]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/auditsc.c
de7e9bcba9ae5aefc11ac0520918f6afb5fc31a6
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69
70 #include "audit.h"
71
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
75
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95 };
96
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 const char *name;
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
112 u32 osid;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
115 };
116
117 struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120 };
121
122 #define AUDIT_AUX_IPCPERM 0
123
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
126
127 struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132 };
133
134 struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140 };
141
142 struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146 };
147
148 struct audit_aux_data_mq_getsetattr {
149 struct audit_aux_data d;
150 mqd_t mqdes;
151 struct mq_attr mqstat;
152 };
153
154 struct audit_aux_data_ipcctl {
155 struct audit_aux_data d;
156 struct ipc_perm p;
157 unsigned long qbytes;
158 uid_t uid;
159 gid_t gid;
160 mode_t mode;
161 u32 osid;
162 };
163
164 struct audit_aux_data_execve {
165 struct audit_aux_data d;
166 int argc;
167 int envc;
168 struct mm_struct *mm;
169 };
170
171 struct audit_aux_data_socketcall {
172 struct audit_aux_data d;
173 int nargs;
174 unsigned long args[0];
175 };
176
177 struct audit_aux_data_sockaddr {
178 struct audit_aux_data d;
179 int len;
180 char a[0];
181 };
182
183 struct audit_aux_data_fd_pair {
184 struct audit_aux_data d;
185 int fd[2];
186 };
187
188 struct audit_aux_data_pids {
189 struct audit_aux_data d;
190 pid_t target_pid[AUDIT_AUX_PIDS];
191 uid_t target_auid[AUDIT_AUX_PIDS];
192 uid_t target_uid[AUDIT_AUX_PIDS];
193 unsigned int target_sessionid[AUDIT_AUX_PIDS];
194 u32 target_sid[AUDIT_AUX_PIDS];
195 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
196 int pid_count;
197 };
198
199 struct audit_tree_refs {
200 struct audit_tree_refs *next;
201 struct audit_chunk *c[31];
202 };
203
204 /* The per-task audit context. */
205 struct audit_context {
206 int dummy; /* must be the first element */
207 int in_syscall; /* 1 if task is in a syscall */
208 enum audit_state state;
209 unsigned int serial; /* serial number for record */
210 struct timespec ctime; /* time of syscall entry */
211 int major; /* syscall number */
212 unsigned long argv[4]; /* syscall arguments */
213 int return_valid; /* return code is valid */
214 long return_code;/* syscall return code */
215 int auditable; /* 1 if record should be written */
216 int name_count;
217 struct audit_names names[AUDIT_NAMES];
218 char * filterkey; /* key for rule that triggered record */
219 struct path pwd;
220 struct audit_context *previous; /* For nested syscalls */
221 struct audit_aux_data *aux;
222 struct audit_aux_data *aux_pids;
223
224 /* Save things to print about task_struct */
225 pid_t pid, ppid;
226 uid_t uid, euid, suid, fsuid;
227 gid_t gid, egid, sgid, fsgid;
228 unsigned long personality;
229 int arch;
230
231 pid_t target_pid;
232 uid_t target_auid;
233 uid_t target_uid;
234 unsigned int target_sessionid;
235 u32 target_sid;
236 char target_comm[TASK_COMM_LEN];
237
238 struct audit_tree_refs *trees, *first_trees;
239 int tree_count;
240
241 #if AUDIT_DEBUG
242 int put_count;
243 int ino_count;
244 #endif
245 };
246
247 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
248 static inline int open_arg(int flags, int mask)
249 {
250 int n = ACC_MODE(flags);
251 if (flags & (O_TRUNC | O_CREAT))
252 n |= AUDIT_PERM_WRITE;
253 return n & mask;
254 }
255
256 static int audit_match_perm(struct audit_context *ctx, int mask)
257 {
258 unsigned n;
259 if (unlikely(!ctx))
260 return 0;
