]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/auditsc.c
Merge tag 'iommu-fixes-v4.19-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 }
210 }
211
212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
220 }
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
229 }
230 return 0;
231 }
232
233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
240 }
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
247 }
248 #endif
249
250 static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
263 }
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
269 }
270 }
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
274 }
275 ctx->trees = p;
276 ctx->tree_count = count;
277 #endif
278 }
279
280 static void free_tree_refs(struct audit_context *ctx)
281 {
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
286 }
287 }
288
289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
301 }
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
307 }
308 #endif
309 return 0;
310 }
311
312 static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
316 {
317 struct audit_names *n;
318 int rc;
319
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
324 }
325
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
331 }
332 }
333 return 0;
334 }
335
336 static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
340 {
341 struct audit_names *n;
342 int rc;
343
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
348 }
349
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
355 }
356 }
357 return 0;
358 }
359
360 static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
365 {
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op,
389 audit_get_loginuid(tsk));
390 case AUDIT_COMPARE_UID_TO_EUID:
391 return audit_uid_comparator(cred->uid, f->op, cred->euid);
392 case AUDIT_COMPARE_UID_TO_SUID:
393 return audit_uid_comparator(cred->uid, f->op, cred->suid);
394 case AUDIT_COMPARE_UID_TO_FSUID:
395 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
396 /* auid comparisons */
397 case AUDIT_COMPARE_AUID_TO_EUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->euid);
400 case AUDIT_COMPARE_AUID_TO_SUID:
401 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
402 cred->suid);
403 case AUDIT_COMPARE_AUID_TO_FSUID:
404 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
405 cred->fsuid);
406 /* euid comparisons */
407 case AUDIT_COMPARE_EUID_TO_SUID:
408 return audit_uid_comparator(cred->euid, f->op, cred->suid);
409 case AUDIT_COMPARE_EUID_TO_FSUID:
410 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
411 /* suid comparisons */
412 case AUDIT_COMPARE_SUID_TO_FSUID:
413 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
414 /* gid comparisons */
415 case AUDIT_COMPARE_GID_TO_EGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->egid);
417 case AUDIT_COMPARE_GID_TO_SGID:
418 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
419 case AUDIT_COMPARE_GID_TO_FSGID:
420 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
421 /* egid comparisons */
422 case AUDIT_COMPARE_EGID_TO_SGID:
423 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
424 case AUDIT_COMPARE_EGID_TO_FSGID:
425 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
426 /* sgid comparison */
427 case AUDIT_COMPARE_SGID_TO_FSGID:
428 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
429 default:
430 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
431 return 0;
432 }
433 return 0;
434 }
435
436 /* Determine if any context name data matches a rule's watch data */
437 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
438 * otherwise.
439 *
440 * If task_creation is true, this is an explicit indication that we are
441 * filtering a task rule at task creation time. This and tsk == current are
442 * the only situations where tsk->cred may be accessed without an rcu read lock.
443 */
444 static int audit_filter_rules(struct task_struct *tsk,
445 struct audit_krule *rule,
446 struct audit_context *ctx,
447 struct audit_names *name,
448 enum audit_state *state,
449 bool task_creation)
450 {
451 const struct cred *cred;
452 int i, need_sid = 1;
453 u32 sid;
454 unsigned int sessionid;
455
456 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
457
458 for (i = 0; i < rule->field_count; i++) {
459 struct audit_field *f = &rule->fields[i];
460 struct audit_names *n;
461 int result = 0;
462 pid_t pid;
463
464 switch (f->type) {
465 case AUDIT_PID:
466 pid = task_tgid_nr(tsk);
467 result = audit_comparator(pid, f->op, f->val);
468 break;
469 case AUDIT_PPID:
470 if (ctx) {
471 if (!ctx->ppid)
472 ctx->ppid = task_ppid_nr(tsk);
473 result = audit_comparator(ctx->ppid, f->op, f->val);
474 }
475 break;
476 case AUDIT_EXE:
477 result = audit_exe_compare(tsk, rule->exe);
478 if (f->op == Audit_not_equal)
479 result = !result;
480 break;
481 case AUDIT_UID:
482 result = audit_uid_comparator(cred->uid, f->op, f->uid);
483 break;
484 case AUDIT_EUID:
485 result = audit_uid_comparator(cred->euid, f->op, f->uid);
486 break;
487 case AUDIT_SUID:
488 result = audit_uid_comparator(cred->suid, f->op, f->uid);
489 break;
490 case AUDIT_FSUID:
491 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
492 break;
493 case AUDIT_GID:
494 result = audit_gid_comparator(cred->gid, f->op, f->gid);
495 if (f->op == Audit_equal) {
496 if (!result)
497 result = groups_search(cred->group_info, f->gid);
498 } else if (f->op == Audit_not_equal) {
499 if (result)
500 result = !groups_search(cred->group_info, f->gid);
501 }
502 break;
503 case AUDIT_EGID:
504 result = audit_gid_comparator(cred->egid, f->op, f->gid);
505 if (f->op == Audit_equal) {
506 if (!result)
507 result = groups_search(cred->group_info, f->gid);
508 } else if (f->op == Audit_not_equal) {
509 if (result)
510 result = !groups_search(cred->group_info, f->gid);
511 }
512 break;
513 case AUDIT_SGID:
514 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
515 break;
516 case AUDIT_FSGID:
517 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
518 break;
519 case AUDIT_SESSIONID:
520 sessionid = audit_get_sessionid(tsk);
521 result = audit_comparator(sessionid, f->op, f->val);
522 break;
523 case AUDIT_PERS:
524 result = audit_comparator(tsk->personality, f->op, f->val);
525 break;
526 case AUDIT_ARCH:
527 if (ctx)
528 result = audit_comparator(ctx->arch, f->op, f->val);
529 break;
530
531 case AUDIT_EXIT:
532 if (ctx && ctx->return_valid)
533 result = audit_comparator(ctx->return_code, f->op, f->val);
534 break;
535 case AUDIT_SUCCESS:
536 if (ctx && ctx->return_valid) {
537 if (f->val)
538 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
539 else
540 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
541 }
542 break;
543 case AUDIT_DEVMAJOR:
544 if (name) {
545 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
546 audit_comparator(MAJOR(name->rdev), f->op, f->val))
547 ++result;
548 } else if (ctx) {
549 list_for_each_entry(n, &ctx->names_list, list) {
550 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
551 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
552 ++result;
553 break;
554 }
555 }
556 }
557 break;
558 case AUDIT_DEVMINOR:
559 if (name) {
560 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
561 audit_comparator(MINOR(name->rdev), f->op, f->val))
562 ++result;
563 } else if (ctx) {
564 list_for_each_entry(n, &ctx->names_list, list) {
565 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
566 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
567 ++result;
568 break;
569 }
570 }
571 }
572 break;
573 case AUDIT_INODE:
574 if (name)
575 result = audit_comparator(name->ino, f->op, f->val);
576 else if (ctx) {
577 list_for_each_entry(n, &ctx->names_list, list) {
578 if (audit_comparator(n->ino, f->op, f->val)) {
579 ++result;
580 break;
581 }
582 }
583 }
584 break;
585 case AUDIT_OBJ_UID:
586 if (name) {
587 result = audit_uid_comparator(name->uid, f->op, f->uid);
588 } else if (ctx) {
589 list_for_each_entry(n, &ctx->names_list, list) {
590 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
591 ++result;
592 break;
593 }
594 }
595 }
596 break;
597 case AUDIT_OBJ_GID:
598 if (name) {
599 result = audit_gid_comparator(name->gid, f->op, f->gid);
600 } else if (ctx) {
601 list_for_each_entry(n, &ctx->names_list, list) {
602 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
603 ++result;
604 break;
605 }
606 }
607 }
608 break;
609 case AUDIT_WATCH:
610 if (name)
611 result = audit_watch_compare(rule->watch, name->ino, name->dev);
612 break;
613 case AUDIT_DIR:
614 if (ctx)
615 result = match_tree_refs(ctx, rule->tree);
616 break;
617 case AUDIT_LOGINUID:
