]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/auditsc.c
ftrace: Remove #ifdef from code and add clear_ftrace_function_probes() stub
[mirror_ubuntu-artful-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 }
210 }
211
212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
220 }
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
229 }
230 return 0;
231 }
232
233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
240 }
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
247 }
248 #endif
249
250 static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
263 }
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
269 }
270 }
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
274 }
275 ctx->trees = p;
276 ctx->tree_count = count;
277 #endif
278 }
279
280 static void free_tree_refs(struct audit_context *ctx)
281 {
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
286 }
287 }
288
289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
301 }
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
307 }
308 #endif
309 return 0;
310 }
311
312 static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
316 {
317 struct audit_names *n;
318 int rc;
319
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
324 }
325
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
331 }
332 }
333 return 0;
334 }
335
336 static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
340 {
341 struct audit_names *n;
342 int rc;
343
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
348 }
349
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
355 }
356 }
357 return 0;
358 }
359
360 static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
365 {
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(tsk->loginuid, name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389 case AUDIT_COMPARE_UID_TO_EUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->euid);
391 case AUDIT_COMPARE_UID_TO_SUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->suid);
393 case AUDIT_COMPARE_UID_TO_FSUID:
394 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398 case AUDIT_COMPARE_AUID_TO_SUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400 case AUDIT_COMPARE_AUID_TO_FSUID:
401 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->suid);
405 case AUDIT_COMPARE_EUID_TO_FSUID:
406 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID:
409 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->egid);
413 case AUDIT_COMPARE_GID_TO_SGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415 case AUDIT_COMPARE_GID_TO_FSGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420 case AUDIT_COMPARE_EGID_TO_FSGID:
421 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID:
424 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425 default:
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
427 return 0;
428 }
429 return 0;
430 }
431
432 /* Determine if any context name data matches a rule's watch data */
433 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * otherwise.
435 *
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
439 */
440 static int audit_filter_rules(struct task_struct *tsk,
441 struct audit_krule *rule,
442 struct audit_context *ctx,
443 struct audit_names *name,
444 enum audit_state *state,
445 bool task_creation)
446 {
447 const struct cred *cred;
448 int i, need_sid = 1;
449 u32 sid;
450 unsigned int sessionid;
451
452 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
453
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 struct audit_names *n;
457 int result = 0;
458 pid_t pid;
459
460 switch (f->type) {
461 case AUDIT_PID:
462 pid = task_tgid_nr(tsk);
463 result = audit_comparator(pid, f->op, f->val);
464 break;
465 case AUDIT_PPID:
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = task_ppid_nr(tsk);
469 result = audit_comparator(ctx->ppid, f->op, f->val);
470 }
471 break;
472 case AUDIT_EXE:
473 result = audit_exe_compare(tsk, rule->exe);
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = in_group_p(f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !in_group_p(f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = in_egroup_p(f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !in_egroup_p(f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(current);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
613 break;
614 case AUDIT_LOGINUID_SET:
615 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
616 break;
617 case AUDIT_SUBJ_USER:
618 case AUDIT_SUBJ_ROLE:
619 case AUDIT_SUBJ_TYPE:
620 case AUDIT_SUBJ_SEN:
621 case AUDIT_SUBJ_CLR:
622 /* NOTE: this may return negative values indicating
623 a temporary error. We simply treat this as a
624 match for now to avoid losing information that
625 may be wanted. An error message will also be
626 logged upon error */
627 if (f->lsm_rule) {
628 if (need_sid) {
629 security_task_getsecid(tsk, &sid);
630 need_sid = 0;
631 }
632 result = security_audit_rule_match(sid, f->type,
633 f->op,
634 f->lsm_rule,
635 ctx);
636 }
637 break;
638 case AUDIT_OBJ_USER:
639 case AUDIT_OBJ_ROLE:
640 case AUDIT_OBJ_TYPE:
641 case AUDIT_OBJ_LEV_LOW:
642 case AUDIT_OBJ_LEV_HIGH:
643 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
644 also applies here */
645 if (f->lsm_rule) {
646 /* Find files that match */
647 if (name) {
648 result = security_audit_rule_match(
649 name->osid, f->type, f->op,
650 f->lsm_rule, ctx);
651 } else if (ctx) {
652 list_for_each_entry(n, &ctx->names_list, list) {
653 if (security_audit_rule_match(n->osid, f->type,
654 f->op, f->lsm_rule,
655 ctx)) {
656 ++result;
657 break;
658 }
659 }
660 }
661 /* Find ipc objects that match */
662 if (!ctx || ctx->type != AUDIT_IPC)
663 break;
664 if (security_audit_rule_match(ctx->ipc.osid,
665 f->type, f->op,
666 f->lsm_rule, ctx))
667 ++result;
668 }
669 break;
670 case AUDIT_ARG0:
671 case AUDIT_ARG1:
672 case AUDIT_ARG2:
673 case AUDIT_ARG3:
674 if (ctx)
675 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
676 break;
677 case AUDIT_FILTERKEY:
678 /* ignore this field for filtering */
679 result = 1;
680 break;
681 case AUDIT_PERM:
682 result = audit_match_perm(ctx, f->val);
683 break;
684 case AUDIT_FILETYPE:
685 result = audit_match_filetype(ctx, f->val);
686 break;
687 case AUDIT_FIELD_COMPARE:
688 result = audit_field_compare(tsk, cred, f, ctx, name);
689 break;
690 }
691 if (!result)
692 return 0;
693 }
694
695 if (ctx) {
696 if (rule->prio <= ctx->prio)
697 return 0;
698 if (rule->filterkey) {
699 kfree(ctx->filterkey);
700 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
701 }
702 ctx->prio = rule->prio;
703 }
704 switch (rule->action) {
705 case AUDIT_NEVER:
706 *state = AUDIT_DISABLED;
707 break;
708 case AUDIT_ALWAYS:
709 *state = AUDIT_RECORD_CONTEXT;
710 break;
711 }
712 return 1;
713 }
714
715 /* At process creation time, we can determine if system-call auditing is
716 * completely disabled for this task. Since we only have the task
717 * structure at this point, we can only check uid and gid.
718 */
719 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
720 {
721 struct audit_entry *e;
722 enum audit_state state;
723
724 rcu_read_lock();
725 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
726 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
727 &state, true)) {
728 if (state == AUDIT_RECORD_CONTEXT)
729 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
730 rcu_read_unlock();
731 return state;
732 }
733 }
734 rcu_read_unlock();
735 return AUDIT_BUILD_CONTEXT;
736 }
737
738 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
739 {
740 int word, bit;
741
742 if (val > 0xffffffff)
743 return false;
744
745 word = AUDIT_WORD(val);
746 if (word >= AUDIT_BITMASK_SIZE)
747 return false;
748
749 bit = AUDIT_BIT(val);
750
751 return rule->mask[word] & bit;
752 }
753
754 /* At syscall entry and exit time, this filter is called if the
755 * audit_state is not low enough that auditing cannot take place, but is
756 * also not high enough that we already know we have to write an audit
757 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
758 */
759 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
760 struct audit_context *ctx,
761 struct list_head *list)
762 {
763 struct audit_entry *e;
764 enum audit_state state;
765
766 if (auditd_test_task(tsk))
767 return AUDIT_DISABLED;
768
769 rcu_read_lock();
770 if (!list_empty(list)) {
771 list_for_each_entry_rcu(e, list, list) {
772 if (audit_in_mask(&e->rule, ctx->major) &&
773 audit_filter_rules(tsk, &e->rule, ctx, NULL,
774 &state, false)) {
775 rcu_read_unlock();
776 ctx->current_state = state;
777 return state;
778 }
779 }
780 }
781 rcu_read_unlock();
782 return AUDIT_BUILD_CONTEXT;
783 }
784
785 /*
786 * Given an audit_name check the inode hash table to see if they match.
