]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/auditsc.c
perf bpf: Save BTF in a rbtree in perf_env
[mirror_ubuntu-eoan-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209 }
210
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230 }
231
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246 }
247
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250 {
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274 }
275
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283 }
284
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
303 return 0;
304 }
305
306 static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
310 {
311 struct audit_names *n;
312 int rc;
313
314 if (name) {
315 rc = audit_uid_comparator(uid, f->op, name->uid);
316 if (rc)
317 return rc;
318 }
319
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328 }
329
330 static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334 {
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352 }
353
354 static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359 {
360 switch (f->val) {
361 /* process to file object comparisons */
362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 return audit_compare_uid(cred->uid, name, f, ctx);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 return audit_compare_gid(cred->gid, name, f, ctx);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 return audit_compare_uid(cred->euid, name, f, ctx);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 return audit_compare_gid(cred->egid, name, f, ctx);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->suid, name, f, ctx);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->sgid, name, f, ctx);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->fsuid, name, f, ctx);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->fsgid, name, f, ctx);
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
384 case AUDIT_COMPARE_UID_TO_EUID:
385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 case AUDIT_COMPARE_UID_TO_SUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 case AUDIT_COMPARE_UID_TO_FSUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428 }
429
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444 {
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448 unsigned int sessionid;
449
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_tgid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
468 }
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 if (f->op == Audit_not_equal)
473 result = !result;
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = groups_search(cred->group_info, f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !groups_search(cred->group_info, f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = groups_search(cred->group_info, f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !groups_search(cred->group_info, f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(tsk);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = audit_uid_comparator(audit_get_loginuid(tsk),
613 f->op, f->uid);
614 break;
615 case AUDIT_LOGINUID_SET:
616 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
617 break;
618 case AUDIT_SUBJ_USER:
619 case AUDIT_SUBJ_ROLE:
620 case AUDIT_SUBJ_TYPE:
621 case AUDIT_SUBJ_SEN:
622 case AUDIT_SUBJ_CLR:
623 /* NOTE: this may return negative values indicating
624 a temporary error. We simply treat this as a
625 match for now to avoid losing information that
626 may be wanted. An error message will also be
627 logged upon error */
628 if (f->lsm_rule) {
629 if (need_sid) {
630 security_task_getsecid(tsk, &sid);
631 need_sid = 0;
632 }
633 result = security_audit_rule_match(sid, f->type,
634 f->op,
635 f->lsm_rule,
636 ctx);
637 }
638 break;
639 case AUDIT_OBJ_USER:
640 case AUDIT_OBJ_ROLE:
641 case AUDIT_OBJ_TYPE:
642 case AUDIT_OBJ_LEV_LOW:
643 case AUDIT_OBJ_LEV_HIGH:
644 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
645 also applies here */
646 if (f->lsm_rule) {
647 /* Find files that match */
648 if (name) {
649 result = security_audit_rule_match(
650 name->osid, f->type, f->op,
651 f->lsm_rule, ctx);
652 } else if (ctx) {
653 list_for_each_entry(n, &ctx->names_list, list) {
654 if (security_audit_rule_match(n->osid, f->type,
655 f->op, f->lsm_rule,
656 ctx)) {
657 ++result;
658 break;
659 }
660 }
661 }
662 /* Find ipc objects that match */
663 if (!ctx || ctx->type != AUDIT_IPC)
664 break;
665 if (security_audit_rule_match(ctx->ipc.osid,
666 f->type, f->op,
667 f->lsm_rule, ctx))
668 ++result;
669 }
670 break;
671 case AUDIT_ARG0:
672 case AUDIT_ARG1:
673 case AUDIT_ARG2:
674 case AUDIT_ARG3:
675 if (ctx)
676 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
677 break;
678 case AUDIT_FILTERKEY:
679 /* ignore this field for filtering */
680 result = 1;
681 break;
682 case AUDIT_PERM:
683 result = audit_match_perm(ctx, f->val);
684 break;
685 case AUDIT_FILETYPE:
686 result = audit_match_filetype(ctx, f->val);
687 break;
688 case AUDIT_FIELD_COMPARE:
689 result = audit_field_compare(tsk, cred, f, ctx, name);
690 break;
691 }
692 if (!result)
693 return 0;
694 }
695
696 if (ctx) {
697 if (rule->prio <= ctx->prio)
698 return 0;
699 if (rule->filterkey) {
700 kfree(ctx->filterkey);
701 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
702 }
703 ctx->prio = rule->prio;
704 }
705 switch (rule->action) {
706 case AUDIT_NEVER:
707 *state = AUDIT_DISABLED;
708 break;
709 case AUDIT_ALWAYS:
710 *state = AUDIT_RECORD_CONTEXT;
711 break;
712 }
713 return 1;
714 }
715
716 /* At process creation time, we can determine if system-call auditing is
717 * completely disabled for this task. Since we only have the task
718 * structure at this point, we can only check uid and gid.
719 */
720 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
721 {
722 struct audit_entry *e;
723 enum audit_state state;
724
725 rcu_read_lock();
726 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
727 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
728 &state, true)) {
729 if (state == AUDIT_RECORD_CONTEXT)
730 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
731 rcu_read_unlock();
732 return state;
733 }
734 }
735 rcu_read_unlock();
736 return AUDIT_BUILD_CONTEXT;
737 }
738
739 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
740 {
741 int word, bit;
742
743 if (val > 0xffffffff)
744 return false;
745
746 word = AUDIT_WORD(val);
747 if (word >= AUDIT_BITMASK_SIZE)
748 return false;
749
750 bit = AUDIT_BIT(val);
751
752 return rule->mask[word] & bit;
753 }
754
755 /* At syscall entry and exit time, this filter is called if the
756 * audit_state is not low enough that auditing cannot take place, but is
757 * also not high enough that we already know we have to write an audit
758 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
759 */
760 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
761 struct audit_context *ctx,
762 struct list_head *list)
763 {
764 struct audit_entry *e;
765 enum audit_state state;
766
767 if (auditd_test_task(tsk))
768 return AUDIT_DISABLED;
769
770 rcu_read_lock();
771 if (!list_empty(list)) {
772 list_for_each_entry_rcu(e, list, list) {
773 if (audit_in_mask(&e->rule, ctx->major) &&
774 audit_filter_rules(tsk, &e->rule, ctx, NULL,
775 &state, false)) {
776 rcu_read_unlock();
777 ctx->current_state = state;
778 return state;
779 }
780 }
781 }
782 rcu_read_unlock();
783 return AUDIT_BUILD_CONTEXT;
784 }
785
786 /*
787 * Given an audit_name check the inode hash table to see if they match.
788 * Called holding the rcu read lock to protect the use of audit_inode_hash
789 */
790 static int audit_filter_inode_name(struct task_struct *tsk,
791 struct audit_names *n,
792 struct audit_context *ctx) {
793 int h = audit_hash_ino((u32)n->ino);
794 struct list_head *list = &audit_inode_hash[h];
795 struct audit_entry *e;
796 enum audit_state state;
797
798 if (list_empty(list))
799 return 0;
800
801 list_for_each_entry_rcu(e, list, list) {
802 if (audit_in_mask(&e->rule, ctx->major) &&
803 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
804 ctx->current_state = state;
805 return 1;
806 }
807 }
808
809 return 0;
810 }
811
812 /* At syscall exit time, this filter is called if any audit_names have been
813 * collected during syscall processing. We only check rules in sublists at hash
814 * buckets applicable to the inode numbers in audit_names.
815 * Regarding audit_state, same rules apply as for audit_filter_syscall().