618 result = audit_uid_comparator(audit_get_loginuid(tsk),
619 f->op, f->uid);
620 break;
621 case AUDIT_LOGINUID_SET:
622 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
623 break;
624 case AUDIT_SUBJ_USER:
625 case AUDIT_SUBJ_ROLE:
626 case AUDIT_SUBJ_TYPE:
627 case AUDIT_SUBJ_SEN:
628 case AUDIT_SUBJ_CLR:
629 /* NOTE: this may return negative values indicating
630 a temporary error. We simply treat this as a
631 match for now to avoid losing information that
632 may be wanted. An error message will also be
633 logged upon error */
634 if (f->lsm_rule) {
635 if (need_sid) {
636 security_task_getsecid(tsk, &sid);
637 need_sid = 0;
638 }
639 result = security_audit_rule_match(sid, f->type,
640 f->op,
641 f->lsm_rule,
642 ctx);
643 }
644 break;
645 case AUDIT_OBJ_USER:
646 case AUDIT_OBJ_ROLE:
647 case AUDIT_OBJ_TYPE:
648 case AUDIT_OBJ_LEV_LOW:
649 case AUDIT_OBJ_LEV_HIGH:
650 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
651 also applies here */
652 if (f->lsm_rule) {
653 /* Find files that match */
654 if (name) {
655 result = security_audit_rule_match(
656 name->osid, f->type, f->op,
657 f->lsm_rule, ctx);
658 } else if (ctx) {
659 list_for_each_entry(n, &ctx->names_list, list) {
660 if (security_audit_rule_match(n->osid, f->type,
661 f->op, f->lsm_rule,
662 ctx)) {
663 ++result;
664 break;
665 }
666 }
667 }
668 /* Find ipc objects that match */
669 if (!ctx || ctx->type != AUDIT_IPC)
670 break;
671 if (security_audit_rule_match(ctx->ipc.osid,
672 f->type, f->op,
673 f->lsm_rule, ctx))
674 ++result;
675 }
676 break;
677 case AUDIT_ARG0:
678 case AUDIT_ARG1:
679 case AUDIT_ARG2:
680 case AUDIT_ARG3:
681 if (ctx)
682 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
683 break;
684 case AUDIT_FILTERKEY:
685 /* ignore this field for filtering */
686 result = 1;
687 break;
688 case AUDIT_PERM:
689 result = audit_match_perm(ctx, f->val);
690 break;
691 case AUDIT_FILETYPE:
692 result = audit_match_filetype(ctx, f->val);
693 break;
694 case AUDIT_FIELD_COMPARE:
695 result = audit_field_compare(tsk, cred, f, ctx, name);
696 break;
697 }
698 if (!result)
699 return 0;
700 }
701
702 if (ctx) {
703 if (rule->prio <= ctx->prio)
704 return 0;
705 if (rule->filterkey) {
706 kfree(ctx->filterkey);
707 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
708 }
709 ctx->prio = rule->prio;
710 }
711 switch (rule->action) {
712 case AUDIT_NEVER:
713 *state = AUDIT_DISABLED;
714 break;
715 case AUDIT_ALWAYS:
716 *state = AUDIT_RECORD_CONTEXT;
717 break;
718 }
719 return 1;
720 }
721
722 /* At process creation time, we can determine if system-call auditing is
723 * completely disabled for this task. Since we only have the task
724 * structure at this point, we can only check uid and gid.
725 */
726 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
727 {
728 struct audit_entry *e;
729 enum audit_state state;
730
731 rcu_read_lock();
732 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
733 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
734 &state, true)) {
735 if (state == AUDIT_RECORD_CONTEXT)
736 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
737 rcu_read_unlock();
738 return state;
739 }
740 }
741 rcu_read_unlock();
742 return AUDIT_BUILD_CONTEXT;
743 }
744
745 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
746 {
747 int word, bit;
748
749 if (val > 0xffffffff)
750 return false;
751
752 word = AUDIT_WORD(val);
753 if (word >= AUDIT_BITMASK_SIZE)
754 return false;
755
756 bit = AUDIT_BIT(val);
757
758 return rule->mask[word] & bit;
759 }
760
761 /* At syscall entry and exit time, this filter is called if the
762 * audit_state is not low enough that auditing cannot take place, but is
763 * also not high enough that we already know we have to write an audit
764 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
765 */
766 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
767 struct audit_context *ctx,
768 struct list_head *list)
769 {
770 struct audit_entry *e;
771 enum audit_state state;
772
773 if (auditd_test_task(tsk))
774 return AUDIT_DISABLED;
775
776 rcu_read_lock();
777 if (!list_empty(list)) {
778 list_for_each_entry_rcu(e, list, list) {
779 if (audit_in_mask(&e->rule, ctx->major) &&
780 audit_filter_rules(tsk, &e->rule, ctx, NULL,
781 &state, false)) {
782 rcu_read_unlock();
783 ctx->current_state = state;
784 return state;
785 }
786 }
787 }
788 rcu_read_unlock();
789 return AUDIT_BUILD_CONTEXT;
790 }
791
792 /*
793 * Given an audit_name check the inode hash table to see if they match.
794 * Called holding the rcu read lock to protect the use of audit_inode_hash
795 */
796 static int audit_filter_inode_name(struct task_struct *tsk,
797 struct audit_names *n,
798 struct audit_context *ctx) {
799 int h = audit_hash_ino((u32)n->ino);
800 struct list_head *list = &audit_inode_hash[h];
801 struct audit_entry *e;
802 enum audit_state state;
803
804 if (list_empty(list))
805 return 0;
806
807 list_for_each_entry_rcu(e, list, list) {
808 if (audit_in_mask(&e->rule, ctx->major) &&
809 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
810 ctx->current_state = state;
811 return 1;
812 }
813 }
814
815 return 0;
816 }
817
818 /* At syscall exit time, this filter is called if any audit_names have been
819 * collected during syscall processing. We only check rules in sublists at hash
820 * buckets applicable to the inode numbers in audit_names.
821 * Regarding audit_state, same rules apply as for audit_filter_syscall().
822 */
823 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
824 {
825 struct audit_names *n;
826
827 if (auditd_test_task(tsk))
828 return;
829
830 rcu_read_lock();
831
832 list_for_each_entry(n, &ctx->names_list, list) {
833 if (audit_filter_inode_name(tsk, n, ctx))
834 break;
835 }
836 rcu_read_unlock();
837 }
838
839 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
840 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
841 int return_valid,
842 long return_code)
843 {
844 struct audit_context *context = tsk->audit_context;
845
846 if (!context)
847 return NULL;
848 context->return_valid = return_valid;
849
850 /*
851 * we need to fix up the return code in the audit logs if the actual
852 * return codes are later going to be fixed up by the arch specific
853 * signal handlers
854 *
855 * This is actually a test for:
856 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
857 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
858 *
859 * but is faster than a bunch of ||
860 */
861 if (unlikely(return_code <= -ERESTARTSYS) &&
862 (return_code >= -ERESTART_RESTARTBLOCK) &&
863 (return_code != -ENOIOCTLCMD))
864 context->return_code = -EINTR;
865 else
866 context->return_code = return_code;
867
868 if (context->in_syscall && !context->dummy) {
869 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
870 audit_filter_inodes(tsk, context);
871 }
872
873 audit_set_context(tsk, NULL);
874 return context;
875 }
876
877 static inline void audit_proctitle_free(struct audit_context *context)
878 {
879 kfree(context->proctitle.value);
880 context->proctitle.value = NULL;
881 context->proctitle.len = 0;
882 }
883
884 static inline void audit_free_names(struct audit_context *context)
885 {
886 struct audit_names *n, *next;
887
888 list_for_each_entry_safe(n, next, &context->names_list, list) {
889 list_del(&n->list);
890 if (n->name)
891 putname(n->name);
892 if (n->should_free)
893 kfree(n);
894 }
895 context->name_count = 0;
896 path_put(&context->pwd);
897 context->pwd.dentry = NULL;
898 context->pwd.mnt = NULL;
899 }
900
901 static inline void audit_free_aux(struct audit_context *context)
902 {
903 struct audit_aux_data *aux;
904
905 while ((aux = context->aux)) {
906 context->aux = aux->next;
907 kfree(aux);
908 }
909 while ((aux = context->aux_pids)) {
910 context->aux_pids = aux->next;
911 kfree(aux);
912 }
913 }
914
915 static inline struct audit_context *audit_alloc_context(enum audit_state state)
916 {
917 struct audit_context *context;
918
919 context = kzalloc(sizeof(*context), GFP_KERNEL);
920 if (!context)
921 return NULL;
922 context->state = state;
923 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
924 INIT_LIST_HEAD(&context->killed_trees);
925 INIT_LIST_HEAD(&context->names_list);
926 return context;
927 }
928
929 /**
930 * audit_alloc - allocate an audit context block for a task
931 * @tsk: task
932 *
933 * Filter on the task information and allocate a per-task audit context
934 * if necessary. Doing so turns on system call auditing for the
935 * specified task. This is called from copy_process, so no lock is
936 * needed.