787 * Called holding the rcu read lock to protect the use of audit_inode_hash
788 */
789 static int audit_filter_inode_name(struct task_struct *tsk,
790 struct audit_names *n,
791 struct audit_context *ctx) {
792 int h = audit_hash_ino((u32)n->ino);
793 struct list_head *list = &audit_inode_hash[h];
794 struct audit_entry *e;
795 enum audit_state state;
796
797 if (list_empty(list))
798 return 0;
799
800 list_for_each_entry_rcu(e, list, list) {
801 if (audit_in_mask(&e->rule, ctx->major) &&
802 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
803 ctx->current_state = state;
804 return 1;
805 }
806 }
807
808 return 0;
809 }
810
811 /* At syscall exit time, this filter is called if any audit_names have been
812 * collected during syscall processing. We only check rules in sublists at hash
813 * buckets applicable to the inode numbers in audit_names.
814 * Regarding audit_state, same rules apply as for audit_filter_syscall().
815 */
816 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
817 {
818 struct audit_names *n;
819
820 if (auditd_test_task(tsk))
821 return;
822
823 rcu_read_lock();
824
825 list_for_each_entry(n, &ctx->names_list, list) {
826 if (audit_filter_inode_name(tsk, n, ctx))
827 break;
828 }
829 rcu_read_unlock();
830 }
831
832 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
833 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
834 int return_valid,
835 long return_code)
836 {
837 struct audit_context *context = tsk->audit_context;
838
839 if (!context)
840 return NULL;
841 context->return_valid = return_valid;
842
843 /*
844 * we need to fix up the return code in the audit logs if the actual
845 * return codes are later going to be fixed up by the arch specific
846 * signal handlers
847 *
848 * This is actually a test for:
849 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
850 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
851 *
852 * but is faster than a bunch of ||
853 */
854 if (unlikely(return_code <= -ERESTARTSYS) &&
855 (return_code >= -ERESTART_RESTARTBLOCK) &&
856 (return_code != -ENOIOCTLCMD))
857 context->return_code = -EINTR;
858 else
859 context->return_code = return_code;
860
861 if (context->in_syscall && !context->dummy) {
862 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
863 audit_filter_inodes(tsk, context);
864 }
865
866 tsk->audit_context = NULL;
867 return context;
868 }
869
870 static inline void audit_proctitle_free(struct audit_context *context)
871 {
872 kfree(context->proctitle.value);
873 context->proctitle.value = NULL;
874 context->proctitle.len = 0;
875 }
876
877 static inline void audit_free_names(struct audit_context *context)
878 {
879 struct audit_names *n, *next;
880
881 list_for_each_entry_safe(n, next, &context->names_list, list) {
882 list_del(&n->list);
883 if (n->name)
884 putname(n->name);
885 if (n->should_free)
886 kfree(n);
887 }
888 context->name_count = 0;
889 path_put(&context->pwd);
890 context->pwd.dentry = NULL;
891 context->pwd.mnt = NULL;
892 }
893
894 static inline void audit_free_aux(struct audit_context *context)
895 {
896 struct audit_aux_data *aux;
897
898 while ((aux = context->aux)) {
899 context->aux = aux->next;
900 kfree(aux);
901 }
902 while ((aux = context->aux_pids)) {
903 context->aux_pids = aux->next;
904 kfree(aux);
905 }
906 }
907
908 static inline struct audit_context *audit_alloc_context(enum audit_state state)
909 {
910 struct audit_context *context;
911
912 context = kzalloc(sizeof(*context), GFP_KERNEL);
913 if (!context)
914 return NULL;
915 context->state = state;
916 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
917 INIT_LIST_HEAD(&context->killed_trees);
918 INIT_LIST_HEAD(&context->names_list);
919 return context;
920 }
921
922 /**
923 * audit_alloc - allocate an audit context block for a task
924 * @tsk: task
925 *
926 * Filter on the task information and allocate a per-task audit context
927 * if necessary. Doing so turns on system call auditing for the
928 * specified task. This is called from copy_process, so no lock is
929 * needed.
930 */
931 int audit_alloc(struct task_struct *tsk)
932 {
933 struct audit_context *context;
934 enum audit_state state;
935 char *key = NULL;
936
937 if (likely(!audit_ever_enabled))
938 return 0; /* Return if not auditing. */
939
940 state = audit_filter_task(tsk, &key);
941 if (state == AUDIT_DISABLED) {
942 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
944 }
945
946 if (!(context = audit_alloc_context(state))) {
947 kfree(key);
948 audit_log_lost("out of memory in audit_alloc");
949 return -ENOMEM;
950 }
951 context->filterkey = key;
952
953 tsk->audit_context = context;
954 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
955 return 0;
956 }
957
958 static inline void audit_free_context(struct audit_context *context)
959 {
960 audit_free_names(context);
961 unroll_tree_refs(context, NULL, 0);
962 free_tree_refs(context);
963 audit_free_aux(context);
964 kfree(context->filterkey);
965 kfree(context->sockaddr);
966 audit_proctitle_free(context);
967 kfree(context);
968 }
969
970 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
971 kuid_t auid, kuid_t uid, unsigned int sessionid,
972 u32 sid, char *comm)
973 {
974 struct audit_buffer *ab;
975 char *ctx = NULL;
976 u32 len;
977 int rc = 0;
978
979 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
980 if (!ab)
981 return rc;
982
983 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
984 from_kuid(&init_user_ns, auid),
985 from_kuid(&init_user_ns, uid), sessionid);
986 if (sid) {
987 if (security_secid_to_secctx(sid, &ctx, &len)) {
988 audit_log_format(ab, " obj=(none)");
989 rc = 1;
990 } else {
991 audit_log_format(ab, " obj=%s", ctx);
992 security_release_secctx(ctx, len);
993 }
994 }
995 audit_log_format(ab, " ocomm=");
996 audit_log_untrustedstring(ab, comm);
997 audit_log_end(ab);
998
999 return rc;
1000 }
1001
1002 static void audit_log_execve_info(struct audit_context *context,
1003 struct audit_buffer **ab)
1004 {
1005 long len_max;
1006 long len_rem;
1007 long len_full;
1008 long len_buf;
1009 long len_abuf = 0;
1010 long len_tmp;
1011 bool require_data;
1012 bool encode;
1013 unsigned int iter;
1014 unsigned int arg;
1015 char *buf_head;
1016 char *buf;
1017 const char __user *p = (const char __user *)current->mm->arg_start;
1018
1019 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1020 * data we put in the audit record for this argument (see the
1021 * code below) ... at this point in time 96 is plenty */
1022 char abuf[96];
1023
1024 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1025 * current value of 7500 is not as important as the fact that it
1026 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1027 * room if we go over a little bit in the logging below */
1028 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1029 len_max = MAX_EXECVE_AUDIT_LEN;
1030
1031 /* scratch buffer to hold the userspace args */
1032 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1033 if (!buf_head) {
1034 audit_panic("out of memory for argv string");
1035 return;
1036 }
1037 buf = buf_head;
1038
1039 audit_log_format(*ab, "argc=%d", context->execve.argc);
1040
1041 len_rem = len_max;
1042 len_buf = 0;
1043 len_full = 0;
1044 require_data = true;
1045 encode = false;
1046 iter = 0;
1047 arg = 0;
1048 do {
1049 /* NOTE: we don't ever want to trust this value for anything
1050 * serious, but the audit record format insists we
1051 * provide an argument length for really long arguments,
1052 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1053 * to use strncpy_from_user() to obtain this value for
1054 * recording in the log, although we don't use it
1055 * anywhere here to avoid a double-fetch problem */
1056 if (len_full == 0)
1057 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1058
1059 /* read more data from userspace */
1060 if (require_data) {
1061 /* can we make more room in the buffer? */
1062 if (buf != buf_head) {
1063 memmove(buf_head, buf, len_buf);
1064 buf = buf_head;
1065 }
1066
1067 /* fetch as much as we can of the argument */
1068 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1069 len_max - len_buf);
1070 if (len_tmp == -EFAULT) {
1071 /* unable to copy from userspace */
1072 send_sig(SIGKILL, current, 0);
1073 goto out;
1074 } else if (len_tmp == (len_max - len_buf)) {
1075 /* buffer is not large enough */
1076 require_data = true;
1077 /* NOTE: if we are going to span multiple
1078 * buffers force the encoding so we stand
1079 * a chance at a sane len_full value and
1080 * consistent record encoding */
1081 encode = true;
1082 len_full = len_full * 2;
1083 p += len_tmp;
1084 } else {
1085 require_data = false;
1086 if (!encode)
1087 encode = audit_string_contains_control(
1088 buf, len_tmp);
1089 /* try to use a trusted value for len_full */
1090 if (len_full < len_max)
1091 len_full = (encode ?
