]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/auditsc.c
arm64: Ensure execute-only permissions are not allowed without EPAN
[mirror_ubuntu-jammy-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79
80 #include "audit.h"
81
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93
94 /* number of audit rules */
95 int audit_n_rules;
96
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99
100 struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103 };
104
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
107
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 struct lsmblob target_lsm[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117 };
118
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125 };
126
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130 };
131
132 struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
134 const char *s;
135 };
136
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
158 };
159
160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 unsigned n;
163
164 if (unlikely(!ctx))
165 return 0;
166 n = ctx->major;
167
168 switch (audit_classify_syscall(ctx->arch, n)) {
169 case 0: /* native */
170 if ((mask & AUDIT_PERM_WRITE) &&
171 audit_match_class(AUDIT_CLASS_WRITE, n))
172 return 1;
173 if ((mask & AUDIT_PERM_READ) &&
174 audit_match_class(AUDIT_CLASS_READ, n))
175 return 1;
176 if ((mask & AUDIT_PERM_ATTR) &&
177 audit_match_class(AUDIT_CLASS_CHATTR, n))
178 return 1;
179 return 0;
180 case 1: /* 32bit on biarch */
181 if ((mask & AUDIT_PERM_WRITE) &&
182 audit_match_class(AUDIT_CLASS_WRITE_32, n))
183 return 1;
184 if ((mask & AUDIT_PERM_READ) &&
185 audit_match_class(AUDIT_CLASS_READ_32, n))
186 return 1;
187 if ((mask & AUDIT_PERM_ATTR) &&
188 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
189 return 1;
190 return 0;
191 case 2: /* open */
192 return mask & ACC_MODE(ctx->argv[1]);
193 case 3: /* openat */
194 return mask & ACC_MODE(ctx->argv[2]);
195 case 4: /* socketcall */
196 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
197 case 5: /* execve */
198 return mask & AUDIT_PERM_EXEC;
199 default:
200 return 0;
201 }
202 }
203
204 static int audit_match_filetype(struct audit_context *ctx, int val)
205 {
206 struct audit_names *n;
207 umode_t mode = (umode_t)val;
208
209 if (unlikely(!ctx))
210 return 0;
211
212 list_for_each_entry(n, &ctx->names_list, list) {
213 if ((n->ino != AUDIT_INO_UNSET) &&
214 ((n->mode & S_IFMT) == mode))
215 return 1;
216 }
217
218 return 0;
219 }
220
221 /*
222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
223 * ->first_trees points to its beginning, ->trees - to the current end of data.
224 * ->tree_count is the number of free entries in array pointed to by ->trees.
225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
226 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
227 * it's going to remain 1-element for almost any setup) until we free context itself.
228 * References in it _are_ dropped - at the same time we free/drop aux stuff.
229 */
230
231 static void audit_set_auditable(struct audit_context *ctx)
232 {
233 if (!ctx->prio) {
234 ctx->prio = 1;
235 ctx->current_state = AUDIT_STATE_RECORD;
236 }
237 }
238
239 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
240 {
241 struct audit_tree_refs *p = ctx->trees;
242 int left = ctx->tree_count;
243
244 if (likely(left)) {
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
247 return 1;
248 }
249 if (!p)
250 return 0;
251 p = p->next;
252 if (p) {
253 p->c[30] = chunk;
254 ctx->trees = p;
255 ctx->tree_count = 30;
256 return 1;
257 }
258 return 0;
259 }
260
261 static int grow_tree_refs(struct audit_context *ctx)
262 {
263 struct audit_tree_refs *p = ctx->trees;
264
265 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
266 if (!ctx->trees) {
267 ctx->trees = p;
268 return 0;
269 }
270 if (p)
271 p->next = ctx->trees;
272 else
273 ctx->first_trees = ctx->trees;
274 ctx->tree_count = 31;
275 return 1;
276 }
277
278 static void unroll_tree_refs(struct audit_context *ctx,
279 struct audit_tree_refs *p, int count)
280 {
281 struct audit_tree_refs *q;
282 int n;
283
284 if (!p) {
285 /* we started with empty chain */
286 p = ctx->first_trees;
287 count = 31;
288 /* if the very first allocation has failed, nothing to do */
289 if (!p)
290 return;
291 }
292 n = count;
293 for (q = p; q != ctx->trees; q = q->next, n = 31) {
294 while (n--) {
295 audit_put_chunk(q->c[n]);
296 q->c[n] = NULL;
297 }
298 }
299 while (n-- > ctx->tree_count) {
300 audit_put_chunk(q->c[n]);
301 q->c[n] = NULL;
302 }
303 ctx->trees = p;
304 ctx->tree_count = count;
305 }
306
307 static void free_tree_refs(struct audit_context *ctx)
308 {
309 struct audit_tree_refs *p, *q;
310
311 for (p = ctx->first_trees; p; p = q) {
312 q = p->next;
313 kfree(p);
314 }
315 }
316
317 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
318 {
319 struct audit_tree_refs *p;
320 int n;
321
322 if (!tree)
323 return 0;
324 /* full ones */
325 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
326 for (n = 0; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
328 return 1;
329 }
330 /* partial */
331 if (p) {
332 for (n = ctx->tree_count; n < 31; n++)
333 if (audit_tree_match(p->c[n], tree))
334 return 1;
335 }
336 return 0;
337 }
338
339 static int audit_compare_uid(kuid_t uid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
343 {
344 struct audit_names *n;
345 int rc;
346
347 if (name) {
348 rc = audit_uid_comparator(uid, f->op, name->uid);
349 if (rc)
350 return rc;
351 }
352
353 if (ctx) {
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_uid_comparator(uid, f->op, n->uid);
356 if (rc)
357 return rc;
358 }
359 }
360 return 0;
361 }
362
363 static int audit_compare_gid(kgid_t gid,
364 struct audit_names *name,
365 struct audit_field *f,
366 struct audit_context *ctx)
367 {
368 struct audit_names *n;
369 int rc;
370
371 if (name) {
372 rc = audit_gid_comparator(gid, f->op, name->gid);
373 if (rc)
374 return rc;
375 }
376
377 if (ctx) {
378 list_for_each_entry(n, &ctx->names_list, list) {
379 rc = audit_gid_comparator(gid, f->op, n->gid);
380 if (rc)
381 return rc;
382 }
383 }
384 return 0;
385 }
386
387 static int audit_field_compare(struct task_struct *tsk,
388 const struct cred *cred,
389 struct audit_field *f,
390 struct audit_context *ctx,
391 struct audit_names *name)
392 {
393 switch (f->val) {
394 /* process to file object comparisons */
395 case AUDIT_COMPARE_UID_TO_OBJ_UID:
396 return audit_compare_uid(cred->uid, name, f, ctx);
397 case AUDIT_COMPARE_GID_TO_OBJ_GID:
398 return audit_compare_gid(cred->gid, name, f, ctx);
399 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->euid, name, f, ctx);
401 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->egid, name, f, ctx);
403 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
404 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
405 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->suid, name, f, ctx);
407 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->sgid, name, f, ctx);
409 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
410 return audit_compare_uid(cred->fsuid, name, f, ctx);
411 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
412 return audit_compare_gid(cred->fsgid, name, f, ctx);
413 /* uid comparisons */
414 case AUDIT_COMPARE_UID_TO_AUID:
415 return audit_uid_comparator(cred->uid, f->op,
416 audit_get_loginuid(tsk));
417 case AUDIT_COMPARE_UID_TO_EUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->euid);
419 case AUDIT_COMPARE_UID_TO_SUID:
420 return audit_uid_comparator(cred->uid, f->op, cred->suid);
421 case AUDIT_COMPARE_UID_TO_FSUID:
422 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
423 /* auid comparisons */
424 case AUDIT_COMPARE_AUID_TO_EUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 cred->euid);
427 case AUDIT_COMPARE_AUID_TO_SUID:
428 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
429 cred->suid);
430 case AUDIT_COMPARE_AUID_TO_FSUID:
431 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
432 cred->fsuid);
433 /* euid comparisons */
434 case AUDIT_COMPARE_EUID_TO_SUID:
435 return audit_uid_comparator(cred->euid, f->op, cred->suid);
436 case AUDIT_COMPARE_EUID_TO_FSUID:
437 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
438 /* suid comparisons */
439 case AUDIT_COMPARE_SUID_TO_FSUID:
440 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
441 /* gid comparisons */
442 case AUDIT_COMPARE_GID_TO_EGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->egid);
444 case AUDIT_COMPARE_GID_TO_SGID:
445 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
446 case AUDIT_COMPARE_GID_TO_FSGID:
447 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
448 /* egid comparisons */
449 case AUDIT_COMPARE_EGID_TO_SGID:
450 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
451 case AUDIT_COMPARE_EGID_TO_FSGID:
452 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
453 /* sgid comparison */
454 case AUDIT_COMPARE_SGID_TO_FSGID:
455 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
456 default:
457 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
458 return 0;
459 }
460 return 0;
461 }
462
463 /* Determine if any context name data matches a rule's watch data */
464 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
465 * otherwise.
466 *
467 * If task_creation is true, this is an explicit indication that we are
468 * filtering a task rule at task creation time. This and tsk == current are
469 * the only situations where tsk->cred may be accessed without an rcu read lock.
