credentials
2504 *
2505 * Simply check if the proc already has the caps given by the file and if not
2506 * store the priv escalation info for later auditing at the end of the syscall
2507 *
2508 * -Eric
2509 */
2510 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2511 const struct cred *new, const struct cred *old)
2512 {
2513 struct audit_aux_data_bprm_fcaps *ax;
2514 struct audit_context *context = audit_context();
2515 struct cpu_vfs_cap_data vcaps;
2516
2517 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2518 if (!ax)
2519 return -ENOMEM;
2520
2521 ax->d.type = AUDIT_BPRM_FCAPS;
2522 ax->d.next = context->aux;
2523 context->aux = (void *)ax;
2524
2525 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2526
2527 ax->fcap.permitted = vcaps.permitted;
2528 ax->fcap.inheritable = vcaps.inheritable;
2529 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2530 ax->fcap.rootid = vcaps.rootid;
2531 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2532
2533 ax->old_pcap.permitted = old->cap_permitted;
2534 ax->old_pcap.inheritable = old->cap_inheritable;
2535 ax->old_pcap.effective = old->cap_effective;
2536 ax->old_pcap.ambient = old->cap_ambient;
2537
2538 ax->new_pcap.permitted = new->cap_permitted;
2539 ax->new_pcap.inheritable = new->cap_inheritable;
2540 ax->new_pcap.effective = new->cap_effective;
2541 ax->new_pcap.ambient = new->cap_ambient;
2542 return 0;
2543 }
2544
2545 /**
2546 * __audit_log_capset - store information about the arguments to the capset syscall
2547 * @new: the new credentials
2548 * @old: the old (current) credentials
2549 *
2550 * Record the arguments userspace sent to sys_capset for later printing by the
2551 * audit system if applicable
2552 */
2553 void __audit_log_capset(const struct cred *new, const struct cred *old)
2554 {
2555 struct audit_context *context = audit_context();
2556 context->capset.pid = task_tgid_nr(current);
2557 context->capset.cap.effective = new->cap_effective;
2558 context->capset.cap.inheritable = new->cap_effective;
2559 context->capset.cap.permitted = new->cap_permitted;
2560 context->capset.cap.ambient = new->cap_ambient;
2561 context->type = AUDIT_CAPSET;
2562 }
2563
2564 void __audit_mmap_fd(int fd, int flags)
2565 {
2566 struct audit_context *context = audit_context();
2567 context->mmap.fd = fd;
2568 context->mmap.flags = flags;
2569 context->type = AUDIT_MMAP;
2570 }
2571
2572 void __audit_log_kern_module(char *name)
2573 {
2574 struct audit_context *context = audit_context();
2575
2576 context->module.name = kstrdup(name, GFP_KERNEL);
2577 if (!context->module.name)
2578 audit_log_lost("out of memory in __audit_log_kern_module");
2579 context->type = AUDIT_KERN_MODULE;
2580 }
2581
2582 void __audit_fanotify(unsigned int response)
2583 {
2584 audit_log(audit_context(), GFP_KERNEL,
2585 AUDIT_FANOTIFY, "resp=%u", response);
2586 }
2587
2588 void __audit_tk_injoffset(struct timespec64 offset)
2589 {
2590 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2591 "sec=%lli nsec=%li",
2592 (long long)offset.tv_sec, offset.tv_nsec);
2593 }
2594
2595 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2596 const char *op, enum audit_ntp_type type)
2597 {
2598 const struct audit_ntp_val *val = &ad->vals[type];
2599
2600 if (val->newval == val->oldval)
2601 return;
2602
2603 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2604 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2605 }
2606
2607 void __audit_ntp_log(const struct audit_ntp_data *ad)
2608 {
2609 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2610 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2611 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2612 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2613 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2614 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2615 }
2616
2617 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2618 enum audit_nfcfgop op, gfp_t gfp)
2619 {
2620 struct audit_buffer *ab;
2621 char comm[sizeof(current->comm)];
2622
2623 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2624 if (!ab)
2625 return;
2626 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2627 name, af, nentries, audit_nfcfgs[op].s);
2628
2629 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2630 audit_log_task_context(ab, NULL); /* subj= */
2631 audit_log_format(ab, " comm=");
2632 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2633 audit_log_end(ab);
2634 }
2635 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2636
2637 static void audit_log_task(struct audit_buffer *ab)
2638 {
2639 kuid_t auid, uid;
2640 kgid_t gid;
2641 unsigned int sessionid;
2642 char comm[sizeof(current->comm)];
2643
2644 auid = audit_get_loginuid(current);
2645 sessionid = audit_get_sessionid(current);
2646 current_uid_gid(&uid, &gid);
2647
2648 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2649 from_kuid(&init_user_ns, auid),
2650 from_kuid(&init_user_ns, uid),
2651 from_kgid(&init_user_ns, gid),
2652 sessionid);
2653 audit_log_task_context(ab, NULL);
2654 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2655 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2656 audit_log_d_path_exe(ab, current->mm);
2657 }
2658
2659 /**
2660 * audit_core_dumps - record information about processes that end abnormally
2661 * @signr: signal value
2662 *
2663 * If a process ends with a core dump, something fishy is going on and we
2664 * should record the event for investigation.
2665 */
2666 void audit_core_dumps(long signr)
2667 {
2668 struct audit_buffer *ab;
2669
2670 if (!audit_enabled)
2671 return;
2672
2673 if (signr == SIGQUIT) /* don't care for those */
2674 return;
2675
2676 audit_stamp_context(audit_context());
2677 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2678 if (unlikely(!ab))
2679 return;
2680 audit_log_task(ab);
2681 audit_log_format(ab, " sig=%ld res=1", signr);
2682 audit_log_lsm(NULL, true);
2683 audit_log_end(ab);
2684 }
2685
2686 /**
2687 * audit_seccomp - record information about a seccomp action
2688 * @syscall: syscall number
2689 * @signr: signal value
2690 * @code: the seccomp action
2691 *
2692 * Record the information associated with a seccomp action. Event filtering for
2693 * seccomp actions that are not to be logged is done in seccomp_log().
2694 * Therefore, this function forces auditing independent of the audit_enabled
2695 * and dummy context state because seccomp actions should be logged even when
2696 * audit is not in use.
2697 */
2698 void audit_seccomp(unsigned long syscall, long signr, int code)
2699 {
2700 struct audit_buffer *ab;
2701
2702 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2703 if (unlikely(!ab))
2704 return;
2705 audit_log_task(ab);
2706 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2707 signr, syscall_get_arch(current), syscall,
2708 in_compat_syscall(), KSTK_EIP(current), code);
2709 audit_log_end(ab);
2710 }
2711
2712 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2713 int res)
2714 {
2715 struct audit_buffer *ab;
2716
2717 if (!audit_enabled)
2718 return;
2719
2720 ab = audit_log_start(audit_context(), GFP_KERNEL,
2721 AUDIT_CONFIG_CHANGE);
2722 if (unlikely(!ab))
2723 return;
2724
2725 audit_log_format(ab,
2726 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2727 names, old_names, res);
2728 audit_log_end(ab);
2729 }
2730
2731 struct list_head *audit_killed_trees(void)
2732 {
2733 struct audit_context *ctx = audit_context();
2734 if (likely(!ctx || !ctx->in_syscall))
2735 return NULL;
2736 return &ctx->killed_trees;
2737 }