816 */
817 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
818 {
819 struct audit_names *n;
820
821 if (auditd_test_task(tsk))
822 return;
823
824 rcu_read_lock();
825
826 list_for_each_entry(n, &ctx->names_list, list) {
827 if (audit_filter_inode_name(tsk, n, ctx))
828 break;
829 }
830 rcu_read_unlock();
831 }
832
833 static inline void audit_proctitle_free(struct audit_context *context)
834 {
835 kfree(context->proctitle.value);
836 context->proctitle.value = NULL;
837 context->proctitle.len = 0;
838 }
839
840 static inline void audit_free_names(struct audit_context *context)
841 {
842 struct audit_names *n, *next;
843
844 list_for_each_entry_safe(n, next, &context->names_list, list) {
845 list_del(&n->list);
846 if (n->name)
847 putname(n->name);
848 if (n->should_free)
849 kfree(n);
850 }
851 context->name_count = 0;
852 path_put(&context->pwd);
853 context->pwd.dentry = NULL;
854 context->pwd.mnt = NULL;
855 }
856
857 static inline void audit_free_aux(struct audit_context *context)
858 {
859 struct audit_aux_data *aux;
860
861 while ((aux = context->aux)) {
862 context->aux = aux->next;
863 kfree(aux);
864 }
865 while ((aux = context->aux_pids)) {
866 context->aux_pids = aux->next;
867 kfree(aux);
868 }
869 }
870
871 static inline struct audit_context *audit_alloc_context(enum audit_state state)
872 {
873 struct audit_context *context;
874
875 context = kzalloc(sizeof(*context), GFP_KERNEL);
876 if (!context)
877 return NULL;
878 context->state = state;
879 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
880 INIT_LIST_HEAD(&context->killed_trees);
881 INIT_LIST_HEAD(&context->names_list);
882 return context;
883 }
884
885 /**
886 * audit_alloc - allocate an audit context block for a task
887 * @tsk: task
888 *
889 * Filter on the task information and allocate a per-task audit context
890 * if necessary. Doing so turns on system call auditing for the
891 * specified task. This is called from copy_process, so no lock is
892 * needed.
893 */
894 int audit_alloc(struct task_struct *tsk)
895 {
896 struct audit_context *context;
897 enum audit_state state;
898 char *key = NULL;
899
900 if (likely(!audit_ever_enabled))
901 return 0; /* Return if not auditing. */
902
903 state = audit_filter_task(tsk, &key);
904 if (state == AUDIT_DISABLED) {
905 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
906 return 0;
907 }
908
909 if (!(context = audit_alloc_context(state))) {
910 kfree(key);
911 audit_log_lost("out of memory in audit_alloc");
912 return -ENOMEM;
913 }
914 context->filterkey = key;
915
916 audit_set_context(tsk, context);
917 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
918 return 0;
919 }
920
921 static inline void audit_free_context(struct audit_context *context)
922 {
923 audit_free_names(context);
924 unroll_tree_refs(context, NULL, 0);
925 free_tree_refs(context);
926 audit_free_aux(context);
927 kfree(context->filterkey);
928 kfree(context->sockaddr);
929 audit_proctitle_free(context);
930 kfree(context);
931 }
932
933 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
934 kuid_t auid, kuid_t uid, unsigned int sessionid,
935 u32 sid, char *comm)
936 {
937 struct audit_buffer *ab;
938 char *ctx = NULL;
939 u32 len;
940 int rc = 0;
941
942 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
943 if (!ab)
944 return rc;
945
946 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
947 from_kuid(&init_user_ns, auid),
948 from_kuid(&init_user_ns, uid), sessionid);
949 if (sid) {
950 if (security_secid_to_secctx(sid, &ctx, &len)) {
951 audit_log_format(ab, " obj=(none)");
952 rc = 1;
953 } else {
954 audit_log_format(ab, " obj=%s", ctx);
955 security_release_secctx(ctx, len);
956 }
957 }
958 audit_log_format(ab, " ocomm=");
959 audit_log_untrustedstring(ab, comm);
960 audit_log_end(ab);
961
962 return rc;
963 }
964
965 static void audit_log_execve_info(struct audit_context *context,
966 struct audit_buffer **ab)
967 {
968 long len_max;
969 long len_rem;
970 long len_full;
971 long len_buf;
972 long len_abuf = 0;
973 long len_tmp;
974 bool require_data;
975 bool encode;
976 unsigned int iter;
977 unsigned int arg;
978 char *buf_head;
979 char *buf;
980 const char __user *p = (const char __user *)current->mm->arg_start;
981
982 /* NOTE: this buffer needs to be large enough to hold all the non-arg
983 * data we put in the audit record for this argument (see the
984 * code below) ... at this point in time 96 is plenty */
985 char abuf[96];
986
987 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
988 * current value of 7500 is not as important as the fact that it
989 * is less than 8k, a setting of 7500 gives us plenty of wiggle
990 * room if we go over a little bit in the logging below */
991 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
992 len_max = MAX_EXECVE_AUDIT_LEN;
993
994 /* scratch buffer to hold the userspace args */
995 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
996 if (!buf_head) {
997 audit_panic("out of memory for argv string");
998 return;
999 }
1000 buf = buf_head;
1001
1002 audit_log_format(*ab, "argc=%d", context->execve.argc);
1003
1004 len_rem = len_max;
1005 len_buf = 0;
1006 len_full = 0;
1007 require_data = true;
1008 encode = false;
1009 iter = 0;
1010 arg = 0;
1011 do {
1012 /* NOTE: we don't ever want to trust this value for anything
1013 * serious, but the audit record format insists we
1014 * provide an argument length for really long arguments,
1015 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1016 * to use strncpy_from_user() to obtain this value for
1017 * recording in the log, although we don't use it
1018 * anywhere here to avoid a double-fetch problem */
1019 if (len_full == 0)
1020 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1021
1022 /* read more data from userspace */
1023 if (require_data) {
1024 /* can we make more room in the buffer? */
1025 if (buf != buf_head) {
1026 memmove(buf_head, buf, len_buf);
1027 buf = buf_head;
1028 }
1029
1030 /* fetch as much as we can of the argument */
1031 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1032 len_max - len_buf);
1033 if (len_tmp == -EFAULT) {
1034 /* unable to copy from userspace */
1035 send_sig(SIGKILL, current, 0);
1036 goto out;
1037 } else if (len_tmp == (len_max - len_buf)) {
1038 /* buffer is not large enough */
1039 require_data = true;
1040 /* NOTE: if we are going to span multiple
1041 * buffers force the encoding so we stand
1042 * a chance at a sane len_full value and
1043 * consistent record encoding */
1044 encode = true;
1045 len_full = len_full * 2;
1046 p += len_tmp;
1047 } else {
1048 require_data = false;
1049 if (!encode)
1050 encode = audit_string_contains_control(
1051 buf, len_tmp);
1052 /* try to use a trusted value for len_full */
1053 if (len_full < len_max)
1054 len_full = (encode ?