470 */
471 static int audit_filter_rules(struct task_struct *tsk,
472 struct audit_krule *rule,
473 struct audit_context *ctx,
474 struct audit_names *name,
475 enum audit_state *state,
476 bool task_creation)
477 {
478 const struct cred *cred;
479 int i, need_sid = 1;
480 struct lsmblob blob = { };
481 unsigned int sessionid;
482
483 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
484
485 for (i = 0; i < rule->field_count; i++) {
486 struct audit_field *f = &rule->fields[i];
487 struct audit_names *n;
488 int result = 0;
489 pid_t pid;
490
491 switch (f->type) {
492 case AUDIT_PID:
493 pid = task_tgid_nr(tsk);
494 result = audit_comparator(pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = task_ppid_nr(tsk);
500 result = audit_comparator(ctx->ppid, f->op, f->val);
501 }
502 break;
503 case AUDIT_EXE:
504 result = audit_exe_compare(tsk, rule->exe);
505 if (f->op == Audit_not_equal)
506 result = !result;
507 break;
508 case AUDIT_UID:
509 result = audit_uid_comparator(cred->uid, f->op, f->uid);
510 break;
511 case AUDIT_EUID:
512 result = audit_uid_comparator(cred->euid, f->op, f->uid);
513 break;
514 case AUDIT_SUID:
515 result = audit_uid_comparator(cred->suid, f->op, f->uid);
516 break;
517 case AUDIT_FSUID:
518 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
519 break;
520 case AUDIT_GID:
521 result = audit_gid_comparator(cred->gid, f->op, f->gid);
522 if (f->op == Audit_equal) {
523 if (!result)
524 result = groups_search(cred->group_info, f->gid);
525 } else if (f->op == Audit_not_equal) {
526 if (result)
527 result = !groups_search(cred->group_info, f->gid);
528 }
529 break;
530 case AUDIT_EGID:
531 result = audit_gid_comparator(cred->egid, f->op, f->gid);
532 if (f->op == Audit_equal) {
533 if (!result)
534 result = groups_search(cred->group_info, f->gid);
535 } else if (f->op == Audit_not_equal) {
536 if (result)
537 result = !groups_search(cred->group_info, f->gid);
538 }
539 break;
540 case AUDIT_SGID:
541 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
542 break;
543 case AUDIT_FSGID:
544 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
545 break;
546 case AUDIT_SESSIONID:
547 sessionid = audit_get_sessionid(tsk);
548 result = audit_comparator(sessionid, f->op, f->val);
549 break;
550 case AUDIT_PERS:
551 result = audit_comparator(tsk->personality, f->op, f->val);
552 break;
553 case AUDIT_ARCH:
554 if (ctx)
555 result = audit_comparator(ctx->arch, f->op, f->val);
556 break;
557
558 case AUDIT_EXIT:
559 if (ctx && ctx->return_valid != AUDITSC_INVALID)
560 result = audit_comparator(ctx->return_code, f->op, f->val);
561 break;
562 case AUDIT_SUCCESS:
563 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
564 if (f->val)
565 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
566 else
567 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
568 }
569 break;
570 case AUDIT_DEVMAJOR:
571 if (name) {
572 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
573 audit_comparator(MAJOR(name->rdev), f->op, f->val))
574 ++result;
575 } else if (ctx) {
576 list_for_each_entry(n, &ctx->names_list, list) {
577 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
578 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
579 ++result;
580 break;
581 }
582 }
583 }
584 break;
585 case AUDIT_DEVMINOR:
586 if (name) {
587 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
588 audit_comparator(MINOR(name->rdev), f->op, f->val))
589 ++result;
590 } else if (ctx) {
591 list_for_each_entry(n, &ctx->names_list, list) {
592 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
593 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
594 ++result;
595 break;
596 }
597 }
598 }
599 break;
600 case AUDIT_INODE:
601 if (name)
602 result = audit_comparator(name->ino, f->op, f->val);
603 else if (ctx) {
604 list_for_each_entry(n, &ctx->names_list, list) {
605 if (audit_comparator(n->ino, f->op, f->val)) {
606 ++result;
607 break;
608 }
609 }
610 }
611 break;
612 case AUDIT_OBJ_UID:
613 if (name) {
614 result = audit_uid_comparator(name->uid, f->op, f->uid);
615 } else if (ctx) {
616 list_for_each_entry(n, &ctx->names_list, list) {
617 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
618 ++result;
619 break;
620 }
621 }
622 }
623 break;
624 case AUDIT_OBJ_GID:
625 if (name) {
626 result = audit_gid_comparator(name->gid, f->op, f->gid);
627 } else if (ctx) {
628 list_for_each_entry(n, &ctx->names_list, list) {
629 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
630 ++result;
631 break;
632 }
633 }
634 }
635 break;
636 case AUDIT_WATCH:
637 if (name) {
638 result = audit_watch_compare(rule->watch,
639 name->ino,
640 name->dev);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_DIR:
646 if (ctx) {
647 result = match_tree_refs(ctx, rule->tree);
648 if (f->op == Audit_not_equal)
649 result = !result;
650 }
651 break;
652 case AUDIT_LOGINUID:
653 result = audit_uid_comparator(audit_get_loginuid(tsk),
654 f->op, f->uid);
655 break;
656 case AUDIT_LOGINUID_SET:
657 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
658 break;
659 case AUDIT_SADDR_FAM:
660 if (ctx && ctx->sockaddr)
661 result = audit_comparator(ctx->sockaddr->ss_family,
662 f->op, f->val);
663 break;
664 case AUDIT_SUBJ_USER:
665 case AUDIT_SUBJ_ROLE:
666 case AUDIT_SUBJ_TYPE:
667 case AUDIT_SUBJ_SEN:
668 case AUDIT_SUBJ_CLR:
669 /* NOTE: this may return negative values indicating
670 a temporary error. We simply treat this as a
671 match for now to avoid losing information that
672 may be wanted. An error message will also be
673 logged upon error */
674 if (f->lsm_isset) {
675 if (need_sid) {
676 security_task_getsecid_subj(tsk, &blob);
677 need_sid = 0;
678 }
679 result = security_audit_rule_match(&blob,
680 f->type,
681 f->op,
682 f->lsm_rules);
683 }
684 break;
685 case AUDIT_OBJ_USER:
686 case AUDIT_OBJ_ROLE:
687 case AUDIT_OBJ_TYPE:
688 case AUDIT_OBJ_LEV_LOW:
689 case AUDIT_OBJ_LEV_HIGH:
690 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
691 also applies here */
692 if (f->lsm_isset) {
693 /* Find files that match */
694 if (name) {
695 result = security_audit_rule_match(
696 &blob,
697 f->type,
698 f->op,
699 f->lsm_rules);
700 } else if (ctx) {
701 list_for_each_entry(n, &ctx->names_list, list) {
702 if (security_audit_rule_match(
703 &blob,
704 f->type,
705 f->op,
706 f->lsm_rules)) {
707 ++result;
708 break;
709 }
710 }
711 }
712 /* Find ipc objects that match */
713 if (!ctx || ctx->type != AUDIT_IPC)
714 break;
715 if (security_audit_rule_match(&ctx->ipc.oblob,
716 f->type, f->op,
717 f->lsm_rules))
718 ++result;
719 }
720 break;
721 case AUDIT_ARG0:
722 case AUDIT_ARG1:
723 case AUDIT_ARG2:
724 case AUDIT_ARG3:
725 if (ctx)
726 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
727 break;
728 case AUDIT_FILTERKEY:
729 /* ignore this field for filtering */
730 result = 1;
731 break;
732 case AUDIT_PERM:
733 result = audit_match_perm(ctx, f->val);
734 if (f->op == Audit_not_equal)
735 result = !result;
736 break;
737 case AUDIT_FILETYPE:
738 result = audit_match_filetype(ctx, f->val);
739 if (f->op == Audit_not_equal)
740 result = !result;
741 break;
742 case AUDIT_FIELD_COMPARE:
743 result = audit_field_compare(tsk, cred, f, ctx, name);
744 break;
745 }
746 if (!result)
747 return 0;
748 }
749
750 if (ctx) {
751 if (rule->prio <= ctx->prio)
752 return 0;
753 if (rule->filterkey) {
754 kfree(ctx->filterkey);
755 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
756 }
757 ctx->prio = rule->prio;
758 }
759 switch (rule->action) {
760 case AUDIT_NEVER:
761 *state = AUDIT_STATE_DISABLED;
762 break;
763 case AUDIT_ALWAYS:
764 *state = AUDIT_STATE_RECORD;
765 break;
766 }
767 return 1;
768 }
769
770 /* At process creation time, we can determine if system-call auditing is
771 * completely disabled for this task. Since we only have the task
772 * structure at this point, we can only check uid and gid.
773 */
774 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
775 {
776 struct audit_entry *e;
777 enum audit_state state;
778
779 rcu_read_lock();
780 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
781 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
782 &state, true)) {
783 if (state == AUDIT_STATE_RECORD)
784 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
785 rcu_read_unlock();
786 return state;
787 }
788 }
789 rcu_read_unlock();
790 return AUDIT_STATE_BUILD;
791 }
792
793 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
794 {
795 int word, bit;
796
797 if (val > 0xffffffff)
798 return false;
799
800 word = AUDIT_WORD(val);
801 if (word >= AUDIT_BITMASK_SIZE)
802 return false;
803
804 bit = AUDIT_BIT(val);
805
806 return rule->mask[word] & bit;
807 }
808
809 /* At syscall exit time, this filter is called if the audit_state is
810 * not low enough that auditing cannot take place, but is also not
811 * high enough that we already know we have to write an audit record
812 * (i.e., the state is AUDIT_STATE_BUILD).
813 */
814 static void audit_filter_syscall(struct task_struct *tsk,
815 struct audit_context *ctx)
816 {
817 struct audit_entry *e;
818 enum audit_state state;
819
820 if (auditd_test_task(tsk))
821 return;
822
823 rcu_read_lock();
824 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
825 if (audit_in_mask(&e->rule, ctx->major) &&
826 audit_filter_rules(tsk, &e->rule, ctx, NULL,
827 &state, false)) {
828 rcu_read_unlock();
829 ctx->current_state = state;
830 return;
831 }
832 }
833 rcu_read_unlock();
834 return;
835 }
836
837 /*
838 * Given an audit_name check the inode hash table to see if they match.