261 n = ctx->major;
262
263 switch (audit_classify_syscall(ctx->arch, n)) {
264 case 0: /* native */
265 if ((mask & AUDIT_PERM_WRITE) &&
266 audit_match_class(AUDIT_CLASS_WRITE, n))
267 return 1;
268 if ((mask & AUDIT_PERM_READ) &&
269 audit_match_class(AUDIT_CLASS_READ, n))
270 return 1;
271 if ((mask & AUDIT_PERM_ATTR) &&
272 audit_match_class(AUDIT_CLASS_CHATTR, n))
273 return 1;
274 return 0;
275 case 1: /* 32bit on biarch */
276 if ((mask & AUDIT_PERM_WRITE) &&
277 audit_match_class(AUDIT_CLASS_WRITE_32, n))
278 return 1;
279 if ((mask & AUDIT_PERM_READ) &&
280 audit_match_class(AUDIT_CLASS_READ_32, n))
281 return 1;
282 if ((mask & AUDIT_PERM_ATTR) &&
283 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
284 return 1;
285 return 0;
286 case 2: /* open */
287 return mask & ACC_MODE(ctx->argv[1]);
288 case 3: /* openat */
289 return mask & ACC_MODE(ctx->argv[2]);
290 case 4: /* socketcall */
291 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
292 case 5: /* execve */
293 return mask & AUDIT_PERM_EXEC;
294 default:
295 return 0;
296 }
297 }
298
299 static int audit_match_filetype(struct audit_context *ctx, int which)
300 {
301 unsigned index = which & ~S_IFMT;
302 mode_t mode = which & S_IFMT;
303
304 if (unlikely(!ctx))
305 return 0;
306
307 if (index >= ctx->name_count)
308 return 0;
309 if (ctx->names[index].ino == -1)
310 return 0;
311 if ((ctx->names[index].mode ^ mode) & S_IFMT)
312 return 0;
313 return 1;
314 }
315
316 /*
317 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
318 * ->first_trees points to its beginning, ->trees - to the current end of data.
319 * ->tree_count is the number of free entries in array pointed to by ->trees.
320 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
321 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
322 * it's going to remain 1-element for almost any setup) until we free context itself.
323 * References in it _are_ dropped - at the same time we free/drop aux stuff.
324 */
325
326 #ifdef CONFIG_AUDIT_TREE
327 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
328 {
329 struct audit_tree_refs *p = ctx->trees;
330 int left = ctx->tree_count;
331 if (likely(left)) {
332 p->c[--left] = chunk;
333 ctx->tree_count = left;
334 return 1;
335 }
336 if (!p)
337 return 0;
338 p = p->next;
339 if (p) {
340 p->c[30] = chunk;
341 ctx->trees = p;
342 ctx->tree_count = 30;
343 return 1;
344 }
345 return 0;
346 }
347
348 static int grow_tree_refs(struct audit_context *ctx)
349 {
350 struct audit_tree_refs *p = ctx->trees;
351 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
352 if (!ctx->trees) {
353 ctx->trees = p;
354 return 0;
355 }
356 if (p)
357 p->next = ctx->trees;
358 else
359 ctx->first_trees = ctx->trees;
360 ctx->tree_count = 31;
361 return 1;
362 }
363 #endif
364
365 static void unroll_tree_refs(struct audit_context *ctx,
366 struct audit_tree_refs *p, int count)
367 {
368 #ifdef CONFIG_AUDIT_TREE
369 struct audit_tree_refs *q;
370 int n;
371 if (!p) {
372 /* we started with empty chain */
373 p = ctx->first_trees;
374 count = 31;
375 /* if the very first allocation has failed, nothing to do */
376 if (!p)
377 return;
378 }
379 n = count;
380 for (q = p; q != ctx->trees; q = q->next, n = 31) {
381 while (n--) {
382 audit_put_chunk(q->c[n]);
383 q->c[n] = NULL;
384 }
385 }
386 while (n-- > ctx->tree_count) {
387 audit_put_chunk(q->c[n]);
388 q->c[n] = NULL;
389 }
390 ctx->trees = p;
391 ctx->tree_count = count;
392 #endif
393 }
394
395 static void free_tree_refs(struct audit_context *ctx)
396 {
397 struct audit_tree_refs *p, *q;
398 for (p = ctx->first_trees; p; p = q) {
399 q = p->next;
400 kfree(p);
401 }
402 }
403
404 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
405 {
406 #ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs *p;
408 int n;
409 if (!tree)
