]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/auditsc.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71
72 #include "audit.h"
73
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES 5
83
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
86
87 /* number of audit rules */
88 int audit_n_rules;
89
90 /* determines whether we collect data for signals sent */
91 int audit_signals;
92
93 struct audit_cap_data {
94 kernel_cap_t permitted;
95 kernel_cap_t inheritable;
96 union {
97 unsigned int fE; /* effective bit of a file capability */
98 kernel_cap_t effective; /* effective set of a process */
99 };
100 };
101
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
105 *
106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
107 */
108 struct audit_names {
109 struct list_head list; /* audit_context->names_list */
110 struct filename *name;
111 unsigned long ino;
112 dev_t dev;
113 umode_t mode;
114 kuid_t uid;
115 kgid_t gid;
116 dev_t rdev;
117 u32 osid;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 int name_len; /* number of name's characters to log */
121 unsigned char type; /* record type */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
129 };
130
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134 };
135
136 #define AUDIT_AUX_IPCPERM 0
137
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
140
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
146 };
147
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 kuid_t target_auid[AUDIT_AUX_PIDS];
152 kuid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
157 };
158
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165 };
166
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171 };
172
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
208 /* Save things to print about task_struct */
209 pid_t pid, ppid;
210 kuid_t uid, euid, suid, fsuid;
211 kgid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
213 int arch;
214
215 pid_t target_pid;
216 kuid_t target_auid;
217 kuid_t target_uid;
218 unsigned int target_sessionid;
219 u32 target_sid;
220 char target_comm[TASK_COMM_LEN];
221
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
224 int tree_count;
225
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
232 struct {
233 kuid_t uid;
234 kgid_t gid;
235 umode_t mode;
236 u32 osid;
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
240 umode_t perm_mode;
241 unsigned long qbytes;
242 } ipc;
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
257 struct {
258 int oflag;
259 umode_t mode;
260 struct mq_attr attr;
261 } mq_open;
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
266 struct {
267 int fd;
268 int flags;
269 } mmap;
270 };
271 int fds[2];
272
273 #if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276 #endif
277 };
278
279 static inline int open_arg(int flags, int mask)
280 {
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285 }
286
287 static int audit_match_perm(struct audit_context *ctx, int mask)
288 {
289 unsigned n;
290 if (unlikely(!ctx))
291 return 0;
292 n = ctx->major;
293
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328 }
329
330 static int audit_match_filetype(struct audit_context *ctx, int val)
331 {
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
334
335 if (unlikely(!ctx))
336 return 0;
337
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
341 return 1;
342 }
343
344 return 0;
345 }
346
347 /*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
359 {
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364 }
365
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 {
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385 }
386
387 static int grow_tree_refs(struct audit_context *ctx)
388 {
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401 }
402 #endif
403
404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406 {
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431 #endif
432 }
433
434 static void free_tree_refs(struct audit_context *ctx)
435 {
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441 }
442
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 {
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462 #endif
463 return 0;
464 }
465
466 static int audit_compare_uid(kuid_t uid,
467 struct audit_names *name,
468 struct audit_field *f,
469 struct audit_context *ctx)
470 {
471 struct audit_names *n;
472 int rc;
473
474 if (name) {
475 rc = audit_uid_comparator(uid, f->op, name->uid);
476 if (rc)
477 return rc;
478 }
479
480 if (ctx) {
481 list_for_each_entry(n, &ctx->names_list, list) {
482 rc = audit_uid_comparator(uid, f->op, n->uid);
483 if (rc)
484 return rc;
485 }
486 }
487 return 0;
488 }
489
490 static int audit_compare_gid(kgid_t gid,
491 struct audit_names *name,
492 struct audit_field *f,
493 struct audit_context *ctx)
494 {
495 struct audit_names *n;
496 int rc;
497
498 if (name) {
499 rc = audit_gid_comparator(gid, f->op, name->gid);
500 if (rc)
501 return rc;
502 }
503
504 if (ctx) {
505 list_for_each_entry(n, &ctx->names_list, list) {
506 rc = audit_gid_comparator(gid, f->op, n->gid);
507 if (rc)
508 return rc;
509 }
510 }
511 return 0;
512 }
513
514 static int audit_field_compare(struct task_struct *tsk,
515 const struct cred *cred,
516 struct audit_field *f,
517 struct audit_context *ctx,
518 struct audit_names *name)
519 {
520 switch (f->val) {
521 /* process to file object comparisons */
522 case AUDIT_COMPARE_UID_TO_OBJ_UID:
523 return audit_compare_uid(cred->uid, name, f, ctx);
524 case AUDIT_COMPARE_GID_TO_OBJ_GID:
525 return audit_compare_gid(cred->gid, name, f, ctx);
526 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
527 return audit_compare_uid(cred->euid, name, f, ctx);
528 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
529 return audit_compare_gid(cred->egid, name, f, ctx);
530 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
531 return audit_compare_uid(tsk->loginuid, name, f, ctx);
532 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
533 return audit_compare_uid(cred->suid, name, f, ctx);
534 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
535 return audit_compare_gid(cred->sgid, name, f, ctx);
536 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
537 return audit_compare_uid(cred->fsuid, name, f, ctx);
538 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
539 return audit_compare_gid(cred->fsgid, name, f, ctx);
540 /* uid comparisons */
541 case AUDIT_COMPARE_UID_TO_AUID:
542 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
543 case AUDIT_COMPARE_UID_TO_EUID:
544 return audit_uid_comparator(cred->uid, f->op, cred->euid);
545 case AUDIT_COMPARE_UID_TO_SUID:
546 return audit_uid_comparator(cred->uid, f->op, cred->suid);
547 case AUDIT_COMPARE_UID_TO_FSUID:
548 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
549 /* auid comparisons */
550 case AUDIT_COMPARE_AUID_TO_EUID:
551 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
552 case AUDIT_COMPARE_AUID_TO_SUID:
553 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
554 case AUDIT_COMPARE_AUID_TO_FSUID:
555 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
556 /* euid comparisons */
557 case AUDIT_COMPARE_EUID_TO_SUID:
558 return audit_uid_comparator(cred->euid, f->op, cred->suid);
559 case AUDIT_COMPARE_EUID_TO_FSUID:
560 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
561 /* suid comparisons */
562 case AUDIT_COMPARE_SUID_TO_FSUID:
563 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
564 /* gid comparisons */
565 case AUDIT_COMPARE_GID_TO_EGID:
566 return audit_gid_comparator(cred->gid, f->op, cred->egid);
567 case AUDIT_COMPARE_GID_TO_SGID:
568 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
569 case AUDIT_COMPARE_GID_TO_FSGID:
570 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
571 /* egid comparisons */
572 case AUDIT_COMPARE_EGID_TO_SGID:
573 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
574 case AUDIT_COMPARE_EGID_TO_FSGID:
575 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
576 /* sgid comparison */
577 case AUDIT_COMPARE_SGID_TO_FSGID:
578 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
579 default:
580 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
581 return 0;
582 }
583 return 0;
584 }
585
586 /* Determine if any context name data matches a rule's watch data */
587 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
588 * otherwise.
589 *
590 * If task_creation is true, this is an explicit indication that we are
591 * filtering a task rule at task creation time. This and tsk == current are
592 * the only situations where tsk->cred may be accessed without an rcu read lock.