839 * Called holding the rcu read lock to protect the use of audit_inode_hash
840 */
841 static int audit_filter_inode_name(struct task_struct *tsk,
842 struct audit_names *n,
843 struct audit_context *ctx) {
844 int h = audit_hash_ino((u32)n->ino);
845 struct list_head *list = &audit_inode_hash[h];
846 struct audit_entry *e;
847 enum audit_state state;
848
849 list_for_each_entry_rcu(e, list, list) {
850 if (audit_in_mask(&e->rule, ctx->major) &&
851 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
852 ctx->current_state = state;
853 return 1;
854 }
855 }
856 return 0;
857 }
858
859 /* At syscall exit time, this filter is called if any audit_names have been
860 * collected during syscall processing. We only check rules in sublists at hash
861 * buckets applicable to the inode numbers in audit_names.
862 * Regarding audit_state, same rules apply as for audit_filter_syscall().
863 */
864 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
865 {
866 struct audit_names *n;
867
868 if (auditd_test_task(tsk))
869 return;
870
871 rcu_read_lock();
872
873 list_for_each_entry(n, &ctx->names_list, list) {
874 if (audit_filter_inode_name(tsk, n, ctx))
875 break;
876 }
877 rcu_read_unlock();
878 }
879
880 static inline void audit_proctitle_free(struct audit_context *context)
881 {
882 kfree(context->proctitle.value);
883 context->proctitle.value = NULL;
884 context->proctitle.len = 0;
885 }
886
887 static inline void audit_free_module(struct audit_context *context)
888 {
889 if (context->type == AUDIT_KERN_MODULE) {
890 kfree(context->module.name);
891 context->module.name = NULL;
892 }
893 }
894 static inline void audit_free_names(struct audit_context *context)
895 {
896 struct audit_names *n, *next;
897
898 list_for_each_entry_safe(n, next, &context->names_list, list) {
899 list_del(&n->list);
900 if (n->name)
901 putname(n->name);
902 if (n->should_free)
903 kfree(n);
904 }
905 context->name_count = 0;
906 path_put(&context->pwd);
907 context->pwd.dentry = NULL;
908 context->pwd.mnt = NULL;
909 }
910
911 static inline void audit_free_aux(struct audit_context *context)
912 {
913 struct audit_aux_data *aux;
914
915 while ((aux = context->aux)) {
916 context->aux = aux->next;
917 kfree(aux);
918 }
919 while ((aux = context->aux_pids)) {
920 context->aux_pids = aux->next;
921 kfree(aux);
922 }
923 }
924
925 static inline struct audit_context *audit_alloc_context(enum audit_state state)
926 {
927 struct audit_context *context;
928
929 context = kzalloc(sizeof(*context), GFP_KERNEL);
930 if (!context)
931 return NULL;
932 context->state = state;
933 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
934 INIT_LIST_HEAD(&context->killed_trees);
935 INIT_LIST_HEAD(&context->names_list);
936 context->fds[0] = -1;
937 context->return_valid = AUDITSC_INVALID;
938 return context;
939 }
940
941 /**
942 * audit_alloc - allocate an audit context block for a task
943 * @tsk: task
944 *
945 * Filter on the task information and allocate a per-task audit context
946 * if necessary. Doing so turns on system call auditing for the
947 * specified task. This is called from copy_process, so no lock is
948 * needed.
949 */
950 int audit_alloc(struct task_struct *tsk)
951 {
952 struct audit_context *context;
953 enum audit_state state;
954 char *key = NULL;
955
956 if (likely(!audit_ever_enabled))
957 return 0; /* Return if not auditing. */
958
959 state = audit_filter_task(tsk, &key);
960 if (!lsm_multiple_contexts() && state == AUDIT_STATE_DISABLED) {
961 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
962 return 0;
963 }
964 if (state == AUDIT_STATE_DISABLED)
965 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
966
967 if (!(context = audit_alloc_context(state))) {
968 kfree(key);
969 audit_log_lost("out of memory in audit_alloc");
970 return -ENOMEM;
971 }
972 context->filterkey = key;
973
974 audit_set_context(tsk, context);
975 set_task_syscall_work(tsk, SYSCALL_AUDIT);
976 return 0;
977 }
978
979 static inline void audit_free_context(struct audit_context *context)
980 {
981 audit_free_module(context);
982 audit_free_names(context);
983 unroll_tree_refs(context, NULL, 0);
984 free_tree_refs(context);
985 audit_free_aux(context);
986 kfree(context->filterkey);
987 kfree(context->sockaddr);
988 audit_proctitle_free(context);
989 kfree(context);
990 }
991
992 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
993 kuid_t auid, kuid_t uid,
994 unsigned int sessionid,
995 struct lsmblob *blob, char *comm)
996 {
997 struct audit_buffer *ab;
998 int rc = 0;
999
1000 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1001 if (!ab)
1002 return rc;
1003
1004 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1005 from_kuid(&init_user_ns, auid),
1006 from_kuid(&init_user_ns, uid), sessionid);
1007 rc = audit_log_object_context(ab, blob);
1008 audit_log_format(ab, " ocomm=");
1009 audit_log_untrustedstring(ab, comm);
1010 audit_log_end(ab);
1011
1012 return rc;
1013 }
1014
1015 static void audit_log_execve_info(struct audit_context *context,
1016 struct audit_buffer **ab)
1017 {
1018 long len_max;
1019 long len_rem;
1020 long len_full;
1021 long len_buf;
1022 long len_abuf = 0;
1023 long len_tmp;
1024 bool require_data;
1025 bool encode;
1026 unsigned int iter;
1027 unsigned int arg;
1028 char *buf_head;
1029 char *buf;
1030 const char __user *p = (const char __user *)current->mm->arg_start;
1031
1032 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1033 * data we put in the audit record for this argument (see the
1034 * code below) ... at this point in time 96 is plenty */
1035 char abuf[96];
1036
1037 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1038 * current value of 7500 is not as important as the fact that it
1039 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1040 * room if we go over a little bit in the logging below */
1041 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1042 len_max = MAX_EXECVE_AUDIT_LEN;
1043
1044 /* scratch buffer to hold the userspace args */
1045 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1046 if (!buf_head) {
1047 audit_panic("out of memory for argv string");
1048 return;
1049 }
1050 buf = buf_head;
1051
1052 audit_log_format(*ab, "argc=%d", context->execve.argc);
1053
1054 len_rem = len_max;
1055 len_buf = 0;
1056 len_full = 0;
1057 require_data = true;
1058 encode = false;
1059 iter = 0;
1060 arg = 0;
1061 do {
1062 /* NOTE: we don't ever want to trust this value for anything
1063 * serious, but the audit record format insists we
1064 * provide an argument length for really long arguments,
1065 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1066 * to use strncpy_from_user() to obtain this value for
1067 * recording in the log, although we don't use it
1068 * anywhere here to avoid a double-fetch problem */
1069 if (len_full == 0)
1070 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1071
1072 /* read more data from userspace */
1073 if (require_data) {
1074 /* can we make more room in the buffer? */
1075 if (buf != buf_head) {
1076 memmove(buf_head, buf, len_buf);
1077 buf = buf_head;
1078 }
1079
1080 /* fetch as much as we can of the argument */
1081 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1082 len_max - len_buf);
1083 if (len_tmp == -EFAULT) {
1084 /* unable to copy from userspace */
1085 send_sig(SIGKILL, current, 0);
1086 goto out;
1087 } else if (len_tmp == (len_max - len_buf)) {
1088 /* buffer is not large enough */
1089 require_data = true;
1090 /* NOTE: if we are going to span multiple
1091 * buffers force the encoding so we stand
1092 * a chance at a sane len_full value and
1093 * consistent record encoding */
1094 encode = true;
1095 len_full = len_full * 2;
1096 p += len_tmp;
1097 } else {
1098 require_data = false;
1099 if (!encode)
1100 encode = audit_string_contains_control(
1101 buf, len_tmp);
1102 /* try to use a trusted value for len_full */
1103 if (len_full < len_max)
1104 len_full = (encode ?
