]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/auditsc.c
watch_queue: Free the page array when watch_queue is dismantled
[mirror_ubuntu-jammy-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79
80 #include "audit.h"
81
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93
94 /* number of audit rules */
95 int audit_n_rules;
96
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99
100 struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103 };
104
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
107
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 struct lsmblob target_lsm[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117 };
118
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125 };
126
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130 };
131
132 struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
134 const char *s;
135 };
136
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
158 };
159
160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 unsigned n;
163
164 if (unlikely(!ctx))
165 return 0;
166 n = ctx->major;
167
168 switch (audit_classify_syscall(ctx->arch, n)) {
169 case 0: /* native */
170 if ((mask & AUDIT_PERM_WRITE) &&
171 audit_match_class(AUDIT_CLASS_WRITE, n))
172 return 1;
173 if ((mask & AUDIT_PERM_READ) &&
174 audit_match_class(AUDIT_CLASS_READ, n))
175 return 1;
176 if ((mask & AUDIT_PERM_ATTR) &&
177 audit_match_class(AUDIT_CLASS_CHATTR, n))
178 return 1;
179 return 0;
180 case 1: /* 32bit on biarch */
181 if ((mask & AUDIT_PERM_WRITE) &&
182 audit_match_class(AUDIT_CLASS_WRITE_32, n))
183 return 1;
184 if ((mask & AUDIT_PERM_READ) &&
185 audit_match_class(AUDIT_CLASS_READ_32, n))
186 return 1;
187 if ((mask & AUDIT_PERM_ATTR) &&
188 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
189 return 1;
190 return 0;
191 case 2: /* open */
192 return mask & ACC_MODE(ctx->argv[1]);
193 case 3: /* openat */
194 return mask & ACC_MODE(ctx->argv[2]);
195 case 4: /* socketcall */
196 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
197 case 5: /* execve */
198 return mask & AUDIT_PERM_EXEC;
199 default:
200 return 0;
201 }
202 }
203
204 static int audit_match_filetype(struct audit_context *ctx, int val)
205 {
206 struct audit_names *n;
207 umode_t mode = (umode_t)val;
208
209 if (unlikely(!ctx))
210 return 0;
211
212 list_for_each_entry(n, &ctx->names_list, list) {
213 if ((n->ino != AUDIT_INO_UNSET) &&
214 ((n->mode & S_IFMT) == mode))
215 return 1;
216 }
217
218 return 0;
219 }
220
221 /*
222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
223 * ->first_trees points to its beginning, ->trees - to the current end of data.
224 * ->tree_count is the number of free entries in array pointed to by ->trees.
225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
226 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
227 * it's going to remain 1-element for almost any setup) until we free context itself.
228 * References in it _are_ dropped - at the same time we free/drop aux stuff.
229 */
230
231 static void audit_set_auditable(struct audit_context *ctx)
232 {
233 if (!ctx->prio) {
234 ctx->prio = 1;
235 ctx->current_state = AUDIT_STATE_RECORD;
236 }
237 }
238
239 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
240 {
241 struct audit_tree_refs *p = ctx->trees;
242 int left = ctx->tree_count;
243
244 if (likely(left)) {
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
247 return 1;
248 }
249 if (!p)
250 return 0;
251 p = p->next;
252 if (p) {
253 p->c[30] = chunk;
254 ctx->trees = p;
255 ctx->tree_count = 30;
256 return 1;
257 }
258 return 0;
259 }
260
261 static int grow_tree_refs(struct audit_context *ctx)
262 {
263 struct audit_tree_refs *p = ctx->trees;
264
265 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
266 if (!ctx->trees) {
267 ctx->trees = p;
268 return 0;
269 }
270 if (p)
271 p->next = ctx->trees;
272 else
273 ctx->first_trees = ctx->trees;
274 ctx->tree_count = 31;
275 return 1;
276 }
277
278 static void unroll_tree_refs(struct audit_context *ctx,
279 struct audit_tree_refs *p, int count)
280 {
281 struct audit_tree_refs *q;
282 int n;
283
284 if (!p) {
285 /* we started with empty chain */
286 p = ctx->first_trees;
287 count = 31;
288 /* if the very first allocation has failed, nothing to do */
289 if (!p)
290 return;
291 }
292 n = count;
293 for (q = p; q != ctx->trees; q = q->next, n = 31) {
294 while (n--) {
295 audit_put_chunk(q->c[n]);
296 q->c[n] = NULL;
297 }
298 }
299 while (n-- > ctx->tree_count) {
300 audit_put_chunk(q->c[n]);
301 q->c[n] = NULL;
302 }
303 ctx->trees = p;
304 ctx->tree_count = count;
305 }
306
307 static void free_tree_refs(struct audit_context *ctx)
308 {
309 struct audit_tree_refs *p, *q;
310
311 for (p = ctx->first_trees; p; p = q) {
312 q = p->next;
313 kfree(p);
314 }
315 }
316
317 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
318 {
319 struct audit_tree_refs *p;
320 int n;
321
322 if (!tree)
323 return 0;
324 /* full ones */
325 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
326 for (n = 0; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
328 return 1;
329 }
330 /* partial */
331 if (p) {
332 for (n = ctx->tree_count; n < 31; n++)
333 if (audit_tree_match(p->c[n], tree))
334 return 1;
335 }
336 return 0;
337 }
338
339 static int audit_compare_uid(kuid_t uid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
343 {
344 struct audit_names *n;
345 int rc;
346
347 if (name) {
348 rc = audit_uid_comparator(uid, f->op, name->uid);
349 if (rc)
350 return rc;
351 }
352
353 if (ctx) {
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_uid_comparator(uid, f->op, n->uid);
356 if (rc)
357 return rc;
358 }
359 }
360 return 0;
361 }
362
363 static int audit_compare_gid(kgid_t gid,
364 struct audit_names *name,
365 struct audit_field *f,
366 struct audit_context *ctx)
367 {
368 struct audit_names *n;
369 int rc;
370
371 if (name) {
372 rc = audit_gid_comparator(gid, f->op, name->gid);
373 if (rc)
374 return rc;
375 }
376
377 if (ctx) {
378 list_for_each_entry(n, &ctx->names_list, list) {
379 rc = audit_gid_comparator(gid, f->op, n->gid);
380 if (rc)
381 return rc;
382 }
383 }
384 return 0;
385 }
386
387 static int audit_field_compare(struct task_struct *tsk,
388 const struct cred *cred,
389 struct audit_field *f,
390 struct audit_context *ctx,
391 struct audit_names *name)
392 {
393 switch (f->val) {
394 /* process to file object comparisons */
395 case AUDIT_COMPARE_UID_TO_OBJ_UID:
396 return audit_compare_uid(cred->uid, name, f, ctx);
397 case AUDIT_COMPARE_GID_TO_OBJ_GID:
398 return audit_compare_gid(cred->gid, name, f, ctx);
399 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->euid, name, f, ctx);
401 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->egid, name, f, ctx);
403 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
404 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
405 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->suid, name, f, ctx);
407 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->sgid, name, f, ctx);
409 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
410 return audit_compare_uid(cred->fsuid, name, f, ctx);
411 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
412 return audit_compare_gid(cred->fsgid, name, f, ctx);
413 /* uid comparisons */
414 case AUDIT_COMPARE_UID_TO_AUID:
415 return audit_uid_comparator(cred->uid, f->op,
416 audit_get_loginuid(tsk));
417 case AUDIT_COMPARE_UID_TO_EUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->euid);
419 case AUDIT_COMPARE_UID_TO_SUID:
420 return audit_uid_comparator(cred->uid, f->op, cred->suid);
421 case AUDIT_COMPARE_UID_TO_FSUID:
422 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
423 /* auid comparisons */
424 case AUDIT_COMPARE_AUID_TO_EUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 cred->euid);
427 case AUDIT_COMPARE_AUID_TO_SUID:
428 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
429 cred->suid);
430 case AUDIT_COMPARE_AUID_TO_FSUID:
431 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
432 cred->fsuid);
433 /* euid comparisons */
434 case AUDIT_COMPARE_EUID_TO_SUID:
435 return audit_uid_comparator(cred->euid, f->op, cred->suid);
436 case AUDIT_COMPARE_EUID_TO_FSUID:
437 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
438 /* suid comparisons */
439 case AUDIT_COMPARE_SUID_TO_FSUID:
440 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
441 /* gid comparisons */
442 case AUDIT_COMPARE_GID_TO_EGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->egid);
444 case AUDIT_COMPARE_GID_TO_SGID:
445 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
446 case AUDIT_COMPARE_GID_TO_FSGID:
447 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
448 /* egid comparisons */
449 case AUDIT_COMPARE_EGID_TO_SGID:
450 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
451 case AUDIT_COMPARE_EGID_TO_FSGID:
452 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
453 /* sgid comparison */
454 case AUDIT_COMPARE_SGID_TO_FSGID:
455 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
456 default:
457 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
458 return 0;
459 }
460 return 0;
461 }
462
463 /* Determine if any context name data matches a rule's watch data */
464 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
465 * otherwise.
466 *
467 * If task_creation is true, this is an explicit indication that we are
468 * filtering a task rule at task creation time. This and tsk == current are
469 * the only situations where tsk->cred may be accessed without an rcu read lock.