410 return 0;
411 /* full ones */
412 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
413 for (n = 0; n < 31; n++)
414 if (audit_tree_match(p->c[n], tree))
415 return 1;
416 }
417 /* partial */
418 if (p) {
419 for (n = ctx->tree_count; n < 31; n++)
420 if (audit_tree_match(p->c[n], tree))
421 return 1;
422 }
423 #endif
424 return 0;
425 }
426
427 /* Determine if any context name data matches a rule's watch data */
428 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
429 * otherwise. */
430 static int audit_filter_rules(struct task_struct *tsk,
431 struct audit_krule *rule,
432 struct audit_context *ctx,
433 struct audit_names *name,
434 enum audit_state *state)
435 {
436 int i, j, need_sid = 1;
437 u32 sid;
438
439 for (i = 0; i < rule->field_count; i++) {
440 struct audit_field *f = &rule->fields[i];
441 int result = 0;
442
443 switch (f->type) {
444 case AUDIT_PID:
445 result = audit_comparator(tsk->pid, f->op, f->val);
446 break;
447 case AUDIT_PPID:
448 if (ctx) {
449 if (!ctx->ppid)
450 ctx->ppid = sys_getppid();
451 result = audit_comparator(ctx->ppid, f->op, f->val);
452 }
453 break;
454 case AUDIT_UID:
455 result = audit_comparator(tsk->uid, f->op, f->val);
456 break;
457 case AUDIT_EUID:
458 result = audit_comparator(tsk->euid, f->op, f->val);
459 break;
460 case AUDIT_SUID:
461 result = audit_comparator(tsk->suid, f->op, f->val);
462 break;
463 case AUDIT_FSUID:
464 result = audit_comparator(tsk->fsuid, f->op, f->val);
465 break;
466 case AUDIT_GID:
467 result = audit_comparator(tsk->gid, f->op, f->val);
468 break;
469 case AUDIT_EGID:
470 result = audit_comparator(tsk->egid, f->op, f->val);
471 break;
472 case AUDIT_SGID:
473 result = audit_comparator(tsk->sgid, f->op, f->val);
474 break;
475 case AUDIT_FSGID:
476 result = audit_comparator(tsk->fsgid, f->op, f->val);
477 break;
478 case AUDIT_PERS:
479 result = audit_comparator(tsk->personality, f->op, f->val);
480 break;
481 case AUDIT_ARCH:
482 if (ctx)
483 result = audit_comparator(ctx->arch, f->op, f->val);
484 break;
485
486 case AUDIT_EXIT:
487 if (ctx && ctx->return_valid)
488 result = audit_comparator(ctx->return_code, f->op, f->val);
489 break;
490 case AUDIT_SUCCESS:
491 if (ctx && ctx->return_valid) {
492 if (f->val)
493 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
494 else
495 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
496 }
497 break;
498 case AUDIT_DEVMAJOR:
499 if (name)
500 result = audit_comparator(MAJOR(name->dev),
501 f->op, f->val);
502 else if (ctx) {
503 for (j = 0; j < ctx->name_count; j++) {
504 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
505 ++result;
506 break;
507 }
508 }
509 }
510 break;
511 case AUDIT_DEVMINOR:
512 if (name)
513 result = audit_comparator(MINOR(name->dev),
514 f->op, f->val);
515 else if (ctx) {
516 for (j = 0; j < ctx->name_count; j++) {
517 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
518 ++result;
519 break;
520 }
521 }
522 }
523 break;
524 case AUDIT_INODE:
525 if (name)
526 result = (name->ino == f->val);
527 else if (ctx) {
528 for (j = 0; j < ctx->name_count; j++) {
529 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
530 ++result;
531 break;
532 }
533 }
534 }
535 break;
536 case AUDIT_WATCH:
537 if (name && rule->watch->ino != (unsigned long)-1)
538 result = (name->dev == rule->watch->dev &&
539 name->ino == rule->watch->ino);
540 break;
541 case AUDIT_DIR:
542 if (ctx)
543 result = match_tree_refs(ctx, rule->tree);
544 break;
545 case AUDIT_LOGINUID:
546 result = 0;
547 if (ctx)
548 result = audit_comparator(tsk->loginuid, f->op, f->val);
549 break;
550 case AUDIT_SUBJ_USER:
551 case AUDIT_SUBJ_ROLE:
552 case AUDIT_SUBJ_TYPE:
553 case AUDIT_SUBJ_SEN:
554 case AUDIT_SUBJ_CLR:
555 /* NOTE: this may return negative values indicating
556 a temporary error. We simply treat this as a