1105 len_tmp * 2 : len_tmp);
1106 p += len_tmp + 1;
1107 }
1108 len_buf += len_tmp;
1109 buf_head[len_buf] = '\0';
1110
1111 /* length of the buffer in the audit record? */
1112 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1113 }
1114
1115 /* write as much as we can to the audit log */
1116 if (len_buf >= 0) {
1117 /* NOTE: some magic numbers here - basically if we
1118 * can't fit a reasonable amount of data into the
1119 * existing audit buffer, flush it and start with
1120 * a new buffer */
1121 if ((sizeof(abuf) + 8) > len_rem) {
1122 len_rem = len_max;
1123 audit_log_end(*ab);
1124 *ab = audit_log_start(context,
1125 GFP_KERNEL, AUDIT_EXECVE);
1126 if (!*ab)
1127 goto out;
1128 }
1129
1130 /* create the non-arg portion of the arg record */
1131 len_tmp = 0;
1132 if (require_data || (iter > 0) ||
1133 ((len_abuf + sizeof(abuf)) > len_rem)) {
1134 if (iter == 0) {
1135 len_tmp += snprintf(&abuf[len_tmp],
1136 sizeof(abuf) - len_tmp,
1137 " a%d_len=%lu",
1138 arg, len_full);
1139 }
1140 len_tmp += snprintf(&abuf[len_tmp],
1141 sizeof(abuf) - len_tmp,
1142 " a%d[%d]=", arg, iter++);
1143 } else
1144 len_tmp += snprintf(&abuf[len_tmp],
1145 sizeof(abuf) - len_tmp,
1146 " a%d=", arg);
1147 WARN_ON(len_tmp >= sizeof(abuf));
1148 abuf[sizeof(abuf) - 1] = '\0';
1149
1150 /* log the arg in the audit record */
1151 audit_log_format(*ab, "%s", abuf);
1152 len_rem -= len_tmp;
1153 len_tmp = len_buf;
1154 if (encode) {
1155 if (len_abuf > len_rem)
1156 len_tmp = len_rem / 2; /* encoding */
1157 audit_log_n_hex(*ab, buf, len_tmp);
1158 len_rem -= len_tmp * 2;
1159 len_abuf -= len_tmp * 2;
1160 } else {
1161 if (len_abuf > len_rem)
1162 len_tmp = len_rem - 2; /* quotes */
1163 audit_log_n_string(*ab, buf, len_tmp);
1164 len_rem -= len_tmp + 2;
1165 /* don't subtract the "2" because we still need
1166 * to add quotes to the remaining string */
1167 len_abuf -= len_tmp;
1168 }
1169 len_buf -= len_tmp;
1170 buf += len_tmp;
1171 }
1172
1173 /* ready to move to the next argument? */
1174 if ((len_buf == 0) && !require_data) {
1175 arg++;
1176 iter = 0;
1177 len_full = 0;
1178 require_data = true;
1179 encode = false;
1180 }
1181 } while (arg < context->execve.argc);
1182
1183 /* NOTE: the caller handles the final audit_log_end() call */
1184
1185 out:
1186 kfree(buf_head);
1187 }
1188
1189 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1190 kernel_cap_t *cap)
1191 {
1192 int i;
1193
1194 if (cap_isclear(*cap)) {
1195 audit_log_format(ab, " %s=0", prefix);
1196 return;
1197 }
1198 audit_log_format(ab, " %s=", prefix);
1199 CAP_FOR_EACH_U32(i)
1200 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1201 }
1202
1203 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1204 {
1205 if (name->fcap_ver == -1) {
1206 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1207 return;
1208 }
1209 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1210 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1211 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1212 name->fcap.fE, name->fcap_ver,
1213 from_kuid(&init_user_ns, name->fcap.rootid));
1214 }
1215
1216 static void show_special(struct audit_context *context, int *call_panic)
1217 {
1218 struct audit_buffer *ab;
1219 int i;
1220
1221 ab = audit_log_start(context, GFP_KERNEL, context->type);
1222 if (!ab)
1223 return;
1224
1225 switch (context->type) {
1226 case AUDIT_SOCKETCALL: {
1227 int nargs = context->socketcall.nargs;
1228
1229 audit_log_format(ab, "nargs=%d", nargs);
1230 for (i = 0; i < nargs; i++)
1231 audit_log_format(ab, " a%d=%lx", i,
1232 context->socketcall.args[i]);
1233 break; }
1234 case AUDIT_IPC: {
1235 struct lsmblob *oblob = &context->ipc.oblob;
1236
1237 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238 from_kuid(&init_user_ns, context->ipc.uid),
1239 from_kgid(&init_user_ns, context->ipc.gid),
1240 context->ipc.mode);
1241 if (audit_log_object_context(ab, oblob))
1242 *call_panic = 1;
1243 if (context->ipc.has_perm) {
1244 audit_log_end(ab);
1245 ab = audit_log_start(context, GFP_KERNEL,
1246 AUDIT_IPC_SET_PERM);
1247 if (unlikely(!ab))
1248 return;
1249 audit_log_format(ab,
1250 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1251 context->ipc.qbytes,
1252 context->ipc.perm_uid,
1253 context->ipc.perm_gid,
1254 context->ipc.perm_mode);
1255 }
1256 break; }
1257 case AUDIT_MQ_OPEN:
1258 audit_log_format(ab,
1259 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1260 "mq_msgsize=%ld mq_curmsgs=%ld",
1261 context->mq_open.oflag, context->mq_open.mode,
1262 context->mq_open.attr.mq_flags,
1263 context->mq_open.attr.mq_maxmsg,
1264 context->mq_open.attr.mq_msgsize,
1265 context->mq_open.attr.mq_curmsgs);
1266 break;
1267 case AUDIT_MQ_SENDRECV:
1268 audit_log_format(ab,
1269 "mqdes=%d msg_len=%zd msg_prio=%u "
1270 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1271 context->mq_sendrecv.mqdes,
1272 context->mq_sendrecv.msg_len,
1273 context->mq_sendrecv.msg_prio,
1274 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1275 context->mq_sendrecv.abs_timeout.tv_nsec);
1276 break;
1277 case AUDIT_MQ_NOTIFY:
1278 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1279 context->mq_notify.mqdes,
1280 context->mq_notify.sigev_signo);
1281 break;
1282 case AUDIT_MQ_GETSETATTR: {
1283 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1284
1285 audit_log_format(ab,
1286 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1287 "mq_curmsgs=%ld ",
1288 context->mq_getsetattr.mqdes,
1289 attr->mq_flags, attr->mq_maxmsg,
1290 attr->mq_msgsize, attr->mq_curmsgs);
1291 break; }
1292 case AUDIT_CAPSET:
1293 audit_log_format(ab, "pid=%d", context->capset.pid);
1294 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1295 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1296 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1297 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1298 break;
1299 case AUDIT_MMAP:
1300 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1301 context->mmap.flags);
1302 break;
1303 case AUDIT_EXECVE:
1304 audit_log_execve_info(context, &ab);
1305 break;
1306 case AUDIT_KERN_MODULE:
1307 audit_log_format(ab, "name=");
1308 if (context->module.name) {
1309 audit_log_untrustedstring(ab, context->module.name);
1310 } else
1311 audit_log_format(ab, "(null)");
1312
1313 break;
1314 }
1315 audit_log_end(ab);
1316 }
1317
1318 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1319 {
1320 char *end = proctitle + len - 1;
1321
1322 while (end > proctitle && !isprint(*end))
1323 end--;
1324
1325 /* catch the case where proctitle is only 1 non-print character */
1326 len = end - proctitle + 1;
1327 len -= isprint(proctitle[len-1]) == 0;
1328 return len;
1329 }
1330
1331 /*
1332 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1333 * @context: audit_context for the task
1334 * @n: audit_names structure with reportable details
1335 * @path: optional path to report instead of audit_names->name
1336 * @record_num: record number to report when handling a list of names
1337 * @call_panic: optional pointer to int that will be updated if secid fails
1338 */
1339 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1340 const struct path *path, int record_num, int *call_panic)
1341 {
1342 struct audit_buffer *ab;
1343
1344 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1345 if (!ab)
1346 return;
1347
1348 audit_log_format(ab, "item=%d", record_num);
1349
1350 if (path)
1351 audit_log_d_path(ab, " name=", path);
1352 else if (n->name) {
1353 switch (n->name_len) {
1354 case AUDIT_NAME_FULL:
1355 /* log the full path */
1356 audit_log_format(ab, " name=");
1357 audit_log_untrustedstring(ab, n->name->name);
1358 break;
1359 case 0:
1360 /* name was specified as a relative path and the
1361 * directory component is the cwd
1362 */
1363 if (context->pwd.dentry && context->pwd.mnt)
1364 audit_log_d_path(ab, " name=", &context->pwd);
1365 else
1366 audit_log_format(ab, " name=(null)");
1367 break;
1368 default:
1369 /* log the name's directory component */
1370 audit_log_format(ab, " name=");
1371 audit_log_n_untrustedstring(ab, n->name->name,
1372 n->name_len);
1373 }
1374 } else
1375 audit_log_format(ab, " name=(null)");
1376
1377 if (n->ino != AUDIT_INO_UNSET)
1378 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1379 n->ino,
1380 MAJOR(n->dev),
1381 MINOR(n->dev),
1382 n->mode,
1383 from_kuid(&init_user_ns, n->uid),
1384 from_kgid(&init_user_ns, n->gid),
1385 MAJOR(n->rdev),
1386 MINOR(n->rdev));
1387 if (audit_log_object_context(ab, &n->oblob) && call_panic)
1388 *call_panic = 2;
1389
1390 /* log the audit_names record type */
1391 switch (n->type) {
1392 case AUDIT_TYPE_NORMAL:
1393 audit_log_format(ab, " nametype=NORMAL");
1394 break;
1395 case AUDIT_TYPE_PARENT:
1396 audit_log_format(ab, " nametype=PARENT");
1397 break;
1398 case AUDIT_TYPE_CHILD_DELETE:
1399 audit_log_format(ab, " nametype=DELETE");
1400 break;
1401 case AUDIT_TYPE_CHILD_CREATE:
1402 audit_log_format(ab, " nametype=CREATE");
1403 break;
1404 default:
1405 audit_log_format(ab, " nametype=UNKNOWN");
1406 break;
1407 }
1408
1409 audit_log_fcaps(ab, n);
1410 audit_log_end(ab);
1411 }
1412
1413 static void audit_log_proctitle(void)
1414 {
1415 int res;
1416 char *buf;
1417 char *msg = "(null)";
1418 int len = strlen(msg);
1419 struct audit_context *context = audit_context();
1420 struct audit_buffer *ab;
1421
1422 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1423 if (!ab)