470 */
471 static int audit_filter_rules(struct task_struct *tsk,
472 struct audit_krule *rule,
473 struct audit_context *ctx,
474 struct audit_names *name,
475 enum audit_state *state,
476 bool task_creation)
477 {
478 const struct cred *cred;
479 int i, need_sid = 1;
480 struct lsmblob blob = { };
481 unsigned int sessionid;
482
483 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
484
485 for (i = 0; i < rule->field_count; i++) {
486 struct audit_field *f = &rule->fields[i];
487 struct audit_names *n;
488 int result = 0;
489 pid_t pid;
490
491 switch (f->type) {
492 case AUDIT_PID:
493 pid = task_tgid_nr(tsk);
494 result = audit_comparator(pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = task_ppid_nr(tsk);
500 result = audit_comparator(ctx->ppid, f->op, f->val);
501 }
502 break;
503 case AUDIT_EXE:
504 result = audit_exe_compare(tsk, rule->exe);
505 if (f->op == Audit_not_equal)
506 result = !result;
507 break;
508 case AUDIT_UID:
509 result = audit_uid_comparator(cred->uid, f->op, f->uid);
510 break;
511 case AUDIT_EUID:
512 result = audit_uid_comparator(cred->euid, f->op, f->uid);
513 break;
514 case AUDIT_SUID:
515 result = audit_uid_comparator(cred->suid, f->op, f->uid);
516 break;
517 case AUDIT_FSUID:
518 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
519 break;
520 case AUDIT_GID:
521 result = audit_gid_comparator(cred->gid, f->op, f->gid);
522 if (f->op == Audit_equal) {
523 if (!result)
524 result = groups_search(cred->group_info, f->gid);
525 } else if (f->op == Audit_not_equal) {
526 if (result)
527 result = !groups_search(cred->group_info, f->gid);
528 }
529 break;
530 case AUDIT_EGID:
531 result = audit_gid_comparator(cred->egid, f->op, f->gid);
532 if (f->op == Audit_equal) {
533 if (!result)
534 result = groups_search(cred->group_info, f->gid);
535 } else if (f->op == Audit_not_equal) {
536 if (result)
537 result = !groups_search(cred->group_info, f->gid);
538 }
539 break;
540 case AUDIT_SGID:
541 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
542 break;
543 case AUDIT_FSGID:
544 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
545 break;
546 case AUDIT_SESSIONID:
547 sessionid = audit_get_sessionid(tsk);
548 result = audit_comparator(sessionid, f->op, f->val);
549 break;
550 case AUDIT_PERS:
551 result = audit_comparator(tsk->personality, f->op, f->val);
552 break;
553 case AUDIT_ARCH:
554 if (ctx)
555 result = audit_comparator(ctx->arch, f->op, f->val);
556 break;
557
558 case AUDIT_EXIT:
559 if (ctx && ctx->return_valid != AUDITSC_INVALID)
560 result = audit_comparator(ctx->return_code, f->op, f->val);
561 break;
562 case AUDIT_SUCCESS:
563 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
564 if (f->val)
565 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
566 else
567 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
568 }
569 break;
570 case AUDIT_DEVMAJOR:
571 if (name) {
572 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
573 audit_comparator(MAJOR(name->rdev), f->op, f->val))
574 ++result;
575 } else if (ctx) {
576 list_for_each_entry(n, &ctx->names_list, list) {
577 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
578 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
579 ++result;
580 break;
581 }
582 }
583 }
584 break;
585 case AUDIT_DEVMINOR:
586 if (name) {
587 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
588 audit_comparator(MINOR(name->rdev), f->op, f->val))
589 ++result;
590 } else if (ctx) {
591 list_for_each_entry(n, &ctx->names_list, list) {
592 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
593 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
594 ++result;
595 break;
596 }
597 }
598 }
599 break;
600 case AUDIT_INODE:
601 if (name)
602 result = audit_comparator(name->ino, f->op, f->val);
603 else if (ctx) {
604 list_for_each_entry(n, &ctx->names_list, list) {
605 if (audit_comparator(n->ino, f->op, f->val)) {
606 ++result;
607 break;
608 }
609 }
610 }
611 break;
612 case AUDIT_OBJ_UID:
613 if (name) {
614 result = audit_uid_comparator(name->uid, f->op, f->uid);
615 } else if (ctx) {
616 list_for_each_entry(n, &ctx->names_list, list) {
617 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
618 ++result;
619 break;
620 }
621 }
622 }
623 break;
624 case AUDIT_OBJ_GID:
625 if (name) {
626 result = audit_gid_comparator(name->gid, f->op, f->gid);
627 } else if (ctx) {
628 list_for_each_entry(n, &ctx->names_list, list) {
629 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
630 ++result;
631 break;
632 }
633 }
634 }
635 break;
636 case AUDIT_WATCH:
637 if (name) {
638 result = audit_watch_compare(rule->watch,
639 name->ino,
640 name->dev);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_DIR:
646 if (ctx) {
647 result = match_tree_refs(ctx, rule->tree);
648 if (f->op == Audit_not_equal)
649 result = !result;
650 }
651 break;
652 case AUDIT_LOGINUID:
653 result = audit_uid_comparator(audit_get_loginuid(tsk),
654 f->op, f->uid);
655 break;
656 case AUDIT_LOGINUID_SET:
657 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
658 break;
659 case AUDIT_SADDR_FAM:
660 if (ctx && ctx->sockaddr)
661 result = audit_comparator(ctx->sockaddr->ss_family,
662 f->op, f->val);
663 break;
664 case AUDIT_SUBJ_USER:
665 case AUDIT_SUBJ_ROLE:
666 case AUDIT_SUBJ_TYPE:
667 case AUDIT_SUBJ_SEN:
668 case AUDIT_SUBJ_CLR:
669 /* NOTE: this may return negative values indicating
670 a temporary error. We simply treat this as a
671 match for now to avoid losing information that
672 may be wanted. An error message will also be
673 logged upon error */
674 if (f->lsm_isset) {
675 if (need_sid) {
676 security_task_getsecid_subj(tsk, &blob);
677 need_sid = 0;
678 }
679 result = security_audit_rule_match(&blob,
680 f->type,
681 f->op,
682 f->lsm_rules);
683 }
684 break;
685 case AUDIT_OBJ_USER:
686 case AUDIT_OBJ_ROLE:
687 case AUDIT_OBJ_TYPE:
688 case AUDIT_OBJ_LEV_LOW:
689 case AUDIT_OBJ_LEV_HIGH:
690 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
691 also applies here */
692 if (f->lsm_isset) {
693 /* Find files that match */
694 if (name) {
695 result = security_audit_rule_match(
696 &blob,
697 f->type,
698 f->op,
699 f->lsm_rules);
700 } else if (ctx) {
701 list_for_each_entry(n, &ctx->names_list, list) {
702 if (security_audit_rule_match(
703 &blob,
704 f->type,
705 f->op,
706 f->lsm_rules)) {
707 ++result;
708 break;
709 }
710 }
711 }
712 /* Find ipc objects that match */
713 if (!ctx || ctx->type != AUDIT_IPC)
714 break;
715 if (security_audit_rule_match(&ctx->ipc.oblob,
716 f->type, f->op,
717 f->lsm_rules))
718 ++result;
719 }
720 break;
721 case AUDIT_ARG0:
722 case AUDIT_ARG1:
723 case AUDIT_ARG2:
724 case AUDIT_ARG3:
725 if (ctx)
726 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
727 break;
728 case AUDIT_FILTERKEY:
729 /* ignore this field for filtering */
730 result = 1;
731 break;
732 case AUDIT_PERM:
733 result = audit_match_perm(ctx, f->val);
734 if (f->op == Audit_not_equal)
735 result = !result;
736 break;
737 case AUDIT_FILETYPE:
738 result = audit_match_filetype(ctx, f->val);
739 if (f->op == Audit_not_equal)
740 result = !result;
741 break;
742 case AUDIT_FIELD_COMPARE:
743 result = audit_field_compare(tsk, cred, f, ctx, name);
744 break;
745 }
746 if (!result)
747 return 0;
748 }
749
750 if (ctx) {
751 if (rule->prio <= ctx->prio)
752 return 0;
753 if (rule->filterkey) {
754 kfree(ctx->filterkey);
755 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
756 }
757 ctx->prio = rule->prio;
758 }
759 switch (rule->action) {
760 case AUDIT_NEVER:
761 *state = AUDIT_STATE_DISABLED;
762 break;
763 case AUDIT_ALWAYS:
764 *state = AUDIT_STATE_RECORD;
765 break;
766 }
767 return 1;
768 }
769
770 /* At process creation time, we can determine if system-call auditing is
771 * completely disabled for this task. Since we only have the task
772 * structure at this point, we can only check uid and gid.
773 */
774 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
775 {
776 struct audit_entry *e;
777 enum audit_state state;
778
779 rcu_read_lock();
780 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
781 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
782 &state, true)) {
783 if (state == AUDIT_STATE_RECORD)
784 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
785 rcu_read_unlock();
786 return state;
787 }
788 }
789 rcu_read_unlock();
790 return AUDIT_STATE_BUILD;
791 }
792
793 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
794 {
795 int word, bit;
796
797 if (val > 0xffffffff)
798 return false;
799
800 word = AUDIT_WORD(val);
801 if (word >= AUDIT_BITMASK_SIZE)
802 return false;
803
804 bit = AUDIT_BIT(val);
805
806 return rule->mask[word] & bit;
807 }
808
809 /* At syscall exit time, this filter is called if the audit_state is
810 * not low enough that auditing cannot take place, but is also not
811 * high enough that we already know we have to write an audit record
812 * (i.e., the state is AUDIT_STATE_BUILD).
813 */
814 static void audit_filter_syscall(struct task_struct *tsk,
815 struct audit_context *ctx)
816 {
817 struct audit_entry *e;
818 enum audit_state state;
819
820 if (auditd_test_task(tsk))
821 return;
822
823 rcu_read_lock();
824 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
825 if (audit_in_mask(&e->rule, ctx->major) &&
826 audit_filter_rules(tsk, &e->rule, ctx, NULL,
827 &state, false)) {
828 rcu_read_unlock();
829 ctx->current_state = state;
830 return;
831 }
832 }
833 rcu_read_unlock();
834 return;
835 }
836
837 /*
838 * Given an audit_name check the inode hash table to see if they match.
839 * Called holding the rcu read lock to protect the use of audit_inode_hash
840 */
841 static int audit_filter_inode_name(struct task_struct *tsk,
842 struct audit_names *n,
843 struct audit_context *ctx) {
844 int h = audit_hash_ino((u32)n->ino);
845 struct list_head *list = &audit_inode_hash[h];
846 struct audit_entry *e;
847 enum audit_state state;
848
849 list_for_each_entry_rcu(e, list, list) {
850 if (audit_in_mask(&e->rule, ctx->major) &&
851 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
852 ctx->current_state = state;
853 return 1;
854 }
855 }
856 return 0;
857 }
858
859 /* At syscall exit time, this filter is called if any audit_names have been
860 * collected during syscall processing. We only check rules in sublists at hash
861 * buckets applicable to the inode numbers in audit_names.