557 match for now to avoid losing information that
558 may be wanted. An error message will also be
559 logged upon error */
560 if (f->lsm_rule) {
561 if (need_sid) {
562 security_task_getsecid(tsk, &sid);
563 need_sid = 0;
564 }
565 result = security_audit_rule_match(sid, f->type,
566 f->op,
567 f->lsm_rule,
568 ctx);
569 }
570 break;
571 case AUDIT_OBJ_USER:
572 case AUDIT_OBJ_ROLE:
573 case AUDIT_OBJ_TYPE:
574 case AUDIT_OBJ_LEV_LOW:
575 case AUDIT_OBJ_LEV_HIGH:
576 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
577 also applies here */
578 if (f->lsm_rule) {
579 /* Find files that match */
580 if (name) {
581 result = security_audit_rule_match(
582 name->osid, f->type, f->op,
583 f->lsm_rule, ctx);
584 } else if (ctx) {
585 for (j = 0; j < ctx->name_count; j++) {
586 if (security_audit_rule_match(
587 ctx->names[j].osid,
588 f->type, f->op,
589 f->lsm_rule, ctx)) {
590 ++result;
591 break;
592 }
593 }
594 }
595 /* Find ipc objects that match */
596 if (ctx) {
597 struct audit_aux_data *aux;
598 for (aux = ctx->aux; aux;
599 aux = aux->next) {
600 if (aux->type == AUDIT_IPC) {
601 struct audit_aux_data_ipcctl *axi = (void *)aux;
602 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
603 ++result;
604 break;
605 }
606 }
607 }
608 }
609 }
610 break;
611 case AUDIT_ARG0:
612 case AUDIT_ARG1:
613 case AUDIT_ARG2:
614 case AUDIT_ARG3:
615 if (ctx)
616 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
617 break;
618 case AUDIT_FILTERKEY:
619 /* ignore this field for filtering */
620 result = 1;
621 break;
622 case AUDIT_PERM:
623 result = audit_match_perm(ctx, f->val);
624 break;
625 case AUDIT_FILETYPE:
626 result = audit_match_filetype(ctx, f->val);
627 break;
628 }
629
630 if (!result)
631 return 0;
632 }
633 if (rule->filterkey && ctx)
634 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
635 switch (rule->action) {
636 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
637 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
638 }
639 return 1;
640 }
641
642 /* At process creation time, we can determine if system-call auditing is
643 * completely disabled for this task. Since we only have the task
644 * structure at this point, we can only check uid and gid.
645 */
646 static enum audit_state audit_filter_task(struct task_struct *tsk)
647 {
648 struct audit_entry *e;
649 enum audit_state state;
650
651 rcu_read_lock();
652 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
653 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
654 rcu_read_unlock();
655 return state;
656 }
657 }
658 rcu_read_unlock();
659 return AUDIT_BUILD_CONTEXT;
660 }
661
662 /* At syscall entry and exit time, this filter is called if the
663 * audit_state is not low enough that auditing cannot take place, but is
664 * also not high enough that we already know we have to write an audit
665 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
666 */
667 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
668 struct audit_context *ctx,
669 struct list_head *list)
670 {
671 struct audit_entry *e;
672 enum audit_state state;
673
674 if (audit_pid && tsk->tgid == audit_pid)
675 return AUDIT_DISABLED;
676
677 rcu_read_lock();
678 if (!list_empty(list)) {
679 int word = AUDIT_WORD(ctx->major);
680 int bit = AUDIT_BIT(ctx->major);
681
682 list_for_each_entry_rcu(e, list, list) {
683 if ((e->rule.mask[word] & bit) == bit &&
684 audit_filter_rules(tsk, &e->rule, ctx, NULL,
685 &state)) {
686 rcu_read_unlock();
687 return state;
688 }
689 }
690 }
691 rcu_read_unlock();
692 return AUDIT_BUILD_CONTEXT;
693 }
694
695 /* At syscall exit time, this filter is called if any audit_names[] have been
696 * collected during syscall processing. We only check rules in sublists at hash
697 * buckets applicable to the inode numbers in audit_names[].