1424 return; /* audit_panic or being filtered */
1425
1426 audit_log_format(ab, "proctitle=");
1427
1428 /* Not cached */
1429 if (!context->proctitle.value) {
1430 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1431 if (!buf)
1432 goto out;
1433 /* Historically called this from procfs naming */
1434 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1435 if (res == 0) {
1436 kfree(buf);
1437 goto out;
1438 }
1439 res = audit_proctitle_rtrim(buf, res);
1440 if (res == 0) {
1441 kfree(buf);
1442 goto out;
1443 }
1444 context->proctitle.value = buf;
1445 context->proctitle.len = res;
1446 }
1447 msg = context->proctitle.value;
1448 len = context->proctitle.len;
1449 out:
1450 audit_log_n_untrustedstring(ab, msg, len);
1451 audit_log_end(ab);
1452 }
1453
1454 void audit_log_lsm(struct lsmblob *blob, bool exiting)
1455 {
1456 struct audit_context *context = audit_context();
1457 struct lsmcontext lsmdata;
1458 struct audit_buffer *ab;
1459 struct lsmblob localblob;
1460 bool sep = false;
1461 int error;
1462 int i;
1463
1464 if (!lsm_multiple_contexts())
1465 return;
1466
1467 if (context && context->in_syscall && !exiting)
1468 return;
1469
1470 ab = audit_log_start(context, GFP_ATOMIC, AUDIT_MAC_TASK_CONTEXTS);
1471 if (!ab)
1472 return; /* audit_panic or being filtered */
1473
1474 if (blob == NULL) {
1475 security_task_getsecid_subj(current, &localblob);
1476 if (!lsmblob_is_set(&localblob))
1477 return;
1478 blob = &localblob;
1479 }
1480
1481 for (i = 0; i < LSMBLOB_ENTRIES; i++) {
1482 if (blob->secid[i] == 0)
1483 continue;
1484 error = security_secid_to_secctx(blob, &lsmdata, i);
1485 if (error && error != -EINVAL) {
1486 audit_panic("error in audit_log_lsm");
1487 return;
1488 }
1489
1490 audit_log_format(ab, "%ssubj_%s=%s", sep ? " " : "",
1491 security_lsm_slot_name(i), lsmdata.context);
1492 sep = true;
1493
1494 security_release_secctx(&lsmdata);
1495 }
1496
1497 audit_log_end(ab);
1498 }
1499
1500 static void audit_log_exit(void)
1501 {
1502 int i, call_panic = 0;
1503 struct audit_context *context = audit_context();
1504 struct audit_buffer *ab;
1505 struct audit_aux_data *aux;
1506 struct audit_names *n;
1507
1508 context->personality = current->personality;
1509
1510 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1511 if (!ab)
1512 return; /* audit_panic has been called */
1513 audit_log_format(ab, "arch=%x syscall=%d",
1514 context->arch, context->major);
1515 if (context->personality != PER_LINUX)
1516 audit_log_format(ab, " per=%lx", context->personality);
1517 if (context->return_valid != AUDITSC_INVALID)
1518 audit_log_format(ab, " success=%s exit=%ld",
1519 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1520 context->return_code);
1521
1522 audit_log_format(ab,
1523 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1524 context->argv[0],
1525 context->argv[1],
1526 context->argv[2],
1527 context->argv[3],
1528 context->name_count);
1529
1530 audit_log_task_info(ab);
1531 audit_log_key(ab, context->filterkey);
1532 audit_log_end(ab);
1533
1534 for (aux = context->aux; aux; aux = aux->next) {
1535
1536 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1537 if (!ab)
1538 continue; /* audit_panic has been called */
1539
1540 switch (aux->type) {
1541
1542 case AUDIT_BPRM_FCAPS: {
1543 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1544
1545 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1546 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1547 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1548 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1549 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1550 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1551 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1552 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1553 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1554 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1555 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1556 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1557 audit_log_format(ab, " frootid=%d",
1558 from_kuid(&init_user_ns,
1559 axs->fcap.rootid));
1560 break; }
1561
1562 }
1563 audit_log_end(ab);
1564 }
1565
1566 if (context->type)
1567 show_special(context, &call_panic);
1568
1569 if (context->fds[0] >= 0) {
1570 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1571 if (ab) {
1572 audit_log_format(ab, "fd0=%d fd1=%d",
1573 context->fds[0], context->fds[1]);
1574 audit_log_end(ab);
1575 }
1576 }
1577
1578 if (context->sockaddr_len) {
1579 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1580 if (ab) {
1581 audit_log_format(ab, "saddr=");
1582 audit_log_n_hex(ab, (void *)context->sockaddr,
1583 context->sockaddr_len);
1584 audit_log_end(ab);
1585 }
1586 }
1587
1588 for (aux = context->aux_pids; aux; aux = aux->next) {
1589 struct audit_aux_data_pids *axs = (void *)aux;
1590
1591 for (i = 0; i < axs->pid_count; i++)
1592 if (audit_log_pid_context(context, axs->target_pid[i],
1593 axs->target_auid[i],
1594 axs->target_uid[i],
1595 axs->target_sessionid[i],
1596 &axs->target_lsm[i],
1597 axs->target_comm[i]))
1598 call_panic = 1;
1599 }
1600
1601 if (context->target_pid &&
1602 audit_log_pid_context(context, context->target_pid,
1603 context->target_auid, context->target_uid,
1604 context->target_sessionid,
1605 &context->target_lsm, context->target_comm))
1606 call_panic = 1;
1607
1608 if (context->pwd.dentry && context->pwd.mnt) {
1609 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1610 if (ab) {
1611 audit_log_d_path(ab, "cwd=", &context->pwd);
1612 audit_log_end(ab);
1613 }
1614 }
1615
1616 i = 0;
1617 list_for_each_entry(n, &context->names_list, list) {
1618 if (n->hidden)
1619 continue;
1620 audit_log_name(context, n, NULL, i++, &call_panic);
1621 }
1622
1623 audit_log_proctitle();
1624 audit_log_lsm(NULL, true);
1625
1626 /* Send end of event record to help user space know we are finished */
1627 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1628 if (ab)
1629 audit_log_end(ab);
1630 if (call_panic)
1631 audit_panic("error converting sid to string");
1632 }
1633
1634 /**
1635 * __audit_free - free a per-task audit context
1636 * @tsk: task whose audit context block to free
1637 *
1638 * Called from copy_process and do_exit
1639 */
1640 void __audit_free(struct task_struct *tsk)
1641 {
1642 struct audit_context *context = tsk->audit_context;
1643
1644 if (!context)
1645 return;
1646
1647 if (!list_empty(&context->killed_trees))
1648 audit_kill_trees(context);
1649
1650 /* We are called either by do_exit() or the fork() error handling code;
1651 * in the former case tsk == current and in the latter tsk is a
1652 * random task_struct that doesn't doesn't have any meaningful data we
1653 * need to log via audit_log_exit().
1654 */
1655 if (tsk == current && !context->dummy && context->in_syscall) {
1656 context->return_valid = AUDITSC_INVALID;
1657 context->return_code = 0;
1658
1659 audit_filter_syscall(tsk, context);
1660 audit_filter_inodes(tsk, context);
1661 if (context->current_state == AUDIT_STATE_RECORD)
1662 audit_log_exit();
1663 }
1664
1665 audit_set_context(tsk, NULL);
1666 audit_free_context(context);
1667 }
1668
1669 /**
1670 * __audit_syscall_entry - fill in an audit record at syscall entry
1671 * @major: major syscall type (function)
1672 * @a1: additional syscall register 1
1673 * @a2: additional syscall register 2
1674 * @a3: additional syscall register 3
1675 * @a4: additional syscall register 4
1676 *
1677 * Fill in audit context at syscall entry. This only happens if the
1678 * audit context was created when the task was created and the state or
1679 * filters demand the audit context be built. If the state from the
1680 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1681 * then the record will be written at syscall exit time (otherwise, it
1682 * will only be written if another part of the kernel requests that it
1683 * be written).
1684 */
1685 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1686 unsigned long a3, unsigned long a4)
1687 {
1688 struct audit_context *context = audit_context();
1689 enum audit_state state;
1690
1691 if (!audit_enabled || !context)
1692 return;
1693
1694 BUG_ON(context->in_syscall || context->name_count);
1695
1696 state = context->state;
1697 if (state == AUDIT_STATE_DISABLED)
1698 return;
1699
1700 context->dummy = !audit_n_rules;
1701 if (!context->dummy && state == AUDIT_STATE_BUILD) {
1702 context->prio = 0;
1703 if (auditd_test_task(current))
1704 return;
1705 }
1706
1707 context->arch = syscall_get_arch(current);
1708 context->major = major;
1709 context->argv[0] = a1;
1710 context->argv[1] = a2;
1711 context->argv[2] = a3;
1712 context->argv[3] = a4;
1713 context->serial = 0;
1714 context->in_syscall = 1;
1715 context->current_state = state;
1716 context->ppid = 0;
1717 ktime_get_coarse_real_ts64(&context->ctime);
1718 }
1719
1720 /**
1721 * __audit_syscall_exit - deallocate audit context after a system call
1722 * @success: success value of the syscall
1723 * @return_code: return value of the syscall
1724 *
1725 * Tear down after system call. If the audit context has been marked as
1726 * auditable (either because of the AUDIT_STATE_RECORD state from
1727 * filtering, or because some other part of the kernel wrote an audit
1728 * message), then write out the syscall information. In call cases,
1729 * free the names stored from getname().