1092 len_tmp * 2 : len_tmp);
1093 p += len_tmp + 1;
1094 }
1095 len_buf += len_tmp;
1096 buf_head[len_buf] = '\0';
1097
1098 /* length of the buffer in the audit record? */
1099 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1100 }
1101
1102 /* write as much as we can to the audit log */
1103 if (len_buf > 0) {
1104 /* NOTE: some magic numbers here - basically if we
1105 * can't fit a reasonable amount of data into the
1106 * existing audit buffer, flush it and start with
1107 * a new buffer */
1108 if ((sizeof(abuf) + 8) > len_rem) {
1109 len_rem = len_max;
1110 audit_log_end(*ab);
1111 *ab = audit_log_start(context,
1112 GFP_KERNEL, AUDIT_EXECVE);
1113 if (!*ab)
1114 goto out;
1115 }
1116
1117 /* create the non-arg portion of the arg record */
1118 len_tmp = 0;
1119 if (require_data || (iter > 0) ||
1120 ((len_abuf + sizeof(abuf)) > len_rem)) {
1121 if (iter == 0) {
1122 len_tmp += snprintf(&abuf[len_tmp],
1123 sizeof(abuf) - len_tmp,
1124 " a%d_len=%lu",
1125 arg, len_full);
1126 }
1127 len_tmp += snprintf(&abuf[len_tmp],
1128 sizeof(abuf) - len_tmp,
1129 " a%d[%d]=", arg, iter++);
1130 } else
1131 len_tmp += snprintf(&abuf[len_tmp],
1132 sizeof(abuf) - len_tmp,
1133 " a%d=", arg);
1134 WARN_ON(len_tmp >= sizeof(abuf));
1135 abuf[sizeof(abuf) - 1] = '\0';
1136
1137 /* log the arg in the audit record */
1138 audit_log_format(*ab, "%s", abuf);
1139 len_rem -= len_tmp;
1140 len_tmp = len_buf;
1141 if (encode) {
1142 if (len_abuf > len_rem)
1143 len_tmp = len_rem / 2; /* encoding */
1144 audit_log_n_hex(*ab, buf, len_tmp);
1145 len_rem -= len_tmp * 2;
1146 len_abuf -= len_tmp * 2;
1147 } else {
1148 if (len_abuf > len_rem)
1149 len_tmp = len_rem - 2; /* quotes */
1150 audit_log_n_string(*ab, buf, len_tmp);
1151 len_rem -= len_tmp + 2;
1152 /* don't subtract the "2" because we still need
1153 * to add quotes to the remaining string */
1154 len_abuf -= len_tmp;
1155 }
1156 len_buf -= len_tmp;
1157 buf += len_tmp;
1158 }
1159
1160 /* ready to move to the next argument? */
1161 if ((len_buf == 0) && !require_data) {
1162 arg++;
1163 iter = 0;
1164 len_full = 0;
1165 require_data = true;
1166 encode = false;
1167 }
1168 } while (arg < context->execve.argc);
1169
1170 /* NOTE: the caller handles the final audit_log_end() call */
1171
1172 out:
1173 kfree(buf_head);
1174 }
1175
1176 static void show_special(struct audit_context *context, int *call_panic)
1177 {
1178 struct audit_buffer *ab;
1179 int i;
1180
1181 ab = audit_log_start(context, GFP_KERNEL, context->type);
1182 if (!ab)
1183 return;
1184
1185 switch (context->type) {
1186 case AUDIT_SOCKETCALL: {
1187 int nargs = context->socketcall.nargs;
1188 audit_log_format(ab, "nargs=%d", nargs);
1189 for (i = 0; i < nargs; i++)
1190 audit_log_format(ab, " a%d=%lx", i,
1191 context->socketcall.args[i]);
1192 break; }
1193 case AUDIT_IPC: {
1194 u32 osid = context->ipc.osid;
1195
1196 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1197 from_kuid(&init_user_ns, context->ipc.uid),
1198 from_kgid(&init_user_ns, context->ipc.gid),
1199 context->ipc.mode);
1200 if (osid) {
1201 char *ctx = NULL;
1202 u32 len;
1203 if (security_secid_to_secctx(osid, &ctx, &len)) {
1204 audit_log_format(ab, " osid=%u", osid);
1205 *call_panic = 1;
1206 } else {
1207 audit_log_format(ab, " obj=%s", ctx);
1208 security_release_secctx(ctx, len);
1209 }
1210 }
1211 if (context->ipc.has_perm) {
1212 audit_log_end(ab);
1213 ab = audit_log_start(context, GFP_KERNEL,
1214 AUDIT_IPC_SET_PERM);
1215 if (unlikely(!ab))
1216 return;
1217 audit_log_format(ab,
1218 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1219 context->ipc.qbytes,
1220 context->ipc.perm_uid,
1221 context->ipc.perm_gid,
1222 context->ipc.perm_mode);
1223 }
1224 break; }
1225 case AUDIT_MQ_OPEN:
1226 audit_log_format(ab,
1227 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1228 "mq_msgsize=%ld mq_curmsgs=%ld",
1229 context->mq_open.oflag, context->mq_open.mode,
1230 context->mq_open.attr.mq_flags,
1231 context->mq_open.attr.mq_maxmsg,
1232 context->mq_open.attr.mq_msgsize,
1233 context->mq_open.attr.mq_curmsgs);
1234 break;
1235 case AUDIT_MQ_SENDRECV:
1236 audit_log_format(ab,
1237 "mqdes=%d msg_len=%zd msg_prio=%u "
1238 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1239 context->mq_sendrecv.mqdes,
1240 context->mq_sendrecv.msg_len,
1241 context->mq_sendrecv.msg_prio,
1242 context->mq_sendrecv.abs_timeout.tv_sec,
1243 context->mq_sendrecv.abs_timeout.tv_nsec);
1244 break;
1245 case AUDIT_MQ_NOTIFY:
1246 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1247 context->mq_notify.mqdes,
1248 context->mq_notify.sigev_signo);
1249 break;
1250 case AUDIT_MQ_GETSETATTR: {
1251 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1252 audit_log_format(ab,
1253 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1254 "mq_curmsgs=%ld ",
1255 context->mq_getsetattr.mqdes,
1256 attr->mq_flags, attr->mq_maxmsg,
1257 attr->mq_msgsize, attr->mq_curmsgs);
1258 break; }
1259 case AUDIT_CAPSET:
1260 audit_log_format(ab, "pid=%d", context->capset.pid);
1261 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1262 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1263 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1264 break;
1265 case AUDIT_MMAP:
1266 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1267 context->mmap.flags);
1268 break;
1269 case AUDIT_EXECVE:
1270 audit_log_execve_info(context, &ab);
1271 break;
1272 case AUDIT_KERN_MODULE:
1273 audit_log_format(ab, "name=");
1274 audit_log_untrustedstring(ab, context->module.name);
1275 kfree(context->module.name);
1276 break;
1277 }
1278 audit_log_end(ab);
1279 }
1280
1281 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1282 {
1283 char *end = proctitle + len - 1;
1284 while (end > proctitle && !isprint(*end))
1285 end--;
1286
1287 /* catch the case where proctitle is only 1 non-print character */
1288 len = end - proctitle + 1;
1289 len -= isprint(proctitle[len-1]) == 0;
1290 return len;
1291 }
1292
1293 static void audit_log_proctitle(struct task_struct *tsk,
1294 struct audit_context *context)
1295 {
1296 int res;
1297 char *buf;
1298 char *msg = "(null)";
1299 int len = strlen(msg);
1300 struct audit_buffer *ab;
1301
1302 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1303 if (!ab)