862 * Regarding audit_state, same rules apply as for audit_filter_syscall().
863 */
864 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
865 {
866 struct audit_names *n;
867
868 if (auditd_test_task(tsk))
869 return;
870
871 rcu_read_lock();
872
873 list_for_each_entry(n, &ctx->names_list, list) {
874 if (audit_filter_inode_name(tsk, n, ctx))
875 break;
876 }
877 rcu_read_unlock();
878 }
879
880 static inline void audit_proctitle_free(struct audit_context *context)
881 {
882 kfree(context->proctitle.value);
883 context->proctitle.value = NULL;
884 context->proctitle.len = 0;
885 }
886
887 static inline void audit_free_module(struct audit_context *context)
888 {
889 if (context->type == AUDIT_KERN_MODULE) {
890 kfree(context->module.name);
891 context->module.name = NULL;
892 }
893 }
894 static inline void audit_free_names(struct audit_context *context)
895 {
896 struct audit_names *n, *next;
897
898 list_for_each_entry_safe(n, next, &context->names_list, list) {
899 list_del(&n->list);
900 if (n->name)
901 putname(n->name);
902 if (n->should_free)
903 kfree(n);
904 }
905 context->name_count = 0;
906 path_put(&context->pwd);
907 context->pwd.dentry = NULL;
908 context->pwd.mnt = NULL;
909 }
910
911 static inline void audit_free_aux(struct audit_context *context)
912 {
913 struct audit_aux_data *aux;
914
915 while ((aux = context->aux)) {
916 context->aux = aux->next;
917 kfree(aux);
918 }
919 while ((aux = context->aux_pids)) {
920 context->aux_pids = aux->next;
921 kfree(aux);
922 }
923 }
924
925 static inline struct audit_context *audit_alloc_context(enum audit_state state)
926 {
927 struct audit_context *context;
928
929 context = kzalloc(sizeof(*context), GFP_KERNEL);
930 if (!context)
931 return NULL;
932 context->state = state;
933 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
934 INIT_LIST_HEAD(&context->killed_trees);
935 INIT_LIST_HEAD(&context->names_list);
936 context->fds[0] = -1;
937 context->return_valid = AUDITSC_INVALID;
938 return context;
939 }
940
941 /**
942 * audit_alloc - allocate an audit context block for a task
943 * @tsk: task
944 *
945 * Filter on the task information and allocate a per-task audit context
946 * if necessary. Doing so turns on system call auditing for the
947 * specified task. This is called from copy_process, so no lock is
948 * needed.
949 */
950 int audit_alloc(struct task_struct *tsk)
951 {
952 struct audit_context *context;
953 enum audit_state state;
954 char *key = NULL;
955
956 if (likely(!audit_ever_enabled))
957 return 0; /* Return if not auditing. */
958
959 state = audit_filter_task(tsk, &key);
960 if (!lsm_multiple_contexts() && state == AUDIT_STATE_DISABLED) {
961 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
962 return 0;
963 }
964 if (state == AUDIT_STATE_DISABLED)
965 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
966
967 if (!(context = audit_alloc_context(state))) {
968 kfree(key);
969 audit_log_lost("out of memory in audit_alloc");
970 return -ENOMEM;
971 }
972 context->filterkey = key;
973
974 audit_set_context(tsk, context);
975 set_task_syscall_work(tsk, SYSCALL_AUDIT);
976 return 0;
977 }
978
979 static inline void audit_free_context(struct audit_context *context)
980 {
981 audit_free_module(context);
982 audit_free_names(context);
983 unroll_tree_refs(context, NULL, 0);
984 free_tree_refs(context);
985 audit_free_aux(context);
986 kfree(context->filterkey);
987 kfree(context->sockaddr);
988 audit_proctitle_free(context);
989 kfree(context);
990 }
991
992 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
993 kuid_t auid, kuid_t uid,
994 unsigned int sessionid,
995 struct lsmblob *blob, char *comm)
996 {
997 struct audit_buffer *ab;
998 int rc = 0;
999
1000 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1001 if (!ab)
1002 return rc;
1003
1004 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1005 from_kuid(&init_user_ns, auid),
1006 from_kuid(&init_user_ns, uid), sessionid);
1007 rc = audit_log_object_context(ab, blob);
1008 audit_log_format(ab, " ocomm=");
1009 audit_log_untrustedstring(ab, comm);
1010 audit_log_end(ab);
1011
1012 return rc;
1013 }
1014
1015 static void audit_log_execve_info(struct audit_context *context,
1016 struct audit_buffer **ab)
1017 {
1018 long len_max;
1019 long len_rem;
1020 long len_full;
1021 long len_buf;
1022 long len_abuf = 0;
1023 long len_tmp;
1024 bool require_data;
1025 bool encode;
1026 unsigned int iter;
1027 unsigned int arg;
1028 char *buf_head;
1029 char *buf;
1030 const char __user *p = (const char __user *)current->mm->arg_start;
1031
1032 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1033 * data we put in the audit record for this argument (see the
1034 * code below) ... at this point in time 96 is plenty */
1035 char abuf[96];
1036
1037 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1038 * current value of 7500 is not as important as the fact that it
1039 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1040 * room if we go over a little bit in the logging below */
1041 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1042 len_max = MAX_EXECVE_AUDIT_LEN;
1043
1044 /* scratch buffer to hold the userspace args */
1045 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1046 if (!buf_head) {
1047 audit_panic("out of memory for argv string");
1048 return;
1049 }
1050 buf = buf_head;
1051
1052 audit_log_format(*ab, "argc=%d", context->execve.argc);
1053
1054 len_rem = len_max;
1055 len_buf = 0;
1056 len_full = 0;
1057 require_data = true;
1058 encode = false;
1059 iter = 0;
1060 arg = 0;
1061 do {
1062 /* NOTE: we don't ever want to trust this value for anything
1063 * serious, but the audit record format insists we
1064 * provide an argument length for really long arguments,
1065 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1066 * to use strncpy_from_user() to obtain this value for
1067 * recording in the log, although we don't use it
1068 * anywhere here to avoid a double-fetch problem */
1069 if (len_full == 0)
1070 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1071
1072 /* read more data from userspace */
1073 if (require_data) {
1074 /* can we make more room in the buffer? */
1075 if (buf != buf_head) {
1076 memmove(buf_head, buf, len_buf);
1077 buf = buf_head;
1078 }
1079
1080 /* fetch as much as we can of the argument */
1081 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1082 len_max - len_buf);
1083 if (len_tmp == -EFAULT) {
1084 /* unable to copy from userspace */
1085 send_sig(SIGKILL, current, 0);
1086 goto out;
1087 } else if (len_tmp == (len_max - len_buf)) {
1088 /* buffer is not large enough */
1089 require_data = true;
1090 /* NOTE: if we are going to span multiple
1091 * buffers force the encoding so we stand
1092 * a chance at a sane len_full value and
1093 * consistent record encoding */
1094 encode = true;
1095 len_full = len_full * 2;
1096 p += len_tmp;
1097 } else {
1098 require_data = false;
1099 if (!encode)
1100 encode = audit_string_contains_control(
1101 buf, len_tmp);
1102 /* try to use a trusted value for len_full */
1103 if (len_full < len_max)
1104 len_full = (encode ?