937 */
938 int audit_alloc(struct task_struct *tsk)
939 {
940 struct audit_context *context;
941 enum audit_state state;
942 char *key = NULL;
943
944 if (likely(!audit_ever_enabled))
945 return 0; /* Return if not auditing. */
946
947 state = audit_filter_task(tsk, &key);
948 if (state == AUDIT_DISABLED) {
949 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
950 return 0;
951 }
952
953 if (!(context = audit_alloc_context(state))) {
954 kfree(key);
955 audit_log_lost("out of memory in audit_alloc");
956 return -ENOMEM;
957 }
958 context->filterkey = key;
959
960 audit_set_context(tsk, context);
961 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
962 return 0;
963 }
964
965 static inline void audit_free_context(struct audit_context *context)
966 {
967 audit_free_names(context);
968 unroll_tree_refs(context, NULL, 0);
969 free_tree_refs(context);
970 audit_free_aux(context);
971 kfree(context->filterkey);
972 kfree(context->sockaddr);
973 audit_proctitle_free(context);
974 kfree(context);
975 }
976
977 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
978 kuid_t auid, kuid_t uid, unsigned int sessionid,
979 u32 sid, char *comm)
980 {
981 struct audit_buffer *ab;
982 char *ctx = NULL;
983 u32 len;
984 int rc = 0;
985
986 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
987 if (!ab)
988 return rc;
989
990 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
991 from_kuid(&init_user_ns, auid),
992 from_kuid(&init_user_ns, uid), sessionid);
993 if (sid) {
994 if (security_secid_to_secctx(sid, &ctx, &len)) {
995 audit_log_format(ab, " obj=(none)");
996 rc = 1;
997 } else {
998 audit_log_format(ab, " obj=%s", ctx);
999 security_release_secctx(ctx, len);
1000 }
1001 }
1002 audit_log_format(ab, " ocomm=");
1003 audit_log_untrustedstring(ab, comm);
1004 audit_log_end(ab);
1005
1006 return rc;
1007 }
1008
1009 static void audit_log_execve_info(struct audit_context *context,
1010 struct audit_buffer **ab)
1011 {
1012 long len_max;
1013 long len_rem;
1014 long len_full;
1015 long len_buf;
1016 long len_abuf = 0;
1017 long len_tmp;
1018 bool require_data;
1019 bool encode;
1020 unsigned int iter;
1021 unsigned int arg;
1022 char *buf_head;
1023 char *buf;
1024 const char __user *p = (const char __user *)current->mm->arg_start;
1025
1026 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1027 * data we put in the audit record for this argument (see the
1028 * code below) ... at this point in time 96 is plenty */
1029 char abuf[96];
1030
1031 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1032 * current value of 7500 is not as important as the fact that it
1033 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1034 * room if we go over a little bit in the logging below */
1035 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1036 len_max = MAX_EXECVE_AUDIT_LEN;
1037
1038 /* scratch buffer to hold the userspace args */
1039 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1040 if (!buf_head) {
1041 audit_panic("out of memory for argv string");
1042 return;
1043 }
1044 buf = buf_head;
1045
1046 audit_log_format(*ab, "argc=%d", context->execve.argc);
1047
1048 len_rem = len_max;
1049 len_buf = 0;
1050 len_full = 0;
1051 require_data = true;
1052 encode = false;
1053 iter = 0;
1054 arg = 0;
1055 do {
1056 /* NOTE: we don't ever want to trust this value for anything
1057 * serious, but the audit record format insists we
1058 * provide an argument length for really long arguments,
1059 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1060 * to use strncpy_from_user() to obtain this value for
1061 * recording in the log, although we don't use it
1062 * anywhere here to avoid a double-fetch problem */
1063 if (len_full == 0)
1064 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1065
1066 /* read more data from userspace */
1067 if (require_data) {
1068 /* can we make more room in the buffer? */
1069 if (buf != buf_head) {
1070 memmove(buf_head, buf, len_buf);
1071 buf = buf_head;
1072 }
1073
1074 /* fetch as much as we can of the argument */
1075 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1076 len_max - len_buf);
1077 if (len_tmp == -EFAULT) {
1078 /* unable to copy from userspace */
1079 send_sig(SIGKILL, current, 0);
1080 goto out;
1081 } else if (len_tmp == (len_max - len_buf)) {
1082 /* buffer is not large enough */
1083 require_data = true;
1084 /* NOTE: if we are going to span multiple
1085 * buffers force the encoding so we stand
1086 * a chance at a sane len_full value and
1087 * consistent record encoding */
1088 encode = true;
1089 len_full = len_full * 2;
1090 p += len_tmp;
1091 } else {
1092 require_data = false;
1093 if (!encode)
1094 encode = audit_string_contains_control(
1095 buf, len_tmp);
1096 /* try to use a trusted value for len_full */
1097 if (len_full < len_max)
1098 len_full = (encode ?
1099 len_tmp * 2 : len_tmp);
1100 p += len_tmp + 1;
1101 }
1102 len_buf += len_tmp;
1103 buf_head[len_buf] = '\0';
1104
1105 /* length of the buffer in the audit record? */
1106 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1107 }
1108
1109 /* write as much as we can to the audit log */
1110 if (len_buf > 0) {
1111 /* NOTE: some magic numbers here - basically if we
1112 * can't fit a reasonable amount of data into the
1113 * existing audit buffer, flush it and start with
1114 * a new buffer */
1115 if ((sizeof(abuf) + 8) > len_rem) {
1116 len_rem = len_max;
1117 audit_log_end(*ab);
1118 *ab = audit_log_start(context,
1119 GFP_KERNEL, AUDIT_EXECVE);
1120 if (!*ab)
1121 goto out;
1122 }
1123
1124 /* create the non-arg portion of the arg record */
1125 len_tmp = 0;
1126 if (require_data || (iter > 0) ||
1127 ((len_abuf + sizeof(abuf)) > len_rem)) {
1128 if (iter == 0) {
1129 len_tmp += snprintf(&abuf[len_tmp],
1130 sizeof(abuf) - len_tmp,
1131 " a%d_len=%lu",
1132 arg, len_full);
1133 }
1134 len_tmp += snprintf(&abuf[len_tmp],
1135 sizeof(abuf) - len_tmp,
1136 " a%d[%d]=", arg, iter++);
1137 } else
1138 len_tmp += snprintf(&abuf[len_tmp],
1139 sizeof(abuf) - len_tmp,
1140 " a%d=", arg);
1141 WARN_ON(len_tmp >= sizeof(abuf));
1142 abuf[sizeof(abuf) - 1] = '\0';
1143
1144 /* log the arg in the audit record */
1145 audit_log_format(*ab, "%s", abuf);
1146 len_rem -= len_tmp;
1147 len_tmp = len_buf;
1148 if (encode) {
1149 if (len_abuf > len_rem)
1150 len_tmp = len_rem / 2; /* encoding */
1151 audit_log_n_hex(*ab, buf, len_tmp);
1152 len_rem -= len_tmp * 2;
1153 len_abuf -= len_tmp * 2;
1154 } else {
1155 if (len_abuf > len_rem)
1156 len_tmp = len_rem - 2; /* quotes */
1157 audit_log_n_string(*ab, buf, len_tmp);
1158 len_rem -= len_tmp + 2;
1159 /* don't subtract the "2" because we still need
1160 * to add quotes to the remaining string */
1161 len_abuf -= len_tmp;
1162 }
1163 len_buf -= len_tmp;
1164 buf += len_tmp;
1165 }
1166
1167 /* ready to move to the next argument? */
1168 if ((len_buf == 0) && !require_data) {
1169 arg++;
1170 iter = 0;
1171 len_full = 0;
1172 require_data = true;
1173 encode = false;
1174 }
1175 } while (arg < context->execve.argc);
1176
1177 /* NOTE: the caller handles the final audit_log_end() call */
1178
1179 out:
1180 kfree(buf_head);
1181 }
1182
1183 static void show_special(struct audit_context *context, int *call_panic)
1184 {
1185 struct audit_buffer *ab;
1186 int i;
1187
1188 ab = audit_log_start(context, GFP_KERNEL, context->type);
1189 if (!ab)
1190 return;
1191
1192 switch (context->type) {
1193 case AUDIT_SOCKETCALL: {
1194 int nargs = context->socketcall.nargs;
1195 audit_log_format(ab, "nargs=%d", nargs);
1196 for (i = 0; i < nargs; i++)
1197 audit_log_format(ab, " a%d=%lx", i,
1198 context->socketcall.args[i]);
1199 break; }
1200 case AUDIT_IPC: {
1201 u32 osid = context->ipc.osid;
1202
1203 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1204 from_kuid(&init_user_ns, context->ipc.uid),
1205 from_kgid(&init_user_ns, context->ipc.gid),
1206 context->ipc.mode);
1207 if (osid) {
1208 char *ctx = NULL;
1209 u32 len;
1210 if (security_secid_to_secctx(osid, &ctx, &len)) {
1211 audit_log_format(ab, " osid=%u", osid);
1212 *call_panic = 1;
1213 } else {
1214 audit_log_format(ab, " obj=%s", ctx);
1215 security_release_secctx(ctx, len);
1216 }
1217 }
1218 if (context->ipc.has_perm) {
1219 audit_log_end(ab);
1220 ab = audit_log_start(context, GFP_KERNEL,