593 */
594 static int audit_filter_rules(struct task_struct *tsk,
595 struct audit_krule *rule,
596 struct audit_context *ctx,
597 struct audit_names *name,
598 enum audit_state *state,
599 bool task_creation)
600 {
601 const struct cred *cred;
602 int i, need_sid = 1;
603 u32 sid;
604
605 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
606
607 for (i = 0; i < rule->field_count; i++) {
608 struct audit_field *f = &rule->fields[i];
609 struct audit_names *n;
610 int result = 0;
611
612 switch (f->type) {
613 case AUDIT_PID:
614 result = audit_comparator(tsk->pid, f->op, f->val);
615 break;
616 case AUDIT_PPID:
617 if (ctx) {
618 if (!ctx->ppid)
619 ctx->ppid = sys_getppid();
620 result = audit_comparator(ctx->ppid, f->op, f->val);
621 }
622 break;
623 case AUDIT_UID:
624 result = audit_uid_comparator(cred->uid, f->op, f->uid);
625 break;
626 case AUDIT_EUID:
627 result = audit_uid_comparator(cred->euid, f->op, f->uid);
628 break;
629 case AUDIT_SUID:
630 result = audit_uid_comparator(cred->suid, f->op, f->uid);
631 break;
632 case AUDIT_FSUID:
633 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
634 break;
635 case AUDIT_GID:
636 result = audit_gid_comparator(cred->gid, f->op, f->gid);
637 break;
638 case AUDIT_EGID:
639 result = audit_gid_comparator(cred->egid, f->op, f->gid);
640 break;
641 case AUDIT_SGID:
642 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
643 break;
644 case AUDIT_FSGID:
645 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
646 break;
647 case AUDIT_PERS:
648 result = audit_comparator(tsk->personality, f->op, f->val);
649 break;
650 case AUDIT_ARCH:
651 if (ctx)
652 result = audit_comparator(ctx->arch, f->op, f->val);
653 break;
654
655 case AUDIT_EXIT:
656 if (ctx && ctx->return_valid)
657 result = audit_comparator(ctx->return_code, f->op, f->val);
658 break;
659 case AUDIT_SUCCESS:
660 if (ctx && ctx->return_valid) {
661 if (f->val)
662 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
663 else
664 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
665 }
666 break;
667 case AUDIT_DEVMAJOR:
668 if (name) {
669 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
670 audit_comparator(MAJOR(name->rdev), f->op, f->val))
671 ++result;
672 } else if (ctx) {
673 list_for_each_entry(n, &ctx->names_list, list) {
674 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
675 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
676 ++result;
677 break;
678 }
679 }
680 }
681 break;
682 case AUDIT_DEVMINOR:
683 if (name) {
684 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
685 audit_comparator(MINOR(name->rdev), f->op, f->val))
686 ++result;
687 } else if (ctx) {
688 list_for_each_entry(n, &ctx->names_list, list) {
689 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
690 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
691 ++result;
692 break;
693 }
694 }
695 }
696 break;
697 case AUDIT_INODE:
698 if (name)
699 result = (name->ino == f->val);
700 else if (ctx) {
701 list_for_each_entry(n, &ctx->names_list, list) {
702 if (audit_comparator(n->ino, f->op, f->val)) {
703 ++result;
704 break;
705 }
706 }
707 }
708 break;
709 case AUDIT_OBJ_UID:
710 if (name) {
711 result = audit_uid_comparator(name->uid, f->op, f->uid);
712 } else if (ctx) {
713 list_for_each_entry(n, &ctx->names_list, list) {
714 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
715 ++result;
716 break;
717 }
718 }
719 }
720 break;
721 case AUDIT_OBJ_GID:
722 if (name) {
723 result = audit_gid_comparator(name->gid, f->op, f->gid);
724 } else if (ctx) {
725 list_for_each_entry(n, &ctx->names_list, list) {
726 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
727 ++result;
728 break;
729 }
730 }
731 }
732 break;
733 case AUDIT_WATCH:
734 if (name)
735 result = audit_watch_compare(rule->watch, name->ino, name->dev);
736 break;
737 case AUDIT_DIR:
738 if (ctx)
739 result = match_tree_refs(ctx, rule->tree);
740 break;
741 case AUDIT_LOGINUID:
742 result = 0;
743 if (ctx)
744 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
745 break;
746 case AUDIT_SUBJ_USER:
747 case AUDIT_SUBJ_ROLE:
748 case AUDIT_SUBJ_TYPE:
749 case AUDIT_SUBJ_SEN:
750 case AUDIT_SUBJ_CLR:
751 /* NOTE: this may return negative values indicating
752 a temporary error. We simply treat this as a
753 match for now to avoid losing information that
754 may be wanted. An error message will also be
755 logged upon error */
756 if (f->lsm_rule) {
757 if (need_sid) {
758 security_task_getsecid(tsk, &sid);
759 need_sid = 0;
760 }
761 result = security_audit_rule_match(sid, f->type,
762 f->op,
763 f->lsm_rule,
764 ctx);
765 }
766 break;
767 case AUDIT_OBJ_USER:
768 case AUDIT_OBJ_ROLE:
769 case AUDIT_OBJ_TYPE:
770 case AUDIT_OBJ_LEV_LOW:
771 case AUDIT_OBJ_LEV_HIGH:
772 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
773 also applies here */
774 if (f->lsm_rule) {
775 /* Find files that match */
776 if (name) {
777 result = security_audit_rule_match(
778 name->osid, f->type, f->op,
779 f->lsm_rule, ctx);
780 } else if (ctx) {
781 list_for_each_entry(n, &ctx->names_list, list) {
782 if (security_audit_rule_match(n->osid, f->type,
783 f->op, f->lsm_rule,
784 ctx)) {
785 ++result;
786 break;
787 }
788 }
789 }
790 /* Find ipc objects that match */
791 if (!ctx || ctx->type != AUDIT_IPC)
792 break;
793 if (security_audit_rule_match(ctx->ipc.osid,
794 f->type, f->op,
795 f->lsm_rule, ctx))
796 ++result;
797 }
798 break;
799 case AUDIT_ARG0:
800 case AUDIT_ARG1:
801 case AUDIT_ARG2:
802 case AUDIT_ARG3:
803 if (ctx)
804 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
805 break;
806 case AUDIT_FILTERKEY:
807 /* ignore this field for filtering */
808 result = 1;
809 break;
810 case AUDIT_PERM:
811 result = audit_match_perm(ctx, f->val);
812 break;
813 case AUDIT_FILETYPE:
814 result = audit_match_filetype(ctx, f->val);
815 break;
816 case AUDIT_FIELD_COMPARE:
817 result = audit_field_compare(tsk, cred, f, ctx, name);
818 break;
819 }
820 if (!result)
821 return 0;
822 }
823
824 if (ctx) {
825 if (rule->prio <= ctx->prio)
826 return 0;
827 if (rule->filterkey) {
828 kfree(ctx->filterkey);
829 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
830 }
831 ctx->prio = rule->prio;
832 }
833 switch (rule->action) {
834 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
835 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
836 }
837 return 1;
838 }
839
840 /* At process creation time, we can determine if system-call auditing is
841 * completely disabled for this task. Since we only have the task
842 * structure at this point, we can only check uid and gid.
843 */
844 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
845 {
846 struct audit_entry *e;
847 enum audit_state state;
848
849 rcu_read_lock();
850 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
851 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
852 &state, true)) {
853 if (state == AUDIT_RECORD_CONTEXT)
854 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
855 rcu_read_unlock();
856 return state;
857 }
858 }
859 rcu_read_unlock();
860 return AUDIT_BUILD_CONTEXT;
861 }
862
863 /* At syscall entry and exit time, this filter is called if the
864 * audit_state is not low enough that auditing cannot take place, but is
865 * also not high enough that we already know we have to write an audit
866 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
867 */
868 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
869 struct audit_context *ctx,
870 struct list_head *list)
871 {
872 struct audit_entry *e;
873 enum audit_state state;
874
875 if (audit_pid && tsk->tgid == audit_pid)
876 return AUDIT_DISABLED;
877
878 rcu_read_lock();
879 if (!list_empty(list)) {
880 int word = AUDIT_WORD(ctx->major);
881 int bit = AUDIT_BIT(ctx->major);
882
883 list_for_each_entry_rcu(e, list, list) {
884 if ((e->rule.mask[word] & bit) == bit &&
885 audit_filter_rules(tsk, &e->rule, ctx, NULL,
886 &state, false)) {
887 rcu_read_unlock();
888 ctx->current_state = state;
889 return state;
890 }
891 }
892 }
893 rcu_read_unlock();
894 return AUDIT_BUILD_CONTEXT;
895 }
896
897 /*
898 * Given an audit_name check the inode hash table to see if they match.
899 * Called holding the rcu read lock to protect the use of audit_inode_hash
900 */
901 static int audit_filter_inode_name(struct task_struct *tsk,
902 struct audit_names *n,
903 struct audit_context *ctx) {
904 int word, bit;
905 int h = audit_hash_ino((u32)n->ino);
906 struct list_head *list = &audit_inode_hash[h];
907 struct audit_entry *e;
908 enum audit_state state;
909
910 word = AUDIT_WORD(ctx->major);
911 bit = AUDIT_BIT(ctx->major);
912
913 if (list_empty(list))
914 return 0;
915
916 list_for_each_entry_rcu(e, list, list) {
917 if ((e->rule.mask[word] & bit) == bit &&
918 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
919 ctx->current_state = state;
920 return 1;
921 }
922 }
923
924 return 0;
925 }
926
927 /* At syscall exit time, this filter is called if any audit_names have been
928 * collected during syscall processing. We only check rules in sublists at hash
929 * buckets applicable to the inode numbers in audit_names.
930 * Regarding audit_state, same rules apply as for audit_filter_syscall().