1730 */
1731 void __audit_syscall_exit(int success, long return_code)
1732 {
1733 struct audit_context *context;
1734
1735 context = audit_context();
1736 if (!context)
1737 return;
1738
1739 if (!list_empty(&context->killed_trees))
1740 audit_kill_trees(context);
1741
1742 if (!context->dummy && context->in_syscall) {
1743 if (success)
1744 context->return_valid = AUDITSC_SUCCESS;
1745 else
1746 context->return_valid = AUDITSC_FAILURE;
1747
1748 /*
1749 * we need to fix up the return code in the audit logs if the
1750 * actual return codes are later going to be fixed up by the
1751 * arch specific signal handlers
1752 *
1753 * This is actually a test for:
1754 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1755 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1756 *
1757 * but is faster than a bunch of ||
1758 */
1759 if (unlikely(return_code <= -ERESTARTSYS) &&
1760 (return_code >= -ERESTART_RESTARTBLOCK) &&
1761 (return_code != -ENOIOCTLCMD))
1762 context->return_code = -EINTR;
1763 else
1764 context->return_code = return_code;
1765
1766 audit_filter_syscall(current, context);
1767 audit_filter_inodes(current, context);
1768 if (context->current_state == AUDIT_STATE_RECORD)
1769 audit_log_exit();
1770 }
1771
1772 context->in_syscall = 0;
1773 context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1774
1775 audit_free_module(context);
1776 audit_free_names(context);
1777 unroll_tree_refs(context, NULL, 0);
1778 audit_free_aux(context);
1779 context->aux = NULL;
1780 context->aux_pids = NULL;
1781 context->target_pid = 0;
1782 lsmblob_init(&context->target_lsm, 0);
1783 context->sockaddr_len = 0;
1784 context->type = 0;
1785 context->fds[0] = -1;
1786 if (context->state != AUDIT_STATE_RECORD) {
1787 kfree(context->filterkey);
1788 context->filterkey = NULL;
1789 }
1790 }
1791
1792 static inline void handle_one(const struct inode *inode)
1793 {
1794 struct audit_context *context;
1795 struct audit_tree_refs *p;
1796 struct audit_chunk *chunk;
1797 int count;
1798
1799 if (likely(!inode->i_fsnotify_marks))
1800 return;
1801 context = audit_context();
1802 p = context->trees;
1803 count = context->tree_count;
1804 rcu_read_lock();
1805 chunk = audit_tree_lookup(inode);
1806 rcu_read_unlock();
1807 if (!chunk)
1808 return;
1809 if (likely(put_tree_ref(context, chunk)))
1810 return;
1811 if (unlikely(!grow_tree_refs(context))) {
1812 pr_warn("out of memory, audit has lost a tree reference\n");
1813 audit_set_auditable(context);
1814 audit_put_chunk(chunk);
1815 unroll_tree_refs(context, p, count);
1816 return;
1817 }
1818 put_tree_ref(context, chunk);
1819 }
1820
1821 static void handle_path(const struct dentry *dentry)
1822 {
1823 struct audit_context *context;
1824 struct audit_tree_refs *p;
1825 const struct dentry *d, *parent;
1826 struct audit_chunk *drop;
1827 unsigned long seq;
1828 int count;
1829
1830 context = audit_context();
1831 p = context->trees;
1832 count = context->tree_count;
1833 retry:
1834 drop = NULL;
1835 d = dentry;
1836 rcu_read_lock();
1837 seq = read_seqbegin(&rename_lock);
1838 for(;;) {
1839 struct inode *inode = d_backing_inode(d);
1840
1841 if (inode && unlikely(inode->i_fsnotify_marks)) {
1842 struct audit_chunk *chunk;
1843
1844 chunk = audit_tree_lookup(inode);
1845 if (chunk) {
1846 if (unlikely(!put_tree_ref(context, chunk))) {
1847 drop = chunk;
1848 break;
1849 }
1850 }
1851 }
1852 parent = d->d_parent;
1853 if (parent == d)
1854 break;
1855 d = parent;
1856 }
1857 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1858 rcu_read_unlock();
1859 if (!drop) {
1860 /* just a race with rename */
1861 unroll_tree_refs(context, p, count);
1862 goto retry;
1863 }
1864 audit_put_chunk(drop);
1865 if (grow_tree_refs(context)) {
1866 /* OK, got more space */
1867 unroll_tree_refs(context, p, count);
1868 goto retry;
1869 }
1870 /* too bad */
1871 pr_warn("out of memory, audit has lost a tree reference\n");
1872 unroll_tree_refs(context, p, count);
1873 audit_set_auditable(context);
1874 return;
1875 }
1876 rcu_read_unlock();
1877 }
1878
1879 static struct audit_names *audit_alloc_name(struct audit_context *context,
1880 unsigned char type)
1881 {
1882 struct audit_names *aname;
1883
1884 if (context->name_count < AUDIT_NAMES) {
1885 aname = &context->preallocated_names[context->name_count];
1886 memset(aname, 0, sizeof(*aname));
1887 } else {
1888 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1889 if (!aname)
1890 return NULL;
1891 aname->should_free = true;
1892 }
1893
1894 aname->ino = AUDIT_INO_UNSET;
1895 aname->type = type;
1896 list_add_tail(&aname->list, &context->names_list);
1897
1898 context->name_count++;
1899 if (!context->pwd.dentry)
1900 get_fs_pwd(current->fs, &context->pwd);
1901 return aname;
1902 }
1903
1904 /**
1905 * __audit_reusename - fill out filename with info from existing entry
1906 * @uptr: userland ptr to pathname
1907 *
1908 * Search the audit_names list for the current audit context. If there is an
1909 * existing entry with a matching "uptr" then return the filename
1910 * associated with that audit_name. If not, return NULL.
1911 */
1912 struct filename *
1913 __audit_reusename(const __user char *uptr)
1914 {
1915 struct audit_context *context = audit_context();
1916 struct audit_names *n;
1917
1918 list_for_each_entry(n, &context->names_list, list) {
1919 if (!n->name)
1920 continue;
1921 if (n->name->uptr == uptr) {
1922 n->name->refcnt++;
1923 return n->name;
1924 }
1925 }
1926 return NULL;
1927 }
1928
1929 /**
1930 * __audit_getname - add a name to the list
1931 * @name: name to add
1932 *
1933 * Add a name to the list of audit names for this context.
1934 * Called from fs/namei.c:getname().
1935 */
1936 void __audit_getname(struct filename *name)
1937 {
1938 struct audit_context *context = audit_context();
1939 struct audit_names *n;
1940
1941 if (!context->in_syscall)
1942 return;
1943
1944 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1945 if (!n)
1946 return;
1947
1948 n->name = name;
1949 n->name_len = AUDIT_NAME_FULL;
1950 name->aname = n;
1951 name->refcnt++;
1952 }
1953
1954 static inline int audit_copy_fcaps(struct audit_names *name,
1955 const struct dentry *dentry)
1956 {
1957 struct cpu_vfs_cap_data caps;
1958 int rc;
1959
1960 if (!dentry)
1961 return 0;
1962
1963 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1964 if (rc)
1965 return rc;
1966
1967 name->fcap.permitted = caps.permitted;
1968 name->fcap.inheritable = caps.inheritable;
1969 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1970 name->fcap.rootid = caps.rootid;
1971 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1972 VFS_CAP_REVISION_SHIFT;
1973
1974 return 0;
1975 }
1976
1977 /* Copy inode data into an audit_names. */
1978 static void audit_copy_inode(struct audit_names *name,
1979 const struct dentry *dentry,
1980 struct inode *inode, unsigned int flags)
1981 {
1982 name->ino = inode->i_ino;
1983 name->dev = inode->i_sb->s_dev;
1984 name->mode = inode->i_mode;
1985 name->uid = inode->i_uid;
1986 name->gid = inode->i_gid;
1987 name->rdev = inode->i_rdev;
1988 security_inode_getsecid(inode, &name->oblob);
1989 if (flags & AUDIT_INODE_NOEVAL) {
1990 name->fcap_ver = -1;
1991 return;
1992 }
1993 audit_copy_fcaps(name, dentry);
1994 }
1995
1996 /**
1997 * __audit_inode - store the inode and device from a lookup
1998 * @name: name being audited
1999 * @dentry: dentry being audited
2000 * @flags: attributes for this particular entry
2001 */
2002 void __audit_inode(struct filename *name, const struct dentry *dentry,
2003 unsigned int flags)
2004 {
2005 struct audit_context *context = audit_context();
2006 struct inode *inode = d_backing_inode(dentry);
2007 struct audit_names *n;
2008 bool parent = flags & AUDIT_INODE_PARENT;
2009 struct audit_entry *e;
2010 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2011 int i;
2012
2013 if (!context->in_syscall)
2014 return;
2015
2016 rcu_read_lock();
2017 list_for_each_entry_rcu(e, list, list) {
2018 for (i = 0; i < e->rule.field_count; i++) {
2019 struct audit_field *f = &e->rule.fields[i];
2020
2021 if (f->type == AUDIT_FSTYPE
2022 && audit_comparator(inode->i_sb->s_magic,
2023 f->op, f->val)
2024 && e->rule.action == AUDIT_NEVER) {
2025 rcu_read_unlock();
2026 return;
2027 }
2028 }
2029 }
2030 rcu_read_unlock();
2031
2032 if (!name)
2033 goto out_alloc;
2034
2035 /*
2036 * If we have a pointer to an audit_names entry already, then we can
2037 * just use it directly if the type is correct.
2038 */
2039 n = name->aname;
2040 if (n) {
2041 if (parent) {
2042 if (n->type == AUDIT_TYPE_PARENT ||
2043 n->type == AUDIT_TYPE_UNKNOWN)
2044 goto out;
2045 } else {
2046 if (n->type != AUDIT_TYPE_PARENT)
2047 goto out;
2048 }
2049 }
2050
2051 list_for_each_entry_reverse(n, &context->names_list, list) {
2052 if (n->ino) {
2053 /* valid inode number, use that for the comparison */
2054 if (n->ino != inode->i_ino ||
2055 n->dev != inode->i_sb->s_dev)
2056 continue;
2057 } else if (n->name) {
2058 /* inode number has not been set, check the name */
2059 if (strcmp(n->name->name, name->name))
2060 continue;
2061 } else
2062 /* no inode and no name (?!) ... this is odd ... */
2063 continue;
2064
2065 /* match the correct record type */
2066 if (parent) {
2067 if (n->type == AUDIT_TYPE_PARENT ||
2068 n->type == AUDIT_TYPE_UNKNOWN)
2069 goto out;
2070 } else {
2071 if (n->type != AUDIT_TYPE_PARENT)
2072 goto out;
2073 }
2074 }
2075
2076 out_alloc:
2077 /* unable to find an entry with both a matching name and type */
2078 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2079 if (!n)
2080 return;
2081 if (name) {
2082 n->name = name;
2083 name->refcnt++;
2084 }
2085
2086 out:
2087 if (parent) {
2088 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2089 n->type = AUDIT_TYPE_PARENT;
2090 if (flags & AUDIT_INODE_HIDDEN)
2091 n->hidden = true;
2092 } else {
2093 n->name_len = AUDIT_NAME_FULL;
2094 n->type = AUDIT_TYPE_NORMAL;
2095 }
2096 handle_path(dentry);
2097 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2098 }
2099
2100 void __audit_file(const struct file *file)
2101 {
2102 __audit_inode(NULL, file->f_path.dentry, 0);
2103 }
2104
2105 /**
2106 * __audit_inode_child - collect inode info for created/removed objects
2107 * @parent: inode of dentry parent
2108 * @dentry: dentry being audited
2109 * @type: AUDIT_TYPE_* value that we're looking for
2110 *
2111 * For syscalls that create or remove filesystem objects, audit_inode
2112 * can only collect information for the filesystem object's parent.
2113 * This call updates the audit context with the child's information.