1304 return; /* audit_panic or being filtered */
1305
1306 audit_log_format(ab, "proctitle=");
1307
1308 /* Not cached */
1309 if (!context->proctitle.value) {
1310 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1311 if (!buf)
1312 goto out;
1313 /* Historically called this from procfs naming */
1314 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1315 if (res == 0) {
1316 kfree(buf);
1317 goto out;
1318 }
1319 res = audit_proctitle_rtrim(buf, res);
1320 if (res == 0) {
1321 kfree(buf);
1322 goto out;
1323 }
1324 context->proctitle.value = buf;
1325 context->proctitle.len = res;
1326 }
1327 msg = context->proctitle.value;
1328 len = context->proctitle.len;
1329 out:
1330 audit_log_n_untrustedstring(ab, msg, len);
1331 audit_log_end(ab);
1332 }
1333
1334 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1335 {
1336 int i, call_panic = 0;
1337 struct audit_buffer *ab;
1338 struct audit_aux_data *aux;
1339 struct audit_names *n;
1340
1341 /* tsk == current */
1342 context->personality = tsk->personality;
1343
1344 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1345 if (!ab)
1346 return; /* audit_panic has been called */
1347 audit_log_format(ab, "arch=%x syscall=%d",
1348 context->arch, context->major);
1349 if (context->personality != PER_LINUX)
1350 audit_log_format(ab, " per=%lx", context->personality);
1351 if (context->return_valid)
1352 audit_log_format(ab, " success=%s exit=%ld",
1353 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1354 context->return_code);
1355
1356 audit_log_format(ab,
1357 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1358 context->argv[0],
1359 context->argv[1],
1360 context->argv[2],
1361 context->argv[3],
1362 context->name_count);
1363
1364 audit_log_task_info(ab, tsk);
1365 audit_log_key(ab, context->filterkey);
1366 audit_log_end(ab);
1367
1368 for (aux = context->aux; aux; aux = aux->next) {
1369
1370 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1371 if (!ab)
1372 continue; /* audit_panic has been called */
1373
1374 switch (aux->type) {
1375
1376 case AUDIT_BPRM_FCAPS: {
1377 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1378 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1379 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1380 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1381 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1382 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1383 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1384 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1385 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1386 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1387 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1388 break; }
1389
1390 }
1391 audit_log_end(ab);
1392 }
1393
1394 if (context->type)
1395 show_special(context, &call_panic);
1396
1397 if (context->fds[0] >= 0) {
1398 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1399 if (ab) {
1400 audit_log_format(ab, "fd0=%d fd1=%d",
1401 context->fds[0], context->fds[1]);
1402 audit_log_end(ab);
1403 }
1404 }
1405
1406 if (context->sockaddr_len) {
1407 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1408 if (ab) {
1409 audit_log_format(ab, "saddr=");
1410 audit_log_n_hex(ab, (void *)context->sockaddr,
1411 context->sockaddr_len);
1412 audit_log_end(ab);
1413 }
1414 }
1415
1416 for (aux = context->aux_pids; aux; aux = aux->next) {
1417 struct audit_aux_data_pids *axs = (void *)aux;
1418
1419 for (i = 0; i < axs->pid_count; i++)
1420 if (audit_log_pid_context(context, axs->target_pid[i],
1421 axs->target_auid[i],
1422 axs->target_uid[i],
1423 axs->target_sessionid[i],
1424 axs->target_sid[i],
1425 axs->target_comm[i]))
1426 call_panic = 1;
1427 }
1428
1429 if (context->target_pid &&
1430 audit_log_pid_context(context, context->target_pid,
1431 context->target_auid, context->target_uid,
1432 context->target_sessionid,
1433 context->target_sid, context->target_comm))
1434 call_panic = 1;
1435
1436 if (context->pwd.dentry && context->pwd.mnt) {
1437 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1438 if (ab) {
1439 audit_log_d_path(ab, "cwd=", &context->pwd);
1440 audit_log_end(ab);
1441 }
1442 }
1443
1444 i = 0;
1445 list_for_each_entry(n, &context->names_list, list) {
1446 if (n->hidden)
1447 continue;
1448 audit_log_name(context, n, NULL, i++, &call_panic);
1449 }
1450
1451 audit_log_proctitle(tsk, context);
1452
1453 /* Send end of event record to help user space know we are finished */
1454 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1455 if (ab)
1456 audit_log_end(ab);
1457 if (call_panic)
1458 audit_panic("error converting sid to string");
1459 }
1460
1461 /**
1462 * audit_free - free a per-task audit context
1463 * @tsk: task whose audit context block to free
1464 *
1465 * Called from copy_process and do_exit
1466 */
1467 void __audit_free(struct task_struct *tsk)
1468 {
1469 struct audit_context *context;
1470
1471 context = audit_take_context(tsk, 0, 0);
1472 if (!context)
1473 return;
1474
1475 /* Check for system calls that do not go through the exit
1476 * function (e.g., exit_group), then free context block.
1477 * We use GFP_ATOMIC here because we might be doing this
1478 * in the context of the idle thread */
1479 /* that can happen only if we are called from do_exit() */
1480 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1481 audit_log_exit(context, tsk);
1482 if (!list_empty(&context->killed_trees))
1483 audit_kill_trees(&context->killed_trees);
1484
1485 audit_free_context(context);
1486 }
1487
1488 /**
1489 * audit_syscall_entry - fill in an audit record at syscall entry
1490 * @major: major syscall type (function)
1491 * @a1: additional syscall register 1
1492 * @a2: additional syscall register 2
1493 * @a3: additional syscall register 3
1494 * @a4: additional syscall register 4
1495 *
1496 * Fill in audit context at syscall entry. This only happens if the
1497 * audit context was created when the task was created and the state or
1498 * filters demand the audit context be built. If the state from the
1499 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1500 * then the record will be written at syscall exit time (otherwise, it
1501 * will only be written if another part of the kernel requests that it
1502 * be written).