931 */
932 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
933 {
934 struct audit_names *n;
935
936 if (audit_pid && tsk->tgid == audit_pid)
937 return;
938
939 rcu_read_lock();
940
941 list_for_each_entry(n, &ctx->names_list, list) {
942 if (audit_filter_inode_name(tsk, n, ctx))
943 break;
944 }
945 rcu_read_unlock();
946 }
947
948 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
949 int return_valid,
950 long return_code)
951 {
952 struct audit_context *context = tsk->audit_context;
953
954 if (!context)
955 return NULL;
956 context->return_valid = return_valid;
957
958 /*
959 * we need to fix up the return code in the audit logs if the actual
960 * return codes are later going to be fixed up by the arch specific
961 * signal handlers
962 *
963 * This is actually a test for:
964 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
965 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
966 *
967 * but is faster than a bunch of ||
968 */
969 if (unlikely(return_code <= -ERESTARTSYS) &&
970 (return_code >= -ERESTART_RESTARTBLOCK) &&
971 (return_code != -ENOIOCTLCMD))
972 context->return_code = -EINTR;
973 else
974 context->return_code = return_code;
975
976 if (context->in_syscall && !context->dummy) {
977 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
978 audit_filter_inodes(tsk, context);
979 }
980
981 tsk->audit_context = NULL;
982 return context;
983 }
984
985 static inline void audit_free_names(struct audit_context *context)
986 {
987 struct audit_names *n, *next;
988
989 #if AUDIT_DEBUG == 2
990 if (context->put_count + context->ino_count != context->name_count) {
991 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
992 " name_count=%d put_count=%d"
993 " ino_count=%d [NOT freeing]\n",
994 __FILE__, __LINE__,
995 context->serial, context->major, context->in_syscall,
996 context->name_count, context->put_count,
997 context->ino_count);
998 list_for_each_entry(n, &context->names_list, list) {
999 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1000 n->name, n->name->name ?: "(null)");
1001 }
1002 dump_stack();
1003 return;
1004 }
1005 #endif
1006 #if AUDIT_DEBUG
1007 context->put_count = 0;
1008 context->ino_count = 0;
1009 #endif
1010
1011 list_for_each_entry_safe(n, next, &context->names_list, list) {
1012 list_del(&n->list);
1013 if (n->name && n->name_put)
1014 __putname(n->name);
1015 if (n->should_free)
1016 kfree(n);
1017 }
1018 context->name_count = 0;
1019 path_put(&context->pwd);
1020 context->pwd.dentry = NULL;
1021 context->pwd.mnt = NULL;
1022 }
1023
1024 static inline void audit_free_aux(struct audit_context *context)
1025 {
1026 struct audit_aux_data *aux;
1027
1028 while ((aux = context->aux)) {
1029 context->aux = aux->next;
1030 kfree(aux);
1031 }
1032 while ((aux = context->aux_pids)) {
1033 context->aux_pids = aux->next;
1034 kfree(aux);
1035 }
1036 }
1037
1038 static inline void audit_zero_context(struct audit_context *context,
1039 enum audit_state state)
1040 {
1041 memset(context, 0, sizeof(*context));
1042 context->state = state;
1043 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1044 }
1045
1046 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1047 {
1048 struct audit_context *context;
1049
1050 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1051 return NULL;
1052 audit_zero_context(context, state);
1053 INIT_LIST_HEAD(&context->killed_trees);
1054 INIT_LIST_HEAD(&context->names_list);
1055 return context;
1056 }
1057
1058 /**
1059 * audit_alloc - allocate an audit context block for a task
1060 * @tsk: task
1061 *
1062 * Filter on the task information and allocate a per-task audit context
1063 * if necessary. Doing so turns on system call auditing for the
1064 * specified task. This is called from copy_process, so no lock is
1065 * needed.
1066 */
1067 int audit_alloc(struct task_struct *tsk)
1068 {
1069 struct audit_context *context;
1070 enum audit_state state;
1071 char *key = NULL;
1072
1073 if (likely(!audit_ever_enabled))
1074 return 0; /* Return if not auditing. */
1075
1076 state = audit_filter_task(tsk, &key);
1077 if (state == AUDIT_DISABLED)
1078 return 0;
1079
1080 if (!(context = audit_alloc_context(state))) {
1081 kfree(key);
1082 audit_log_lost("out of memory in audit_alloc");
1083 return -ENOMEM;
1084 }
1085 context->filterkey = key;
1086
1087 tsk->audit_context = context;
1088 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1089 return 0;
1090 }
1091
1092 static inline void audit_free_context(struct audit_context *context)
1093 {
1094 struct audit_context *previous;
1095 int count = 0;
1096
1097 do {
1098 previous = context->previous;
1099 if (previous || (count && count < 10)) {
1100 ++count;
1101 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1102 " freeing multiple contexts (%d)\n",
1103 context->serial, context->major,
1104 context->name_count, count);
1105 }
1106 audit_free_names(context);
1107 unroll_tree_refs(context, NULL, 0);
1108 free_tree_refs(context);
1109 audit_free_aux(context);
1110 kfree(context->filterkey);
1111 kfree(context->sockaddr);
1112 kfree(context);
1113 context = previous;
1114 } while (context);
1115 if (count >= 10)
1116 printk(KERN_ERR "audit: freed %d contexts\n", count);
1117 }
1118
1119 void audit_log_task_context(struct audit_buffer *ab)
1120 {
1121 char *ctx = NULL;
1122 unsigned len;
1123 int error;
1124 u32 sid;
1125
1126 security_task_getsecid(current, &sid);
1127 if (!sid)
1128 return;
1129
1130 error = security_secid_to_secctx(sid, &ctx, &len);
1131 if (error) {
1132 if (error != -EINVAL)
1133 goto error_path;
1134 return;
1135 }
1136
1137 audit_log_format(ab, " subj=%s", ctx);
1138 security_release_secctx(ctx, len);
1139 return;
1140
1141 error_path:
1142 audit_panic("error in audit_log_task_context");
1143 return;
1144 }
1145
1146 EXPORT_SYMBOL(audit_log_task_context);
1147
1148 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1149 {
1150 const struct cred *cred;
1151 char name[sizeof(tsk->comm)];
1152 struct mm_struct *mm = tsk->mm;
1153 char *tty;
1154
1155 if (!ab)
1156 return;
1157
1158 /* tsk == current */
1159 cred = current_cred();
1160
1161 spin_lock_irq(&tsk->sighand->siglock);
1162 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1163 tty = tsk->signal->tty->name;
1164 else
1165 tty = "(none)";
1166 spin_unlock_irq(&tsk->sighand->siglock);
1167
1168
1169 audit_log_format(ab,
1170 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1171 " euid=%u suid=%u fsuid=%u"
1172 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1173 sys_getppid(),
1174 tsk->pid,
1175 from_kuid(&init_user_ns, tsk->loginuid),
1176 from_kuid(&init_user_ns, cred->uid),
1177 from_kgid(&init_user_ns, cred->gid),
1178 from_kuid(&init_user_ns, cred->euid),
1179 from_kuid(&init_user_ns, cred->suid),
1180 from_kuid(&init_user_ns, cred->fsuid),
1181 from_kgid(&init_user_ns, cred->egid),
1182 from_kgid(&init_user_ns, cred->sgid),
1183 from_kgid(&init_user_ns, cred->fsgid),
1184 tsk->sessionid, tty);
1185
1186 get_task_comm(name, tsk);
1187 audit_log_format(ab, " comm=");
1188 audit_log_untrustedstring(ab, name);
1189
1190 if (mm) {
1191 down_read(&mm->mmap_sem);
1192 if (mm->exe_file)
1193 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1194 up_read(&mm->mmap_sem);
1195 }
1196 audit_log_task_context(ab);
1197 }
1198
1199 EXPORT_SYMBOL(audit_log_task_info);
1200
1201 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1202 kuid_t auid, kuid_t uid, unsigned int sessionid,
1203 u32 sid, char *comm)
1204 {
1205 struct audit_buffer *ab;
1206 char *ctx = NULL;
1207 u32 len;
1208 int rc = 0;
1209
1210 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1211 if (!ab)
1212 return rc;
1213
1214 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1215 from_kuid(&init_user_ns, auid),
1216 from_kuid(&init_user_ns, uid), sessionid);
1217 if (security_secid_to_secctx(sid, &ctx, &len)) {
1218 audit_log_format(ab, " obj=(none)");
1219 rc = 1;
1220 } else {
1221 audit_log_format(ab, " obj=%s", ctx);
1222 security_release_secctx(ctx, len);
1223 }
1224 audit_log_format(ab, " ocomm=");
1225 audit_log_untrustedstring(ab, comm);
1226 audit_log_end(ab);
1227
1228 return rc;
1229 }
1230
1231 /*
1232 * to_send and len_sent accounting are very loose estimates. We aren't
1233 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1234 * within about 500 bytes (next page boundary)
1235 *
1236 * why snprintf? an int is up to 12 digits long. if we just assumed when
1237 * logging that a[%d]= was going to be 16 characters long we would be wasting
1238 * space in every audit message. In one 7500 byte message we can log up to
1239 * about 1000 min size arguments. That comes down to about 50% waste of space
1240 * if we didn't do the snprintf to find out how long arg_num_len was.
1241 */
1242 static int audit_log_single_execve_arg(struct audit_context *context,
1243 struct audit_buffer **ab,
1244 int arg_num,
1245 size_t *len_sent,
1246 const char __user *p,
1247 char *buf)
1248 {
1249 char arg_num_len_buf[12];
1250 const char __user *tmp_p = p;
1251 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1252 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1253 size_t len, len_left, to_send;
1254 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1255 unsigned int i, has_cntl = 0, too_long = 0;
1256 int ret;
1257
1258 /* strnlen_user includes the null we don't want to send */
1259 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1260
1261 /*
1262 * We just created this mm, if we can't find the strings
1263 * we just copied into it something is _very_ wrong. Similar
1264 * for strings that are too long, we should not have created
1265 * any.
1266 */
1267 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1268 WARN_ON(1);
1269 send_sig(SIGKILL, current, 0);
1270 return -1;
1271 }
1272
1273 /* walk the whole argument looking for non-ascii chars */
1274 do {
1275 if (len_left > MAX_EXECVE_AUDIT_LEN)
1276 to_send = MAX_EXECVE_AUDIT_LEN;
1277 else
1278 to_send = len_left;
1279 ret = copy_from_user(buf, tmp_p, to_send);
1280 /*
1281 * There is no reason for this copy to be short. We just
1282 * copied them here, and the mm hasn't been exposed to user-
1283 * space yet.