1221 AUDIT_IPC_SET_PERM);
1222 if (unlikely(!ab))
1223 return;
1224 audit_log_format(ab,
1225 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1226 context->ipc.qbytes,
1227 context->ipc.perm_uid,
1228 context->ipc.perm_gid,
1229 context->ipc.perm_mode);
1230 }
1231 break; }
1232 case AUDIT_MQ_OPEN:
1233 audit_log_format(ab,
1234 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1235 "mq_msgsize=%ld mq_curmsgs=%ld",
1236 context->mq_open.oflag, context->mq_open.mode,
1237 context->mq_open.attr.mq_flags,
1238 context->mq_open.attr.mq_maxmsg,
1239 context->mq_open.attr.mq_msgsize,
1240 context->mq_open.attr.mq_curmsgs);
1241 break;
1242 case AUDIT_MQ_SENDRECV:
1243 audit_log_format(ab,
1244 "mqdes=%d msg_len=%zd msg_prio=%u "
1245 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1246 context->mq_sendrecv.mqdes,
1247 context->mq_sendrecv.msg_len,
1248 context->mq_sendrecv.msg_prio,
1249 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1250 context->mq_sendrecv.abs_timeout.tv_nsec);
1251 break;
1252 case AUDIT_MQ_NOTIFY:
1253 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1254 context->mq_notify.mqdes,
1255 context->mq_notify.sigev_signo);
1256 break;
1257 case AUDIT_MQ_GETSETATTR: {
1258 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1259 audit_log_format(ab,
1260 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1261 "mq_curmsgs=%ld ",
1262 context->mq_getsetattr.mqdes,
1263 attr->mq_flags, attr->mq_maxmsg,
1264 attr->mq_msgsize, attr->mq_curmsgs);
1265 break; }
1266 case AUDIT_CAPSET:
1267 audit_log_format(ab, "pid=%d", context->capset.pid);
1268 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1269 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1270 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1271 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1272 break;
1273 case AUDIT_MMAP:
1274 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1275 context->mmap.flags);
1276 break;
1277 case AUDIT_EXECVE:
1278 audit_log_execve_info(context, &ab);
1279 break;
1280 case AUDIT_KERN_MODULE:
1281 audit_log_format(ab, "name=");
1282 if (context->module.name) {
1283 audit_log_untrustedstring(ab, context->module.name);
1284 kfree(context->module.name);
1285 } else
1286 audit_log_format(ab, "(null)");
1287
1288 break;
1289 }
1290 audit_log_end(ab);
1291 }
1292
1293 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1294 {
1295 char *end = proctitle + len - 1;
1296 while (end > proctitle && !isprint(*end))
1297 end--;
1298
1299 /* catch the case where proctitle is only 1 non-print character */
1300 len = end - proctitle + 1;
1301 len -= isprint(proctitle[len-1]) == 0;
1302 return len;
1303 }
1304
1305 static void audit_log_proctitle(struct task_struct *tsk,
1306 struct audit_context *context)
1307 {
1308 int res;
1309 char *buf;
1310 char *msg = "(null)";
1311 int len = strlen(msg);
1312 struct audit_buffer *ab;
1313
1314 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1315 if (!ab)
1316 return; /* audit_panic or being filtered */
1317
1318 audit_log_format(ab, "proctitle=");
1319
1320 /* Not cached */
1321 if (!context->proctitle.value) {
1322 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1323 if (!buf)
1324 goto out;
1325 /* Historically called this from procfs naming */
1326 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1327 if (res == 0) {
1328 kfree(buf);
1329 goto out;
1330 }
1331 res = audit_proctitle_rtrim(buf, res);
1332 if (res == 0) {
1333 kfree(buf);
1334 goto out;
1335 }
1336 context->proctitle.value = buf;
1337 context->proctitle.len = res;
1338 }
1339 msg = context->proctitle.value;
1340 len = context->proctitle.len;
1341 out:
1342 audit_log_n_untrustedstring(ab, msg, len);
1343 audit_log_end(ab);
1344 }
1345
1346 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1347 {
1348 int i, call_panic = 0;
1349 struct audit_buffer *ab;
1350 struct audit_aux_data *aux;
1351 struct audit_names *n;
1352
1353 /* tsk == current */
1354 context->personality = tsk->personality;
1355
1356 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1357 if (!ab)
1358 return; /* audit_panic has been called */
1359 audit_log_format(ab, "arch=%x syscall=%d",
1360 context->arch, context->major);
1361 if (context->personality != PER_LINUX)
1362 audit_log_format(ab, " per=%lx", context->personality);
1363 if (context->return_valid)
1364 audit_log_format(ab, " success=%s exit=%ld",
1365 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1366 context->return_code);
1367
1368 audit_log_format(ab,
1369 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1370 context->argv[0],
1371 context->argv[1],
1372 context->argv[2],
1373 context->argv[3],
1374 context->name_count);
1375
1376 audit_log_task_info(ab, tsk);
1377 audit_log_key(ab, context->filterkey);
1378 audit_log_end(ab);
1379
1380 for (aux = context->aux; aux; aux = aux->next) {
1381
1382 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1383 if (!ab)
1384 continue; /* audit_panic has been called */
1385
1386 switch (aux->type) {
1387
1388 case AUDIT_BPRM_FCAPS: {
1389 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1390 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1391 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1392 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1393 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1394 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1395 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1396 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1397 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1398 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1399 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1400 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1401 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1402 break; }
1403
1404 }
1405 audit_log_end(ab);
1406 }
1407
1408 if (context->type)
1409 show_special(context, &call_panic);
1410
1411 if (context->fds[0] >= 0) {
1412 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1413 if (ab) {
1414 audit_log_format(ab, "fd0=%d fd1=%d",
1415 context->fds[0], context->fds[1]);
1416 audit_log_end(ab);
1417 }
1418 }
1419
1420 if (context->sockaddr_len) {
1421 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1422 if (ab) {
1423 audit_log_format(ab, "saddr=");
1424 audit_log_n_hex(ab, (void *)context->sockaddr,
1425 context->sockaddr_len);
1426 audit_log_end(ab);
1427 }
1428 }
1429
1430 for (aux = context->aux_pids; aux; aux = aux->next) {
1431 struct audit_aux_data_pids *axs = (void *)aux;
1432
1433 for (i = 0; i < axs->pid_count; i++)
1434 if (audit_log_pid_context(context, axs->target_pid[i],
1435 axs->target_auid[i],
1436 axs->target_uid[i],
1437 axs->target_sessionid[i],
1438 axs->target_sid[i],
1439 axs->target_comm[i]))
1440 call_panic = 1;
1441 }
1442
1443 if (context->target_pid &&
1444 audit_log_pid_context(context, context->target_pid,
1445 context->target_auid, context->target_uid,
1446 context->target_sessionid,
1447 context->target_sid, context->target_comm))
1448 call_panic = 1;
1449
1450 if (context->pwd.dentry && context->pwd.mnt) {
1451 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1452 if (ab) {
1453 audit_log_d_path(ab, "cwd=", &context->pwd);
1454 audit_log_end(ab);
1455 }
1456 }
1457
1458 i = 0;
1459 list_for_each_entry(n, &context->names_list, list) {
1460 if (n->hidden)
1461 continue;
1462 audit_log_name(context, n, NULL, i++, &call_panic);
1463 }
1464
1465 audit_log_proctitle(tsk, context);
1466
1467 /* Send end of event record to help user space know we are finished */
1468 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1469 if (ab)
1470 audit_log_end(ab);
1471 if (call_panic)
1472 audit_panic("error converting sid to string");
1473 }
1474
1475 /**
1476 * __audit_free - free a per-task audit context
1477 * @tsk: task whose audit context block to free
1478 *
1479 * Called from copy_process and do_exit
1480 */
1481 void __audit_free(struct task_struct *tsk)
1482 {
1483 struct audit_context *context;
1484
1485 context = audit_take_context(tsk, 0, 0);
1486 if (!context)
1487 return;
1488
1489 /* Check for system calls that do not go through the exit
1490 * function (e.g., exit_group), then free context block.