1055 len_tmp * 2 : len_tmp);
1056 p += len_tmp + 1;
1057 }
1058 len_buf += len_tmp;
1059 buf_head[len_buf] = '\0';
1060
1061 /* length of the buffer in the audit record? */
1062 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1063 }
1064
1065 /* write as much as we can to the audit log */
1066 if (len_buf >= 0) {
1067 /* NOTE: some magic numbers here - basically if we
1068 * can't fit a reasonable amount of data into the
1069 * existing audit buffer, flush it and start with
1070 * a new buffer */
1071 if ((sizeof(abuf) + 8) > len_rem) {
1072 len_rem = len_max;
1073 audit_log_end(*ab);
1074 *ab = audit_log_start(context,
1075 GFP_KERNEL, AUDIT_EXECVE);
1076 if (!*ab)
1077 goto out;
1078 }
1079
1080 /* create the non-arg portion of the arg record */
1081 len_tmp = 0;
1082 if (require_data || (iter > 0) ||
1083 ((len_abuf + sizeof(abuf)) > len_rem)) {
1084 if (iter == 0) {
1085 len_tmp += snprintf(&abuf[len_tmp],
1086 sizeof(abuf) - len_tmp,
1087 " a%d_len=%lu",
1088 arg, len_full);
1089 }
1090 len_tmp += snprintf(&abuf[len_tmp],
1091 sizeof(abuf) - len_tmp,
1092 " a%d[%d]=", arg, iter++);
1093 } else
1094 len_tmp += snprintf(&abuf[len_tmp],
1095 sizeof(abuf) - len_tmp,
1096 " a%d=", arg);
1097 WARN_ON(len_tmp >= sizeof(abuf));
1098 abuf[sizeof(abuf) - 1] = '\0';
1099
1100 /* log the arg in the audit record */
1101 audit_log_format(*ab, "%s", abuf);
1102 len_rem -= len_tmp;
1103 len_tmp = len_buf;
1104 if (encode) {
1105 if (len_abuf > len_rem)
1106 len_tmp = len_rem / 2; /* encoding */
1107 audit_log_n_hex(*ab, buf, len_tmp);
1108 len_rem -= len_tmp * 2;
1109 len_abuf -= len_tmp * 2;
1110 } else {
1111 if (len_abuf > len_rem)
1112 len_tmp = len_rem - 2; /* quotes */
1113 audit_log_n_string(*ab, buf, len_tmp);
1114 len_rem -= len_tmp + 2;
1115 /* don't subtract the "2" because we still need
1116 * to add quotes to the remaining string */
1117 len_abuf -= len_tmp;
1118 }
1119 len_buf -= len_tmp;
1120 buf += len_tmp;
1121 }
1122
1123 /* ready to move to the next argument? */
1124 if ((len_buf == 0) && !require_data) {
1125 arg++;
1126 iter = 0;
1127 len_full = 0;
1128 require_data = true;
1129 encode = false;
1130 }
1131 } while (arg < context->execve.argc);
1132
1133 /* NOTE: the caller handles the final audit_log_end() call */
1134
1135 out:
1136 kfree(buf_head);
1137 }
1138
1139 static void show_special(struct audit_context *context, int *call_panic)
1140 {
1141 struct audit_buffer *ab;
1142 int i;
1143
1144 ab = audit_log_start(context, GFP_KERNEL, context->type);
1145 if (!ab)
1146 return;
1147
1148 switch (context->type) {
1149 case AUDIT_SOCKETCALL: {
1150 int nargs = context->socketcall.nargs;
1151 audit_log_format(ab, "nargs=%d", nargs);
1152 for (i = 0; i < nargs; i++)
1153 audit_log_format(ab, " a%d=%lx", i,
1154 context->socketcall.args[i]);
1155 break; }
1156 case AUDIT_IPC: {
1157 u32 osid = context->ipc.osid;
1158
1159 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1160 from_kuid(&init_user_ns, context->ipc.uid),
1161 from_kgid(&init_user_ns, context->ipc.gid),
1162 context->ipc.mode);
1163 if (osid) {
1164 char *ctx = NULL;
1165 u32 len;
1166 if (security_secid_to_secctx(osid, &ctx, &len)) {
1167 audit_log_format(ab, " osid=%u", osid);
1168 *call_panic = 1;
1169 } else {
1170 audit_log_format(ab, " obj=%s", ctx);
1171 security_release_secctx(ctx, len);
1172 }
1173 }
1174 if (context->ipc.has_perm) {
1175 audit_log_end(ab);
1176 ab = audit_log_start(context, GFP_KERNEL,
1177 AUDIT_IPC_SET_PERM);
1178 if (unlikely(!ab))
1179 return;
1180 audit_log_format(ab,
1181 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1182 context->ipc.qbytes,
1183 context->ipc.perm_uid,
1184 context->ipc.perm_gid,
1185 context->ipc.perm_mode);
1186 }
1187 break; }
1188 case AUDIT_MQ_OPEN:
1189 audit_log_format(ab,
1190 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1191 "mq_msgsize=%ld mq_curmsgs=%ld",
1192 context->mq_open.oflag, context->mq_open.mode,
1193 context->mq_open.attr.mq_flags,
1194 context->mq_open.attr.mq_maxmsg,
1195 context->mq_open.attr.mq_msgsize,
1196 context->mq_open.attr.mq_curmsgs);
1197 break;
1198 case AUDIT_MQ_SENDRECV:
1199 audit_log_format(ab,
1200 "mqdes=%d msg_len=%zd msg_prio=%u "
1201 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1202 context->mq_sendrecv.mqdes,
1203 context->mq_sendrecv.msg_len,
1204 context->mq_sendrecv.msg_prio,
1205 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1206 context->mq_sendrecv.abs_timeout.tv_nsec);
1207 break;
1208 case AUDIT_MQ_NOTIFY:
1209 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1210 context->mq_notify.mqdes,
1211 context->mq_notify.sigev_signo);
1212 break;
1213 case AUDIT_MQ_GETSETATTR: {
1214 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1215 audit_log_format(ab,
1216 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1217 "mq_curmsgs=%ld ",
1218 context->mq_getsetattr.mqdes,
1219 attr->mq_flags, attr->mq_maxmsg,
1220 attr->mq_msgsize, attr->mq_curmsgs);
1221 break; }
1222 case AUDIT_CAPSET:
1223 audit_log_format(ab, "pid=%d", context->capset.pid);
1224 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1225 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1226 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1227 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1228 break;
1229 case AUDIT_MMAP:
1230 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1231 context->mmap.flags);
1232 break;
1233 case AUDIT_EXECVE:
1234 audit_log_execve_info(context, &ab);
1235 break;
1236 case AUDIT_KERN_MODULE:
1237 audit_log_format(ab, "name=");
1238 if (context->module.name) {
1239 audit_log_untrustedstring(ab, context->module.name);
1240 kfree(context->module.name);
1241 } else
1242 audit_log_format(ab, "(null)");
1243
1244 break;
1245 }
1246 audit_log_end(ab);
1247 }
1248
1249 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1250 {
1251 char *end = proctitle + len - 1;
1252 while (end > proctitle && !isprint(*end))
1253 end--;
1254
1255 /* catch the case where proctitle is only 1 non-print character */
1256 len = end - proctitle + 1;
1257 len -= isprint(proctitle[len-1]) == 0;
1258 return len;
1259 }
1260
1261 static void audit_log_proctitle(void)
1262 {
1263 int res;
1264 char *buf;
1265 char *msg = "(null)";
1266 int len = strlen(msg);
1267 struct audit_context *context = audit_context();
1268 struct audit_buffer *ab;
1269
1270 if (!context || context->dummy)
1271 return;
1272
1273 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1274 if (!ab)
1275 return; /* audit_panic or being filtered */
1276
1277 audit_log_format(ab, "proctitle=");
1278
1279 /* Not cached */
1280 if (!context->proctitle.value) {
1281 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1282 if (!buf)
1283 goto out;
1284 /* Historically called this from procfs naming */
1285 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1286 if (res == 0) {
1287 kfree(buf);
1288 goto out;
1289 }
1290 res = audit_proctitle_rtrim(buf, res);
1291 if (res == 0) {
1292 kfree(buf);
1293 goto out;
1294 }
1295 context->proctitle.value = buf;
1296 context->proctitle.len = res;
1297 }
1298 msg = context->proctitle.value;
1299 len = context->proctitle.len;
1300 out:
1301 audit_log_n_untrustedstring(ab, msg, len);
1302 audit_log_end(ab);
1303 }
1304
1305 static void audit_log_exit(void)
1306 {