1503 */
1504 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1505 unsigned long a3, unsigned long a4)
1506 {
1507 struct task_struct *tsk = current;
1508 struct audit_context *context = tsk->audit_context;
1509 enum audit_state state;
1510
1511 if (!context)
1512 return;
1513
1514 BUG_ON(context->in_syscall || context->name_count);
1515
1516 if (!audit_enabled)
1517 return;
1518
1519 context->arch = syscall_get_arch();
1520 context->major = major;
1521 context->argv[0] = a1;
1522 context->argv[1] = a2;
1523 context->argv[2] = a3;
1524 context->argv[3] = a4;
1525
1526 state = context->state;
1527 context->dummy = !audit_n_rules;
1528 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1529 context->prio = 0;
1530 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1531 }
1532 if (state == AUDIT_DISABLED)
1533 return;
1534
1535 context->serial = 0;
1536 ktime_get_real_ts64(&context->ctime);
1537 context->in_syscall = 1;
1538 context->current_state = state;
1539 context->ppid = 0;
1540 }
1541
1542 /**
1543 * audit_syscall_exit - deallocate audit context after a system call
1544 * @success: success value of the syscall
1545 * @return_code: return value of the syscall
1546 *
1547 * Tear down after system call. If the audit context has been marked as
1548 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1549 * filtering, or because some other part of the kernel wrote an audit
1550 * message), then write out the syscall information. In call cases,
1551 * free the names stored from getname().
1552 */
1553 void __audit_syscall_exit(int success, long return_code)
1554 {
1555 struct task_struct *tsk = current;
1556 struct audit_context *context;
1557
1558 if (success)
1559 success = AUDITSC_SUCCESS;
1560 else
1561 success = AUDITSC_FAILURE;
1562
1563 context = audit_take_context(tsk, success, return_code);
1564 if (!context)
1565 return;
1566
1567 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1568 audit_log_exit(context, tsk);
1569
1570 context->in_syscall = 0;
1571 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1572
1573 if (!list_empty(&context->killed_trees))
1574 audit_kill_trees(&context->killed_trees);
1575
1576 audit_free_names(context);
1577 unroll_tree_refs(context, NULL, 0);
1578 audit_free_aux(context);
1579 context->aux = NULL;
1580 context->aux_pids = NULL;
1581 context->target_pid = 0;
1582 context->target_sid = 0;
1583 context->sockaddr_len = 0;
1584 context->type = 0;
1585 context->fds[0] = -1;
1586 if (context->state != AUDIT_RECORD_CONTEXT) {
1587 kfree(context->filterkey);
1588 context->filterkey = NULL;
1589 }
1590 tsk->audit_context = context;
1591 }
1592
1593 static inline void handle_one(const struct inode *inode)
1594 {
1595 #ifdef CONFIG_AUDIT_TREE
1596 struct audit_context *context;
1597 struct audit_tree_refs *p;
1598 struct audit_chunk *chunk;
1599 int count;
1600 if (likely(!inode->i_fsnotify_marks))
1601 return;
1602 context = current->audit_context;
1603 p = context->trees;
1604 count = context->tree_count;
1605 rcu_read_lock();
1606 chunk = audit_tree_lookup(inode);
1607 rcu_read_unlock();
1608 if (!chunk)
1609 return;
1610 if (likely(put_tree_ref(context, chunk)))
1611 return;
1612 if (unlikely(!grow_tree_refs(context))) {
1613 pr_warn("out of memory, audit has lost a tree reference\n");
1614 audit_set_auditable(context);
1615 audit_put_chunk(chunk);
1616 unroll_tree_refs(context, p, count);
1617 return;
1618 }
1619 put_tree_ref(context, chunk);
1620 #endif
1621 }
1622
1623 static void handle_path(const struct dentry *dentry)
1624 {
1625 #ifdef CONFIG_AUDIT_TREE
1626 struct audit_context *context;
1627 struct audit_tree_refs *p;
1628 const struct dentry *d, *parent;
1629 struct audit_chunk *drop;
1630 unsigned long seq;
1631 int count;
1632
1633 context = current->audit_context;
1634 p = context->trees;
1635 count = context->tree_count;
1636 retry:
1637 drop = NULL;
1638 d = dentry;
1639 rcu_read_lock();
1640 seq = read_seqbegin(&rename_lock);
1641 for(;;) {
1642 struct inode *inode = d_backing_inode(d);
1643 if (inode && unlikely(inode->i_fsnotify_marks)) {
1644 struct audit_chunk *chunk;
1645 chunk = audit_tree_lookup(inode);
1646 if (chunk) {
1647 if (unlikely(!put_tree_ref(context, chunk))) {
1648 drop = chunk;
1649 break;
1650 }
1651 }
1652 }
1653 parent = d->d_parent;
1654 if (parent == d)
1655 break;
1656 d = parent;
1657 }
1658 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1659 rcu_read_unlock();
1660 if (!drop) {
1661 /* just a race with rename */
1662 unroll_tree_refs(context, p, count);
1663 goto retry;
1664 }
1665 audit_put_chunk(drop);
1666 if (grow_tree_refs(context)) {
1667 /* OK, got more space */
1668 unroll_tree_refs(context, p, count);
1669 goto retry;
1670 }
1671 /* too bad */
1672 pr_warn("out of memory, audit has lost a tree reference\n");
1673 unroll_tree_refs(context, p, count);
1674 audit_set_auditable(context);
1675 return;
1676 }
1677 rcu_read_unlock();
1678 #endif
1679 }
1680
1681 static struct audit_names *audit_alloc_name(struct audit_context *context,
1682 unsigned char type)
1683 {
1684 struct audit_names *aname;
1685
1686 if (context->name_count < AUDIT_NAMES) {
1687 aname = &context->preallocated_names[context->name_count];
1688 memset(aname, 0, sizeof(*aname));
1689 } else {
1690 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1691 if (!aname)
1692 return NULL;
1693 aname->should_free = true;
1694 }
1695
1696 aname->ino = AUDIT_INO_UNSET;
1697 aname->type = type;
1698 list_add_tail(&aname->list, &context->names_list);
1699
1700 context->name_count++;
1701 return aname;
1702 }
1703
1704 /**
1705 * audit_reusename - fill out filename with info from existing entry
1706 * @uptr: userland ptr to pathname
1707 *
1708 * Search the audit_names list for the current audit context. If there is an
1709 * existing entry with a matching "uptr" then return the filename
1710 * associated with that audit_name. If not, return NULL.
1711 */
1712 struct filename *
1713 __audit_reusename(const __user char *uptr)
1714 {
1715 struct audit_context *context = current->audit_context;
1716 struct audit_names *n;
1717
1718 list_for_each_entry(n, &context->names_list, list) {
1719 if (!n->name)
1720 continue;
1721 if (n->name->uptr == uptr) {
1722 n->name->refcnt++;
1723 return n->name;
1724 }
1725 }
1726 return NULL;
1727 }
1728
1729 /**
1730 * audit_getname - add a name to the list
1731 * @name: name to add
1732 *
1733 * Add a name to the list of audit names for this context.
1734 * Called from fs/namei.c:getname().