1491 * We use GFP_ATOMIC here because we might be doing this
1492 * in the context of the idle thread */
1493 /* that can happen only if we are called from do_exit() */
1494 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1495 audit_log_exit(context, tsk);
1496 if (!list_empty(&context->killed_trees))
1497 audit_kill_trees(&context->killed_trees);
1498
1499 audit_free_context(context);
1500 }
1501
1502 /**
1503 * __audit_syscall_entry - fill in an audit record at syscall entry
1504 * @major: major syscall type (function)
1505 * @a1: additional syscall register 1
1506 * @a2: additional syscall register 2
1507 * @a3: additional syscall register 3
1508 * @a4: additional syscall register 4
1509 *
1510 * Fill in audit context at syscall entry. This only happens if the
1511 * audit context was created when the task was created and the state or
1512 * filters demand the audit context be built. If the state from the
1513 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1514 * then the record will be written at syscall exit time (otherwise, it
1515 * will only be written if another part of the kernel requests that it
1516 * be written).
1517 */
1518 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1519 unsigned long a3, unsigned long a4)
1520 {
1521 struct audit_context *context = audit_context();
1522 enum audit_state state;
1523
1524 if (!audit_enabled || !context)
1525 return;
1526
1527 BUG_ON(context->in_syscall || context->name_count);
1528
1529 state = context->state;
1530 if (state == AUDIT_DISABLED)
1531 return;
1532
1533 context->dummy = !audit_n_rules;
1534 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1535 context->prio = 0;
1536 if (auditd_test_task(current))
1537 return;
1538 }
1539
1540 context->arch = syscall_get_arch();
1541 context->major = major;
1542 context->argv[0] = a1;
1543 context->argv[1] = a2;
1544 context->argv[2] = a3;
1545 context->argv[3] = a4;
1546 context->serial = 0;
1547 context->in_syscall = 1;
1548 context->current_state = state;
1549 context->ppid = 0;
1550 ktime_get_coarse_real_ts64(&context->ctime);
1551 }
1552
1553 /**
1554 * __audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1557 *
1558 * Tear down after system call. If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information. In call cases,
1562 * free the names stored from getname().
1563 */
1564 void __audit_syscall_exit(int success, long return_code)
1565 {
1566 struct audit_context *context;
1567
1568 if (success)
1569 success = AUDITSC_SUCCESS;
1570 else
1571 success = AUDITSC_FAILURE;
1572
1573 context = audit_take_context(current, success, return_code);
1574 if (!context)
1575 return;
1576
1577 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1578 audit_log_exit(context, current);
1579
1580 context->in_syscall = 0;
1581 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1582
1583 if (!list_empty(&context->killed_trees))
1584 audit_kill_trees(&context->killed_trees);
1585
1586 audit_free_names(context);
1587 unroll_tree_refs(context, NULL, 0);
1588 audit_free_aux(context);
1589 context->aux = NULL;
1590 context->aux_pids = NULL;
1591 context->target_pid = 0;
1592 context->target_sid = 0;
1593 context->sockaddr_len = 0;
1594 context->type = 0;
1595 context->fds[0] = -1;
1596 if (context->state != AUDIT_RECORD_CONTEXT) {
1597 kfree(context->filterkey);
1598 context->filterkey = NULL;
1599 }
1600 audit_set_context(current, context);
1601 }
1602
1603 static inline void handle_one(const struct inode *inode)
1604 {
1605 #ifdef CONFIG_AUDIT_TREE
1606 struct audit_context *context;
1607 struct audit_tree_refs *p;
1608 struct audit_chunk *chunk;
1609 int count;
1610 if (likely(!inode->i_fsnotify_marks))
1611 return;
1612 context = audit_context();
1613 p = context->trees;
1614 count = context->tree_count;
1615 rcu_read_lock();
1616 chunk = audit_tree_lookup(inode);
1617 rcu_read_unlock();
1618 if (!chunk)
1619 return;
1620 if (likely(put_tree_ref(context, chunk)))
1621 return;
1622 if (unlikely(!grow_tree_refs(context))) {
1623 pr_warn("out of memory, audit has lost a tree reference\n");
1624 audit_set_auditable(context);
1625 audit_put_chunk(chunk);
1626 unroll_tree_refs(context, p, count);
1627 return;
1628 }
1629 put_tree_ref(context, chunk);
1630 #endif
1631 }
1632
1633 static void handle_path(const struct dentry *dentry)
1634 {
1635 #ifdef CONFIG_AUDIT_TREE
1636 struct audit_context *context;
1637 struct audit_tree_refs *p;
1638 const struct dentry *d, *parent;
1639 struct audit_chunk *drop;
1640 unsigned long seq;
1641 int count;
1642
1643 context = audit_context();
1644 p = context->trees;
1645 count = context->tree_count;
1646 retry:
1647 drop = NULL;
1648 d = dentry;
1649 rcu_read_lock();
1650 seq = read_seqbegin(&rename_lock);
1651 for(;;) {
1652 struct inode *inode = d_backing_inode(d);
1653 if (inode && unlikely(inode->i_fsnotify_marks)) {
1654 struct audit_chunk *chunk;
1655 chunk = audit_tree_lookup(inode);
1656 if (chunk) {
1657 if (unlikely(!put_tree_ref(context, chunk))) {
1658 drop = chunk;
1659 break;
1660 }
1661 }
1662 }
1663 parent = d->d_parent;
1664 if (parent == d)
1665 break;
1666 d = parent;
1667 }
1668 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1669 rcu_read_unlock();
1670 if (!drop) {
1671 /* just a race with rename */
1672 unroll_tree_refs(context, p, count);
1673 goto retry;
1674 }
1675 audit_put_chunk(drop);
1676 if (grow_tree_refs(context)) {
1677 /* OK, got more space */
1678 unroll_tree_refs(context, p, count);
1679 goto retry;
1680 }
1681 /* too bad */
1682 pr_warn("out of memory, audit has lost a tree reference\n");
1683 unroll_tree_refs(context, p, count);
1684 audit_set_auditable(context);
1685 return;
1686 }
1687 rcu_read_unlock();
1688 #endif
1689 }
1690
1691 static struct audit_names *audit_alloc_name(struct audit_context *context,
1692 unsigned char type)
1693 {
1694 struct audit_names *aname;
1695
1696 if (context->name_count < AUDIT_NAMES) {
1697 aname = &context->preallocated_names[context->name_count];
1698 memset(aname, 0, sizeof(*aname));
1699 } else {
1700 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1701 if (!aname)
1702 return NULL;
1703 aname->should_free = true;
1704 }
1705
1706 aname->ino = AUDIT_INO_UNSET;
1707 aname->type = type;
1708 list_add_tail(&aname->list, &context->names_list);
1709
1710 context->name_count++;
1711 return aname;
1712 }
1713
1714 /**
1715 * __audit_reusename - fill out filename with info from existing entry
1716 * @uptr: userland ptr to pathname
1717 *
1718 * Search the audit_names list for the current audit context. If there is an
1719 * existing entry with a matching "uptr" then return the filename
1720 * associated with that audit_name. If not, return NULL.