698 * Regarding audit_state, same rules apply as for audit_filter_syscall().
699 */
700 enum audit_state audit_filter_inodes(struct task_struct *tsk,
701 struct audit_context *ctx)
702 {
703 int i;
704 struct audit_entry *e;
705 enum audit_state state;
706
707 if (audit_pid && tsk->tgid == audit_pid)
708 return AUDIT_DISABLED;
709
710 rcu_read_lock();
711 for (i = 0; i < ctx->name_count; i++) {
712 int word = AUDIT_WORD(ctx->major);
713 int bit = AUDIT_BIT(ctx->major);
714 struct audit_names *n = &ctx->names[i];
715 int h = audit_hash_ino((u32)n->ino);
716 struct list_head *list = &audit_inode_hash[h];
717
718 if (list_empty(list))
719 continue;
720
721 list_for_each_entry_rcu(e, list, list) {
722 if ((e->rule.mask[word] & bit) == bit &&
723 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
724 rcu_read_unlock();
725 return state;
726 }
727 }
728 }
729 rcu_read_unlock();
730 return AUDIT_BUILD_CONTEXT;
731 }
732
733 void audit_set_auditable(struct audit_context *ctx)
734 {
735 ctx->auditable = 1;
736 }
737
738 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
739 int return_valid,
740 int return_code)
741 {
742 struct audit_context *context = tsk->audit_context;
743
744 if (likely(!context))
745 return NULL;
746 context->return_valid = return_valid;
747
748 /*
749 * we need to fix up the return code in the audit logs if the actual
750 * return codes are later going to be fixed up by the arch specific
751 * signal handlers
752 *
753 * This is actually a test for:
754 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
755 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
756 *
757 * but is faster than a bunch of ||
758 */
759 if (unlikely(return_code <= -ERESTARTSYS) &&
760 (return_code >= -ERESTART_RESTARTBLOCK) &&
761 (return_code != -ENOIOCTLCMD))
762 context->return_code = -EINTR;
763 else
764 context->return_code = return_code;
765
766 if (context->in_syscall && !context->dummy && !context->auditable) {
767 enum audit_state state;
768
769 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
770 if (state == AUDIT_RECORD_CONTEXT) {
771 context->auditable = 1;
772 goto get_context;
773 }
774
775 state = audit_filter_inodes(tsk, context);
776 if (state == AUDIT_RECORD_CONTEXT)
777 context->auditable = 1;
778
779 }
780
781 get_context:
782
783 tsk->audit_context = NULL;
784 return context;
785 }
786
787 static inline void audit_free_names(struct audit_context *context)
788 {
789 int i;
790
791 #if AUDIT_DEBUG == 2
792 if (context->auditable
793 ||context->put_count + context->ino_count != context->name_count) {
794 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
795 " name_count=%d put_count=%d"
796 " ino_count=%d [NOT freeing]\n",
797 __FILE__, __LINE__,
798 context->serial, context->major, context->in_syscall,
799 context->name_count, context->put_count,
800 context->ino_count);
801 for (i = 0; i < context->name_count; i++) {
802 printk(KERN_ERR "names[%d] = %p = %s\n", i,
803 context->names[i].name,
804 context->names[i].name ?: "(null)");
805 }
806 dump_stack();
807 return;
808 }
809 #endif
810 #if AUDIT_DEBUG
811 context->put_count = 0;
812 context->ino_count = 0;
813 #endif
814
815 for (i = 0; i < context->name_count; i++) {
816 if (context->names[i].name && context->names[i].name_put)
817 __putname(context->names[i].name);
818 }
819 context->name_count = 0;
820 path_put(&context->pwd);
821 context->pwd.dentry = NULL;
822 context->pwd.mnt = NULL;
823 }
824
825 static inline void audit_free_aux(struct audit_context *context)
826 {
827 struct audit_aux_data *aux;
828
829 while ((aux = context->aux)) {
830 context->aux = aux->next;
831 kfree(aux);
832 }
833 while ((aux = context->aux_pids)) {
834 context->aux_pids = aux->next;
835 kfree(aux);
836 }
837 }
838
839 static inline void audit_zero_context(struct audit_context *context,
840 enum audit_state state)
841 {
842 memset(context, 0, sizeof(*context));
843 context->state = state;
844 }
845
846 static inline struct audit_context *audit_alloc_context(enum audit_state state)
847 {
848 struct audit_context *context;
849
850 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
851 return NULL;
852 audit_zero_context(context, state);
853 return context;
854 }
855
856 /**
857 * audit_alloc - allocate an audit context block for a task
858 * @tsk: task
859 *
860 * Filter on the task information and allocate a per-task audit context
861 * if necessary. Doing so turns on system call auditing for the
862 * specified task. This is called from copy_process, so no lock is
863 * needed.