1284 */
1285 if (ret) {
1286 WARN_ON(1);
1287 send_sig(SIGKILL, current, 0);
1288 return -1;
1289 }
1290 buf[to_send] = '\0';
1291 has_cntl = audit_string_contains_control(buf, to_send);
1292 if (has_cntl) {
1293 /*
1294 * hex messages get logged as 2 bytes, so we can only
1295 * send half as much in each message
1296 */
1297 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1298 break;
1299 }
1300 len_left -= to_send;
1301 tmp_p += to_send;
1302 } while (len_left > 0);
1303
1304 len_left = len;
1305
1306 if (len > max_execve_audit_len)
1307 too_long = 1;
1308
1309 /* rewalk the argument actually logging the message */
1310 for (i = 0; len_left > 0; i++) {
1311 int room_left;
1312
1313 if (len_left > max_execve_audit_len)
1314 to_send = max_execve_audit_len;
1315 else
1316 to_send = len_left;
1317
1318 /* do we have space left to send this argument in this ab? */
1319 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1320 if (has_cntl)
1321 room_left -= (to_send * 2);
1322 else
1323 room_left -= to_send;
1324 if (room_left < 0) {
1325 *len_sent = 0;
1326 audit_log_end(*ab);
1327 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1328 if (!*ab)
1329 return 0;
1330 }
1331
1332 /*
1333 * first record needs to say how long the original string was
1334 * so we can be sure nothing was lost.
1335 */
1336 if ((i == 0) && (too_long))
1337 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1338 has_cntl ? 2*len : len);
1339
1340 /*
1341 * normally arguments are small enough to fit and we already
1342 * filled buf above when we checked for control characters
1343 * so don't bother with another copy_from_user
1344 */
1345 if (len >= max_execve_audit_len)
1346 ret = copy_from_user(buf, p, to_send);
1347 else
1348 ret = 0;
1349 if (ret) {
1350 WARN_ON(1);
1351 send_sig(SIGKILL, current, 0);
1352 return -1;
1353 }
1354 buf[to_send] = '\0';
1355
1356 /* actually log it */
1357 audit_log_format(*ab, " a%d", arg_num);
1358 if (too_long)
1359 audit_log_format(*ab, "[%d]", i);
1360 audit_log_format(*ab, "=");
1361 if (has_cntl)
1362 audit_log_n_hex(*ab, buf, to_send);
1363 else
1364 audit_log_string(*ab, buf);
1365
1366 p += to_send;
1367 len_left -= to_send;
1368 *len_sent += arg_num_len;
1369 if (has_cntl)
1370 *len_sent += to_send * 2;
1371 else
1372 *len_sent += to_send;
1373 }
1374 /* include the null we didn't log */
1375 return len + 1;
1376 }
1377
1378 static void audit_log_execve_info(struct audit_context *context,
1379 struct audit_buffer **ab,
1380 struct audit_aux_data_execve *axi)
1381 {
1382 int i, len;
1383 size_t len_sent = 0;
1384 const char __user *p;
1385 char *buf;
1386
1387 if (axi->mm != current->mm)
1388 return; /* execve failed, no additional info */
1389
1390 p = (const char __user *)axi->mm->arg_start;
1391
1392 audit_log_format(*ab, "argc=%d", axi->argc);
1393
1394 /*
1395 * we need some kernel buffer to hold the userspace args. Just
1396 * allocate one big one rather than allocating one of the right size
1397 * for every single argument inside audit_log_single_execve_arg()
1398 * should be <8k allocation so should be pretty safe.
1399 */
1400 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1401 if (!buf) {
1402 audit_panic("out of memory for argv string\n");
1403 return;
1404 }
1405
1406 for (i = 0; i < axi->argc; i++) {
1407 len = audit_log_single_execve_arg(context, ab, i,
1408 &len_sent, p, buf);
1409 if (len <= 0)
1410 break;
1411 p += len;
1412 }
1413 kfree(buf);
1414 }
1415
1416 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1417 {
1418 int i;
1419
1420 audit_log_format(ab, " %s=", prefix);
1421 CAP_FOR_EACH_U32(i) {
1422 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1423 }
1424 }
1425
1426 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1427 {
1428 kernel_cap_t *perm = &name->fcap.permitted;
1429 kernel_cap_t *inh = &name->fcap.inheritable;
1430 int log = 0;
1431
1432 if (!cap_isclear(*perm)) {
1433 audit_log_cap(ab, "cap_fp", perm);
1434 log = 1;
1435 }
1436 if (!cap_isclear(*inh)) {
1437 audit_log_cap(ab, "cap_fi", inh);
1438 log = 1;
1439 }
1440
1441 if (log)
1442 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1443 }
1444
1445 static void show_special(struct audit_context *context, int *call_panic)
1446 {
1447 struct audit_buffer *ab;
1448 int i;
1449
1450 ab = audit_log_start(context, GFP_KERNEL, context->type);
1451 if (!ab)
1452 return;
1453
1454 switch (context->type) {
1455 case AUDIT_SOCKETCALL: {
1456 int nargs = context->socketcall.nargs;
1457 audit_log_format(ab, "nargs=%d", nargs);
1458 for (i = 0; i < nargs; i++)
1459 audit_log_format(ab, " a%d=%lx", i,
1460 context->socketcall.args[i]);
1461 break; }
1462 case AUDIT_IPC: {
1463 u32 osid = context->ipc.osid;
1464
1465 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1466 from_kuid(&init_user_ns, context->ipc.uid),
1467 from_kgid(&init_user_ns, context->ipc.gid),
1468 context->ipc.mode);
1469 if (osid) {
1470 char *ctx = NULL;
1471 u32 len;
1472 if (security_secid_to_secctx(osid, &ctx, &len)) {
1473 audit_log_format(ab, " osid=%u", osid);
1474 *call_panic = 1;
1475 } else {
1476 audit_log_format(ab, " obj=%s", ctx);
1477 security_release_secctx(ctx, len);
1478 }
1479 }
1480 if (context->ipc.has_perm) {
1481 audit_log_end(ab);
1482 ab = audit_log_start(context, GFP_KERNEL,
1483 AUDIT_IPC_SET_PERM);
1484 audit_log_format(ab,
1485 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1486 context->ipc.qbytes,
1487 context->ipc.perm_uid,
1488 context->ipc.perm_gid,
1489 context->ipc.perm_mode);
1490 if (!ab)
1491 return;
1492 }
1493 break; }
1494 case AUDIT_MQ_OPEN: {
1495 audit_log_format(ab,
1496 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1497 "mq_msgsize=%ld mq_curmsgs=%ld",
1498 context->mq_open.oflag, context->mq_open.mode,
1499 context->mq_open.attr.mq_flags,
1500 context->mq_open.attr.mq_maxmsg,
1501 context->mq_open.attr.mq_msgsize,
1502 context->mq_open.attr.mq_curmsgs);
1503 break; }
1504 case AUDIT_MQ_SENDRECV: {
1505 audit_log_format(ab,
1506 "mqdes=%d msg_len=%zd msg_prio=%u "
1507 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1508 context->mq_sendrecv.mqdes,
1509 context->mq_sendrecv.msg_len,
1510 context->mq_sendrecv.msg_prio,
1511 context->mq_sendrecv.abs_timeout.tv_sec,
1512 context->mq_sendrecv.abs_timeout.tv_nsec);
1513 break; }
1514 case AUDIT_MQ_NOTIFY: {
1515 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1516 context->mq_notify.mqdes,
1517 context->mq_notify.sigev_signo);
1518 break; }
1519 case AUDIT_MQ_GETSETATTR: {
1520 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1521 audit_log_format(ab,
1522 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1523 "mq_curmsgs=%ld ",
1524 context->mq_getsetattr.mqdes,
1525 attr->mq_flags, attr->mq_maxmsg,
1526 attr->mq_msgsize, attr->mq_curmsgs);
1527 break; }
1528 case AUDIT_CAPSET: {
1529 audit_log_format(ab, "pid=%d", context->capset.pid);
1530 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1531 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1532 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1533 break; }
1534 case AUDIT_MMAP: {
1535 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1536 context->mmap.flags);
1537 break; }
1538 }
1539 audit_log_end(ab);
1540 }
1541
1542 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1543 int record_num, int *call_panic)
1544 {
1545 struct audit_buffer *ab;
1546 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1547 if (!ab)
1548 return; /* audit_panic has been called */
1549
1550 audit_log_format(ab, "item=%d", record_num);
1551
1552 if (n->name) {
1553 switch (n->name_len) {
1554 case AUDIT_NAME_FULL:
1555 /* log the full path */
1556 audit_log_format(ab, " name=");
1557 audit_log_untrustedstring(ab, n->name->name);
1558 break;
1559 case 0:
1560 /* name was specified as a relative path and the
1561 * directory component is the cwd */
1562 audit_log_d_path(ab, " name=", &context->pwd);
1563 break;
1564 default:
1565 /* log the name's directory component */
1566 audit_log_format(ab, " name=");
1567 audit_log_n_untrustedstring(ab, n->name->name,
1568 n->name_len);
1569 }
1570 } else
1571 audit_log_format(ab, " name=(null)");
1572
1573 if (n->ino != (unsigned long)-1) {
1574 audit_log_format(ab, " inode=%lu"
1575 " dev=%02x:%02x mode=%#ho"
1576 " ouid=%u ogid=%u rdev=%02x:%02x",
1577 n->ino,
1578 MAJOR(n->dev),
1579 MINOR(n->dev),
1580 n->mode,
1581 from_kuid(&init_user_ns, n->uid),
1582 from_kgid(&init_user_ns, n->gid),
1583 MAJOR(n->rdev),
1584 MINOR(n->rdev));
1585 }
1586 if (n->osid != 0) {
1587 char *ctx = NULL;
1588 u32 len;
1589 if (security_secid_to_secctx(
1590 n->osid, &ctx, &len)) {