2114 * Syscalls that create a new filesystem object must be hooked after
2115 * the object is created. Syscalls that remove a filesystem object
2116 * must be hooked prior, in order to capture the target inode during
2117 * unsuccessful attempts.
2118 */
2119 void __audit_inode_child(struct inode *parent,
2120 const struct dentry *dentry,
2121 const unsigned char type)
2122 {
2123 struct audit_context *context = audit_context();
2124 struct inode *inode = d_backing_inode(dentry);
2125 const struct qstr *dname = &dentry->d_name;
2126 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2127 struct audit_entry *e;
2128 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2129 int i;
2130
2131 if (!context->in_syscall)
2132 return;
2133
2134 rcu_read_lock();
2135 list_for_each_entry_rcu(e, list, list) {
2136 for (i = 0; i < e->rule.field_count; i++) {
2137 struct audit_field *f = &e->rule.fields[i];
2138
2139 if (f->type == AUDIT_FSTYPE
2140 && audit_comparator(parent->i_sb->s_magic,
2141 f->op, f->val)
2142 && e->rule.action == AUDIT_NEVER) {
2143 rcu_read_unlock();
2144 return;
2145 }
2146 }
2147 }
2148 rcu_read_unlock();
2149
2150 if (inode)
2151 handle_one(inode);
2152
2153 /* look for a parent entry first */
2154 list_for_each_entry(n, &context->names_list, list) {
2155 if (!n->name ||
2156 (n->type != AUDIT_TYPE_PARENT &&
2157 n->type != AUDIT_TYPE_UNKNOWN))
2158 continue;
2159
2160 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2161 !audit_compare_dname_path(dname,
2162 n->name->name, n->name_len)) {
2163 if (n->type == AUDIT_TYPE_UNKNOWN)
2164 n->type = AUDIT_TYPE_PARENT;
2165 found_parent = n;
2166 break;
2167 }
2168 }
2169
2170 /* is there a matching child entry? */
2171 list_for_each_entry(n, &context->names_list, list) {
2172 /* can only match entries that have a name */
2173 if (!n->name ||
2174 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2175 continue;
2176
2177 if (!strcmp(dname->name, n->name->name) ||
2178 !audit_compare_dname_path(dname, n->name->name,
2179 found_parent ?
2180 found_parent->name_len :
2181 AUDIT_NAME_FULL)) {
2182 if (n->type == AUDIT_TYPE_UNKNOWN)
2183 n->type = type;
2184 found_child = n;
2185 break;
2186 }
2187 }
2188
2189 if (!found_parent) {
2190 /* create a new, "anonymous" parent record */
2191 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2192 if (!n)
2193 return;
2194 audit_copy_inode(n, NULL, parent, 0);
2195 }
2196
2197 if (!found_child) {
2198 found_child = audit_alloc_name(context, type);
2199 if (!found_child)
2200 return;
2201
2202 /* Re-use the name belonging to the slot for a matching parent
2203 * directory. All names for this context are relinquished in
2204 * audit_free_names() */
2205 if (found_parent) {
2206 found_child->name = found_parent->name;
2207 found_child->name_len = AUDIT_NAME_FULL;
2208 found_child->name->refcnt++;
2209 }
2210 }
2211
2212 if (inode)
2213 audit_copy_inode(found_child, dentry, inode, 0);
2214 else
2215 found_child->ino = AUDIT_INO_UNSET;
2216 }
2217 EXPORT_SYMBOL_GPL(__audit_inode_child);
2218
2219 /**
2220 * audit_stamp_context - set the timestamp+serial in an audit context
2221 * @ctx: audit_context to set
2222 */
2223 void audit_stamp_context(struct audit_context *ctx)
2224 {
2225 /* ctx will be NULL unless lsm_multiple_contexts() is true */
2226 if (!ctx)
2227 return;
2228
2229 ktime_get_coarse_real_ts64(&ctx->ctime);
2230 ctx->serial = audit_serial();
2231 ctx->current_state = AUDIT_STATE_BUILD;
2232 }
2233
2234 /**
2235 * auditsc_get_stamp - get local copies of audit_context values
2236 * @ctx: audit_context for the task
2237 * @t: timespec64 to store time recorded in the audit_context
2238 * @serial: serial value that is recorded in the audit_context
2239 *
2240 * Also sets the context as auditable.
2241 */
2242 int auditsc_get_stamp(struct audit_context *ctx,
2243 struct timespec64 *t, unsigned int *serial)
2244 {
2245 if (ctx->serial && !ctx->in_syscall) {
2246 t->tv_sec = ctx->ctime.tv_sec;
2247 t->tv_nsec = ctx->ctime.tv_nsec;
2248 *serial = ctx->serial;
2249 return 1;
2250 }
2251 if (!ctx->in_syscall)
2252 return 0;
2253 if (!ctx->serial)
2254 ctx->serial = audit_serial();
2255 t->tv_sec = ctx->ctime.tv_sec;
2256 t->tv_nsec = ctx->ctime.tv_nsec;
2257 *serial = ctx->serial;
2258 if (!ctx->prio) {
2259 ctx->prio = 1;
2260 ctx->current_state = AUDIT_STATE_RECORD;
2261 }
2262 return 1;
2263 }
2264
2265 /**
2266 * __audit_mq_open - record audit data for a POSIX MQ open
2267 * @oflag: open flag
2268 * @mode: mode bits
2269 * @attr: queue attributes
2270 *
2271 */
2272 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2273 {
2274 struct audit_context *context = audit_context();
2275
2276 if (attr)
2277 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2278 else
2279 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2280
2281 context->mq_open.oflag = oflag;
2282 context->mq_open.mode = mode;
2283
2284 context->type = AUDIT_MQ_OPEN;
2285 }
2286
2287 /**
2288 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2289 * @mqdes: MQ descriptor
2290 * @msg_len: Message length
2291 * @msg_prio: Message priority
2292 * @abs_timeout: Message timeout in absolute time
2293 *
2294 */
2295 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2296 const struct timespec64 *abs_timeout)
2297 {
2298 struct audit_context *context = audit_context();
2299 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2300
2301 if (abs_timeout)
2302 memcpy(p, abs_timeout, sizeof(*p));
2303 else
2304 memset(p, 0, sizeof(*p));
2305
2306 context->mq_sendrecv.mqdes = mqdes;
2307 context->mq_sendrecv.msg_len = msg_len;
2308 context->mq_sendrecv.msg_prio = msg_prio;
2309
2310 context->type = AUDIT_MQ_SENDRECV;
2311 }
2312
2313 /**
2314 * __audit_mq_notify - record audit data for a POSIX MQ notify
2315 * @mqdes: MQ descriptor
2316 * @notification: Notification event
2317 *
2318 */
2319
2320 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2321 {
2322 struct audit_context *context = audit_context();
2323
2324 if (notification)
2325 context->mq_notify.sigev_signo = notification->sigev_signo;
2326 else
2327 context->mq_notify.sigev_signo = 0;
2328
2329 context->mq_notify.mqdes = mqdes;
2330 context->type = AUDIT_MQ_NOTIFY;
2331 }
2332
2333 /**
2334 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2335 * @mqdes: MQ descriptor
2336 * @mqstat: MQ flags
2337 *
2338 */
2339 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2340 {
2341 struct audit_context *context = audit_context();
2342
2343 context->mq_getsetattr.mqdes = mqdes;
2344 context->mq_getsetattr.mqstat = *mqstat;
2345 context->type = AUDIT_MQ_GETSETATTR;
2346 }
2347
2348 /**
2349 * __audit_ipc_obj - record audit data for ipc object
2350 * @ipcp: ipc permissions
2351 *
2352 */
2353 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2354 {
2355 struct audit_context *context = audit_context();
2356 context->ipc.uid = ipcp->uid;
2357 context->ipc.gid = ipcp->gid;
2358 context->ipc.mode = ipcp->mode;
2359 context->ipc.has_perm = 0;
2360 security_ipc_getsecid(ipcp, &context->ipc.oblob);
2361 context->type = AUDIT_IPC;
2362 }
2363
2364 /**
2365 * __audit_ipc_set_perm - record audit data for new ipc permissions
2366 * @qbytes: msgq bytes
2367 * @uid: msgq user id
2368 * @gid: msgq group id
2369 * @mode: msgq mode (permissions)
2370 *
2371 * Called only after audit_ipc_obj().
2372 */
2373 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2374 {
2375 struct audit_context *context = audit_context();
2376
2377 context->ipc.qbytes = qbytes;
2378 context->ipc.perm_uid = uid;
2379 context->ipc.perm_gid = gid;
2380 context->ipc.perm_mode = mode;
2381 context->ipc.has_perm = 1;
2382 }
2383
2384 void __audit_bprm(struct linux_binprm *bprm)
2385 {
2386 struct audit_context *context = audit_context();
2387
2388 context->type = AUDIT_EXECVE;
2389 context->execve.argc = bprm->argc;
2390 }
2391
2392
2393 /**
2394 * __audit_socketcall - record audit data for sys_socketcall
2395 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2396 * @args: args array
2397 *
2398 */
2399 int __audit_socketcall(int nargs, unsigned long *args)
2400 {
2401 struct audit_context *context = audit_context();
2402
2403 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2404 return -EINVAL;
2405 context->type = AUDIT_SOCKETCALL;
2406 context->socketcall.nargs = nargs;
2407 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2408 return 0;
2409 }
2410
2411 /**
2412 * __audit_fd_pair - record audit data for pipe and socketpair
2413 * @fd1: the first file descriptor
2414 * @fd2: the second file descriptor
2415 *
2416 */
2417 void __audit_fd_pair(int fd1, int fd2)
2418 {
2419 struct audit_context *context = audit_context();
2420
2421 context->fds[0] = fd1;
2422 context->fds[1] = fd2;
2423 }
2424
2425 /**
2426 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2427 * @len: data length in user space
2428 * @a: data address in kernel space
2429 *
2430 * Returns 0 for success or NULL context or < 0 on error.