1307 int i, call_panic = 0;
1308 struct audit_context *context = audit_context();
1309 struct audit_buffer *ab;
1310 struct audit_aux_data *aux;
1311 struct audit_names *n;
1312
1313 context->personality = current->personality;
1314
1315 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1316 if (!ab)
1317 return; /* audit_panic has been called */
1318 audit_log_format(ab, "arch=%x syscall=%d",
1319 context->arch, context->major);
1320 if (context->personality != PER_LINUX)
1321 audit_log_format(ab, " per=%lx", context->personality);
1322 if (context->return_valid)
1323 audit_log_format(ab, " success=%s exit=%ld",
1324 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1325 context->return_code);
1326
1327 audit_log_format(ab,
1328 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1329 context->argv[0],
1330 context->argv[1],
1331 context->argv[2],
1332 context->argv[3],
1333 context->name_count);
1334
1335 audit_log_task_info(ab);
1336 audit_log_key(ab, context->filterkey);
1337 audit_log_end(ab);
1338
1339 for (aux = context->aux; aux; aux = aux->next) {
1340
1341 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1342 if (!ab)
1343 continue; /* audit_panic has been called */
1344
1345 switch (aux->type) {
1346
1347 case AUDIT_BPRM_FCAPS: {
1348 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1349 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1350 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1351 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1352 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1353 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1354 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1355 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1356 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1357 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1358 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1359 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1360 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1361 break; }
1362
1363 }
1364 audit_log_end(ab);
1365 }
1366
1367 if (context->type)
1368 show_special(context, &call_panic);
1369
1370 if (context->fds[0] >= 0) {
1371 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1372 if (ab) {
1373 audit_log_format(ab, "fd0=%d fd1=%d",
1374 context->fds[0], context->fds[1]);
1375 audit_log_end(ab);
1376 }
1377 }
1378
1379 if (context->sockaddr_len) {
1380 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1381 if (ab) {
1382 audit_log_format(ab, "saddr=");
1383 audit_log_n_hex(ab, (void *)context->sockaddr,
1384 context->sockaddr_len);
1385 audit_log_end(ab);
1386 }
1387 }
1388
1389 for (aux = context->aux_pids; aux; aux = aux->next) {
1390 struct audit_aux_data_pids *axs = (void *)aux;
1391
1392 for (i = 0; i < axs->pid_count; i++)
1393 if (audit_log_pid_context(context, axs->target_pid[i],
1394 axs->target_auid[i],
1395 axs->target_uid[i],
1396 axs->target_sessionid[i],
1397 axs->target_sid[i],
1398 axs->target_comm[i]))
1399 call_panic = 1;
1400 }
1401
1402 if (context->target_pid &&
1403 audit_log_pid_context(context, context->target_pid,
1404 context->target_auid, context->target_uid,
1405 context->target_sessionid,
1406 context->target_sid, context->target_comm))
1407 call_panic = 1;
1408
1409 if (context->pwd.dentry && context->pwd.mnt) {
1410 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1411 if (ab) {
1412 audit_log_d_path(ab, "cwd=", &context->pwd);
1413 audit_log_end(ab);
1414 }
1415 }
1416
1417 i = 0;
1418 list_for_each_entry(n, &context->names_list, list) {
1419 if (n->hidden)
1420 continue;
1421 audit_log_name(context, n, NULL, i++, &call_panic);
1422 }
1423
1424 audit_log_proctitle();
1425
1426 /* Send end of event record to help user space know we are finished */
1427 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1428 if (ab)
1429 audit_log_end(ab);
1430 if (call_panic)
1431 audit_panic("error converting sid to string");
1432 }
1433
1434 /**
1435 * __audit_free - free a per-task audit context
1436 * @tsk: task whose audit context block to free
1437 *
1438 * Called from copy_process and do_exit
1439 */
1440 void __audit_free(struct task_struct *tsk)
1441 {
1442 struct audit_context *context = tsk->audit_context;
1443
1444 if (!context)
1445 return;
1446
1447 /* We are called either by do_exit() or the fork() error handling code;
1448 * in the former case tsk == current and in the latter tsk is a
1449 * random task_struct that doesn't doesn't have any meaningful data we
1450 * need to log via audit_log_exit().
1451 */
1452 if (tsk == current && !context->dummy && context->in_syscall) {
1453 context->return_valid = 0;
1454 context->return_code = 0;
1455
1456 audit_filter_syscall(tsk, context,
1457 &audit_filter_list[AUDIT_FILTER_EXIT]);
1458 audit_filter_inodes(tsk, context);
1459 if (context->current_state == AUDIT_RECORD_CONTEXT)
1460 audit_log_exit();
1461 }
1462
1463 if (!list_empty(&context->killed_trees))
1464 audit_kill_trees(&context->killed_trees);
1465
1466 audit_set_context(tsk, NULL);
1467 audit_free_context(context);
1468 }
1469
1470 /**
1471 * __audit_syscall_entry - fill in an audit record at syscall entry
1472 * @major: major syscall type (function)
1473 * @a1: additional syscall register 1
1474 * @a2: additional syscall register 2
1475 * @a3: additional syscall register 3
1476 * @a4: additional syscall register 4
1477 *
1478 * Fill in audit context at syscall entry. This only happens if the
1479 * audit context was created when the task was created and the state or
1480 * filters demand the audit context be built. If the state from the
1481 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1482 * then the record will be written at syscall exit time (otherwise, it
1483 * will only be written if another part of the kernel requests that it
1484 * be written).
1485 */
1486 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1487 unsigned long a3, unsigned long a4)
1488 {
1489 struct audit_context *context = audit_context();
1490 enum audit_state state;
1491
1492 if (!audit_enabled || !context)
1493 return;
1494
1495 BUG_ON(context->in_syscall || context->name_count);
1496
1497 state = context->state;
1498 if (state == AUDIT_DISABLED)
1499 return;
1500
1501 context->dummy = !audit_n_rules;
1502 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1503 context->prio = 0;
1504 if (auditd_test_task(current))
1505 return;
1506 }
1507
1508 context->arch = syscall_get_arch();
1509 context->major = major;
1510 context->argv[0] = a1;
1511 context->argv[1] = a2;
1512 context->argv[2] = a3;
1513 context->argv[3] = a4;
1514 context->serial = 0;
1515 context->in_syscall = 1;
1516 context->current_state = state;
1517 context->ppid = 0;
1518 ktime_get_coarse_real_ts64(&context->ctime);
1519 }
1520
1521 /**
1522 * __audit_syscall_exit - deallocate audit context after a system call
1523 * @success: success value of the syscall
1524 * @return_code: return value of the syscall
1525 *
1526 * Tear down after system call. If the audit context has been marked as
1527 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1528 * filtering, or because some other part of the kernel wrote an audit
1529 * message), then write out the syscall information. In call cases,
1530 * free the names stored from getname().