1591 audit_log_format(ab, " osid=%u", n->osid);
1592 *call_panic = 2;
1593 } else {
1594 audit_log_format(ab, " obj=%s", ctx);
1595 security_release_secctx(ctx, len);
1596 }
1597 }
1598
1599 audit_log_fcaps(ab, n);
1600
1601 audit_log_end(ab);
1602 }
1603
1604 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1605 {
1606 int i, call_panic = 0;
1607 struct audit_buffer *ab;
1608 struct audit_aux_data *aux;
1609 struct audit_names *n;
1610
1611 /* tsk == current */
1612 context->personality = tsk->personality;
1613
1614 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1615 if (!ab)
1616 return; /* audit_panic has been called */
1617 audit_log_format(ab, "arch=%x syscall=%d",
1618 context->arch, context->major);
1619 if (context->personality != PER_LINUX)
1620 audit_log_format(ab, " per=%lx", context->personality);
1621 if (context->return_valid)
1622 audit_log_format(ab, " success=%s exit=%ld",
1623 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1624 context->return_code);
1625
1626 audit_log_format(ab,
1627 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1628 context->argv[0],
1629 context->argv[1],
1630 context->argv[2],
1631 context->argv[3],
1632 context->name_count);
1633
1634 audit_log_task_info(ab, tsk);
1635 audit_log_key(ab, context->filterkey);
1636 audit_log_end(ab);
1637
1638 for (aux = context->aux; aux; aux = aux->next) {
1639
1640 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1641 if (!ab)
1642 continue; /* audit_panic has been called */
1643
1644 switch (aux->type) {
1645
1646 case AUDIT_EXECVE: {
1647 struct audit_aux_data_execve *axi = (void *)aux;
1648 audit_log_execve_info(context, &ab, axi);
1649 break; }
1650
1651 case AUDIT_BPRM_FCAPS: {
1652 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1653 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1654 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1655 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1656 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1657 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1658 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1659 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1660 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1661 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1662 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1663 break; }
1664
1665 }
1666 audit_log_end(ab);
1667 }
1668
1669 if (context->type)
1670 show_special(context, &call_panic);
1671
1672 if (context->fds[0] >= 0) {
1673 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1674 if (ab) {
1675 audit_log_format(ab, "fd0=%d fd1=%d",
1676 context->fds[0], context->fds[1]);
1677 audit_log_end(ab);
1678 }
1679 }
1680
1681 if (context->sockaddr_len) {
1682 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1683 if (ab) {
1684 audit_log_format(ab, "saddr=");
1685 audit_log_n_hex(ab, (void *)context->sockaddr,
1686 context->sockaddr_len);
1687 audit_log_end(ab);
1688 }
1689 }
1690
1691 for (aux = context->aux_pids; aux; aux = aux->next) {
1692 struct audit_aux_data_pids *axs = (void *)aux;
1693
1694 for (i = 0; i < axs->pid_count; i++)
1695 if (audit_log_pid_context(context, axs->target_pid[i],
1696 axs->target_auid[i],
1697 axs->target_uid[i],
1698 axs->target_sessionid[i],
1699 axs->target_sid[i],
1700 axs->target_comm[i]))
1701 call_panic = 1;
1702 }
1703
1704 if (context->target_pid &&
1705 audit_log_pid_context(context, context->target_pid,
1706 context->target_auid, context->target_uid,
1707 context->target_sessionid,
1708 context->target_sid, context->target_comm))
1709 call_panic = 1;
1710
1711 if (context->pwd.dentry && context->pwd.mnt) {
1712 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1713 if (ab) {
1714 audit_log_d_path(ab, " cwd=", &context->pwd);
1715 audit_log_end(ab);
1716 }
1717 }
1718
1719 i = 0;
1720 list_for_each_entry(n, &context->names_list, list)
1721 audit_log_name(context, n, i++, &call_panic);
1722
1723 /* Send end of event record to help user space know we are finished */
1724 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1725 if (ab)
1726 audit_log_end(ab);
1727 if (call_panic)
1728 audit_panic("error converting sid to string");
1729 }
1730
1731 /**
1732 * audit_free - free a per-task audit context
1733 * @tsk: task whose audit context block to free
1734 *
1735 * Called from copy_process and do_exit
1736 */
1737 void __audit_free(struct task_struct *tsk)
1738 {
1739 struct audit_context *context;
1740
1741 context = audit_get_context(tsk, 0, 0);
1742 if (!context)
1743 return;
1744
1745 /* Check for system calls that do not go through the exit
1746 * function (e.g., exit_group), then free context block.
1747 * We use GFP_ATOMIC here because we might be doing this
1748 * in the context of the idle thread */
1749 /* that can happen only if we are called from do_exit() */
1750 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1751 audit_log_exit(context, tsk);
1752 if (!list_empty(&context->killed_trees))
1753 audit_kill_trees(&context->killed_trees);
1754
1755 audit_free_context(context);
1756 }
1757
1758 /**
1759 * audit_syscall_entry - fill in an audit record at syscall entry
1760 * @arch: architecture type
1761 * @major: major syscall type (function)
1762 * @a1: additional syscall register 1
1763 * @a2: additional syscall register 2
1764 * @a3: additional syscall register 3
1765 * @a4: additional syscall register 4
1766 *
1767 * Fill in audit context at syscall entry. This only happens if the
1768 * audit context was created when the task was created and the state or
1769 * filters demand the audit context be built. If the state from the
1770 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1771 * then the record will be written at syscall exit time (otherwise, it
1772 * will only be written if another part of the kernel requests that it
1773 * be written).
1774 */
1775 void __audit_syscall_entry(int arch, int major,
1776 unsigned long a1, unsigned long a2,
1777 unsigned long a3, unsigned long a4)
1778 {
1779 struct task_struct *tsk = current;
1780 struct audit_context *context = tsk->audit_context;
1781 enum audit_state state;
1782
1783 if (!context)
1784 return;
1785
1786 /*
1787 * This happens only on certain architectures that make system
1788 * calls in kernel_thread via the entry.S interface, instead of
1789 * with direct calls. (If you are porting to a new
1790 * architecture, hitting this condition can indicate that you
1791 * got the _exit/_leave calls backward in entry.S.)
1792 *
1793 * i386 no
1794 * x86_64 no
1795 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1796 *
1797 * This also happens with vm86 emulation in a non-nested manner
1798 * (entries without exits), so this case must be caught.
1799 */
1800 if (context->in_syscall) {
1801 struct audit_context *newctx;
1802
1803 #if AUDIT_DEBUG
1804 printk(KERN_ERR
1805 "audit(:%d) pid=%d in syscall=%d;"
1806 " entering syscall=%d\n",
1807 context->serial, tsk->pid, context->major, major);
1808 #endif
1809 newctx = audit_alloc_context(context->state);
1810 if (newctx) {
1811 newctx->previous = context;
1812 context = newctx;
1813 tsk->audit_context = newctx;
1814 } else {
1815 /* If we can't alloc a new context, the best we
1816 * can do is to leak memory (any pending putname
1817 * will be lost). The only other alternative is
1818 * to abandon auditing. */
1819 audit_zero_context(context, context->state);
1820 }
1821 }
1822 BUG_ON(context->in_syscall || context->name_count);
1823
1824 if (!audit_enabled)
1825 return;
1826
1827 context->arch = arch;
1828 context->major = major;
1829 context->argv[0] = a1;
1830 context->argv[1] = a2;
1831 context->argv[2] = a3;
1832 context->argv[3] = a4;
1833
1834 state = context->state;
1835 context->dummy = !audit_n_rules;
1836 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1837 context->prio = 0;
1838 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1839 }
1840 if (state == AUDIT_DISABLED)
1841 return;
1842
1843 context->serial = 0;
1844 context->ctime = CURRENT_TIME;
1845 context->in_syscall = 1;
1846 context->current_state = state;
1847 context->ppid = 0;
1848 }
1849
1850 /**
1851 * audit_syscall_exit - deallocate audit context after a system call
1852 * @success: success value of the syscall
1853 * @return_code: return value of the syscall
1854 *
1855 * Tear down after system call. If the audit context has been marked as
1856 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1857 * filtering, or because some other part of the kernel wrote an audit
1858 * message), then write out the syscall information. In call cases,
1859 * free the names stored from getname().