2431 */
2432 int __audit_sockaddr(int len, void *a)
2433 {
2434 struct audit_context *context = audit_context();
2435
2436 if (!context->sockaddr) {
2437 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2438
2439 if (!p)
2440 return -ENOMEM;
2441 context->sockaddr = p;
2442 }
2443
2444 context->sockaddr_len = len;
2445 memcpy(context->sockaddr, a, len);
2446 return 0;
2447 }
2448
2449 void __audit_ptrace(struct task_struct *t)
2450 {
2451 struct audit_context *context = audit_context();
2452
2453 context->target_pid = task_tgid_nr(t);
2454 context->target_auid = audit_get_loginuid(t);
2455 context->target_uid = task_uid(t);
2456 context->target_sessionid = audit_get_sessionid(t);
2457 security_task_getsecid_obj(t, &context->target_lsm);
2458 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2459 }
2460
2461 /**
2462 * audit_signal_info_syscall - record signal info for syscalls
2463 * @t: task being signaled
2464 *
2465 * If the audit subsystem is being terminated, record the task (pid)
2466 * and uid that is doing that.
2467 */
2468 int audit_signal_info_syscall(struct task_struct *t)
2469 {
2470 struct audit_aux_data_pids *axp;
2471 struct audit_context *ctx = audit_context();
2472 kuid_t t_uid = task_uid(t);
2473
2474 if (!audit_signals || audit_dummy_context())
2475 return 0;
2476
2477 /* optimize the common case by putting first signal recipient directly
2478 * in audit_context */
2479 if (!ctx->target_pid) {
2480 ctx->target_pid = task_tgid_nr(t);
2481 ctx->target_auid = audit_get_loginuid(t);
2482 ctx->target_uid = t_uid;
2483 ctx->target_sessionid = audit_get_sessionid(t);
2484 security_task_getsecid_obj(t, &ctx->target_lsm);
2485 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2486 return 0;
2487 }
2488
2489 axp = (void *)ctx->aux_pids;
2490 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2491 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2492 if (!axp)
2493 return -ENOMEM;
2494
2495 axp->d.type = AUDIT_OBJ_PID;
2496 axp->d.next = ctx->aux_pids;
2497 ctx->aux_pids = (void *)axp;
2498 }
2499 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2500
2501 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2502 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2503 axp->target_uid[axp->pid_count] = t_uid;
2504 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2505 security_task_getsecid_obj(t, &axp->target_lsm[axp->pid_count]);
2506 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2507 axp->pid_count++;
2508
2509 return 0;
2510 }
2511
2512 /**
2513 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2514 * @bprm: pointer to the bprm being processed
2515 * @new: the proposed new credentials
2516 * @old: the old credentials
2517 *
2518 * Simply check if the proc already has the caps given by the file and if not
2519 * store the priv escalation info for later auditing at the end of the syscall
2520 *
2521 * -Eric
2522 */
2523 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2524 const struct cred *new, const struct cred *old)
2525 {
2526 struct audit_aux_data_bprm_fcaps *ax;
2527 struct audit_context *context = audit_context();
2528 struct cpu_vfs_cap_data vcaps;
2529
2530 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2531 if (!ax)
2532 return -ENOMEM;
2533
2534 ax->d.type = AUDIT_BPRM_FCAPS;
2535 ax->d.next = context->aux;
2536 context->aux = (void *)ax;
2537
2538 get_vfs_caps_from_disk(&init_user_ns,
2539 bprm->file->f_path.dentry, &vcaps);
2540
2541 ax->fcap.permitted = vcaps.permitted;
2542 ax->fcap.inheritable = vcaps.inheritable;
2543 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2544 ax->fcap.rootid = vcaps.rootid;
2545 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2546
2547 ax->old_pcap.permitted = old->cap_permitted;
2548 ax->old_pcap.inheritable = old->cap_inheritable;
2549 ax->old_pcap.effective = old->cap_effective;
2550 ax->old_pcap.ambient = old->cap_ambient;
2551
2552 ax->new_pcap.permitted = new->cap_permitted;
2553 ax->new_pcap.inheritable = new->cap_inheritable;
2554 ax->new_pcap.effective = new->cap_effective;
2555 ax->new_pcap.ambient = new->cap_ambient;
2556 return 0;
2557 }
2558
2559 /**
2560 * __audit_log_capset - store information about the arguments to the capset syscall
2561 * @new: the new credentials
2562 * @old: the old (current) credentials
2563 *
2564 * Record the arguments userspace sent to sys_capset for later printing by the
2565 * audit system if applicable
2566 */
2567 void __audit_log_capset(const struct cred *new, const struct cred *old)
2568 {
2569 struct audit_context *context = audit_context();
2570
2571 context->capset.pid = task_tgid_nr(current);
2572 context->capset.cap.effective = new->cap_effective;
2573 context->capset.cap.inheritable = new->cap_effective;
2574 context->capset.cap.permitted = new->cap_permitted;
2575 context->capset.cap.ambient = new->cap_ambient;
2576 context->type = AUDIT_CAPSET;
2577 }
2578
2579 void __audit_mmap_fd(int fd, int flags)
2580 {
2581 struct audit_context *context = audit_context();
2582
2583 context->mmap.fd = fd;
2584 context->mmap.flags = flags;
2585 context->type = AUDIT_MMAP;
2586 }
2587
2588 void __audit_log_kern_module(char *name)
2589 {
2590 struct audit_context *context = audit_context();
2591
2592 context->module.name = kstrdup(name, GFP_KERNEL);
2593 if (!context->module.name)
2594 audit_log_lost("out of memory in __audit_log_kern_module");
2595 context->type = AUDIT_KERN_MODULE;
2596 }
2597
2598 void __audit_fanotify(unsigned int response)
2599 {
2600 audit_log(audit_context(), GFP_KERNEL,
2601 AUDIT_FANOTIFY, "resp=%u", response);
2602 }
2603
2604 void __audit_tk_injoffset(struct timespec64 offset)
2605 {
2606 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2607 "sec=%lli nsec=%li",
2608 (long long)offset.tv_sec, offset.tv_nsec);
2609 }
2610
2611 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2612 const char *op, enum audit_ntp_type type)
2613 {
2614 const struct audit_ntp_val *val = &ad->vals[type];
2615
2616 if (val->newval == val->oldval)
2617 return;
2618
2619 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2620 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2621 }
2622
2623 void __audit_ntp_log(const struct audit_ntp_data *ad)
2624 {
2625 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2626 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2627 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2628 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2629 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2630 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2631 }
2632
2633 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2634 enum audit_nfcfgop op, gfp_t gfp)
2635 {
2636 struct audit_buffer *ab;
2637 char comm[sizeof(current->comm)];
2638
2639 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2640 if (!ab)
2641 return;
2642 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2643 name, af, nentries, audit_nfcfgs[op].s);
2644
2645 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2646 audit_log_task_context(ab, NULL); /* subj= */
2647 audit_log_format(ab, " comm=");
2648 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2649 audit_log_end(ab);
2650 }
2651 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2652
2653 static void audit_log_task(struct audit_buffer *ab)
2654 {
2655 kuid_t auid, uid;
2656 kgid_t gid;
2657 unsigned int sessionid;
2658 char comm[sizeof(current->comm)];
2659
2660 auid = audit_get_loginuid(current);
2661 sessionid = audit_get_sessionid(current);
2662 current_uid_gid(&uid, &gid);
2663
2664 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2665 from_kuid(&init_user_ns, auid),
2666 from_kuid(&init_user_ns, uid),
2667 from_kgid(&init_user_ns, gid),
2668 sessionid);
2669 audit_log_task_context(ab, NULL);
2670 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2671 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2672 audit_log_d_path_exe(ab, current->mm);
2673 }
2674
2675 /**
2676 * audit_core_dumps - record information about processes that end abnormally
2677 * @signr: signal value
2678 *
2679 * If a process ends with a core dump, something fishy is going on and we
2680 * should record the event for investigation.
2681 */
2682 void audit_core_dumps(long signr)
2683 {
2684 struct audit_buffer *ab;
2685
2686 if (!audit_enabled)
2687 return;
2688
2689 if (signr == SIGQUIT) /* don't care for those */
2690 return;
2691
2692 audit_stamp_context(audit_context());
2693 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2694 if (unlikely(!ab))
2695 return;
2696 audit_log_task(ab);
2697 audit_log_format(ab, " sig=%ld res=1", signr);
2698 audit_log_lsm(NULL, true);
2699 audit_log_end(ab);
2700 }
2701
2702 /**
2703 * audit_seccomp - record information about a seccomp action
2704 * @syscall: syscall number
2705 * @signr: signal value
2706 * @code: the seccomp action
2707 *
2708 * Record the information associated with a seccomp action. Event filtering for
2709 * seccomp actions that are not to be logged is done in seccomp_log().
2710 * Therefore, this function forces auditing independent of the audit_enabled
2711 * and dummy context state because seccomp actions should be logged even when
2712 * audit is not in use.
2713 */
2714 void audit_seccomp(unsigned long syscall, long signr, int code)
2715 {
2716 struct audit_buffer *ab;
2717
2718 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2719 if (unlikely(!ab))
2720 return;
2721 audit_log_task(ab);
2722 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2723 signr, syscall_get_arch(current), syscall,
2724 in_compat_syscall(), KSTK_EIP(current), code);
2725 audit_log_end(ab);
2726 }
2727
2728 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2729 int res)
2730 {
2731 struct audit_buffer *ab;
2732
2733 if (!audit_enabled)
2734 return;
2735
2736 ab = audit_log_start(audit_context(), GFP_KERNEL,
2737 AUDIT_CONFIG_CHANGE);
2738 if (unlikely(!ab))
2739 return;
2740
2741 audit_log_format(ab,
2742 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2743 names, old_names, res);
2744 audit_log_end(ab);
2745 }
2746
2747 struct list_head *audit_killed_trees(void)
2748 {
2749 struct audit_context *ctx = audit_context();
2750
2751 if (likely(!ctx || !ctx->in_syscall))
2752 return NULL;
2753 return &ctx->killed_trees;
2754 }