1721 */
1722 struct filename *
1723 __audit_reusename(const __user char *uptr)
1724 {
1725 struct audit_context *context = audit_context();
1726 struct audit_names *n;
1727
1728 list_for_each_entry(n, &context->names_list, list) {
1729 if (!n->name)
1730 continue;
1731 if (n->name->uptr == uptr) {
1732 n->name->refcnt++;
1733 return n->name;
1734 }
1735 }
1736 return NULL;
1737 }
1738
1739 /**
1740 * __audit_getname - add a name to the list
1741 * @name: name to add
1742 *
1743 * Add a name to the list of audit names for this context.
1744 * Called from fs/namei.c:getname().
1745 */
1746 void __audit_getname(struct filename *name)
1747 {
1748 struct audit_context *context = audit_context();
1749 struct audit_names *n;
1750
1751 if (!context->in_syscall)
1752 return;
1753
1754 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1755 if (!n)
1756 return;
1757
1758 n->name = name;
1759 n->name_len = AUDIT_NAME_FULL;
1760 name->aname = n;
1761 name->refcnt++;
1762
1763 if (!context->pwd.dentry)
1764 get_fs_pwd(current->fs, &context->pwd);
1765 }
1766
1767 /**
1768 * __audit_inode - store the inode and device from a lookup
1769 * @name: name being audited
1770 * @dentry: dentry being audited
1771 * @flags: attributes for this particular entry
1772 */
1773 void __audit_inode(struct filename *name, const struct dentry *dentry,
1774 unsigned int flags)
1775 {
1776 struct audit_context *context = audit_context();
1777 struct inode *inode = d_backing_inode(dentry);
1778 struct audit_names *n;
1779 bool parent = flags & AUDIT_INODE_PARENT;
1780
1781 if (!context->in_syscall)
1782 return;
1783
1784 if (!name)
1785 goto out_alloc;
1786
1787 /*
1788 * If we have a pointer to an audit_names entry already, then we can
1789 * just use it directly if the type is correct.
1790 */
1791 n = name->aname;
1792 if (n) {
1793 if (parent) {
1794 if (n->type == AUDIT_TYPE_PARENT ||
1795 n->type == AUDIT_TYPE_UNKNOWN)
1796 goto out;
1797 } else {
1798 if (n->type != AUDIT_TYPE_PARENT)
1799 goto out;
1800 }
1801 }
1802
1803 list_for_each_entry_reverse(n, &context->names_list, list) {
1804 if (n->ino) {
1805 /* valid inode number, use that for the comparison */
1806 if (n->ino != inode->i_ino ||
1807 n->dev != inode->i_sb->s_dev)
1808 continue;
1809 } else if (n->name) {
1810 /* inode number has not been set, check the name */
1811 if (strcmp(n->name->name, name->name))
1812 continue;
1813 } else
1814 /* no inode and no name (?!) ... this is odd ... */
1815 continue;
1816
1817 /* match the correct record type */
1818 if (parent) {
1819 if (n->type == AUDIT_TYPE_PARENT ||
1820 n->type == AUDIT_TYPE_UNKNOWN)
1821 goto out;
1822 } else {
1823 if (n->type != AUDIT_TYPE_PARENT)
1824 goto out;
1825 }
1826 }
1827
1828 out_alloc:
1829 /* unable to find an entry with both a matching name and type */
1830 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1831 if (!n)
1832 return;
1833 if (name) {
1834 n->name = name;
1835 name->refcnt++;
1836 }
1837
1838 out:
1839 if (parent) {
1840 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1841 n->type = AUDIT_TYPE_PARENT;
1842 if (flags & AUDIT_INODE_HIDDEN)
1843 n->hidden = true;
1844 } else {
1845 n->name_len = AUDIT_NAME_FULL;
1846 n->type = AUDIT_TYPE_NORMAL;
1847 }
1848 handle_path(dentry);
1849 audit_copy_inode(n, dentry, inode);
1850 }
1851
1852 void __audit_file(const struct file *file)
1853 {
1854 __audit_inode(NULL, file->f_path.dentry, 0);
1855 }
1856
1857 /**
1858 * __audit_inode_child - collect inode info for created/removed objects
1859 * @parent: inode of dentry parent
1860 * @dentry: dentry being audited
1861 * @type: AUDIT_TYPE_* value that we're looking for
1862 *
1863 * For syscalls that create or remove filesystem objects, audit_inode
1864 * can only collect information for the filesystem object's parent.
1865 * This call updates the audit context with the child's information.
1866 * Syscalls that create a new filesystem object must be hooked after
1867 * the object is created. Syscalls that remove a filesystem object
1868 * must be hooked prior, in order to capture the target inode during
1869 * unsuccessful attempts.
1870 */
1871 void __audit_inode_child(struct inode *parent,
1872 const struct dentry *dentry,
1873 const unsigned char type)
1874 {
1875 struct audit_context *context = audit_context();
1876 struct inode *inode = d_backing_inode(dentry);
1877 const char *dname = dentry->d_name.name;
1878 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1879 struct audit_entry *e;
1880 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1881 int i;
1882
1883 if (!context->in_syscall)
1884 return;
1885
1886 rcu_read_lock();
1887 if (!list_empty(list)) {
1888 list_for_each_entry_rcu(e, list, list) {
1889 for (i = 0; i < e->rule.field_count; i++) {
1890 struct audit_field *f = &e->rule.fields[i];
1891
1892 if (f->type == AUDIT_FSTYPE) {
1893 if (audit_comparator(parent->i_sb->s_magic,
1894 f->op, f->val)) {
1895 if (e->rule.action == AUDIT_NEVER) {
1896 rcu_read_unlock();
1897 return;
1898 }
1899 }
1900 }
1901 }
1902 }
1903 }
1904 rcu_read_unlock();
1905
1906 if (inode)
1907 handle_one(inode);
1908
1909 /* look for a parent entry first */
1910 list_for_each_entry(n, &context->names_list, list) {
1911 if (!n->name ||
1912 (n->type != AUDIT_TYPE_PARENT &&
1913 n->type != AUDIT_TYPE_UNKNOWN))
1914 continue;
1915
1916 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1917 !audit_compare_dname_path(dname,
1918 n->name->name, n->name_len)) {
1919 if (n->type == AUDIT_TYPE_UNKNOWN)
1920 n->type = AUDIT_TYPE_PARENT;
1921 found_parent = n;
1922 break;
1923 }
1924 }
1925
1926 /* is there a matching child entry? */
1927 list_for_each_entry(n, &context->names_list, list) {
1928 /* can only match entries that have a name */
1929 if (!n->name ||
1930 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1931 continue;
1932
1933 if (!strcmp(dname, n->name->name) ||
1934 !audit_compare_dname_path(dname, n->name->name,
1935 found_parent ?
1936 found_parent->name_len :
1937 AUDIT_NAME_FULL)) {
1938 if (n->type == AUDIT_TYPE_UNKNOWN)
1939 n->type = type;
1940 found_child = n;
1941 break;
1942 }
1943 }
1944
1945 if (!found_parent) {
1946 /* create a new, "anonymous" parent record */
1947 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1948 if (!n)
1949 return;
1950 audit_copy_inode(n, NULL, parent);
1951 }
1952
1953 if (!found_child) {
1954 found_child = audit_alloc_name(context, type);
1955 if (!found_child)
1956 return;
1957
1958 /* Re-use the name belonging to the slot for a matching parent
1959 * directory. All names for this context are relinquished in
1960 * audit_free_names() */
1961 if (found_parent) {
1962 found_child->name = found_parent->name;
1963 found_child->name_len = AUDIT_NAME_FULL;
1964 found_child->name->refcnt++;
1965 }
1966 }
1967
1968 if (inode)
1969 audit_copy_inode(found_child, dentry, inode);
1970 else
1971 found_child->ino = AUDIT_INO_UNSET;
1972 }
1973 EXPORT_SYMBOL_GPL(__audit_inode_child);
1974
1975 /**
1976 * auditsc_get_stamp - get local copies of audit_context values
1977 * @ctx: audit_context for the task
1978 * @t: timespec64 to store time recorded in the audit_context
1979 * @serial: serial value that is recorded in the audit_context
1980 *
1981 * Also sets the context as auditable.