864 */
865 int audit_alloc(struct task_struct *tsk)
866 {
867 struct audit_context *context;
868 enum audit_state state;
869
870 if (likely(!audit_ever_enabled))
871 return 0; /* Return if not auditing. */
872
873 state = audit_filter_task(tsk);
874 if (likely(state == AUDIT_DISABLED))
875 return 0;
876
877 if (!(context = audit_alloc_context(state))) {
878 audit_log_lost("out of memory in audit_alloc");
879 return -ENOMEM;
880 }
881
882 tsk->audit_context = context;
883 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
884 return 0;
885 }
886
887 static inline void audit_free_context(struct audit_context *context)
888 {
889 struct audit_context *previous;
890 int count = 0;
891
892 do {
893 previous = context->previous;
894 if (previous || (count && count < 10)) {
895 ++count;
896 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
897 " freeing multiple contexts (%d)\n",
898 context->serial, context->major,
899 context->name_count, count);
900 }
901 audit_free_names(context);
902 unroll_tree_refs(context, NULL, 0);
903 free_tree_refs(context);
904 audit_free_aux(context);
905 kfree(context->filterkey);
906 kfree(context);
907 context = previous;
908 } while (context);
909 if (count >= 10)
910 printk(KERN_ERR "audit: freed %d contexts\n", count);
911 }
912
913 void audit_log_task_context(struct audit_buffer *ab)
914 {
915 char *ctx = NULL;
916 unsigned len;
917 int error;
918 u32 sid;
919
920 security_task_getsecid(current, &sid);
921 if (!sid)
922 return;
923
924 error = security_secid_to_secctx(sid, &ctx, &len);
925 if (error) {
926 if (error != -EINVAL)
927 goto error_path;
928 return;
929 }
930
931 audit_log_format(ab, " subj=%s", ctx);
932 security_release_secctx(ctx, len);
933 return;
934
935 error_path:
936 audit_panic("error in audit_log_task_context");
937 return;
938 }
939
940 EXPORT_SYMBOL(audit_log_task_context);
941
942 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
943 {
944 char name[sizeof(tsk->comm)];
945 struct mm_struct *mm = tsk->mm;
946 struct vm_area_struct *vma;
947
948 /* tsk == current */
949
950 get_task_comm(name, tsk);
951 audit_log_format(ab, " comm=");
952 audit_log_untrustedstring(ab, name);
953
954 if (mm) {
955 down_read(&mm->mmap_sem);
956 vma = mm->mmap;
957 while (vma) {
958 if ((vma->vm_flags & VM_EXECUTABLE) &&
959 vma->vm_file) {
960 audit_log_d_path(ab, "exe=",
961 &vma->vm_file->f_path);
962 break;
963 }
964 vma = vma->vm_next;
965 }
966 up_read(&mm->mmap_sem);
967 }
968 audit_log_task_context(ab);
969 }
970
971 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
972 uid_t auid, uid_t uid, unsigned int sessionid,
973 u32 sid, char *comm)
974 {
975 struct audit_buffer *ab;
976 char *ctx = NULL;
977 u32 len;
978 int rc = 0;
979
980 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
981 if (!ab)
982 return rc;
983
984 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
985 uid, sessionid);
986 if (security_secid_to_secctx(sid, &ctx, &len)) {
987 audit_log_format(ab, " obj=(none)");
988 rc = 1;
989 } else {
990 audit_log_format(ab, " obj=%s", ctx);
991 security_release_secctx(ctx, len);
992 }
993 audit_log_format(ab, " ocomm=");
994 audit_log_untrustedstring(ab, comm);
995 audit_log_end(ab);
996
997 return rc;
998 }
999
1000 /*
1001 * to_send and len_sent accounting are very loose estimates. We aren't
1002 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1003 * within about 500 bytes (next page boundry)
1004 *
1005 * why snprintf? an int is up to 12 digits long. if we just assumed when
1006 * logging that a[%d]= was going to be 16 characters long we would be wasting
1007 * space in every audit message. In one 7500 byte message we can log up to
1008 * about 1000 min size arguments. That comes down to about 50% waste of space
1009 * if we didn't do the snprintf to find out how long arg_num_len was.