1735 */
1736 void __audit_getname(struct filename *name)
1737 {
1738 struct audit_context *context = current->audit_context;
1739 struct audit_names *n;
1740
1741 if (!context->in_syscall)
1742 return;
1743
1744 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1745 if (!n)
1746 return;
1747
1748 n->name = name;
1749 n->name_len = AUDIT_NAME_FULL;
1750 name->aname = n;
1751 name->refcnt++;
1752
1753 if (!context->pwd.dentry)
1754 get_fs_pwd(current->fs, &context->pwd);
1755 }
1756
1757 /**
1758 * __audit_inode - store the inode and device from a lookup
1759 * @name: name being audited
1760 * @dentry: dentry being audited
1761 * @flags: attributes for this particular entry
1762 */
1763 void __audit_inode(struct filename *name, const struct dentry *dentry,
1764 unsigned int flags)
1765 {
1766 struct audit_context *context = current->audit_context;
1767 struct inode *inode = d_backing_inode(dentry);
1768 struct audit_names *n;
1769 bool parent = flags & AUDIT_INODE_PARENT;
1770
1771 if (!context->in_syscall)
1772 return;
1773
1774 if (!name)
1775 goto out_alloc;
1776
1777 /*
1778 * If we have a pointer to an audit_names entry already, then we can
1779 * just use it directly if the type is correct.
1780 */
1781 n = name->aname;
1782 if (n) {
1783 if (parent) {
1784 if (n->type == AUDIT_TYPE_PARENT ||
1785 n->type == AUDIT_TYPE_UNKNOWN)
1786 goto out;
1787 } else {
1788 if (n->type != AUDIT_TYPE_PARENT)
1789 goto out;
1790 }
1791 }
1792
1793 list_for_each_entry_reverse(n, &context->names_list, list) {
1794 if (n->ino) {
1795 /* valid inode number, use that for the comparison */
1796 if (n->ino != inode->i_ino ||
1797 n->dev != inode->i_sb->s_dev)
1798 continue;
1799 } else if (n->name) {
1800 /* inode number has not been set, check the name */
1801 if (strcmp(n->name->name, name->name))
1802 continue;
1803 } else
1804 /* no inode and no name (?!) ... this is odd ... */
1805 continue;
1806
1807 /* match the correct record type */
1808 if (parent) {
1809 if (n->type == AUDIT_TYPE_PARENT ||
1810 n->type == AUDIT_TYPE_UNKNOWN)
1811 goto out;
1812 } else {
1813 if (n->type != AUDIT_TYPE_PARENT)
1814 goto out;
1815 }
1816 }
1817
1818 out_alloc:
1819 /* unable to find an entry with both a matching name and type */
1820 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1821 if (!n)
1822 return;
1823 if (name) {
1824 n->name = name;
1825 name->refcnt++;
1826 }
1827
1828 out:
1829 if (parent) {
1830 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1831 n->type = AUDIT_TYPE_PARENT;
1832 if (flags & AUDIT_INODE_HIDDEN)
1833 n->hidden = true;
1834 } else {
1835 n->name_len = AUDIT_NAME_FULL;
1836 n->type = AUDIT_TYPE_NORMAL;
1837 }
1838 handle_path(dentry);
1839 audit_copy_inode(n, dentry, inode);
1840 }
1841
1842 void __audit_file(const struct file *file)
1843 {
1844 __audit_inode(NULL, file->f_path.dentry, 0);
1845 }
1846
1847 /**
1848 * __audit_inode_child - collect inode info for created/removed objects
1849 * @parent: inode of dentry parent
1850 * @dentry: dentry being audited
1851 * @type: AUDIT_TYPE_* value that we're looking for
1852 *
1853 * For syscalls that create or remove filesystem objects, audit_inode
1854 * can only collect information for the filesystem object's parent.
1855 * This call updates the audit context with the child's information.
1856 * Syscalls that create a new filesystem object must be hooked after
1857 * the object is created. Syscalls that remove a filesystem object
1858 * must be hooked prior, in order to capture the target inode during
1859 * unsuccessful attempts.
1860 */
1861 void __audit_inode_child(struct inode *parent,
1862 const struct dentry *dentry,
1863 const unsigned char type)
1864 {
1865 struct audit_context *context = current->audit_context;
1866 struct inode *inode = d_backing_inode(dentry);
1867 const char *dname = dentry->d_name.name;
1868 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1869
1870 if (!context->in_syscall)
1871 return;
1872
1873 if (inode)
1874 handle_one(inode);
1875
1876 /* look for a parent entry first */
1877 list_for_each_entry(n, &context->names_list, list) {
1878 if (!n->name ||
1879 (n->type != AUDIT_TYPE_PARENT &&
1880 n->type != AUDIT_TYPE_UNKNOWN))
1881 continue;
1882
1883 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1884 !audit_compare_dname_path(dname,
1885 n->name->name, n->name_len)) {
1886 if (n->type == AUDIT_TYPE_UNKNOWN)
1887 n->type = AUDIT_TYPE_PARENT;
1888 found_parent = n;
1889 break;
1890 }
1891 }
1892
1893 /* is there a matching child entry? */
1894 list_for_each_entry(n, &context->names_list, list) {
1895 /* can only match entries that have a name */
1896 if (!n->name ||
1897 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1898 continue;
1899
1900 if (!strcmp(dname, n->name->name) ||
1901 !audit_compare_dname_path(dname, n->name->name,
1902 found_parent ?
1903 found_parent->name_len :
1904 AUDIT_NAME_FULL)) {
1905 if (n->type == AUDIT_TYPE_UNKNOWN)
1906 n->type = type;
1907 found_child = n;
1908 break;
1909 }
1910 }
1911
1912 if (!found_parent) {
1913 /* create a new, "anonymous" parent record */
1914 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1915 if (!n)
1916 return;
1917 audit_copy_inode(n, NULL, parent);
1918 }
1919
1920 if (!found_child) {
1921 found_child = audit_alloc_name(context, type);
1922 if (!found_child)
1923 return;
1924
1925 /* Re-use the name belonging to the slot for a matching parent
1926 * directory. All names for this context are relinquished in
1927 * audit_free_names() */
1928 if (found_parent) {
1929 found_child->name = found_parent->name;
1930 found_child->name_len = AUDIT_NAME_FULL;
1931 found_child->name->refcnt++;
1932 }
1933 }
1934
1935 if (inode)
1936 audit_copy_inode(found_child, dentry, inode);
1937 else
1938 found_child->ino = AUDIT_INO_UNSET;
1939 }
1940 EXPORT_SYMBOL_GPL(__audit_inode_child);
1941
1942 /**
1943 * auditsc_get_stamp - get local copies of audit_context values
1944 * @ctx: audit_context for the task
1945 * @t: timespec64 to store time recorded in the audit_context
1946 * @serial: serial value that is recorded in the audit_context
1947 *
1948 * Also sets the context as auditable.