1105 len_tmp * 2 : len_tmp);
1106 p += len_tmp + 1;
1107 }
1108 len_buf += len_tmp;
1109 buf_head[len_buf] = '\0';
1110
1111 /* length of the buffer in the audit record? */
1112 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1113 }
1114
1115 /* write as much as we can to the audit log */
1116 if (len_buf >= 0) {
1117 /* NOTE: some magic numbers here - basically if we
1118 * can't fit a reasonable amount of data into the
1119 * existing audit buffer, flush it and start with
1120 * a new buffer */
1121 if ((sizeof(abuf) + 8) > len_rem) {
1122 len_rem = len_max;
1123 audit_log_end(*ab);
1124 *ab = audit_log_start(context,
1125 GFP_KERNEL, AUDIT_EXECVE);
1126 if (!*ab)
1127 goto out;
1128 }
1129
1130 /* create the non-arg portion of the arg record */
1131 len_tmp = 0;
1132 if (require_data || (iter > 0) ||
1133 ((len_abuf + sizeof(abuf)) > len_rem)) {
1134 if (iter == 0) {
1135 len_tmp += snprintf(&abuf[len_tmp],
1136 sizeof(abuf) - len_tmp,
1137 " a%d_len=%lu",
1138 arg, len_full);
1139 }
1140 len_tmp += snprintf(&abuf[len_tmp],
1141 sizeof(abuf) - len_tmp,
1142 " a%d[%d]=", arg, iter++);
1143 } else
1144 len_tmp += snprintf(&abuf[len_tmp],
1145 sizeof(abuf) - len_tmp,
1146 " a%d=", arg);
1147 WARN_ON(len_tmp >= sizeof(abuf));
1148 abuf[sizeof(abuf) - 1] = '\0';
1149
1150 /* log the arg in the audit record */
1151 audit_log_format(*ab, "%s", abuf);
1152 len_rem -= len_tmp;
1153 len_tmp = len_buf;
1154 if (encode) {
1155 if (len_abuf > len_rem)
1156 len_tmp = len_rem / 2; /* encoding */
1157 audit_log_n_hex(*ab, buf, len_tmp);
1158 len_rem -= len_tmp * 2;
1159 len_abuf -= len_tmp * 2;
1160 } else {
1161 if (len_abuf > len_rem)
1162 len_tmp = len_rem - 2; /* quotes */
1163 audit_log_n_string(*ab, buf, len_tmp);
1164 len_rem -= len_tmp + 2;
1165 /* don't subtract the "2" because we still need
1166 * to add quotes to the remaining string */
1167 len_abuf -= len_tmp;
1168 }
1169 len_buf -= len_tmp;
1170 buf += len_tmp;
1171 }
1172
1173 /* ready to move to the next argument? */
1174 if ((len_buf == 0) && !require_data) {
1175 arg++;
1176 iter = 0;
1177 len_full = 0;
1178 require_data = true;
1179 encode = false;
1180 }
1181 } while (arg < context->execve.argc);
1182
1183 /* NOTE: the caller handles the final audit_log_end() call */
1184
1185 out:
1186 kfree(buf_head);
1187 }
1188
1189 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1190 kernel_cap_t *cap)
1191 {
1192 int i;
1193
1194 if (cap_isclear(*cap)) {
1195 audit_log_format(ab, " %s=0", prefix);
1196 return;
1197 }
1198 audit_log_format(ab, " %s=", prefix);
1199 CAP_FOR_EACH_U32(i)
1200 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1201 }
1202
1203 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1204 {
1205 if (name->fcap_ver == -1) {
1206 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1207 return;
1208 }
1209 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1210 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1211 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1212 name->fcap.fE, name->fcap_ver,
1213 from_kuid(&init_user_ns, name->fcap.rootid));
1214 }
1215
1216 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1217 {
1218 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1219 const struct timespec64 *tk = &context->time.tk_injoffset;
1220 static const char * const ntp_name[] = {
1221 "offset",
1222 "freq",
1223 "status",
1224 "tai",
1225 "tick",
1226 "adjust",
1227 };
1228 int type;
1229
1230 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1231 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1232 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1233 if (!*ab) {
1234 *ab = audit_log_start(context,
1235 GFP_KERNEL,
1236 AUDIT_TIME_ADJNTPVAL);
1237 if (!*ab)
1238 return;
1239 }
1240 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1241 ntp_name[type],
1242 ntp->vals[type].oldval,
1243 ntp->vals[type].newval);
1244 audit_log_end(*ab);
1245 *ab = NULL;
1246 }
1247 }
1248 }
1249 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1250 if (!*ab) {
1251 *ab = audit_log_start(context, GFP_KERNEL,
1252 AUDIT_TIME_INJOFFSET);
1253 if (!*ab)
1254 return;
1255 }
1256 audit_log_format(*ab, "sec=%lli nsec=%li",
1257 (long long)tk->tv_sec, tk->tv_nsec);
1258 audit_log_end(*ab);
1259 *ab = NULL;
1260 }
1261 }
1262
1263 static void show_special(struct audit_context *context, int *call_panic)
1264 {
1265 struct audit_buffer *ab;
1266 int i;
1267
1268 ab = audit_log_start(context, GFP_KERNEL, context->type);
1269 if (!ab)
1270 return;
1271
1272 switch (context->type) {
1273 case AUDIT_SOCKETCALL: {
1274 int nargs = context->socketcall.nargs;
1275
1276 audit_log_format(ab, "nargs=%d", nargs);
1277 for (i = 0; i < nargs; i++)
1278 audit_log_format(ab, " a%d=%lx", i,
1279 context->socketcall.args[i]);
1280 break; }
1281 case AUDIT_IPC: {
1282 struct lsmblob *oblob = &context->ipc.oblob;
1283
1284 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1285 from_kuid(&init_user_ns, context->ipc.uid),
1286 from_kgid(&init_user_ns, context->ipc.gid),
1287 context->ipc.mode);
1288 if (audit_log_object_context(ab, oblob))
1289 *call_panic = 1;
1290 if (context->ipc.has_perm) {
1291 audit_log_end(ab);
1292 ab = audit_log_start(context, GFP_KERNEL,
1293 AUDIT_IPC_SET_PERM);
1294 if (unlikely(!ab))
1295 return;
1296 audit_log_format(ab,
1297 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1298 context->ipc.qbytes,
1299 context->ipc.perm_uid,
1300 context->ipc.perm_gid,
1301 context->ipc.perm_mode);
1302 }
1303 break; }
1304 case AUDIT_MQ_OPEN:
1305 audit_log_format(ab,
1306 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1307 "mq_msgsize=%ld mq_curmsgs=%ld",
1308 context->mq_open.oflag, context->mq_open.mode,
1309 context->mq_open.attr.mq_flags,
1310 context->mq_open.attr.mq_maxmsg,
1311 context->mq_open.attr.mq_msgsize,
1312 context->mq_open.attr.mq_curmsgs);
1313 break;
1314 case AUDIT_MQ_SENDRECV:
1315 audit_log_format(ab,
1316 "mqdes=%d msg_len=%zd msg_prio=%u "
1317 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1318 context->mq_sendrecv.mqdes,
1319 context->mq_sendrecv.msg_len,
1320 context->mq_sendrecv.msg_prio,
1321 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1322 context->mq_sendrecv.abs_timeout.tv_nsec);
1323 break;
1324 case AUDIT_MQ_NOTIFY:
1325 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1326 context->mq_notify.mqdes,
1327 context->mq_notify.sigev_signo);
1328 break;
1329 case AUDIT_MQ_GETSETATTR: {
1330 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1331
1332 audit_log_format(ab,
1333 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1334 "mq_curmsgs=%ld ",
1335 context->mq_getsetattr.mqdes,
1336 attr->mq_flags, attr->mq_maxmsg,
1337 attr->mq_msgsize, attr->mq_curmsgs);
1338 break; }
1339 case AUDIT_CAPSET:
1340 audit_log_format(ab, "pid=%d", context->capset.pid);
1341 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1342 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1343 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1344 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1345 break;
1346 case AUDIT_MMAP:
1347 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1348 context->mmap.flags);
1349 break;
1350 case AUDIT_EXECVE:
1351 audit_log_execve_info(context, &ab);
1352 break;
1353 case AUDIT_KERN_MODULE:
1354 audit_log_format(ab, "name=");
1355 if (context->module.name) {
1356 audit_log_untrustedstring(ab, context->module.name);
1357 } else
1358 audit_log_format(ab, "(null)");
1359
1360 break;
1361 case AUDIT_TIME_ADJNTPVAL:
1362 case AUDIT_TIME_INJOFFSET:
1363 /* this call deviates from the rest, eating the buffer */
1364 audit_log_time(context, &ab);
1365 break;
1366 }
1367 audit_log_end(ab);
1368 }
1369
1370 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1371 {
1372 char *end = proctitle + len - 1;
1373
1374 while (end > proctitle && !isprint(*end))
1375 end--;
1376
1377 /* catch the case where proctitle is only 1 non-print character */
1378 len = end - proctitle + 1;
1379 len -= isprint(proctitle[len-1]) == 0;
1380 return len;
1381 }
1382
1383 /*
1384 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1385 * @context: audit_context for the task
1386 * @n: audit_names structure with reportable details
1387 * @path: optional path to report instead of audit_names->name
1388 * @record_num: record number to report when handling a list of names
1389 * @call_panic: optional pointer to int that will be updated if secid fails
1390 */
1391 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1392 const struct path *path, int record_num, int *call_panic)
1393 {
1394 struct audit_buffer *ab;
1395
1396 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1397 if (!ab)
1398 return;
1399
1400 audit_log_format(ab, "item=%d", record_num);
1401
1402 if (path)
1403 audit_log_d_path(ab, " name=", path);
1404 else if (n->name) {
1405 switch (n->name_len) {
1406 case AUDIT_NAME_FULL:
1407 /* log the full path */
1408 audit_log_format(ab, " name=");
1409 audit_log_untrustedstring(ab, n->name->name);
1410 break;
1411 case 0:
1412 /* name was specified as a relative path and the
1413 * directory component is the cwd
1414 */
1415 if (context->pwd.dentry && context->pwd.mnt)
1416 audit_log_d_path(ab, " name=", &context->pwd);
1417 else
1418 audit_log_format(ab, " name=(null)");
1419 break;
1420 default:
1421 /* log the name's directory component */
1422 audit_log_format(ab, " name=");
1423 audit_log_n_untrustedstring(ab, n->name->name,
1424 n->name_len);
1425 }
1426 } else
1427 audit_log_format(ab, " name=(null)");
1428
1429 if (n->ino != AUDIT_INO_UNSET)
1430 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1431 n->ino,
1432 MAJOR(n->dev),
1433 MINOR(n->dev),
1434 n->mode,
1435 from_kuid(&init_user_ns, n->uid),
1436 from_kgid(&init_user_ns, n->gid),
1437 MAJOR(n->rdev),
1438 MINOR(n->rdev));
1439 if (audit_log_object_context(ab, &n->oblob) && call_panic)
1440 *call_panic = 2;
1441
1442 /* log the audit_names record type */
1443 switch (n->type) {
1444 case AUDIT_TYPE_NORMAL:
1445 audit_log_format(ab, " nametype=NORMAL");
1446 break;
1447 case AUDIT_TYPE_PARENT:
1448 audit_log_format(ab, " nametype=PARENT");
1449 break;
1450 case AUDIT_TYPE_CHILD_DELETE:
1451 audit_log_format(ab, " nametype=DELETE");
1452 break;
1453 case AUDIT_TYPE_CHILD_CREATE:
1454 audit_log_format(ab, " nametype=CREATE");
1455 break;
1456 default:
1457 audit_log_format(ab, " nametype=UNKNOWN");
1458 break;
1459 }
1460
1461 audit_log_fcaps(ab, n);
1462 audit_log_end(ab);
1463 }
1464
1465 static void audit_log_proctitle(void)
1466 {
1467 int res;
1468 char *buf;
1469 char *msg = "(null)";
1470 int len = strlen(msg);
1471 struct audit_context *context = audit_context();
1472 struct audit_buffer *ab;
1473
1474 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1475 if (!ab)
1476 return; /* audit_panic or being filtered */
1477
1478 audit_log_format(ab, "proctitle=");
1479
1480 /* Not cached */
1481 if (!context->proctitle.value) {
1482 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1483 if (!buf)
1484 goto out;
1485 /* Historically called this from procfs naming */
1486 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1487 if (res == 0) {
1488 kfree(buf);
1489 goto out;
1490 }
1491 res = audit_proctitle_rtrim(buf, res);
1492 if (res == 0) {
1493 kfree(buf);
1494 goto out;
1495 }
1496 context->proctitle.value = buf;
1497 context->proctitle.len = res;
1498 }
1499 msg = context->proctitle.value;
1500 len = context->proctitle.len;
1501 out:
1502 audit_log_n_untrustedstring(ab, msg, len);
1503 audit_log_end(ab);
1504 }
1505
1506 void audit_log_lsm(struct lsmblob *blob, bool exiting)
1507 {
1508 struct audit_context *context = audit_context();
1509 struct lsmcontext lsmdata;
1510 struct audit_buffer *ab;
1511 struct lsmblob localblob;
1512 bool sep = false;
1513 int error;
1514 int i;
1515
1516 if (!lsm_multiple_contexts())
1517 return;
1518
1519 if (context && context->in_syscall && !exiting)
1520 return;
1521
1522 ab = audit_log_start(context, GFP_ATOMIC, AUDIT_MAC_TASK_CONTEXTS);
1523 if (!ab)
1524 return; /* audit_panic or being filtered */
1525
1526 if (blob == NULL) {
1527 security_task_getsecid_subj(current, &localblob);
1528 if (!lsmblob_is_set(&localblob))
1529 return;
1530 blob = &localblob;
1531 }
1532
1533 for (i = 0; i < LSMBLOB_ENTRIES; i++) {
1534 if (blob->secid[i] == 0)
1535 continue;
1536 error = security_secid_to_secctx(blob, &lsmdata, i);
1537 if (error && error != -EINVAL) {
1538 audit_panic("error in audit_log_lsm");
1539 return;
1540 }
1541
1542 audit_log_format(ab, "%ssubj_%s=%s", sep ? " " : "",
1543 security_lsm_slot_name(i), lsmdata.context);
1544 sep = true;
1545
1546 security_release_secctx(&lsmdata);
1547 }
1548
1549 audit_log_end(ab);
1550 }
1551
1552 static void audit_log_exit(void)
1553 {
1554 int i, call_panic = 0;
1555 struct audit_context *context = audit_context();
1556 struct audit_buffer *ab;
1557 struct audit_aux_data *aux;
1558 struct audit_names *n;
1559
1560 context->personality = current->personality;
1561
1562 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1563 if (!ab)
1564 return; /* audit_panic has been called */
1565 audit_log_format(ab, "arch=%x syscall=%d",
1566 context->arch, context->major);
1567 if (context->personality != PER_LINUX)
1568 audit_log_format(ab, " per=%lx", context->personality);
1569 if (context->return_valid != AUDITSC_INVALID)
1570 audit_log_format(ab, " success=%s exit=%ld",
1571 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1572 context->return_code);
1573
1574 audit_log_format(ab,
1575 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1576 context->argv[0],
1577 context->argv[1],
1578 context->argv[2],
1579 context->argv[3],
1580 context->name_count);
1581
1582 audit_log_task_info(ab);
1583 audit_log_key(ab, context->filterkey);
1584 audit_log_end(ab);
1585
1586 for (aux = context->aux; aux; aux = aux->next) {
1587
1588 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1589 if (!ab)
1590 continue; /* audit_panic has been called */
1591
1592 switch (aux->type) {
1593
1594 case AUDIT_BPRM_FCAPS: {
1595 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1596
1597 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1598 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1599 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1600 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1601 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1602 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1603 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1604 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1605 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1606 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1607 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1608 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1609 audit_log_format(ab, " frootid=%d",
1610 from_kuid(&init_user_ns,
1611 axs->fcap.rootid));
1612 break; }
1613
1614 }
1615 audit_log_end(ab);
1616 }
1617
1618 if (context->type)
1619 show_special(context, &call_panic);
1620
1621 if (context->fds[0] >= 0) {
1622 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1623 if (ab) {
1624 audit_log_format(ab, "fd0=%d fd1=%d",
1625 context->fds[0], context->fds[1]);
1626 audit_log_end(ab);
1627 }
1628 }
1629
1630 if (context->sockaddr_len) {
1631 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1632 if (ab) {
1633 audit_log_format(ab, "saddr=");
1634 audit_log_n_hex(ab, (void *)context->sockaddr,
1635 context->sockaddr_len);
1636 audit_log_end(ab);
1637 }
1638 }
1639
1640 for (aux = context->aux_pids; aux; aux = aux->next) {
1641 struct audit_aux_data_pids *axs = (void *)aux;
1642
1643 for (i = 0; i < axs->pid_count; i++)
1644 if (audit_log_pid_context(context, axs->target_pid[i],
1645 axs->target_auid[i],
1646 axs->target_uid[i],
1647 axs->target_sessionid[i],
1648 &axs->target_lsm[i],
1649 axs->target_comm[i]))
1650 call_panic = 1;
1651 }
1652
1653 if (context->target_pid &&
1654 audit_log_pid_context(context, context->target_pid,
1655 context->target_auid, context->target_uid,
1656 context->target_sessionid,
1657 &context->target_lsm, context->target_comm))
1658 call_panic = 1;
1659
1660 if (context->pwd.dentry && context->pwd.mnt) {
1661 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1662 if (ab) {
1663 audit_log_d_path(ab, "cwd=", &context->pwd);
1664 audit_log_end(ab);
1665 }
1666 }
1667
1668 i = 0;
1669 list_for_each_entry(n, &context->names_list, list) {
1670 if (n->hidden)
1671 continue;
1672 audit_log_name(context, n, NULL, i++, &call_panic);
1673 }
1674
1675 audit_log_proctitle();
1676 audit_log_lsm(NULL, true);
1677
1678 /* Send end of event record to help user space know we are finished */
1679 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1680 if (ab)
1681 audit_log_end(ab);
1682 if (call_panic)
1683 audit_panic("error converting sid to string");
1684 }
1685
1686 /**
1687 * __audit_free - free a per-task audit context
1688 * @tsk: task whose audit context block to free
1689 *
1690 * Called from copy_process and do_exit
1691 */
1692 void __audit_free(struct task_struct *tsk)
1693 {
1694 struct audit_context *context = tsk->audit_context;
1695
1696 if (!context)
1697 return;
1698
1699 if (!list_empty(&context->killed_trees))
1700 audit_kill_trees(context);
1701
1702 /* We are called either by do_exit() or the fork() error handling code;
1703 * in the former case tsk == current and in the latter tsk is a
1704 * random task_struct that doesn't doesn't have any meaningful data we
1705 * need to log via audit_log_exit().
1706 */
1707 if (tsk == current && !context->dummy && context->in_syscall) {
1708 context->return_valid = AUDITSC_INVALID;
1709 context->return_code = 0;
1710
1711 audit_filter_syscall(tsk, context);
1712 audit_filter_inodes(tsk, context);
1713 if (context->current_state == AUDIT_STATE_RECORD)
1714 audit_log_exit();
1715 }
1716
1717 audit_set_context(tsk, NULL);
1718 audit_free_context(context);
1719 }
1720
1721 /**
1722 * __audit_syscall_entry - fill in an audit record at syscall entry
1723 * @major: major syscall type (function)
1724 * @a1: additional syscall register 1
1725 * @a2: additional syscall register 2
1726 * @a3: additional syscall register 3
1727 * @a4: additional syscall register 4
1728 *
1729 * Fill in audit context at syscall entry. This only happens if the
1730 * audit context was created when the task was created and the state or
1731 * filters demand the audit context be built. If the state from the
1732 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1733 * then the record will be written at syscall exit time (otherwise, it
1734 * will only be written if another part of the kernel requests that it
1735 * be written).
1736 */
1737 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1738 unsigned long a3, unsigned long a4)
1739 {
1740 struct audit_context *context = audit_context();
1741 enum audit_state state;
1742
1743 if (!audit_enabled || !context)
1744 return;
1745
1746 BUG_ON(context->in_syscall || context->name_count);
1747
1748 state = context->state;
1749 if (state == AUDIT_STATE_DISABLED)
1750 return;
1751
1752 context->dummy = !audit_n_rules;
1753 if (!context->dummy && state == AUDIT_STATE_BUILD) {
1754 context->prio = 0;
1755 if (auditd_test_task(current))
1756 return;
1757 }
1758
1759 context->arch = syscall_get_arch(current);
1760 context->major = major;
1761 context->argv[0] = a1;
1762 context->argv[1] = a2;
1763 context->argv[2] = a3;
1764 context->argv[3] = a4;
1765 context->serial = 0;
1766 context->in_syscall = 1;
1767 context->current_state = state;
1768 context->ppid = 0;
1769 ktime_get_coarse_real_ts64(&context->ctime);
1770 }
1771
1772 /**
1773 * __audit_syscall_exit - deallocate audit context after a system call
1774 * @success: success value of the syscall
1775 * @return_code: return value of the syscall
1776 *
1777 * Tear down after system call. If the audit context has been marked as
1778 * auditable (either because of the AUDIT_STATE_RECORD state from
1779 * filtering, or because some other part of the kernel wrote an audit
1780 * message), then write out the syscall information. In call cases,
1781 * free the names stored from getname().