1860 */
1861 void __audit_syscall_exit(int success, long return_code)
1862 {
1863 struct task_struct *tsk = current;
1864 struct audit_context *context;
1865
1866 if (success)
1867 success = AUDITSC_SUCCESS;
1868 else
1869 success = AUDITSC_FAILURE;
1870
1871 context = audit_get_context(tsk, success, return_code);
1872 if (!context)
1873 return;
1874
1875 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1876 audit_log_exit(context, tsk);
1877
1878 context->in_syscall = 0;
1879 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1880
1881 if (!list_empty(&context->killed_trees))
1882 audit_kill_trees(&context->killed_trees);
1883
1884 if (context->previous) {
1885 struct audit_context *new_context = context->previous;
1886 context->previous = NULL;
1887 audit_free_context(context);
1888 tsk->audit_context = new_context;
1889 } else {
1890 audit_free_names(context);
1891 unroll_tree_refs(context, NULL, 0);
1892 audit_free_aux(context);
1893 context->aux = NULL;
1894 context->aux_pids = NULL;
1895 context->target_pid = 0;
1896 context->target_sid = 0;
1897 context->sockaddr_len = 0;
1898 context->type = 0;
1899 context->fds[0] = -1;
1900 if (context->state != AUDIT_RECORD_CONTEXT) {
1901 kfree(context->filterkey);
1902 context->filterkey = NULL;
1903 }
1904 tsk->audit_context = context;
1905 }
1906 }
1907
1908 static inline void handle_one(const struct inode *inode)
1909 {
1910 #ifdef CONFIG_AUDIT_TREE
1911 struct audit_context *context;
1912 struct audit_tree_refs *p;
1913 struct audit_chunk *chunk;
1914 int count;
1915 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1916 return;
1917 context = current->audit_context;
1918 p = context->trees;
1919 count = context->tree_count;
1920 rcu_read_lock();
1921 chunk = audit_tree_lookup(inode);
1922 rcu_read_unlock();
1923 if (!chunk)
1924 return;
1925 if (likely(put_tree_ref(context, chunk)))
1926 return;
1927 if (unlikely(!grow_tree_refs(context))) {
1928 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1929 audit_set_auditable(context);
1930 audit_put_chunk(chunk);
1931 unroll_tree_refs(context, p, count);
1932 return;
1933 }
1934 put_tree_ref(context, chunk);
1935 #endif
1936 }
1937
1938 static void handle_path(const struct dentry *dentry)
1939 {
1940 #ifdef CONFIG_AUDIT_TREE
1941 struct audit_context *context;
1942 struct audit_tree_refs *p;
1943 const struct dentry *d, *parent;
1944 struct audit_chunk *drop;
1945 unsigned long seq;
1946 int count;
1947
1948 context = current->audit_context;
1949 p = context->trees;
1950 count = context->tree_count;
1951 retry:
1952 drop = NULL;
1953 d = dentry;
1954 rcu_read_lock();
1955 seq = read_seqbegin(&rename_lock);
1956 for(;;) {
1957 struct inode *inode = d->d_inode;
1958 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1959 struct audit_chunk *chunk;
1960 chunk = audit_tree_lookup(inode);
1961 if (chunk) {
1962 if (unlikely(!put_tree_ref(context, chunk))) {
1963 drop = chunk;
1964 break;
1965 }
1966 }
1967 }
1968 parent = d->d_parent;
1969 if (parent == d)
1970 break;
1971 d = parent;
1972 }
1973 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1974 rcu_read_unlock();
1975 if (!drop) {
1976 /* just a race with rename */
1977 unroll_tree_refs(context, p, count);
1978 goto retry;
1979 }
1980 audit_put_chunk(drop);
1981 if (grow_tree_refs(context)) {
1982 /* OK, got more space */
1983 unroll_tree_refs(context, p, count);
1984 goto retry;
1985 }
1986 /* too bad */
1987 printk(KERN_WARNING
1988 "out of memory, audit has lost a tree reference\n");
1989 unroll_tree_refs(context, p, count);
1990 audit_set_auditable(context);
1991 return;
1992 }
1993 rcu_read_unlock();
1994 #endif
1995 }
1996
1997 static struct audit_names *audit_alloc_name(struct audit_context *context,
1998 unsigned char type)
1999 {
2000 struct audit_names *aname;
2001
2002 if (context->name_count < AUDIT_NAMES) {
2003 aname = &context->preallocated_names[context->name_count];
2004 memset(aname, 0, sizeof(*aname));
2005 } else {
2006 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2007 if (!aname)
2008 return NULL;
2009 aname->should_free = true;
2010 }
2011
2012 aname->ino = (unsigned long)-1;
2013 aname->type = type;
2014 list_add_tail(&aname->list, &context->names_list);
2015
2016 context->name_count++;
2017 #if AUDIT_DEBUG
2018 context->ino_count++;
2019 #endif
2020 return aname;
2021 }
2022
2023 /**
2024 * audit_reusename - fill out filename with info from existing entry
2025 * @uptr: userland ptr to pathname
2026 *
2027 * Search the audit_names list for the current audit context. If there is an
2028 * existing entry with a matching "uptr" then return the filename
2029 * associated with that audit_name. If not, return NULL.
2030 */
2031 struct filename *
2032 __audit_reusename(const __user char *uptr)
2033 {
2034 struct audit_context *context = current->audit_context;
2035 struct audit_names *n;
2036
2037 list_for_each_entry(n, &context->names_list, list) {
2038 if (!n->name)
2039 continue;
2040 if (n->name->uptr == uptr)
2041 return n->name;
2042 }
2043 return NULL;
2044 }
2045
2046 /**
2047 * audit_getname - add a name to the list
2048 * @name: name to add
2049 *
2050 * Add a name to the list of audit names for this context.
2051 * Called from fs/namei.c:getname().
2052 */
2053 void __audit_getname(struct filename *name)
2054 {
2055 struct audit_context *context = current->audit_context;
2056 struct audit_names *n;
2057
2058 if (!context->in_syscall) {
2059 #if AUDIT_DEBUG == 2
2060 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2061 __FILE__, __LINE__, context->serial, name);
2062 dump_stack();
2063 #endif
2064 return;
2065 }
2066
2067 #if AUDIT_DEBUG
2068 /* The filename _must_ have a populated ->name */
2069 BUG_ON(!name->name);
2070 #endif
2071
2072 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2073 if (!n)
2074 return;
2075
2076 n->name = name;
2077 n->name_len = AUDIT_NAME_FULL;
2078 n->name_put = true;
2079 name->aname = n;
2080
2081 if (!context->pwd.dentry)
2082 get_fs_pwd(current->fs, &context->pwd);
2083 }
2084
2085 /* audit_putname - intercept a putname request
2086 * @name: name to intercept and delay for putname
2087 *
2088 * If we have stored the name from getname in the audit context,
2089 * then we delay the putname until syscall exit.
2090 * Called from include/linux/fs.h:putname().
2091 */
2092 void audit_putname(struct filename *name)
2093 {
2094 struct audit_context *context = current->audit_context;
2095
2096 BUG_ON(!context);
2097 if (!context->in_syscall) {
2098 #if AUDIT_DEBUG == 2
2099 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2100 __FILE__, __LINE__, context->serial, name);
2101 if (context->name_count) {
2102 struct audit_names *n;
2103 int i;
2104
2105 list_for_each_entry(n, &context->names_list, list)
2106 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2107 n->name, n->name->name ?: "(null)");
2108 }
2109 #endif
2110 __putname(name);
2111 }
2112 #if AUDIT_DEBUG
2113 else {
2114 ++context->put_count;
2115 if (context->put_count > context->name_count) {
2116 printk(KERN_ERR "%s:%d(:%d): major=%d"
2117 " in_syscall=%d putname(%p) name_count=%d"
2118 " put_count=%d\n",
2119 __FILE__, __LINE__,
2120 context->serial, context->major,
2121 context->in_syscall, name->name,
2122 context->name_count, context->put_count);
2123 dump_stack();
2124 }
2125 }
2126 #endif
2127 }
2128
2129 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2130 {
2131 struct cpu_vfs_cap_data caps;
2132 int rc;
2133
2134 if (!dentry)
2135 return 0;
2136
2137 rc = get_vfs_caps_from_disk(dentry, &caps);
2138 if (rc)
2139 return rc;
2140
2141 name->fcap.permitted = caps.permitted;
2142 name->fcap.inheritable = caps.inheritable;
2143 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2144 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2145
2146 return 0;
2147 }
2148
2149
2150 /* Copy inode data into an audit_names. */
2151 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2152 const struct inode *inode)
2153 {
2154 name->ino = inode->i_ino;
2155 name->dev = inode->i_sb->s_dev;
2156 name->mode = inode->i_mode;
2157 name->uid = inode->i_uid;
2158 name->gid = inode->i_gid;
2159 name->rdev = inode->i_rdev;
2160 security_inode_getsecid(inode, &name->osid);
2161 audit_copy_fcaps(name, dentry);
2162 }
2163
2164 /**
2165 * __audit_inode - store the inode and device from a lookup
2166 * @name: name being audited
2167 * @dentry: dentry being audited
2168 * @parent: does this dentry represent the parent?
2169 */
2170 void __audit_inode(struct filename *name, const struct dentry *dentry,
2171 unsigned int parent)
2172 {
2173 struct audit_context *context = current->audit_context;
2174 const struct inode *inode = dentry->d_inode;
2175 struct audit_names *n;
2176
2177 if (!context->in_syscall)
2178 return;
2179
2180 if (!name)
2181 goto out_alloc;
2182
2183 #if AUDIT_DEBUG
2184 /* The struct filename _must_ have a populated ->name */
2185 BUG_ON(!name->name);
2186 #endif
2187 /*
2188 * If we have a pointer to an audit_names entry already, then we can
2189 * just use it directly if the type is correct.
2190 */
2191 n = name->aname;
2192 if (n) {
2193 if (parent) {
2194 if (n->type == AUDIT_TYPE_PARENT ||
2195 n->type == AUDIT_TYPE_UNKNOWN)
2196 goto out;
2197 } else {
2198 if (n->type != AUDIT_TYPE_PARENT)
2199 goto out;
2200 }
2201 }
2202
2203 list_for_each_entry_reverse(n, &context->names_list, list) {
2204 /* does the name pointer match? */
2205 if (!n->name || n->name->name != name->name)
2206 continue;
2207
2208 /* match the correct record type */
2209 if (parent) {
2210 if (n->type == AUDIT_TYPE_PARENT ||
2211 n->type == AUDIT_TYPE_UNKNOWN)
2212 goto out;
2213 } else {
2214 if (n->type != AUDIT_TYPE_PARENT)
2215 goto out;
2216 }
2217 }
2218
2219 out_alloc:
2220 /* unable to find the name from a previous getname(). Allocate a new
2221 * anonymous entry.