1949 */
1950 int auditsc_get_stamp(struct audit_context *ctx,
1951 struct timespec64 *t, unsigned int *serial)
1952 {
1953 if (!ctx->in_syscall)
1954 return 0;
1955 if (!ctx->serial)
1956 ctx->serial = audit_serial();
1957 t->tv_sec = ctx->ctime.tv_sec;
1958 t->tv_nsec = ctx->ctime.tv_nsec;
1959 *serial = ctx->serial;
1960 if (!ctx->prio) {
1961 ctx->prio = 1;
1962 ctx->current_state = AUDIT_RECORD_CONTEXT;
1963 }
1964 return 1;
1965 }
1966
1967 /* global counter which is incremented every time something logs in */
1968 static atomic_t session_id = ATOMIC_INIT(0);
1969
1970 static int audit_set_loginuid_perm(kuid_t loginuid)
1971 {
1972 /* if we are unset, we don't need privs */
1973 if (!audit_loginuid_set(current))
1974 return 0;
1975 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1976 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1977 return -EPERM;
1978 /* it is set, you need permission */
1979 if (!capable(CAP_AUDIT_CONTROL))
1980 return -EPERM;
1981 /* reject if this is not an unset and we don't allow that */
1982 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1983 return -EPERM;
1984 return 0;
1985 }
1986
1987 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1988 unsigned int oldsessionid, unsigned int sessionid,
1989 int rc)
1990 {
1991 struct audit_buffer *ab;
1992 uid_t uid, oldloginuid, loginuid;
1993 struct tty_struct *tty;
1994
1995 if (!audit_enabled)
1996 return;
1997
1998 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1999 if (!ab)
2000 return;
2001
2002 uid = from_kuid(&init_user_ns, task_uid(current));
2003 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2004 loginuid = from_kuid(&init_user_ns, kloginuid),
2005 tty = audit_get_tty(current);
2006
2007 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2008 audit_log_task_context(ab);
2009 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2010 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2011 oldsessionid, sessionid, !rc);
2012 audit_put_tty(tty);
2013 audit_log_end(ab);
2014 }
2015
2016 /**
2017 * audit_set_loginuid - set current task's audit_context loginuid
2018 * @loginuid: loginuid value
2019 *
2020 * Returns 0.
2021 *
2022 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2023 */
2024 int audit_set_loginuid(kuid_t loginuid)
2025 {
2026 struct task_struct *task = current;
2027 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2028 kuid_t oldloginuid;
2029 int rc;
2030
2031 oldloginuid = audit_get_loginuid(current);
2032 oldsessionid = audit_get_sessionid(current);
2033
2034 rc = audit_set_loginuid_perm(loginuid);
2035 if (rc)
2036 goto out;
2037
2038 /* are we setting or clearing? */
2039 if (uid_valid(loginuid)) {
2040 sessionid = (unsigned int)atomic_inc_return(&session_id);
2041 if (unlikely(sessionid == (unsigned int)-1))
2042 sessionid = (unsigned int)atomic_inc_return(&session_id);
2043 }
2044
2045 task->sessionid = sessionid;
2046 task->loginuid = loginuid;
2047 out:
2048 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2049 return rc;
2050 }
2051
2052 /**
2053 * __audit_mq_open - record audit data for a POSIX MQ open
2054 * @oflag: open flag
2055 * @mode: mode bits
2056 * @attr: queue attributes
2057 *
2058 */
2059 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2060 {
2061 struct audit_context *context = current->audit_context;
2062
2063 if (attr)
2064 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2065 else
2066 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2067
2068 context->mq_open.oflag = oflag;
2069 context->mq_open.mode = mode;
2070
2071 context->type = AUDIT_MQ_OPEN;
2072 }
2073
2074 /**
2075 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2076 * @mqdes: MQ descriptor
2077 * @msg_len: Message length
2078 * @msg_prio: Message priority
2079 * @abs_timeout: Message timeout in absolute time
2080 *
2081 */
2082 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2083 const struct timespec *abs_timeout)
2084 {
2085 struct audit_context *context = current->audit_context;
2086 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2087
2088 if (abs_timeout)
2089 memcpy(p, abs_timeout, sizeof(struct timespec));
2090 else
2091 memset(p, 0, sizeof(struct timespec));
2092
2093 context->mq_sendrecv.mqdes = mqdes;
2094 context->mq_sendrecv.msg_len = msg_len;
2095 context->mq_sendrecv.msg_prio = msg_prio;
2096
2097 context->type = AUDIT_MQ_SENDRECV;
2098 }
2099
2100 /**
2101 * __audit_mq_notify - record audit data for a POSIX MQ notify
2102 * @mqdes: MQ descriptor
2103 * @notification: Notification event
2104 *
2105 */
2106
2107 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2108 {
2109 struct audit_context *context = current->audit_context;
2110
2111 if (notification)
2112 context->mq_notify.sigev_signo = notification->sigev_signo;
2113 else
2114 context->mq_notify.sigev_signo = 0;
2115
2116 context->mq_notify.mqdes = mqdes;
2117 context->type = AUDIT_MQ_NOTIFY;
2118 }
2119
2120 /**
2121 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2122 * @mqdes: MQ descriptor
2123 * @mqstat: MQ flags
2124 *
2125 */
2126 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2127 {
2128 struct audit_context *context = current->audit_context;
2129 context->mq_getsetattr.mqdes = mqdes;
2130 context->mq_getsetattr.mqstat = *mqstat;
2131 context->type = AUDIT_MQ_GETSETATTR;
2132 }
2133
2134 /**
2135 * audit_ipc_obj - record audit data for ipc object
2136 * @ipcp: ipc permissions
2137 *
2138 */
2139 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2140 {
2141 struct audit_context *context = current->audit_context;
2142 context->ipc.uid = ipcp->uid;
2143 context->ipc.gid = ipcp->gid;
2144 context->ipc.mode = ipcp->mode;
2145 context->ipc.has_perm = 0;
2146 security_ipc_getsecid(ipcp, &context->ipc.osid);
2147 context->type = AUDIT_IPC;
2148 }
2149
2150 /**
2151 * audit_ipc_set_perm - record audit data for new ipc permissions
2152 * @qbytes: msgq bytes
2153 * @uid: msgq user id
2154 * @gid: msgq group id
2155 * @mode: msgq mode (permissions)
2156 *
2157 * Called only after audit_ipc_obj().
2158 */
2159 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2160 {
2161 struct audit_context *context = current->audit_context;
2162
2163 context->ipc.qbytes = qbytes;
2164 context->ipc.perm_uid = uid;
2165 context->ipc.perm_gid = gid;
2166 context->ipc.perm_mode = mode;
2167 context->ipc.has_perm = 1;
2168 }
2169
2170 void __audit_bprm(struct linux_binprm *bprm)
2171 {
2172 struct audit_context *context = current->audit_context;
2173
2174 context->type = AUDIT_EXECVE;
2175 context->execve.argc = bprm->argc;
2176 }
2177
2178
2179 /**
2180 * audit_socketcall - record audit data for sys_socketcall
2181 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2182 * @args: args array
2183 *
2184 */
2185 int __audit_socketcall(int nargs, unsigned long *args)
2186 {
2187 struct audit_context *context = current->audit_context;
2188
2189 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2190 return -EINVAL;
2191 context->type = AUDIT_SOCKETCALL;
2192 context->socketcall.nargs = nargs;
2193 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2194 return 0;
2195 }
2196
2197 /**
2198 * __audit_fd_pair - record audit data for pipe and socketpair
2199 * @fd1: the first file descriptor
2200 * @fd2: the second file descriptor
2201 *
2202 */
2203 void __audit_fd_pair(int fd1, int fd2)
2204 {
2205 struct audit_context *context = current->audit_context;
2206 context->fds[0] = fd1;
2207 context->fds[1] = fd2;
2208 }
2209
2210 /**
2211 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2212 * @len: data length in user space
2213 * @a: data address in kernel space
2214 *
2215 * Returns 0 for success or NULL context or < 0 on error.