1782 */
1783 void __audit_syscall_exit(int success, long return_code)
1784 {
1785 struct audit_context *context;
1786
1787 context = audit_context();
1788 if (!context)
1789 return;
1790
1791 if (!list_empty(&context->killed_trees))
1792 audit_kill_trees(context);
1793
1794 if (!context->dummy && context->in_syscall) {
1795 if (success)
1796 context->return_valid = AUDITSC_SUCCESS;
1797 else
1798 context->return_valid = AUDITSC_FAILURE;
1799
1800 /*
1801 * we need to fix up the return code in the audit logs if the
1802 * actual return codes are later going to be fixed up by the
1803 * arch specific signal handlers
1804 *
1805 * This is actually a test for:
1806 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1807 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1808 *
1809 * but is faster than a bunch of ||
1810 */
1811 if (unlikely(return_code <= -ERESTARTSYS) &&
1812 (return_code >= -ERESTART_RESTARTBLOCK) &&
1813 (return_code != -ENOIOCTLCMD))
1814 context->return_code = -EINTR;
1815 else
1816 context->return_code = return_code;
1817
1818 audit_filter_syscall(current, context);
1819 audit_filter_inodes(current, context);
1820 if (context->current_state == AUDIT_STATE_RECORD)
1821 audit_log_exit();
1822 }
1823
1824 context->in_syscall = 0;
1825 context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1826
1827 audit_free_module(context);
1828 audit_free_names(context);
1829 unroll_tree_refs(context, NULL, 0);
1830 audit_free_aux(context);
1831 context->aux = NULL;
1832 context->aux_pids = NULL;
1833 context->target_pid = 0;
1834 lsmblob_init(&context->target_lsm, 0);
1835 context->sockaddr_len = 0;
1836 context->type = 0;
1837 context->fds[0] = -1;
1838 if (context->state != AUDIT_STATE_RECORD) {
1839 kfree(context->filterkey);
1840 context->filterkey = NULL;
1841 }
1842 }
1843
1844 static inline void handle_one(const struct inode *inode)
1845 {
1846 struct audit_context *context;
1847 struct audit_tree_refs *p;
1848 struct audit_chunk *chunk;
1849 int count;
1850
1851 if (likely(!inode->i_fsnotify_marks))
1852 return;
1853 context = audit_context();
1854 p = context->trees;
1855 count = context->tree_count;
1856 rcu_read_lock();
1857 chunk = audit_tree_lookup(inode);
1858 rcu_read_unlock();
1859 if (!chunk)
1860 return;
1861 if (likely(put_tree_ref(context, chunk)))
1862 return;
1863 if (unlikely(!grow_tree_refs(context))) {
1864 pr_warn("out of memory, audit has lost a tree reference\n");
1865 audit_set_auditable(context);
1866 audit_put_chunk(chunk);
1867 unroll_tree_refs(context, p, count);
1868 return;
1869 }
1870 put_tree_ref(context, chunk);
1871 }
1872
1873 static void handle_path(const struct dentry *dentry)
1874 {
1875 struct audit_context *context;
1876 struct audit_tree_refs *p;
1877 const struct dentry *d, *parent;
1878 struct audit_chunk *drop;
1879 unsigned long seq;
1880 int count;
1881
1882 context = audit_context();
1883 p = context->trees;
1884 count = context->tree_count;
1885 retry:
1886 drop = NULL;
1887 d = dentry;
1888 rcu_read_lock();
1889 seq = read_seqbegin(&rename_lock);
1890 for(;;) {
1891 struct inode *inode = d_backing_inode(d);
1892
1893 if (inode && unlikely(inode->i_fsnotify_marks)) {
1894 struct audit_chunk *chunk;
1895
1896 chunk = audit_tree_lookup(inode);
1897 if (chunk) {
1898 if (unlikely(!put_tree_ref(context, chunk))) {
1899 drop = chunk;
1900 break;
1901 }
1902 }
1903 }
1904 parent = d->d_parent;
1905 if (parent == d)
1906 break;
1907 d = parent;
1908 }
1909 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1910 rcu_read_unlock();
1911 if (!drop) {
1912 /* just a race with rename */
1913 unroll_tree_refs(context, p, count);
1914 goto retry;
1915 }
1916 audit_put_chunk(drop);
1917 if (grow_tree_refs(context)) {
1918 /* OK, got more space */
1919 unroll_tree_refs(context, p, count);
1920 goto retry;
1921 }
1922 /* too bad */
1923 pr_warn("out of memory, audit has lost a tree reference\n");
1924 unroll_tree_refs(context, p, count);
1925 audit_set_auditable(context);
1926 return;
1927 }
1928 rcu_read_unlock();
1929 }
1930
1931 static struct audit_names *audit_alloc_name(struct audit_context *context,
1932 unsigned char type)
1933 {
1934 struct audit_names *aname;
1935
1936 if (context->name_count < AUDIT_NAMES) {
1937 aname = &context->preallocated_names[context->name_count];
1938 memset(aname, 0, sizeof(*aname));
1939 } else {
1940 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1941 if (!aname)
1942 return NULL;
1943 aname->should_free = true;
1944 }
1945
1946 aname->ino = AUDIT_INO_UNSET;
1947 aname->type = type;
1948 list_add_tail(&aname->list, &context->names_list);
1949
1950 context->name_count++;
1951 if (!context->pwd.dentry)
1952 get_fs_pwd(current->fs, &context->pwd);
1953 return aname;
1954 }
1955
1956 /**
1957 * __audit_reusename - fill out filename with info from existing entry
1958 * @uptr: userland ptr to pathname
1959 *
1960 * Search the audit_names list for the current audit context. If there is an
1961 * existing entry with a matching "uptr" then return the filename
1962 * associated with that audit_name. If not, return NULL.
1963 */
1964 struct filename *
1965 __audit_reusename(const __user char *uptr)
1966 {
1967 struct audit_context *context = audit_context();
1968 struct audit_names *n;
1969
1970 list_for_each_entry(n, &context->names_list, list) {
1971 if (!n->name)
1972 continue;
1973 if (n->name->uptr == uptr) {
1974 n->name->refcnt++;
1975 return n->name;
1976 }
1977 }
1978 return NULL;
1979 }
1980
1981 /**
1982 * __audit_getname - add a name to the list
1983 * @name: name to add
1984 *
1985 * Add a name to the list of audit names for this context.
1986 * Called from fs/namei.c:getname().
1987 */
1988 void __audit_getname(struct filename *name)
1989 {
1990 struct audit_context *context = audit_context();
1991 struct audit_names *n;
1992
1993 if (!context->in_syscall)
1994 return;
1995
1996 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1997 if (!n)
1998 return;
1999
2000 n->name = name;
2001 n->name_len = AUDIT_NAME_FULL;
2002 name->aname = n;
2003 name->refcnt++;
2004 }
2005
2006 static inline int audit_copy_fcaps(struct audit_names *name,
2007 const struct dentry *dentry)
2008 {
2009 struct cpu_vfs_cap_data caps;
2010 int rc;
2011
2012 if (!dentry)
2013 return 0;
2014
2015 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2016 if (rc)
2017 return rc;
2018
2019 name->fcap.permitted = caps.permitted;
2020 name->fcap.inheritable = caps.inheritable;
2021 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2022 name->fcap.rootid = caps.rootid;
2023 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2024 VFS_CAP_REVISION_SHIFT;
2025
2026 return 0;
2027 }
2028
2029 /* Copy inode data into an audit_names. */
2030 static void audit_copy_inode(struct audit_names *name,
2031 const struct dentry *dentry,
2032 struct inode *inode, unsigned int flags)
2033 {
2034 name->ino = inode->i_ino;
2035 name->dev = inode->i_sb->s_dev;
2036 name->mode = inode->i_mode;
2037 name->uid = inode->i_uid;
2038 name->gid = inode->i_gid;
2039 name->rdev = inode->i_rdev;
2040 security_inode_getsecid(inode, &name->oblob);
2041 if (flags & AUDIT_INODE_NOEVAL) {
2042 name->fcap_ver = -1;
2043 return;
2044 }
2045 audit_copy_fcaps(name, dentry);
2046 }
2047
2048 /**
2049 * __audit_inode - store the inode and device from a lookup
2050 * @name: name being audited
2051 * @dentry: dentry being audited
2052 * @flags: attributes for this particular entry
2053 */
2054 void __audit_inode(struct filename *name, const struct dentry *dentry,
2055 unsigned int flags)
2056 {
2057 struct audit_context *context = audit_context();
2058 struct inode *inode = d_backing_inode(dentry);
2059 struct audit_names *n;
2060 bool parent = flags & AUDIT_INODE_PARENT;
2061 struct audit_entry *e;
2062 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2063 int i;
2064
2065 if (!context->in_syscall)
2066 return;
2067
2068 rcu_read_lock();
2069 list_for_each_entry_rcu(e, list, list) {
2070 for (i = 0; i < e->rule.field_count; i++) {
2071 struct audit_field *f = &e->rule.fields[i];
2072
2073 if (f->type == AUDIT_FSTYPE
2074 && audit_comparator(inode->i_sb->s_magic,
2075 f->op, f->val)
2076 && e->rule.action == AUDIT_NEVER) {
2077 rcu_read_unlock();
2078 return;
2079 }
2080 }
2081 }
2082 rcu_read_unlock();
2083
2084 if (!name)
2085 goto out_alloc;
2086
2087 /*
2088 * If we have a pointer to an audit_names entry already, then we can
2089 * just use it directly if the type is correct.
2090 */
2091 n = name->aname;
2092 if (n) {
2093 if (parent) {
2094 if (n->type == AUDIT_TYPE_PARENT ||
2095 n->type == AUDIT_TYPE_UNKNOWN)
2096 goto out;
2097 } else {
2098 if (n->type != AUDIT_TYPE_PARENT)
2099 goto out;
2100 }
2101 }
2102
2103 list_for_each_entry_reverse(n, &context->names_list, list) {
2104 if (n->ino) {
2105 /* valid inode number, use that for the comparison */
2106 if (n->ino != inode->i_ino ||
2107 n->dev != inode->i_sb->s_dev)
2108 continue;
2109 } else if (n->name) {
2110 /* inode number has not been set, check the name */
2111 if (strcmp(n->name->name, name->name))
2112 continue;
2113 } else
2114 /* no inode and no name (?!) ... this is odd ... */
2115 continue;
2116
2117 /* match the correct record type */
2118 if (parent) {
2119 if (n->type == AUDIT_TYPE_PARENT ||
2120 n->type == AUDIT_TYPE_UNKNOWN)
2121 goto out;
2122 } else {
2123 if (n->type != AUDIT_TYPE_PARENT)
2124 goto out;
2125 }
2126 }
2127
2128 out_alloc:
2129 /* unable to find an entry with both a matching name and type */
2130 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2131 if (!n)
2132 return;
2133 if (name) {
2134 n->name = name;
2135 name->refcnt++;
2136 }
2137
2138 out:
2139 if (parent) {
2140 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2141 n->type = AUDIT_TYPE_PARENT;
2142 if (flags & AUDIT_INODE_HIDDEN)
2143 n->hidden = true;
2144 } else {
2145 n->name_len = AUDIT_NAME_FULL;
2146 n->type = AUDIT_TYPE_NORMAL;
2147 }
2148 handle_path(dentry);
2149 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2150 }
2151
2152 void __audit_file(const struct file *file)
2153 {
2154 __audit_inode(NULL, file->f_path.dentry, 0);
2155 }
2156
2157 /**
2158 * __audit_inode_child - collect inode info for created/removed objects
2159 * @parent: inode of dentry parent
2160 * @dentry: dentry being audited
2161 * @type: AUDIT_TYPE_* value that we're looking for
2162 *
2163 * For syscalls that create or remove filesystem objects, audit_inode
2164 * can only collect information for the filesystem object's parent.