1982 */
1983 int auditsc_get_stamp(struct audit_context *ctx,
1984 struct timespec64 *t, unsigned int *serial)
1985 {
1986 if (!ctx->in_syscall)
1987 return 0;
1988 if (!ctx->serial)
1989 ctx->serial = audit_serial();
1990 t->tv_sec = ctx->ctime.tv_sec;
1991 t->tv_nsec = ctx->ctime.tv_nsec;
1992 *serial = ctx->serial;
1993 if (!ctx->prio) {
1994 ctx->prio = 1;
1995 ctx->current_state = AUDIT_RECORD_CONTEXT;
1996 }
1997 return 1;
1998 }
1999
2000 /* global counter which is incremented every time something logs in */
2001 static atomic_t session_id = ATOMIC_INIT(0);
2002
2003 static int audit_set_loginuid_perm(kuid_t loginuid)
2004 {
2005 /* if we are unset, we don't need privs */
2006 if (!audit_loginuid_set(current))
2007 return 0;
2008 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2009 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2010 return -EPERM;
2011 /* it is set, you need permission */
2012 if (!capable(CAP_AUDIT_CONTROL))
2013 return -EPERM;
2014 /* reject if this is not an unset and we don't allow that */
2015 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2016 return -EPERM;
2017 return 0;
2018 }
2019
2020 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2021 unsigned int oldsessionid, unsigned int sessionid,
2022 int rc)
2023 {
2024 struct audit_buffer *ab;
2025 uid_t uid, oldloginuid, loginuid;
2026 struct tty_struct *tty;
2027
2028 if (!audit_enabled)
2029 return;
2030
2031 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2032 if (!ab)
2033 return;
2034
2035 uid = from_kuid(&init_user_ns, task_uid(current));
2036 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2037 loginuid = from_kuid(&init_user_ns, kloginuid),
2038 tty = audit_get_tty(current);
2039
2040 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2041 audit_log_task_context(ab);
2042 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2043 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2044 oldsessionid, sessionid, !rc);
2045 audit_put_tty(tty);
2046 audit_log_end(ab);
2047 }
2048
2049 /**
2050 * audit_set_loginuid - set current task's audit_context loginuid
2051 * @loginuid: loginuid value
2052 *
2053 * Returns 0.
2054 *
2055 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2056 */
2057 int audit_set_loginuid(kuid_t loginuid)
2058 {
2059 struct task_struct *task = current;
2060 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2061 kuid_t oldloginuid;
2062 int rc;
2063
2064 oldloginuid = audit_get_loginuid(current);
2065 oldsessionid = audit_get_sessionid(current);
2066
2067 rc = audit_set_loginuid_perm(loginuid);
2068 if (rc)
2069 goto out;
2070
2071 /* are we setting or clearing? */
2072 if (uid_valid(loginuid)) {
2073 sessionid = (unsigned int)atomic_inc_return(&session_id);
2074 if (unlikely(sessionid == AUDIT_SID_UNSET))
2075 sessionid = (unsigned int)atomic_inc_return(&session_id);
2076 }
2077
2078 task->sessionid = sessionid;
2079 task->loginuid = loginuid;
2080 out:
2081 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2082 return rc;
2083 }
2084
2085 /**
2086 * __audit_mq_open - record audit data for a POSIX MQ open
2087 * @oflag: open flag
2088 * @mode: mode bits
2089 * @attr: queue attributes
2090 *
2091 */
2092 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2093 {
2094 struct audit_context *context = audit_context();
2095
2096 if (attr)
2097 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2098 else
2099 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2100
2101 context->mq_open.oflag = oflag;
2102 context->mq_open.mode = mode;
2103
2104 context->type = AUDIT_MQ_OPEN;
2105 }
2106
2107 /**
2108 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2109 * @mqdes: MQ descriptor
2110 * @msg_len: Message length
2111 * @msg_prio: Message priority
2112 * @abs_timeout: Message timeout in absolute time
2113 *
2114 */
2115 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2116 const struct timespec64 *abs_timeout)
2117 {
2118 struct audit_context *context = audit_context();
2119 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2120
2121 if (abs_timeout)
2122 memcpy(p, abs_timeout, sizeof(*p));
2123 else
2124 memset(p, 0, sizeof(*p));
2125
2126 context->mq_sendrecv.mqdes = mqdes;
2127 context->mq_sendrecv.msg_len = msg_len;
2128 context->mq_sendrecv.msg_prio = msg_prio;
2129
2130 context->type = AUDIT_MQ_SENDRECV;
2131 }
2132
2133 /**
2134 * __audit_mq_notify - record audit data for a POSIX MQ notify
2135 * @mqdes: MQ descriptor
2136 * @notification: Notification event
2137 *
2138 */
2139
2140 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2141 {
2142 struct audit_context *context = audit_context();
2143
2144 if (notification)
2145 context->mq_notify.sigev_signo = notification->sigev_signo;
2146 else
2147 context->mq_notify.sigev_signo = 0;
2148
2149 context->mq_notify.mqdes = mqdes;
2150 context->type = AUDIT_MQ_NOTIFY;
2151 }
2152
2153 /**
2154 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2155 * @mqdes: MQ descriptor
2156 * @mqstat: MQ flags
2157 *
2158 */
2159 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2160 {
2161 struct audit_context *context = audit_context();
2162 context->mq_getsetattr.mqdes = mqdes;
2163 context->mq_getsetattr.mqstat = *mqstat;
2164 context->type = AUDIT_MQ_GETSETATTR;
2165 }
2166
2167 /**
2168 * __audit_ipc_obj - record audit data for ipc object
2169 * @ipcp: ipc permissions
2170 *
2171 */
2172 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2173 {
2174 struct audit_context *context = audit_context();
2175 context->ipc.uid = ipcp->uid;
2176 context->ipc.gid = ipcp->gid;
2177 context->ipc.mode = ipcp->mode;
2178 context->ipc.has_perm = 0;
2179 security_ipc_getsecid(ipcp, &context->ipc.osid);
2180 context->type = AUDIT_IPC;
2181 }
2182
2183 /**
2184 * __audit_ipc_set_perm - record audit data for new ipc permissions
2185 * @qbytes: msgq bytes
2186 * @uid: msgq user id
2187 * @gid: msgq group id
2188 * @mode: msgq mode (permissions)
2189 *
2190 * Called only after audit_ipc_obj().
2191 */
2192 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2193 {
2194 struct audit_context *context = audit_context();
2195
2196 context->ipc.qbytes = qbytes;
2197 context->ipc.perm_uid = uid;
2198 context->ipc.perm_gid = gid;
2199 context->ipc.perm_mode = mode;
2200 context->ipc.has_perm = 1;
2201 }
2202
2203 void __audit_bprm(struct linux_binprm *bprm)
2204 {
2205 struct audit_context *context = audit_context();
2206
2207 context->type = AUDIT_EXECVE;
2208 context->execve.argc = bprm->argc;
2209 }
2210
2211
2212 /**
2213 * __audit_socketcall - record audit data for sys_socketcall
2214 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2215 * @args: args array
2216 *
2217 */
2218 int __audit_socketcall(int nargs, unsigned long *args)
2219 {
2220 struct audit_context *context = audit_context();
2221
2222 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2223 return -EINVAL;
2224 context->type = AUDIT_SOCKETCALL;
2225 context->socketcall.nargs = nargs;
2226 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2227 return 0;
2228 }
2229
2230 /**
2231 * __audit_fd_pair - record audit data for pipe and socketpair
2232 * @fd1: the first file descriptor
2233 * @fd2: the second file descriptor
2234 *
2235 */
2236 void __audit_fd_pair(int fd1, int fd2)
2237 {
2238 struct audit_context *context = audit_context();
2239 context->fds[0] = fd1;
2240 context->fds[1] = fd2;
2241 }
2242
2243 /**
2244 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2245 * @len: data length in user space
2246 * @a: data address in kernel space
2247 *
2248 * Returns 0 for success or NULL context or < 0 on error.
2249 */
2250 int __audit_sockaddr(int len, void *a)
2251 {
2252 struct audit_context *context = audit_context();
2253
2254 if (!context->sockaddr) {
2255 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2256 if (!p)
2257 return -ENOMEM;
2258 context->sockaddr = p;
2259 }
2260
2261 context->sockaddr_len = len;
2262 memcpy(context->sockaddr, a, len);
2263 return 0;
2264 }
2265
2266 void __audit_ptrace(struct task_struct *t)
2267 {
2268 struct audit_context *context = audit_context();
2269
2270 context->target_pid = task_tgid_nr(t);
2271 context->target_auid = audit_get_loginuid(t);
2272 context->target_uid = task_uid(t);
2273 context->target_sessionid = audit_get_sessionid(t);
2274 security_task_getsecid(t, &context->target_sid);
2275 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2276 }
2277
2278 /**
2279 * audit_signal_info - record signal info for shutting down audit subsystem
2280 * @sig: signal value
2281 * @t: task being signaled
2282 *
2283 * If the audit subsystem is being terminated, record the task (pid)
2284 * and uid that is doing that.