1531 */
1532 void __audit_syscall_exit(int success, long return_code)
1533 {
1534 struct audit_context *context;
1535
1536 context = audit_context();
1537 if (!context)
1538 return;
1539
1540 if (!context->dummy && context->in_syscall) {
1541 if (success)
1542 context->return_valid = AUDITSC_SUCCESS;
1543 else
1544 context->return_valid = AUDITSC_FAILURE;
1545
1546 /*
1547 * we need to fix up the return code in the audit logs if the
1548 * actual return codes are later going to be fixed up by the
1549 * arch specific signal handlers
1550 *
1551 * This is actually a test for:
1552 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1553 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1554 *
1555 * but is faster than a bunch of ||
1556 */
1557 if (unlikely(return_code <= -ERESTARTSYS) &&
1558 (return_code >= -ERESTART_RESTARTBLOCK) &&
1559 (return_code != -ENOIOCTLCMD))
1560 context->return_code = -EINTR;
1561 else
1562 context->return_code = return_code;
1563
1564 audit_filter_syscall(current, context,
1565 &audit_filter_list[AUDIT_FILTER_EXIT]);
1566 audit_filter_inodes(current, context);
1567 if (context->current_state == AUDIT_RECORD_CONTEXT)
1568 audit_log_exit();
1569 }
1570
1571 context->in_syscall = 0;
1572 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1573
1574 if (!list_empty(&context->killed_trees))
1575 audit_kill_trees(&context->killed_trees);
1576
1577 audit_free_names(context);
1578 unroll_tree_refs(context, NULL, 0);
1579 audit_free_aux(context);
1580 context->aux = NULL;
1581 context->aux_pids = NULL;
1582 context->target_pid = 0;
1583 context->target_sid = 0;
1584 context->sockaddr_len = 0;
1585 context->type = 0;
1586 context->fds[0] = -1;
1587 if (context->state != AUDIT_RECORD_CONTEXT) {
1588 kfree(context->filterkey);
1589 context->filterkey = NULL;
1590 }
1591 }
1592
1593 static inline void handle_one(const struct inode *inode)
1594 {
1595 struct audit_context *context;
1596 struct audit_tree_refs *p;
1597 struct audit_chunk *chunk;
1598 int count;
1599 if (likely(!inode->i_fsnotify_marks))
1600 return;
1601 context = audit_context();
1602 p = context->trees;
1603 count = context->tree_count;
1604 rcu_read_lock();
1605 chunk = audit_tree_lookup(inode);
1606 rcu_read_unlock();
1607 if (!chunk)
1608 return;
1609 if (likely(put_tree_ref(context, chunk)))
1610 return;
1611 if (unlikely(!grow_tree_refs(context))) {
1612 pr_warn("out of memory, audit has lost a tree reference\n");
1613 audit_set_auditable(context);
1614 audit_put_chunk(chunk);
1615 unroll_tree_refs(context, p, count);
1616 return;
1617 }
1618 put_tree_ref(context, chunk);
1619 }
1620
1621 static void handle_path(const struct dentry *dentry)
1622 {
1623 struct audit_context *context;
1624 struct audit_tree_refs *p;
1625 const struct dentry *d, *parent;
1626 struct audit_chunk *drop;
1627 unsigned long seq;
1628 int count;
1629
1630 context = audit_context();
1631 p = context->trees;
1632 count = context->tree_count;
1633 retry:
1634 drop = NULL;
1635 d = dentry;
1636 rcu_read_lock();
1637 seq = read_seqbegin(&rename_lock);
1638 for(;;) {
1639 struct inode *inode = d_backing_inode(d);
1640 if (inode && unlikely(inode->i_fsnotify_marks)) {
1641 struct audit_chunk *chunk;
1642 chunk = audit_tree_lookup(inode);
1643 if (chunk) {
1644 if (unlikely(!put_tree_ref(context, chunk))) {
1645 drop = chunk;
1646 break;
1647 }
1648 }
1649 }
1650 parent = d->d_parent;
1651 if (parent == d)
1652 break;
1653 d = parent;
1654 }
1655 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1656 rcu_read_unlock();
1657 if (!drop) {
1658 /* just a race with rename */
1659 unroll_tree_refs(context, p, count);
1660 goto retry;
1661 }
1662 audit_put_chunk(drop);
1663 if (grow_tree_refs(context)) {
1664 /* OK, got more space */
1665 unroll_tree_refs(context, p, count);
1666 goto retry;
1667 }
1668 /* too bad */
1669 pr_warn("out of memory, audit has lost a tree reference\n");
1670 unroll_tree_refs(context, p, count);
1671 audit_set_auditable(context);
1672 return;
1673 }
1674 rcu_read_unlock();
1675 }
1676
1677 static struct audit_names *audit_alloc_name(struct audit_context *context,
1678 unsigned char type)
1679 {
1680 struct audit_names *aname;
1681
1682 if (context->name_count < AUDIT_NAMES) {
1683 aname = &context->preallocated_names[context->name_count];
1684 memset(aname, 0, sizeof(*aname));
1685 } else {
1686 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1687 if (!aname)
1688 return NULL;
1689 aname->should_free = true;
1690 }
1691
1692 aname->ino = AUDIT_INO_UNSET;
1693 aname->type = type;
1694 list_add_tail(&aname->list, &context->names_list);
1695
1696 context->name_count++;
1697 return aname;
1698 }
1699
1700 /**
1701 * __audit_reusename - fill out filename with info from existing entry
1702 * @uptr: userland ptr to pathname
1703 *
1704 * Search the audit_names list for the current audit context. If there is an
1705 * existing entry with a matching "uptr" then return the filename
1706 * associated with that audit_name. If not, return NULL.
1707 */
1708 struct filename *
1709 __audit_reusename(const __user char *uptr)
1710 {
1711 struct audit_context *context = audit_context();
1712 struct audit_names *n;
1713
1714 list_for_each_entry(n, &context->names_list, list) {
1715 if (!n->name)
1716 continue;
1717 if (n->name->uptr == uptr) {
1718 n->name->refcnt++;
1719 return n->name;
1720 }
1721 }
1722 return NULL;
1723 }
1724
1725 /**
1726 * __audit_getname - add a name to the list
1727 * @name: name to add
1728 *
1729 * Add a name to the list of audit names for this context.
1730 * Called from fs/namei.c:getname().
1731 */
1732 void __audit_getname(struct filename *name)
1733 {
1734 struct audit_context *context = audit_context();
1735 struct audit_names *n;
1736
1737 if (!context->in_syscall)
1738 return;
1739
1740 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1741 if (!n)
1742 return;
1743
1744 n->name = name;
1745 n->name_len = AUDIT_NAME_FULL;
1746 name->aname = n;
1747 name->refcnt++;
1748
1749 if (!context->pwd.dentry)
1750 get_fs_pwd(current->fs, &context->pwd);
1751 }
1752
1753 /**
1754 * __audit_inode - store the inode and device from a lookup
1755 * @name: name being audited
1756 * @dentry: dentry being audited
1757 * @flags: attributes for this particular entry
1758 */
1759 void __audit_inode(struct filename *name, const struct dentry *dentry,
1760 unsigned int flags)
1761 {
1762 struct audit_context *context = audit_context();
1763 struct inode *inode = d_backing_inode(dentry);
1764 struct audit_names *n;
1765 bool parent = flags & AUDIT_INODE_PARENT;
1766
1767 if (!context->in_syscall)
1768 return;
1769
1770 if (!name)
1771 goto out_alloc;
1772
1773 /*
1774 * If we have a pointer to an audit_names entry already, then we can
1775 * just use it directly if the type is correct.