2165 * This call updates the audit context with the child's information.
2166 * Syscalls that create a new filesystem object must be hooked after
2167 * the object is created. Syscalls that remove a filesystem object
2168 * must be hooked prior, in order to capture the target inode during
2169 * unsuccessful attempts.
2170 */
2171 void __audit_inode_child(struct inode *parent,
2172 const struct dentry *dentry,
2173 const unsigned char type)
2174 {
2175 struct audit_context *context = audit_context();
2176 struct inode *inode = d_backing_inode(dentry);
2177 const struct qstr *dname = &dentry->d_name;
2178 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2179 struct audit_entry *e;
2180 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2181 int i;
2182
2183 if (!context->in_syscall)
2184 return;
2185
2186 rcu_read_lock();
2187 list_for_each_entry_rcu(e, list, list) {
2188 for (i = 0; i < e->rule.field_count; i++) {
2189 struct audit_field *f = &e->rule.fields[i];
2190
2191 if (f->type == AUDIT_FSTYPE
2192 && audit_comparator(parent->i_sb->s_magic,
2193 f->op, f->val)
2194 && e->rule.action == AUDIT_NEVER) {
2195 rcu_read_unlock();
2196 return;
2197 }
2198 }
2199 }
2200 rcu_read_unlock();
2201
2202 if (inode)
2203 handle_one(inode);
2204
2205 /* look for a parent entry first */
2206 list_for_each_entry(n, &context->names_list, list) {
2207 if (!n->name ||
2208 (n->type != AUDIT_TYPE_PARENT &&
2209 n->type != AUDIT_TYPE_UNKNOWN))
2210 continue;
2211
2212 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2213 !audit_compare_dname_path(dname,
2214 n->name->name, n->name_len)) {
2215 if (n->type == AUDIT_TYPE_UNKNOWN)
2216 n->type = AUDIT_TYPE_PARENT;
2217 found_parent = n;
2218 break;
2219 }
2220 }
2221
2222 /* is there a matching child entry? */
2223 list_for_each_entry(n, &context->names_list, list) {
2224 /* can only match entries that have a name */
2225 if (!n->name ||
2226 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2227 continue;
2228
2229 if (!strcmp(dname->name, n->name->name) ||
2230 !audit_compare_dname_path(dname, n->name->name,
2231 found_parent ?
2232 found_parent->name_len :
2233 AUDIT_NAME_FULL)) {
2234 if (n->type == AUDIT_TYPE_UNKNOWN)
2235 n->type = type;
2236 found_child = n;
2237 break;
2238 }
2239 }
2240
2241 if (!found_parent) {
2242 /* create a new, "anonymous" parent record */
2243 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2244 if (!n)
2245 return;
2246 audit_copy_inode(n, NULL, parent, 0);
2247 }
2248
2249 if (!found_child) {
2250 found_child = audit_alloc_name(context, type);
2251 if (!found_child)
2252 return;
2253
2254 /* Re-use the name belonging to the slot for a matching parent
2255 * directory. All names for this context are relinquished in
2256 * audit_free_names() */
2257 if (found_parent) {
2258 found_child->name = found_parent->name;
2259 found_child->name_len = AUDIT_NAME_FULL;
2260 found_child->name->refcnt++;
2261 }
2262 }
2263
2264 if (inode)
2265 audit_copy_inode(found_child, dentry, inode, 0);
2266 else
2267 found_child->ino = AUDIT_INO_UNSET;
2268 }
2269 EXPORT_SYMBOL_GPL(__audit_inode_child);
2270
2271 /**
2272 * audit_stamp_context - set the timestamp+serial in an audit context
2273 * @ctx: audit_context to set
2274 */
2275 void audit_stamp_context(struct audit_context *ctx)
2276 {
2277 /* ctx will be NULL unless lsm_multiple_contexts() is true */
2278 if (!ctx)
2279 return;
2280
2281 ktime_get_coarse_real_ts64(&ctx->ctime);
2282 ctx->serial = audit_serial();
2283 ctx->current_state = AUDIT_STATE_BUILD;
2284 }
2285
2286 /**
2287 * auditsc_get_stamp - get local copies of audit_context values
2288 * @ctx: audit_context for the task
2289 * @t: timespec64 to store time recorded in the audit_context
2290 * @serial: serial value that is recorded in the audit_context
2291 *
2292 * Also sets the context as auditable.
2293 */
2294 int auditsc_get_stamp(struct audit_context *ctx,
2295 struct timespec64 *t, unsigned int *serial)
2296 {
2297 if (ctx->serial && !ctx->in_syscall) {
2298 t->tv_sec = ctx->ctime.tv_sec;
2299 t->tv_nsec = ctx->ctime.tv_nsec;
2300 *serial = ctx->serial;
2301 return 1;
2302 }
2303 if (!ctx->in_syscall)
2304 return 0;
2305 if (!ctx->serial)
2306 ctx->serial = audit_serial();
2307 t->tv_sec = ctx->ctime.tv_sec;
2308 t->tv_nsec = ctx->ctime.tv_nsec;
2309 *serial = ctx->serial;
2310 if (!ctx->prio) {
2311 ctx->prio = 1;
2312 ctx->current_state = AUDIT_STATE_RECORD;
2313 }
2314 return 1;
2315 }
2316
2317 /**
2318 * __audit_mq_open - record audit data for a POSIX MQ open
2319 * @oflag: open flag
2320 * @mode: mode bits
2321 * @attr: queue attributes
2322 *
2323 */
2324 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2325 {
2326 struct audit_context *context = audit_context();
2327
2328 if (attr)
2329 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2330 else
2331 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2332
2333 context->mq_open.oflag = oflag;
2334 context->mq_open.mode = mode;
2335
2336 context->type = AUDIT_MQ_OPEN;
2337 }
2338
2339 /**
2340 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2341 * @mqdes: MQ descriptor
2342 * @msg_len: Message length
2343 * @msg_prio: Message priority
2344 * @abs_timeout: Message timeout in absolute time
2345 *
2346 */
2347 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2348 const struct timespec64 *abs_timeout)
2349 {
2350 struct audit_context *context = audit_context();
2351 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2352
2353 if (abs_timeout)
2354 memcpy(p, abs_timeout, sizeof(*p));
2355 else
2356 memset(p, 0, sizeof(*p));
2357
2358 context->mq_sendrecv.mqdes = mqdes;
2359 context->mq_sendrecv.msg_len = msg_len;
2360 context->mq_sendrecv.msg_prio = msg_prio;
2361
2362 context->type = AUDIT_MQ_SENDRECV;
2363 }
2364
2365 /**
2366 * __audit_mq_notify - record audit data for a POSIX MQ notify
2367 * @mqdes: MQ descriptor
2368 * @notification: Notification event
2369 *
2370 */
2371
2372 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2373 {
2374 struct audit_context *context = audit_context();
2375
2376 if (notification)
2377 context->mq_notify.sigev_signo = notification->sigev_signo;
2378 else
2379 context->mq_notify.sigev_signo = 0;
2380
2381 context->mq_notify.mqdes = mqdes;
2382 context->type = AUDIT_MQ_NOTIFY;
2383 }
2384
2385 /**
2386 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2387 * @mqdes: MQ descriptor
2388 * @mqstat: MQ flags
2389 *
2390 */
2391 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2392 {
2393 struct audit_context *context = audit_context();
2394
2395 context->mq_getsetattr.mqdes = mqdes;
2396 context->mq_getsetattr.mqstat = *mqstat;
2397 context->type = AUDIT_MQ_GETSETATTR;
2398 }
2399
2400 /**
2401 * __audit_ipc_obj - record audit data for ipc object
2402 * @ipcp: ipc permissions
2403 *
2404 */
2405 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2406 {
2407 struct audit_context *context = audit_context();
2408 context->ipc.uid = ipcp->uid;
2409 context->ipc.gid = ipcp->gid;
2410 context->ipc.mode = ipcp->mode;
2411 context->ipc.has_perm = 0;
2412 security_ipc_getsecid(ipcp, &context->ipc.oblob);
2413 context->type = AUDIT_IPC;
2414 }
2415
2416 /**
2417 * __audit_ipc_set_perm - record audit data for new ipc permissions
2418 * @qbytes: msgq bytes
2419 * @uid: msgq user id
2420 * @gid: msgq group id
2421 * @mode: msgq mode (permissions)
2422 *
2423 * Called only after audit_ipc_obj().
2424 */
2425 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2426 {
2427 struct audit_context *context = audit_context();
2428
2429 context->ipc.qbytes = qbytes;
2430 context->ipc.perm_uid = uid;
2431 context->ipc.perm_gid = gid;
2432 context->ipc.perm_mode = mode;
2433 context->ipc.has_perm = 1;
2434 }
2435
2436 void __audit_bprm(struct linux_binprm *bprm)
2437 {
2438 struct audit_context *context = audit_context();
2439
2440 context->type = AUDIT_EXECVE;
2441 context->execve.argc = bprm->argc;
2442 }
2443
2444
2445 /**
2446 * __audit_socketcall - record audit data for sys_socketcall
2447 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2448 * @args: args array
2449 *
2450 */
2451 int __audit_socketcall(int nargs, unsigned long *args)
2452 {
2453 struct audit_context *context = audit_context();
2454
2455 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2456 return -EINVAL;
2457 context->type = AUDIT_SOCKETCALL;
2458 context->socketcall.nargs = nargs;
2459 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2460 return 0;
2461 }
2462
2463 /**
2464 * __audit_fd_pair - record audit data for pipe and socketpair
2465 * @fd1: the first file descriptor
2466 * @fd2: the second file descriptor
2467 *
2468 */
2469 void __audit_fd_pair(int fd1, int fd2)
2470 {
2471 struct audit_context *context = audit_context();
2472
2473 context->fds[0] = fd1;
2474 context->fds[1] = fd2;
2475 }
2476
2477 /**
2478 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2479 * @len: data length in user space
2480 * @a: data address in kernel space
2481 *
2482 * Returns 0 for success or NULL context or < 0 on error.