2285 */
2286 int audit_signal_info(int sig, struct task_struct *t)
2287 {
2288 struct audit_aux_data_pids *axp;
2289 struct audit_context *ctx = audit_context();
2290 kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2291
2292 if (auditd_test_task(t) &&
2293 (sig == SIGTERM || sig == SIGHUP ||
2294 sig == SIGUSR1 || sig == SIGUSR2)) {
2295 audit_sig_pid = task_tgid_nr(current);
2296 auid = audit_get_loginuid(current);
2297 if (uid_valid(auid))
2298 audit_sig_uid = auid;
2299 else
2300 audit_sig_uid = uid;
2301 security_task_getsecid(current, &audit_sig_sid);
2302 }
2303
2304 if (!audit_signals || audit_dummy_context())
2305 return 0;
2306
2307 /* optimize the common case by putting first signal recipient directly
2308 * in audit_context */
2309 if (!ctx->target_pid) {
2310 ctx->target_pid = task_tgid_nr(t);
2311 ctx->target_auid = audit_get_loginuid(t);
2312 ctx->target_uid = t_uid;
2313 ctx->target_sessionid = audit_get_sessionid(t);
2314 security_task_getsecid(t, &ctx->target_sid);
2315 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2316 return 0;
2317 }
2318
2319 axp = (void *)ctx->aux_pids;
2320 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2321 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2322 if (!axp)
2323 return -ENOMEM;
2324
2325 axp->d.type = AUDIT_OBJ_PID;
2326 axp->d.next = ctx->aux_pids;
2327 ctx->aux_pids = (void *)axp;
2328 }
2329 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2330
2331 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2332 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2333 axp->target_uid[axp->pid_count] = t_uid;
2334 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2335 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2336 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2337 axp->pid_count++;
2338
2339 return 0;
2340 }
2341
2342 /**
2343 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2344 * @bprm: pointer to the bprm being processed
2345 * @new: the proposed new credentials
2346 * @old: the old credentials
2347 *
2348 * Simply check if the proc already has the caps given by the file and if not
2349 * store the priv escalation info for later auditing at the end of the syscall
2350 *
2351 * -Eric
2352 */
2353 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2354 const struct cred *new, const struct cred *old)
2355 {
2356 struct audit_aux_data_bprm_fcaps *ax;
2357 struct audit_context *context = audit_context();
2358 struct cpu_vfs_cap_data vcaps;
2359
2360 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2361 if (!ax)
2362 return -ENOMEM;
2363
2364 ax->d.type = AUDIT_BPRM_FCAPS;
2365 ax->d.next = context->aux;
2366 context->aux = (void *)ax;
2367
2368 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2369
2370 ax->fcap.permitted = vcaps.permitted;
2371 ax->fcap.inheritable = vcaps.inheritable;
2372 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2373 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2374
2375 ax->old_pcap.permitted = old->cap_permitted;
2376 ax->old_pcap.inheritable = old->cap_inheritable;
2377 ax->old_pcap.effective = old->cap_effective;
2378 ax->old_pcap.ambient = old->cap_ambient;
2379
2380 ax->new_pcap.permitted = new->cap_permitted;
2381 ax->new_pcap.inheritable = new->cap_inheritable;
2382 ax->new_pcap.effective = new->cap_effective;
2383 ax->new_pcap.ambient = new->cap_ambient;
2384 return 0;
2385 }
2386
2387 /**
2388 * __audit_log_capset - store information about the arguments to the capset syscall
2389 * @new: the new credentials
2390 * @old: the old (current) credentials
2391 *
2392 * Record the arguments userspace sent to sys_capset for later printing by the
2393 * audit system if applicable
2394 */
2395 void __audit_log_capset(const struct cred *new, const struct cred *old)
2396 {
2397 struct audit_context *context = audit_context();
2398 context->capset.pid = task_tgid_nr(current);
2399 context->capset.cap.effective = new->cap_effective;
2400 context->capset.cap.inheritable = new->cap_effective;
2401 context->capset.cap.permitted = new->cap_permitted;
2402 context->capset.cap.ambient = new->cap_ambient;
2403 context->type = AUDIT_CAPSET;
2404 }
2405
2406 void __audit_mmap_fd(int fd, int flags)
2407 {
2408 struct audit_context *context = audit_context();
2409 context->mmap.fd = fd;
2410 context->mmap.flags = flags;
2411 context->type = AUDIT_MMAP;
2412 }
2413
2414 void __audit_log_kern_module(char *name)
2415 {
2416 struct audit_context *context = audit_context();
2417
2418 context->module.name = kstrdup(name, GFP_KERNEL);
2419 if (!context->module.name)
2420 audit_log_lost("out of memory in __audit_log_kern_module");
2421 context->type = AUDIT_KERN_MODULE;
2422 }
2423
2424 void __audit_fanotify(unsigned int response)
2425 {
2426 audit_log(audit_context(), GFP_KERNEL,
2427 AUDIT_FANOTIFY, "resp=%u", response);
2428 }
2429
2430 static void audit_log_task(struct audit_buffer *ab)
2431 {
2432 kuid_t auid, uid;
2433 kgid_t gid;
2434 unsigned int sessionid;
2435 char comm[sizeof(current->comm)];
2436
2437 auid = audit_get_loginuid(current);
2438 sessionid = audit_get_sessionid(current);
2439 current_uid_gid(&uid, &gid);
2440
2441 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2442 from_kuid(&init_user_ns, auid),
2443 from_kuid(&init_user_ns, uid),
2444 from_kgid(&init_user_ns, gid),
2445 sessionid);
2446 audit_log_task_context(ab);
2447 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2448 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2449 audit_log_d_path_exe(ab, current->mm);
2450 }
2451
2452 /**
2453 * audit_core_dumps - record information about processes that end abnormally
2454 * @signr: signal value
2455 *
2456 * If a process ends with a core dump, something fishy is going on and we
2457 * should record the event for investigation.
2458 */
2459 void audit_core_dumps(long signr)
2460 {
2461 struct audit_buffer *ab;
2462
2463 if (!audit_enabled)
2464 return;
2465
2466 if (signr == SIGQUIT) /* don't care for those */
2467 return;
2468
2469 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2470 if (unlikely(!ab))
2471 return;
2472 audit_log_task(ab);
2473 audit_log_format(ab, " sig=%ld res=1", signr);
2474 audit_log_end(ab);
2475 }
2476
2477 /**
2478 * audit_seccomp - record information about a seccomp action
2479 * @syscall: syscall number
2480 * @signr: signal value
2481 * @code: the seccomp action
2482 *
2483 * Record the information associated with a seccomp action. Event filtering for
2484 * seccomp actions that are not to be logged is done in seccomp_log().
2485 * Therefore, this function forces auditing independent of the audit_enabled
2486 * and dummy context state because seccomp actions should be logged even when
2487 * audit is not in use.
2488 */
2489 void audit_seccomp(unsigned long syscall, long signr, int code)
2490 {
2491 struct audit_buffer *ab;
2492
2493 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2494 if (unlikely(!ab))
2495 return;
2496 audit_log_task(ab);
2497 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2498 signr, syscall_get_arch(), syscall,
2499 in_compat_syscall(), KSTK_EIP(current), code);
2500 audit_log_end(ab);
2501 }
2502
2503 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2504 int res)
2505 {
2506 struct audit_buffer *ab;
2507
2508 if (!audit_enabled)
2509 return;
2510
2511 ab = audit_log_start(audit_context(), GFP_KERNEL,
2512 AUDIT_CONFIG_CHANGE);
2513 if (unlikely(!ab))
2514 return;
2515
2516 audit_log_format(ab, "op=seccomp-logging");
2517 audit_log_format(ab, " actions=%s", names);
2518 audit_log_format(ab, " old-actions=%s", old_names);
2519 audit_log_format(ab, " res=%d", res);
2520 audit_log_end(ab);
2521 }
2522
2523 struct list_head *audit_killed_trees(void)
2524 {
2525 struct audit_context *ctx = audit_context();
2526 if (likely(!ctx || !ctx->in_syscall))
2527 return NULL;
2528 return &ctx->killed_trees;
2529 }