1776 */
1777 n = name->aname;
1778 if (n) {
1779 if (parent) {
1780 if (n->type == AUDIT_TYPE_PARENT ||
1781 n->type == AUDIT_TYPE_UNKNOWN)
1782 goto out;
1783 } else {
1784 if (n->type != AUDIT_TYPE_PARENT)
1785 goto out;
1786 }
1787 }
1788
1789 list_for_each_entry_reverse(n, &context->names_list, list) {
1790 if (n->ino) {
1791 /* valid inode number, use that for the comparison */
1792 if (n->ino != inode->i_ino ||
1793 n->dev != inode->i_sb->s_dev)
1794 continue;
1795 } else if (n->name) {
1796 /* inode number has not been set, check the name */
1797 if (strcmp(n->name->name, name->name))
1798 continue;
1799 } else
1800 /* no inode and no name (?!) ... this is odd ... */
1801 continue;
1802
1803 /* match the correct record type */
1804 if (parent) {
1805 if (n->type == AUDIT_TYPE_PARENT ||
1806 n->type == AUDIT_TYPE_UNKNOWN)
1807 goto out;
1808 } else {
1809 if (n->type != AUDIT_TYPE_PARENT)
1810 goto out;
1811 }
1812 }
1813
1814 out_alloc:
1815 /* unable to find an entry with both a matching name and type */
1816 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1817 if (!n)
1818 return;
1819 if (name) {
1820 n->name = name;
1821 name->refcnt++;
1822 }
1823
1824 out:
1825 if (parent) {
1826 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1827 n->type = AUDIT_TYPE_PARENT;
1828 if (flags & AUDIT_INODE_HIDDEN)
1829 n->hidden = true;
1830 } else {
1831 n->name_len = AUDIT_NAME_FULL;
1832 n->type = AUDIT_TYPE_NORMAL;
1833 }
1834 handle_path(dentry);
1835 audit_copy_inode(n, dentry, inode);
1836 }
1837
1838 void __audit_file(const struct file *file)
1839 {
1840 __audit_inode(NULL, file->f_path.dentry, 0);
1841 }
1842
1843 /**
1844 * __audit_inode_child - collect inode info for created/removed objects
1845 * @parent: inode of dentry parent
1846 * @dentry: dentry being audited
1847 * @type: AUDIT_TYPE_* value that we're looking for
1848 *
1849 * For syscalls that create or remove filesystem objects, audit_inode
1850 * can only collect information for the filesystem object's parent.
1851 * This call updates the audit context with the child's information.
1852 * Syscalls that create a new filesystem object must be hooked after
1853 * the object is created. Syscalls that remove a filesystem object
1854 * must be hooked prior, in order to capture the target inode during
1855 * unsuccessful attempts.
1856 */
1857 void __audit_inode_child(struct inode *parent,
1858 const struct dentry *dentry,
1859 const unsigned char type)
1860 {
1861 struct audit_context *context = audit_context();
1862 struct inode *inode = d_backing_inode(dentry);
1863 const char *dname = dentry->d_name.name;
1864 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1865 struct audit_entry *e;
1866 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1867 int i;
1868
1869 if (!context->in_syscall)
1870 return;
1871
1872 rcu_read_lock();
1873 if (!list_empty(list)) {
1874 list_for_each_entry_rcu(e, list, list) {
1875 for (i = 0; i < e->rule.field_count; i++) {
1876 struct audit_field *f = &e->rule.fields[i];
1877
1878 if (f->type == AUDIT_FSTYPE) {
1879 if (audit_comparator(parent->i_sb->s_magic,
1880 f->op, f->val)) {
1881 if (e->rule.action == AUDIT_NEVER) {
1882 rcu_read_unlock();
1883 return;
1884 }
1885 }
1886 }
1887 }
1888 }
1889 }
1890 rcu_read_unlock();
1891
1892 if (inode)
1893 handle_one(inode);
1894
1895 /* look for a parent entry first */
1896 list_for_each_entry(n, &context->names_list, list) {
1897 if (!n->name ||
1898 (n->type != AUDIT_TYPE_PARENT &&
1899 n->type != AUDIT_TYPE_UNKNOWN))
1900 continue;
1901
1902 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1903 !audit_compare_dname_path(dname,
1904 n->name->name, n->name_len)) {
1905 if (n->type == AUDIT_TYPE_UNKNOWN)
1906 n->type = AUDIT_TYPE_PARENT;
1907 found_parent = n;
1908 break;
1909 }
1910 }
1911
1912 /* is there a matching child entry? */
1913 list_for_each_entry(n, &context->names_list, list) {
1914 /* can only match entries that have a name */
1915 if (!n->name ||
1916 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1917 continue;
1918
1919 if (!strcmp(dname, n->name->name) ||
1920 !audit_compare_dname_path(dname, n->name->name,
1921 found_parent ?
1922 found_parent->name_len :
1923 AUDIT_NAME_FULL)) {
1924 if (n->type == AUDIT_TYPE_UNKNOWN)
1925 n->type = type;
1926 found_child = n;
1927 break;
1928 }
1929 }
1930
1931 if (!found_parent) {
1932 /* create a new, "anonymous" parent record */
1933 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1934 if (!n)
1935 return;
1936 audit_copy_inode(n, NULL, parent);
1937 }
1938
1939 if (!found_child) {
1940 found_child = audit_alloc_name(context, type);
1941 if (!found_child)
1942 return;
1943
1944 /* Re-use the name belonging to the slot for a matching parent
1945 * directory. All names for this context are relinquished in
1946 * audit_free_names() */
1947 if (found_parent) {
1948 found_child->name = found_parent->name;
1949 found_child->name_len = AUDIT_NAME_FULL;
1950 found_child->name->refcnt++;
1951 }
1952 }
1953
1954 if (inode)
1955 audit_copy_inode(found_child, dentry, inode);
1956 else
1957 found_child->ino = AUDIT_INO_UNSET;
1958 }
1959 EXPORT_SYMBOL_GPL(__audit_inode_child);
1960
1961 /**
1962 * auditsc_get_stamp - get local copies of audit_context values
1963 * @ctx: audit_context for the task
1964 * @t: timespec64 to store time recorded in the audit_context
1965 * @serial: serial value that is recorded in the audit_context
1966 *
1967 * Also sets the context as auditable.
1968 */
1969 int auditsc_get_stamp(struct audit_context *ctx,
1970 struct timespec64 *t, unsigned int *serial)
1971 {
1972 if (!ctx->in_syscall)
1973 return 0;
1974 if (!ctx->serial)
1975 ctx->serial = audit_serial();
1976 t->tv_sec = ctx->ctime.tv_sec;
1977 t->tv_nsec = ctx->ctime.tv_nsec;
1978 *serial = ctx->serial;
1979 if (!ctx->prio) {
1980 ctx->prio = 1;
1981 ctx->current_state = AUDIT_RECORD_CONTEXT;
1982 }
1983 return 1;
1984 }
1985
1986 /* global counter which is incremented every time something logs in */
1987 static atomic_t session_id = ATOMIC_INIT(0);
1988
1989 static int audit_set_loginuid_perm(kuid_t loginuid)
1990 {
1991 /* if we are unset, we don't need privs */
1992 if (!audit_loginuid_set(current))
1993 return 0;
1994 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1995 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1996 return -EPERM;
1997 /* it is set, you need permission */
1998 if (!capable(CAP_AUDIT_CONTROL))
1999 return -EPERM;
2000 /* reject if this is not an unset and we don't allow that */
2001 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2002 return -EPERM;
2003 return 0;
2004 }
2005
2006 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2007 unsigned int oldsessionid, unsigned int sessionid,
2008 int rc)
2009 {
2010 struct audit_buffer *ab;
2011 uid_t uid, oldloginuid, loginuid;
2012 struct tty_struct *tty;
2013
2014 if (!audit_enabled)
2015 return;
2016
2017 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2018 if (!ab)
2019 return;
2020
2021 uid = from_kuid(&init_user_ns, task_uid(current));
2022 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2023 loginuid = from_kuid(&init_user_ns, kloginuid),
2024 tty = audit_get_tty();
2025
2026 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2027 audit_log_task_context(ab);
2028 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2029 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2030 oldsessionid, sessionid, !rc);
2031 audit_put_tty(tty);
2032 audit_log_end(ab);
2033 }
2034
2035 /**
2036 * audit_set_loginuid - set current task's audit_context loginuid
2037 * @loginuid: loginuid value
2038 *
2039 * Returns 0.