2222 */
2223 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2224 if (!n)
2225 return;
2226 out:
2227 if (parent) {
2228 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2229 n->type = AUDIT_TYPE_PARENT;
2230 } else {
2231 n->name_len = AUDIT_NAME_FULL;
2232 n->type = AUDIT_TYPE_NORMAL;
2233 }
2234 handle_path(dentry);
2235 audit_copy_inode(n, dentry, inode);
2236 }
2237
2238 /**
2239 * __audit_inode_child - collect inode info for created/removed objects
2240 * @parent: inode of dentry parent
2241 * @dentry: dentry being audited
2242 * @type: AUDIT_TYPE_* value that we're looking for
2243 *
2244 * For syscalls that create or remove filesystem objects, audit_inode
2245 * can only collect information for the filesystem object's parent.
2246 * This call updates the audit context with the child's information.
2247 * Syscalls that create a new filesystem object must be hooked after
2248 * the object is created. Syscalls that remove a filesystem object
2249 * must be hooked prior, in order to capture the target inode during
2250 * unsuccessful attempts.
2251 */
2252 void __audit_inode_child(const struct inode *parent,
2253 const struct dentry *dentry,
2254 const unsigned char type)
2255 {
2256 struct audit_context *context = current->audit_context;
2257 const struct inode *inode = dentry->d_inode;
2258 const char *dname = dentry->d_name.name;
2259 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2260
2261 if (!context->in_syscall)
2262 return;
2263
2264 if (inode)
2265 handle_one(inode);
2266
2267 /* look for a parent entry first */
2268 list_for_each_entry(n, &context->names_list, list) {
2269 if (!n->name || n->type != AUDIT_TYPE_PARENT)
2270 continue;
2271
2272 if (n->ino == parent->i_ino &&
2273 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2274 found_parent = n;
2275 break;
2276 }
2277 }
2278
2279 /* is there a matching child entry? */
2280 list_for_each_entry(n, &context->names_list, list) {
2281 /* can only match entries that have a name */
2282 if (!n->name || n->type != type)
2283 continue;
2284
2285 /* if we found a parent, make sure this one is a child of it */
2286 if (found_parent && (n->name != found_parent->name))
2287 continue;
2288
2289 if (!strcmp(dname, n->name->name) ||
2290 !audit_compare_dname_path(dname, n->name->name,
2291 found_parent ?
2292 found_parent->name_len :
2293 AUDIT_NAME_FULL)) {
2294 found_child = n;
2295 break;
2296 }
2297 }
2298
2299 if (!found_parent) {
2300 /* create a new, "anonymous" parent record */
2301 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2302 if (!n)
2303 return;
2304 audit_copy_inode(n, NULL, parent);
2305 }
2306
2307 if (!found_child) {
2308 found_child = audit_alloc_name(context, type);
2309 if (!found_child)
2310 return;
2311
2312 /* Re-use the name belonging to the slot for a matching parent
2313 * directory. All names for this context are relinquished in
2314 * audit_free_names() */
2315 if (found_parent) {
2316 found_child->name = found_parent->name;
2317 found_child->name_len = AUDIT_NAME_FULL;
2318 /* don't call __putname() */
2319 found_child->name_put = false;
2320 }
2321 }
2322 if (inode)
2323 audit_copy_inode(found_child, dentry, inode);
2324 else
2325 found_child->ino = (unsigned long)-1;
2326 }
2327 EXPORT_SYMBOL_GPL(__audit_inode_child);
2328
2329 /**
2330 * auditsc_get_stamp - get local copies of audit_context values
2331 * @ctx: audit_context for the task
2332 * @t: timespec to store time recorded in the audit_context
2333 * @serial: serial value that is recorded in the audit_context
2334 *
2335 * Also sets the context as auditable.
2336 */
2337 int auditsc_get_stamp(struct audit_context *ctx,
2338 struct timespec *t, unsigned int *serial)
2339 {
2340 if (!ctx->in_syscall)
2341 return 0;
2342 if (!ctx->serial)
2343 ctx->serial = audit_serial();
2344 t->tv_sec = ctx->ctime.tv_sec;
2345 t->tv_nsec = ctx->ctime.tv_nsec;
2346 *serial = ctx->serial;
2347 if (!ctx->prio) {
2348 ctx->prio = 1;
2349 ctx->current_state = AUDIT_RECORD_CONTEXT;
2350 }
2351 return 1;
2352 }
2353
2354 /* global counter which is incremented every time something logs in */
2355 static atomic_t session_id = ATOMIC_INIT(0);
2356
2357 /**
2358 * audit_set_loginuid - set current task's audit_context loginuid
2359 * @loginuid: loginuid value
2360 *
2361 * Returns 0.
2362 *
2363 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2364 */
2365 int audit_set_loginuid(kuid_t loginuid)
2366 {
2367 struct task_struct *task = current;
2368 struct audit_context *context = task->audit_context;
2369 unsigned int sessionid;
2370
2371 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2372 if (uid_valid(task->loginuid))
2373 return -EPERM;
2374 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2375 if (!capable(CAP_AUDIT_CONTROL))
2376 return -EPERM;
2377 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2378
2379 sessionid = atomic_inc_return(&session_id);
2380 if (context && context->in_syscall) {
2381 struct audit_buffer *ab;
2382
2383 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2384 if (ab) {
2385 audit_log_format(ab, "login pid=%d uid=%u "
2386 "old auid=%u new auid=%u"
2387 " old ses=%u new ses=%u",
2388 task->pid,
2389 from_kuid(&init_user_ns, task_uid(task)),
2390 from_kuid(&init_user_ns, task->loginuid),
2391 from_kuid(&init_user_ns, loginuid),
2392 task->sessionid, sessionid);
2393 audit_log_end(ab);
2394 }
2395 }
2396 task->sessionid = sessionid;
2397 task->loginuid = loginuid;
2398 return 0;
2399 }
2400
2401 /**
2402 * __audit_mq_open - record audit data for a POSIX MQ open
2403 * @oflag: open flag
2404 * @mode: mode bits
2405 * @attr: queue attributes
2406 *
2407 */
2408 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2409 {
2410 struct audit_context *context = current->audit_context;
2411
2412 if (attr)
2413 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2414 else
2415 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2416
2417 context->mq_open.oflag = oflag;
2418 context->mq_open.mode = mode;
2419
2420 context->type = AUDIT_MQ_OPEN;
2421 }
2422
2423 /**
2424 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2425 * @mqdes: MQ descriptor
2426 * @msg_len: Message length
2427 * @msg_prio: Message priority
2428 * @abs_timeout: Message timeout in absolute time
2429 *
2430 */
2431 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2432 const struct timespec *abs_timeout)
2433 {
2434 struct audit_context *context = current->audit_context;
2435 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2436
2437 if (abs_timeout)
2438 memcpy(p, abs_timeout, sizeof(struct timespec));
2439 else
2440 memset(p, 0, sizeof(struct timespec));
2441
2442 context->mq_sendrecv.mqdes = mqdes;
2443 context->mq_sendrecv.msg_len = msg_len;
2444 context->mq_sendrecv.msg_prio = msg_prio;
2445
2446 context->type = AUDIT_MQ_SENDRECV;
2447 }
2448
2449 /**
2450 * __audit_mq_notify - record audit data for a POSIX MQ notify
2451 * @mqdes: MQ descriptor
2452 * @notification: Notification event
2453 *
2454 */
2455
2456 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2457 {
2458 struct audit_context *context = current->audit_context;
2459
2460 if (notification)
2461 context->mq_notify.sigev_signo = notification->sigev_signo;
2462 else
2463 context->mq_notify.sigev_signo = 0;
2464
2465 context->mq_notify.mqdes = mqdes;
2466 context->type = AUDIT_MQ_NOTIFY;
2467 }
2468
2469 /**
2470 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2471 * @mqdes: MQ descriptor
2472 * @mqstat: MQ flags
2473 *
2474 */
2475 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2476 {
2477 struct audit_context *context = current->audit_context;
2478 context->mq_getsetattr.mqdes = mqdes;
2479 context->mq_getsetattr.mqstat = *mqstat;
2480 context->type = AUDIT_MQ_GETSETATTR;
2481 }
2482
2483 /**
2484 * audit_ipc_obj - record audit data for ipc object
2485 * @ipcp: ipc permissions
2486 *
2487 */
2488 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2489 {
2490 struct audit_context *context = current->audit_context;
2491 context->ipc.uid = ipcp->uid;
2492 context->ipc.gid = ipcp->gid;
2493 context->ipc.mode = ipcp->mode;
2494 context->ipc.has_perm = 0;
2495 security_ipc_getsecid(ipcp, &context->ipc.osid);
2496 context->type = AUDIT_IPC;
2497 }
2498
2499 /**
2500 * audit_ipc_set_perm - record audit data for new ipc permissions
2501 * @qbytes: msgq bytes
2502 * @uid: msgq user id
2503 * @gid: msgq group id
2504 * @mode: msgq mode (permissions)
2505 *
2506 * Called only after audit_ipc_obj().