2483 */
2484 int __audit_sockaddr(int len, void *a)
2485 {
2486 struct audit_context *context = audit_context();
2487
2488 if (!context->sockaddr) {
2489 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2490
2491 if (!p)
2492 return -ENOMEM;
2493 context->sockaddr = p;
2494 }
2495
2496 context->sockaddr_len = len;
2497 memcpy(context->sockaddr, a, len);
2498 return 0;
2499 }
2500
2501 void __audit_ptrace(struct task_struct *t)
2502 {
2503 struct audit_context *context = audit_context();
2504
2505 context->target_pid = task_tgid_nr(t);
2506 context->target_auid = audit_get_loginuid(t);
2507 context->target_uid = task_uid(t);
2508 context->target_sessionid = audit_get_sessionid(t);
2509 security_task_getsecid_obj(t, &context->target_lsm);
2510 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2511 }
2512
2513 /**
2514 * audit_signal_info_syscall - record signal info for syscalls
2515 * @t: task being signaled
2516 *
2517 * If the audit subsystem is being terminated, record the task (pid)
2518 * and uid that is doing that.
2519 */
2520 int audit_signal_info_syscall(struct task_struct *t)
2521 {
2522 struct audit_aux_data_pids *axp;
2523 struct audit_context *ctx = audit_context();
2524 kuid_t t_uid = task_uid(t);
2525
2526 if (!audit_signals || audit_dummy_context())
2527 return 0;
2528
2529 /* optimize the common case by putting first signal recipient directly
2530 * in audit_context */
2531 if (!ctx->target_pid) {
2532 ctx->target_pid = task_tgid_nr(t);
2533 ctx->target_auid = audit_get_loginuid(t);
2534 ctx->target_uid = t_uid;
2535 ctx->target_sessionid = audit_get_sessionid(t);
2536 security_task_getsecid_obj(t, &ctx->target_lsm);
2537 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2538 return 0;
2539 }
2540
2541 axp = (void *)ctx->aux_pids;
2542 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2543 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2544 if (!axp)
2545 return -ENOMEM;
2546
2547 axp->d.type = AUDIT_OBJ_PID;
2548 axp->d.next = ctx->aux_pids;
2549 ctx->aux_pids = (void *)axp;
2550 }
2551 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2552
2553 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2554 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2555 axp->target_uid[axp->pid_count] = t_uid;
2556 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2557 security_task_getsecid_obj(t, &axp->target_lsm[axp->pid_count]);
2558 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2559 axp->pid_count++;
2560
2561 return 0;
2562 }
2563
2564 /**
2565 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2566 * @bprm: pointer to the bprm being processed
2567 * @new: the proposed new credentials
2568 * @old: the old credentials
2569 *
2570 * Simply check if the proc already has the caps given by the file and if not
2571 * store the priv escalation info for later auditing at the end of the syscall
2572 *
2573 * -Eric
2574 */
2575 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2576 const struct cred *new, const struct cred *old)
2577 {
2578 struct audit_aux_data_bprm_fcaps *ax;
2579 struct audit_context *context = audit_context();
2580 struct cpu_vfs_cap_data vcaps;
2581
2582 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2583 if (!ax)
2584 return -ENOMEM;
2585
2586 ax->d.type = AUDIT_BPRM_FCAPS;
2587 ax->d.next = context->aux;
2588 context->aux = (void *)ax;
2589
2590 get_vfs_caps_from_disk(&init_user_ns,
2591 bprm->file->f_path.dentry, &vcaps);
2592
2593 ax->fcap.permitted = vcaps.permitted;
2594 ax->fcap.inheritable = vcaps.inheritable;
2595 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2596 ax->fcap.rootid = vcaps.rootid;
2597 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2598
2599 ax->old_pcap.permitted = old->cap_permitted;
2600 ax->old_pcap.inheritable = old->cap_inheritable;
2601 ax->old_pcap.effective = old->cap_effective;
2602 ax->old_pcap.ambient = old->cap_ambient;
2603
2604 ax->new_pcap.permitted = new->cap_permitted;
2605 ax->new_pcap.inheritable = new->cap_inheritable;
2606 ax->new_pcap.effective = new->cap_effective;
2607 ax->new_pcap.ambient = new->cap_ambient;
2608 return 0;
2609 }
2610
2611 /**
2612 * __audit_log_capset - store information about the arguments to the capset syscall
2613 * @new: the new credentials
2614 * @old: the old (current) credentials
2615 *
2616 * Record the arguments userspace sent to sys_capset for later printing by the
2617 * audit system if applicable
2618 */
2619 void __audit_log_capset(const struct cred *new, const struct cred *old)
2620 {
2621 struct audit_context *context = audit_context();
2622
2623 context->capset.pid = task_tgid_nr(current);
2624 context->capset.cap.effective = new->cap_effective;
2625 context->capset.cap.inheritable = new->cap_effective;
2626 context->capset.cap.permitted = new->cap_permitted;
2627 context->capset.cap.ambient = new->cap_ambient;
2628 context->type = AUDIT_CAPSET;
2629 }
2630
2631 void __audit_mmap_fd(int fd, int flags)
2632 {
2633 struct audit_context *context = audit_context();
2634
2635 context->mmap.fd = fd;
2636 context->mmap.flags = flags;
2637 context->type = AUDIT_MMAP;
2638 }
2639
2640 void __audit_log_kern_module(char *name)
2641 {
2642 struct audit_context *context = audit_context();
2643
2644 context->module.name = kstrdup(name, GFP_KERNEL);
2645 if (!context->module.name)
2646 audit_log_lost("out of memory in __audit_log_kern_module");
2647 context->type = AUDIT_KERN_MODULE;
2648 }
2649
2650 void __audit_fanotify(unsigned int response)
2651 {
2652 audit_log(audit_context(), GFP_KERNEL,
2653 AUDIT_FANOTIFY, "resp=%u", response);
2654 }
2655
2656 void __audit_tk_injoffset(struct timespec64 offset)
2657 {
2658 struct audit_context *context = audit_context();
2659
2660 /* only set type if not already set by NTP */
2661 if (!context->type)
2662 context->type = AUDIT_TIME_INJOFFSET;
2663 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2664 }
2665
2666 void __audit_ntp_log(const struct audit_ntp_data *ad)
2667 {
2668 struct audit_context *context = audit_context();
2669 int type;
2670
2671 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2672 if (ad->vals[type].newval != ad->vals[type].oldval) {
2673 /* unconditionally set type, overwriting TK */
2674 context->type = AUDIT_TIME_ADJNTPVAL;
2675 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2676 break;
2677 }
2678 }
2679
2680 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2681 enum audit_nfcfgop op, gfp_t gfp)
2682 {
2683 struct audit_buffer *ab;
2684 char comm[sizeof(current->comm)];
2685
2686 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2687 if (!ab)
2688 return;
2689 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2690 name, af, nentries, audit_nfcfgs[op].s);
2691
2692 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2693 audit_log_task_context(ab, NULL); /* subj= */
2694 audit_log_format(ab, " comm=");
2695 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2696 audit_log_end(ab);
2697 }
2698 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2699
2700 static void audit_log_task(struct audit_buffer *ab)
2701 {
2702 kuid_t auid, uid;
2703 kgid_t gid;
2704 unsigned int sessionid;
2705 char comm[sizeof(current->comm)];
2706
2707 auid = audit_get_loginuid(current);
2708 sessionid = audit_get_sessionid(current);
2709 current_uid_gid(&uid, &gid);
2710
2711 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2712 from_kuid(&init_user_ns, auid),
2713 from_kuid(&init_user_ns, uid),
2714 from_kgid(&init_user_ns, gid),
2715 sessionid);
2716 audit_log_task_context(ab, NULL);
2717 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2718 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2719 audit_log_d_path_exe(ab, current->mm);
2720 }
2721
2722 /**
2723 * audit_core_dumps - record information about processes that end abnormally
2724 * @signr: signal value
2725 *
2726 * If a process ends with a core dump, something fishy is going on and we
2727 * should record the event for investigation.
2728 */
2729 void audit_core_dumps(long signr)
2730 {
2731 struct audit_buffer *ab;
2732
2733 if (!audit_enabled)
2734 return;
2735
2736 if (signr == SIGQUIT) /* don't care for those */
2737 return;
2738
2739 audit_stamp_context(audit_context());
2740 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2741 if (unlikely(!ab))
2742 return;
2743 audit_log_task(ab);
2744 audit_log_format(ab, " sig=%ld res=1", signr);
2745 audit_log_lsm(NULL, true);
2746 audit_log_end(ab);
2747 }
2748
2749 /**
2750 * audit_seccomp - record information about a seccomp action
2751 * @syscall: syscall number
2752 * @signr: signal value
2753 * @code: the seccomp action
2754 *
2755 * Record the information associated with a seccomp action. Event filtering for
2756 * seccomp actions that are not to be logged is done in seccomp_log().
2757 * Therefore, this function forces auditing independent of the audit_enabled
2758 * and dummy context state because seccomp actions should be logged even when
2759 * audit is not in use.
2760 */
2761 void audit_seccomp(unsigned long syscall, long signr, int code)
2762 {
2763 struct audit_buffer *ab;
2764
2765 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2766 if (unlikely(!ab))
2767 return;
2768 audit_log_task(ab);
2769 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2770 signr, syscall_get_arch(current), syscall,
2771 in_compat_syscall(), KSTK_EIP(current), code);
2772 audit_log_end(ab);
2773 }
2774
2775 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2776 int res)
2777 {
2778 struct audit_buffer *ab;
2779
2780 if (!audit_enabled)
2781 return;
2782
2783 ab = audit_log_start(audit_context(), GFP_KERNEL,
2784 AUDIT_CONFIG_CHANGE);
2785 if (unlikely(!ab))
2786 return;
2787
2788 audit_log_format(ab,
2789 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2790 names, old_names, res);
2791 audit_log_end(ab);
2792 }
2793
2794 struct list_head *audit_killed_trees(void)
2795 {
2796 struct audit_context *ctx = audit_context();
2797
2798 if (likely(!ctx || !ctx->in_syscall))
2799 return NULL;
2800 return &ctx->killed_trees;
2801 }