2216 */
2217 int __audit_sockaddr(int len, void *a)
2218 {
2219 struct audit_context *context = current->audit_context;
2220
2221 if (!context->sockaddr) {
2222 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2223 if (!p)
2224 return -ENOMEM;
2225 context->sockaddr = p;
2226 }
2227
2228 context->sockaddr_len = len;
2229 memcpy(context->sockaddr, a, len);
2230 return 0;
2231 }
2232
2233 void __audit_ptrace(struct task_struct *t)
2234 {
2235 struct audit_context *context = current->audit_context;
2236
2237 context->target_pid = task_tgid_nr(t);
2238 context->target_auid = audit_get_loginuid(t);
2239 context->target_uid = task_uid(t);
2240 context->target_sessionid = audit_get_sessionid(t);
2241 security_task_getsecid(t, &context->target_sid);
2242 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2243 }
2244
2245 /**
2246 * audit_signal_info - record signal info for shutting down audit subsystem
2247 * @sig: signal value
2248 * @t: task being signaled
2249 *
2250 * If the audit subsystem is being terminated, record the task (pid)
2251 * and uid that is doing that.
2252 */
2253 int audit_signal_info(int sig, struct task_struct *t)
2254 {
2255 struct audit_aux_data_pids *axp;
2256 struct task_struct *tsk = current;
2257 struct audit_context *ctx = tsk->audit_context;
2258 kuid_t uid = current_uid(), t_uid = task_uid(t);
2259
2260 if (auditd_test_task(t) &&
2261 (sig == SIGTERM || sig == SIGHUP ||
2262 sig == SIGUSR1 || sig == SIGUSR2)) {
2263 audit_sig_pid = task_tgid_nr(tsk);
2264 if (uid_valid(tsk->loginuid))
2265 audit_sig_uid = tsk->loginuid;
2266 else
2267 audit_sig_uid = uid;
2268 security_task_getsecid(tsk, &audit_sig_sid);
2269 }
2270
2271 if (!audit_signals || audit_dummy_context())
2272 return 0;
2273
2274 /* optimize the common case by putting first signal recipient directly
2275 * in audit_context */
2276 if (!ctx->target_pid) {
2277 ctx->target_pid = task_tgid_nr(t);
2278 ctx->target_auid = audit_get_loginuid(t);
2279 ctx->target_uid = t_uid;
2280 ctx->target_sessionid = audit_get_sessionid(t);
2281 security_task_getsecid(t, &ctx->target_sid);
2282 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2283 return 0;
2284 }
2285
2286 axp = (void *)ctx->aux_pids;
2287 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2288 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2289 if (!axp)
2290 return -ENOMEM;
2291
2292 axp->d.type = AUDIT_OBJ_PID;
2293 axp->d.next = ctx->aux_pids;
2294 ctx->aux_pids = (void *)axp;
2295 }
2296 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2297
2298 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2299 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2300 axp->target_uid[axp->pid_count] = t_uid;
2301 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2302 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2303 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2304 axp->pid_count++;
2305
2306 return 0;
2307 }
2308
2309 /**
2310 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2311 * @bprm: pointer to the bprm being processed
2312 * @new: the proposed new credentials
2313 * @old: the old credentials
2314 *
2315 * Simply check if the proc already has the caps given by the file and if not
2316 * store the priv escalation info for later auditing at the end of the syscall
2317 *
2318 * -Eric
2319 */
2320 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2321 const struct cred *new, const struct cred *old)
2322 {
2323 struct audit_aux_data_bprm_fcaps *ax;
2324 struct audit_context *context = current->audit_context;
2325 struct cpu_vfs_cap_data vcaps;
2326
2327 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2328 if (!ax)
2329 return -ENOMEM;
2330
2331 ax->d.type = AUDIT_BPRM_FCAPS;
2332 ax->d.next = context->aux;
2333 context->aux = (void *)ax;
2334
2335 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2336
2337 ax->fcap.permitted = vcaps.permitted;
2338 ax->fcap.inheritable = vcaps.inheritable;
2339 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2340 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2341
2342 ax->old_pcap.permitted = old->cap_permitted;
2343 ax->old_pcap.inheritable = old->cap_inheritable;
2344 ax->old_pcap.effective = old->cap_effective;
2345
2346 ax->new_pcap.permitted = new->cap_permitted;
2347 ax->new_pcap.inheritable = new->cap_inheritable;
2348 ax->new_pcap.effective = new->cap_effective;
2349 return 0;
2350 }
2351
2352 /**
2353 * __audit_log_capset - store information about the arguments to the capset syscall
2354 * @new: the new credentials
2355 * @old: the old (current) credentials
2356 *
2357 * Record the arguments userspace sent to sys_capset for later printing by the
2358 * audit system if applicable
2359 */
2360 void __audit_log_capset(const struct cred *new, const struct cred *old)
2361 {
2362 struct audit_context *context = current->audit_context;
2363 context->capset.pid = task_tgid_nr(current);
2364 context->capset.cap.effective = new->cap_effective;
2365 context->capset.cap.inheritable = new->cap_effective;
2366 context->capset.cap.permitted = new->cap_permitted;
2367 context->type = AUDIT_CAPSET;
2368 }
2369
2370 void __audit_mmap_fd(int fd, int flags)
2371 {
2372 struct audit_context *context = current->audit_context;
2373 context->mmap.fd = fd;
2374 context->mmap.flags = flags;
2375 context->type = AUDIT_MMAP;
2376 }
2377
2378 void __audit_log_kern_module(char *name)
2379 {
2380 struct audit_context *context = current->audit_context;
2381
2382 context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2383 strcpy(context->module.name, name);
2384 context->type = AUDIT_KERN_MODULE;
2385 }
2386
2387 static void audit_log_task(struct audit_buffer *ab)
2388 {
2389 kuid_t auid, uid;
2390 kgid_t gid;
2391 unsigned int sessionid;
2392 char comm[sizeof(current->comm)];
2393
2394 auid = audit_get_loginuid(current);
2395 sessionid = audit_get_sessionid(current);
2396 current_uid_gid(&uid, &gid);
2397
2398 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2399 from_kuid(&init_user_ns, auid),
2400 from_kuid(&init_user_ns, uid),
2401 from_kgid(&init_user_ns, gid),
2402 sessionid);
2403 audit_log_task_context(ab);
2404 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2405 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2406 audit_log_d_path_exe(ab, current->mm);
2407 }
2408
2409 /**
2410 * audit_core_dumps - record information about processes that end abnormally
2411 * @signr: signal value
2412 *
2413 * If a process ends with a core dump, something fishy is going on and we
2414 * should record the event for investigation.
2415 */
2416 void audit_core_dumps(long signr)
2417 {
2418 struct audit_buffer *ab;
2419
2420 if (!audit_enabled)
2421 return;
2422
2423 if (signr == SIGQUIT) /* don't care for those */
2424 return;
2425
2426 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2427 if (unlikely(!ab))
2428 return;
2429 audit_log_task(ab);
2430 audit_log_format(ab, " sig=%ld res=1", signr);
2431 audit_log_end(ab);
2432 }
2433
2434 void __audit_seccomp(unsigned long syscall, long signr, int code)
2435 {
2436 struct audit_buffer *ab;
2437
2438 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2439 if (unlikely(!ab))
2440 return;
2441 audit_log_task(ab);
2442 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2443 signr, syscall_get_arch(), syscall,
2444 in_compat_syscall(), KSTK_EIP(current), code);
2445 audit_log_end(ab);
2446 }
2447
2448 struct list_head *audit_killed_trees(void)
2449 {
2450 struct audit_context *ctx = current->audit_context;
2451 if (likely(!ctx || !ctx->in_syscall))
2452 return NULL;
2453 return &ctx->killed_trees;
2454 }