2507 */
2508 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2509 {
2510 struct audit_context *context = current->audit_context;
2511
2512 context->ipc.qbytes = qbytes;
2513 context->ipc.perm_uid = uid;
2514 context->ipc.perm_gid = gid;
2515 context->ipc.perm_mode = mode;
2516 context->ipc.has_perm = 1;
2517 }
2518
2519 int __audit_bprm(struct linux_binprm *bprm)
2520 {
2521 struct audit_aux_data_execve *ax;
2522 struct audit_context *context = current->audit_context;
2523
2524 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2525 if (!ax)
2526 return -ENOMEM;
2527
2528 ax->argc = bprm->argc;
2529 ax->envc = bprm->envc;
2530 ax->mm = bprm->mm;
2531 ax->d.type = AUDIT_EXECVE;
2532 ax->d.next = context->aux;
2533 context->aux = (void *)ax;
2534 return 0;
2535 }
2536
2537
2538 /**
2539 * audit_socketcall - record audit data for sys_socketcall
2540 * @nargs: number of args
2541 * @args: args array
2542 *
2543 */
2544 void __audit_socketcall(int nargs, unsigned long *args)
2545 {
2546 struct audit_context *context = current->audit_context;
2547
2548 context->type = AUDIT_SOCKETCALL;
2549 context->socketcall.nargs = nargs;
2550 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2551 }
2552
2553 /**
2554 * __audit_fd_pair - record audit data for pipe and socketpair
2555 * @fd1: the first file descriptor
2556 * @fd2: the second file descriptor
2557 *
2558 */
2559 void __audit_fd_pair(int fd1, int fd2)
2560 {
2561 struct audit_context *context = current->audit_context;
2562 context->fds[0] = fd1;
2563 context->fds[1] = fd2;
2564 }
2565
2566 /**
2567 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2568 * @len: data length in user space
2569 * @a: data address in kernel space
2570 *
2571 * Returns 0 for success or NULL context or < 0 on error.
2572 */
2573 int __audit_sockaddr(int len, void *a)
2574 {
2575 struct audit_context *context = current->audit_context;
2576
2577 if (!context->sockaddr) {
2578 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2579 if (!p)
2580 return -ENOMEM;
2581 context->sockaddr = p;
2582 }
2583
2584 context->sockaddr_len = len;
2585 memcpy(context->sockaddr, a, len);
2586 return 0;
2587 }
2588
2589 void __audit_ptrace(struct task_struct *t)
2590 {
2591 struct audit_context *context = current->audit_context;
2592
2593 context->target_pid = t->pid;
2594 context->target_auid = audit_get_loginuid(t);
2595 context->target_uid = task_uid(t);
2596 context->target_sessionid = audit_get_sessionid(t);
2597 security_task_getsecid(t, &context->target_sid);
2598 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2599 }
2600
2601 /**
2602 * audit_signal_info - record signal info for shutting down audit subsystem
2603 * @sig: signal value
2604 * @t: task being signaled
2605 *
2606 * If the audit subsystem is being terminated, record the task (pid)
2607 * and uid that is doing that.
2608 */
2609 int __audit_signal_info(int sig, struct task_struct *t)
2610 {
2611 struct audit_aux_data_pids *axp;
2612 struct task_struct *tsk = current;
2613 struct audit_context *ctx = tsk->audit_context;
2614 kuid_t uid = current_uid(), t_uid = task_uid(t);
2615
2616 if (audit_pid && t->tgid == audit_pid) {
2617 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2618 audit_sig_pid = tsk->pid;
2619 if (uid_valid(tsk->loginuid))
2620 audit_sig_uid = tsk->loginuid;
2621 else
2622 audit_sig_uid = uid;
2623 security_task_getsecid(tsk, &audit_sig_sid);
2624 }
2625 if (!audit_signals || audit_dummy_context())
2626 return 0;
2627 }
2628
2629 /* optimize the common case by putting first signal recipient directly
2630 * in audit_context */
2631 if (!ctx->target_pid) {
2632 ctx->target_pid = t->tgid;
2633 ctx->target_auid = audit_get_loginuid(t);
2634 ctx->target_uid = t_uid;
2635 ctx->target_sessionid = audit_get_sessionid(t);
2636 security_task_getsecid(t, &ctx->target_sid);
2637 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2638 return 0;
2639 }
2640
2641 axp = (void *)ctx->aux_pids;
2642 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2643 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2644 if (!axp)
2645 return -ENOMEM;
2646
2647 axp->d.type = AUDIT_OBJ_PID;
2648 axp->d.next = ctx->aux_pids;
2649 ctx->aux_pids = (void *)axp;
2650 }
2651 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2652
2653 axp->target_pid[axp->pid_count] = t->tgid;
2654 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2655 axp->target_uid[axp->pid_count] = t_uid;
2656 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2657 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2658 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2659 axp->pid_count++;
2660
2661 return 0;
2662 }
2663
2664 /**
2665 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2666 * @bprm: pointer to the bprm being processed
2667 * @new: the proposed new credentials
2668 * @old: the old credentials
2669 *
2670 * Simply check if the proc already has the caps given by the file and if not
2671 * store the priv escalation info for later auditing at the end of the syscall
2672 *
2673 * -Eric
2674 */
2675 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2676 const struct cred *new, const struct cred *old)
2677 {
2678 struct audit_aux_data_bprm_fcaps *ax;
2679 struct audit_context *context = current->audit_context;
2680 struct cpu_vfs_cap_data vcaps;
2681 struct dentry *dentry;
2682
2683 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2684 if (!ax)
2685 return -ENOMEM;
2686
2687 ax->d.type = AUDIT_BPRM_FCAPS;
2688 ax->d.next = context->aux;
2689 context->aux = (void *)ax;
2690
2691 dentry = dget(bprm->file->f_dentry);
2692 get_vfs_caps_from_disk(dentry, &vcaps);
2693 dput(dentry);
2694
2695 ax->fcap.permitted = vcaps.permitted;
2696 ax->fcap.inheritable = vcaps.inheritable;
2697 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2698 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2699
2700 ax->old_pcap.permitted = old->cap_permitted;
2701 ax->old_pcap.inheritable = old->cap_inheritable;
2702 ax->old_pcap.effective = old->cap_effective;
2703
2704 ax->new_pcap.permitted = new->cap_permitted;
2705 ax->new_pcap.inheritable = new->cap_inheritable;
2706 ax->new_pcap.effective = new->cap_effective;
2707 return 0;
2708 }
2709
2710 /**
2711 * __audit_log_capset - store information about the arguments to the capset syscall
2712 * @pid: target pid of the capset call
2713 * @new: the new credentials
2714 * @old: the old (current) credentials
2715 *
2716 * Record the aguments userspace sent to sys_capset for later printing by the
2717 * audit system if applicable
2718 */
2719 void __audit_log_capset(pid_t pid,
2720 const struct cred *new, const struct cred *old)
2721 {
2722 struct audit_context *context = current->audit_context;
2723 context->capset.pid = pid;
2724 context->capset.cap.effective = new->cap_effective;
2725 context->capset.cap.inheritable = new->cap_effective;
2726 context->capset.cap.permitted = new->cap_permitted;
2727 context->type = AUDIT_CAPSET;
2728 }
2729
2730 void __audit_mmap_fd(int fd, int flags)
2731 {
2732 struct audit_context *context = current->audit_context;
2733 context->mmap.fd = fd;
2734 context->mmap.flags = flags;
2735 context->type = AUDIT_MMAP;
2736 }
2737
2738 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2739 {
2740 kuid_t auid, uid;
2741 kgid_t gid;
2742 unsigned int sessionid;
2743
2744 auid = audit_get_loginuid(current);
2745 sessionid = audit_get_sessionid(current);
2746 current_uid_gid(&uid, &gid);
2747
2748 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2749 from_kuid(&init_user_ns, auid),
2750 from_kuid(&init_user_ns, uid),
2751 from_kgid(&init_user_ns, gid),
2752 sessionid);
2753 audit_log_task_context(ab);
2754 audit_log_format(ab, " pid=%d comm=", current->pid);
2755 audit_log_untrustedstring(ab, current->comm);
2756 audit_log_format(ab, " reason=");
2757 audit_log_string(ab, reason);
2758 audit_log_format(ab, " sig=%ld", signr);
2759 }
2760 /**
2761 * audit_core_dumps - record information about processes that end abnormally
2762 * @signr: signal value
2763 *
2764 * If a process ends with a core dump, something fishy is going on and we
2765 * should record the event for investigation.
2766 */
2767 void audit_core_dumps(long signr)
2768 {
2769 struct audit_buffer *ab;
2770
2771 if (!audit_enabled)
2772 return;
2773
2774 if (signr == SIGQUIT) /* don't care for those */
2775 return;
2776
2777 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2778 audit_log_abend(ab, "memory violation", signr);
2779 audit_log_end(ab);
2780 }
2781
2782 void __audit_seccomp(unsigned long syscall, long signr, int code)
2783 {
2784 struct audit_buffer *ab;
2785
2786 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2787 audit_log_abend(ab, "seccomp", signr);
2788 audit_log_format(ab, " syscall=%ld", syscall);
2789 audit_log_format(ab, " compat=%d", is_compat_task());
2790 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2791 audit_log_format(ab, " code=0x%x", code);
2792 audit_log_end(ab);
2793 }
2794
2795 struct list_head *audit_killed_trees(void)
2796 {
2797 struct audit_context *ctx = current->audit_context;
2798 if (likely(!ctx || !ctx->in_syscall))
2799 return NULL;
2800 return &ctx->killed_trees;
2801 }