2040 *
2041 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2042 */
2043 int audit_set_loginuid(kuid_t loginuid)
2044 {
2045 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2046 kuid_t oldloginuid;
2047 int rc;
2048
2049 oldloginuid = audit_get_loginuid(current);
2050 oldsessionid = audit_get_sessionid(current);
2051
2052 rc = audit_set_loginuid_perm(loginuid);
2053 if (rc)
2054 goto out;
2055
2056 /* are we setting or clearing? */
2057 if (uid_valid(loginuid)) {
2058 sessionid = (unsigned int)atomic_inc_return(&session_id);
2059 if (unlikely(sessionid == AUDIT_SID_UNSET))
2060 sessionid = (unsigned int)atomic_inc_return(&session_id);
2061 }
2062
2063 current->sessionid = sessionid;
2064 current->loginuid = loginuid;
2065 out:
2066 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2067 return rc;
2068 }
2069
2070 /**
2071 * __audit_mq_open - record audit data for a POSIX MQ open
2072 * @oflag: open flag
2073 * @mode: mode bits
2074 * @attr: queue attributes
2075 *
2076 */
2077 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2078 {
2079 struct audit_context *context = audit_context();
2080
2081 if (attr)
2082 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2083 else
2084 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2085
2086 context->mq_open.oflag = oflag;
2087 context->mq_open.mode = mode;
2088
2089 context->type = AUDIT_MQ_OPEN;
2090 }
2091
2092 /**
2093 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2094 * @mqdes: MQ descriptor
2095 * @msg_len: Message length
2096 * @msg_prio: Message priority
2097 * @abs_timeout: Message timeout in absolute time
2098 *
2099 */
2100 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2101 const struct timespec64 *abs_timeout)
2102 {
2103 struct audit_context *context = audit_context();
2104 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2105
2106 if (abs_timeout)
2107 memcpy(p, abs_timeout, sizeof(*p));
2108 else
2109 memset(p, 0, sizeof(*p));
2110
2111 context->mq_sendrecv.mqdes = mqdes;
2112 context->mq_sendrecv.msg_len = msg_len;
2113 context->mq_sendrecv.msg_prio = msg_prio;
2114
2115 context->type = AUDIT_MQ_SENDRECV;
2116 }
2117
2118 /**
2119 * __audit_mq_notify - record audit data for a POSIX MQ notify
2120 * @mqdes: MQ descriptor
2121 * @notification: Notification event
2122 *
2123 */
2124
2125 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2126 {
2127 struct audit_context *context = audit_context();
2128
2129 if (notification)
2130 context->mq_notify.sigev_signo = notification->sigev_signo;
2131 else
2132 context->mq_notify.sigev_signo = 0;
2133
2134 context->mq_notify.mqdes = mqdes;
2135 context->type = AUDIT_MQ_NOTIFY;
2136 }
2137
2138 /**
2139 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2140 * @mqdes: MQ descriptor
2141 * @mqstat: MQ flags
2142 *
2143 */
2144 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2145 {
2146 struct audit_context *context = audit_context();
2147 context->mq_getsetattr.mqdes = mqdes;
2148 context->mq_getsetattr.mqstat = *mqstat;
2149 context->type = AUDIT_MQ_GETSETATTR;
2150 }
2151
2152 /**
2153 * __audit_ipc_obj - record audit data for ipc object
2154 * @ipcp: ipc permissions
2155 *
2156 */
2157 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2158 {
2159 struct audit_context *context = audit_context();
2160 context->ipc.uid = ipcp->uid;
2161 context->ipc.gid = ipcp->gid;
2162 context->ipc.mode = ipcp->mode;
2163 context->ipc.has_perm = 0;
2164 security_ipc_getsecid(ipcp, &context->ipc.osid);
2165 context->type = AUDIT_IPC;
2166 }
2167
2168 /**
2169 * __audit_ipc_set_perm - record audit data for new ipc permissions
2170 * @qbytes: msgq bytes
2171 * @uid: msgq user id
2172 * @gid: msgq group id
2173 * @mode: msgq mode (permissions)
2174 *
2175 * Called only after audit_ipc_obj().
2176 */
2177 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2178 {
2179 struct audit_context *context = audit_context();
2180
2181 context->ipc.qbytes = qbytes;
2182 context->ipc.perm_uid = uid;
2183 context->ipc.perm_gid = gid;
2184 context->ipc.perm_mode = mode;
2185 context->ipc.has_perm = 1;
2186 }
2187
2188 void __audit_bprm(struct linux_binprm *bprm)
2189 {
2190 struct audit_context *context = audit_context();
2191
2192 context->type = AUDIT_EXECVE;
2193 context->execve.argc = bprm->argc;
2194 }
2195
2196
2197 /**
2198 * __audit_socketcall - record audit data for sys_socketcall
2199 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2200 * @args: args array
2201 *
2202 */
2203 int __audit_socketcall(int nargs, unsigned long *args)
2204 {
2205 struct audit_context *context = audit_context();
2206
2207 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2208 return -EINVAL;
2209 context->type = AUDIT_SOCKETCALL;
2210 context->socketcall.nargs = nargs;
2211 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2212 return 0;
2213 }
2214
2215 /**
2216 * __audit_fd_pair - record audit data for pipe and socketpair
2217 * @fd1: the first file descriptor
2218 * @fd2: the second file descriptor
2219 *
2220 */
2221 void __audit_fd_pair(int fd1, int fd2)
2222 {
2223 struct audit_context *context = audit_context();
2224 context->fds[0] = fd1;
2225 context->fds[1] = fd2;
2226 }
2227
2228 /**
2229 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2230 * @len: data length in user space
2231 * @a: data address in kernel space
2232 *
2233 * Returns 0 for success or NULL context or < 0 on error.
2234 */
2235 int __audit_sockaddr(int len, void *a)
2236 {
2237 struct audit_context *context = audit_context();
2238
2239 if (!context->sockaddr) {
2240 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2241 if (!p)
2242 return -ENOMEM;
2243 context->sockaddr = p;
2244 }
2245
2246 context->sockaddr_len = len;
2247 memcpy(context->sockaddr, a, len);
2248 return 0;
2249 }
2250
2251 void __audit_ptrace(struct task_struct *t)
2252 {
2253 struct audit_context *context = audit_context();
2254
2255 context->target_pid = task_tgid_nr(t);
2256 context->target_auid = audit_get_loginuid(t);
2257 context->target_uid = task_uid(t);
2258 context->target_sessionid = audit_get_sessionid(t);
2259 security_task_getsecid(t, &context->target_sid);
2260 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2261 }
2262
2263 /**
2264 * audit_signal_info - record signal info for shutting down audit subsystem
2265 * @sig: signal value
2266 * @t: task being signaled
2267 *
2268 * If the audit subsystem is being terminated, record the task (pid)
2269 * and uid that is doing that.
2270 */
2271 int audit_signal_info(int sig, struct task_struct *t)
2272 {
2273 struct audit_aux_data_pids *axp;
2274 struct audit_context *ctx = audit_context();
2275 kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2276
2277 if (auditd_test_task(t) &&
2278 (sig == SIGTERM || sig == SIGHUP ||
2279 sig == SIGUSR1 || sig == SIGUSR2)) {
2280 audit_sig_pid = task_tgid_nr(current);
2281 auid = audit_get_loginuid(current);
2282 if (uid_valid(auid))
2283 audit_sig_uid = auid;
2284 else
2285 audit_sig_uid = uid;
2286 security_task_getsecid(current, &audit_sig_sid);
2287 }
2288
2289 if (!audit_signals || audit_dummy_context())
2290 return 0;
2291
2292 /* optimize the common case by putting first signal recipient directly
2293 * in audit_context */
2294 if (!ctx->target_pid) {
2295 ctx->target_pid = task_tgid_nr(t);
2296 ctx->target_auid = audit_get_loginuid(t);
2297 ctx->target_uid = t_uid;
2298 ctx->target_sessionid = audit_get_sessionid(t);
2299 security_task_getsecid(t, &ctx->target_sid);
2300 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2301 return 0;
2302 }
2303
2304 axp = (void *)ctx->aux_pids;
2305 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2306 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2307 if (!axp)
2308 return -ENOMEM;
2309
2310 axp->d.type = AUDIT_OBJ_PID;
2311 axp->d.next = ctx->aux_pids;
2312 ctx->aux_pids = (void *)axp;
2313 }
2314 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2315
2316 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2317 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2318 axp->target_uid[axp->pid_count] = t_uid;
2319 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2320 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2321 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2322 axp->pid_count++;
2323
2324 return 0;
2325 }
2326
2327 /**
2328 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2329 * @bprm: pointer to the bprm being processed
2330 * @new: the proposed new credentials
2331 * @old: the old credentials
2332 *
2333 * Simply check if the proc already has the caps given by the file and if not
2334 * store the priv escalation info for later auditing at the end of the syscall
2335 *
2336 * -Eric
2337 */
2338 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2339 const struct cred *new, const struct cred *old)
2340 {
2341 struct audit_aux_data_bprm_fcaps *ax;
2342 struct audit_context *context = audit_context();
2343 struct cpu_vfs_cap_data vcaps;
2344
2345 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2346 if (!ax)
2347 return -ENOMEM;
2348
2349 ax->d.type = AUDIT_BPRM_FCAPS;
2350 ax->d.next = context->aux;
2351 context->aux = (void *)ax;
2352
2353 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2354
2355 ax->fcap.permitted = vcaps.permitted;
2356 ax->fcap.inheritable = vcaps.inheritable;
2357 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2358 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2359
2360 ax->old_pcap.permitted = old->cap_permitted;
2361 ax->old_pcap.inheritable = old->cap_inheritable;
2362 ax->old_pcap.effective = old->cap_effective;
2363 ax->old_pcap.ambient = old->cap_ambient;
2364
2365 ax->new_pcap.permitted = new->cap_permitted;
2366 ax->new_pcap.inheritable = new->cap_inheritable;
2367 ax->new_pcap.effective = new->cap_effective;
2368 ax->new_pcap.ambient = new->cap_ambient;
2369 return 0;
2370 }
2371
2372 /**
2373 * __audit_log_capset - store information about the arguments to the capset syscall
2374 * @new: the new credentials
2375 * @old: the old (current) credentials
2376 *
2377 * Record the arguments userspace sent to sys_capset for later printing by the
2378 * audit system if applicable
2379 */
2380 void __audit_log_capset(const struct cred *new, const struct cred *old)
2381 {
2382 struct audit_context *context = audit_context();
2383 context->capset.pid = task_tgid_nr(current);
2384 context->capset.cap.effective = new->cap_effective;
2385 context->capset.cap.inheritable = new->cap_effective;
2386 context->capset.cap.permitted = new->cap_permitted;
2387 context->capset.cap.ambient = new->cap_ambient;
2388 context->type = AUDIT_CAPSET;
2389 }
2390
2391 void __audit_mmap_fd(int fd, int flags)
2392 {
2393 struct audit_context *context = audit_context();
2394 context->mmap.fd = fd;
2395 context->mmap.flags = flags;
2396 context->type = AUDIT_MMAP;
2397 }
2398
2399 void __audit_log_kern_module(char *name)
2400 {
2401 struct audit_context *context = audit_context();
2402
2403 context->module.name = kstrdup(name, GFP_KERNEL);
2404 if (!context->module.name)
2405 audit_log_lost("out of memory in __audit_log_kern_module");
2406 context->type = AUDIT_KERN_MODULE;
2407 }
2408
2409 void __audit_fanotify(unsigned int response)
2410 {
2411 audit_log(audit_context(), GFP_KERNEL,
2412 AUDIT_FANOTIFY, "resp=%u", response);
2413 }
2414
2415 static void audit_log_task(struct audit_buffer *ab)
2416 {
2417 kuid_t auid, uid;
2418 kgid_t gid;
2419 unsigned int sessionid;
2420 char comm[sizeof(current->comm)];
2421
2422 auid = audit_get_loginuid(current);
2423 sessionid = audit_get_sessionid(current);
2424 current_uid_gid(&uid, &gid);
2425
2426 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2427 from_kuid(&init_user_ns, auid),
2428 from_kuid(&init_user_ns, uid),
2429 from_kgid(&init_user_ns, gid),
2430 sessionid);
2431 audit_log_task_context(ab);
2432 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2433 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2434 audit_log_d_path_exe(ab, current->mm);
2435 }
2436
2437 /**
2438 * audit_core_dumps - record information about processes that end abnormally
2439 * @signr: signal value
2440 *
2441 * If a process ends with a core dump, something fishy is going on and we
2442 * should record the event for investigation.
2443 */
2444 void audit_core_dumps(long signr)
2445 {
2446 struct audit_buffer *ab;
2447
2448 if (!audit_enabled)
2449 return;
2450
2451 if (signr == SIGQUIT) /* don't care for those */
2452 return;
2453
2454 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2455 if (unlikely(!ab))
2456 return;
2457 audit_log_task(ab);
2458 audit_log_format(ab, " sig=%ld res=1", signr);
2459 audit_log_end(ab);
2460 }
2461
2462 /**
2463 * audit_seccomp - record information about a seccomp action
2464 * @syscall: syscall number
2465 * @signr: signal value
2466 * @code: the seccomp action
2467 *
2468 * Record the information associated with a seccomp action. Event filtering for
2469 * seccomp actions that are not to be logged is done in seccomp_log().
2470 * Therefore, this function forces auditing independent of the audit_enabled
2471 * and dummy context state because seccomp actions should be logged even when
2472 * audit is not in use.
2473 */
2474 void audit_seccomp(unsigned long syscall, long signr, int code)
2475 {
2476 struct audit_buffer *ab;
2477
2478 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2479 if (unlikely(!ab))
2480 return;
2481 audit_log_task(ab);
2482 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2483 signr, syscall_get_arch(), syscall,
2484 in_compat_syscall(), KSTK_EIP(current), code);
2485 audit_log_end(ab);
2486 }
2487
2488 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2489 int res)
2490 {
2491 struct audit_buffer *ab;
2492
2493 if (!audit_enabled)
2494 return;
2495
2496 ab = audit_log_start(audit_context(), GFP_KERNEL,
2497 AUDIT_CONFIG_CHANGE);
2498 if (unlikely(!ab))
2499 return;
2500
2501 audit_log_format(ab,
2502 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2503 names, old_names, res);
2504 audit_log_end(ab);
2505 }
2506
2507 struct list_head *audit_killed_trees(void)
2508 {
2509 struct audit_context *ctx = audit_context();
2510 if (likely(!ctx || !ctx->in_syscall))
2511 return NULL;
2512 return &ctx->killed_trees;
2513 }