1010 */
1011 static int audit_log_single_execve_arg(struct audit_context *context,
1012 struct audit_buffer **ab,
1013 int arg_num,
1014 size_t *len_sent,
1015 const char __user *p,
1016 char *buf)
1017 {
1018 char arg_num_len_buf[12];
1019 const char __user *tmp_p = p;
1020 /* how many digits are in arg_num? 3 is the length of a=\n */
1021 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1022 size_t len, len_left, to_send;
1023 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1024 unsigned int i, has_cntl = 0, too_long = 0;
1025 int ret;
1026
1027 /* strnlen_user includes the null we don't want to send */
1028 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1029
1030 /*
1031 * We just created this mm, if we can't find the strings
1032 * we just copied into it something is _very_ wrong. Similar
1033 * for strings that are too long, we should not have created
1034 * any.
1035 */
1036 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1037 WARN_ON(1);
1038 send_sig(SIGKILL, current, 0);
1039 return -1;
1040 }
1041
1042 /* walk the whole argument looking for non-ascii chars */
1043 do {
1044 if (len_left > MAX_EXECVE_AUDIT_LEN)
1045 to_send = MAX_EXECVE_AUDIT_LEN;
1046 else
1047 to_send = len_left;
1048 ret = copy_from_user(buf, tmp_p, to_send);
1049 /*
1050 * There is no reason for this copy to be short. We just
1051 * copied them here, and the mm hasn't been exposed to user-
1052 * space yet.
1053 */
1054 if (ret) {
1055 WARN_ON(1);
1056 send_sig(SIGKILL, current, 0);
1057 return -1;
1058 }
1059 buf[to_send] = '\0';
1060 has_cntl = audit_string_contains_control(buf, to_send);
1061 if (has_cntl) {
1062 /*
1063 * hex messages get logged as 2 bytes, so we can only
1064 * send half as much in each message
1065 */
1066 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1067 break;
1068 }
1069 len_left -= to_send;
1070 tmp_p += to_send;
1071 } while (len_left > 0);
1072
1073 len_left = len;
1074
1075 if (len > max_execve_audit_len)
1076 too_long = 1;
1077
1078 /* rewalk the argument actually logging the message */
1079 for (i = 0; len_left > 0; i++) {
1080 int room_left;
1081
1082 if (len_left > max_execve_audit_len)
1083 to_send = max_execve_audit_len;
1084 else
1085 to_send = len_left;
1086
1087 /* do we have space left to send this argument in this ab? */
1088 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1089 if (has_cntl)
1090 room_left -= (to_send * 2);
1091 else
1092 room_left -= to_send;
1093 if (room_left < 0) {
1094 *len_sent = 0;
1095 audit_log_end(*ab);
1096 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1097 if (!*ab)
1098 return 0;
1099 }
1100
1101 /*
1102 * first record needs to say how long the original string was
1103 * so we can be sure nothing was lost.
1104 */
1105 if ((i == 0) && (too_long))
1106 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1107 has_cntl ? 2*len : len);
1108
1109 /*
1110 * normally arguments are small enough to fit and we already
1111 * filled buf above when we checked for control characters
1112 * so don't bother with another copy_from_user
1113 */
1114 if (len >= max_execve_audit_len)
1115 ret = copy_from_user(buf, p, to_send);
1116 else
1117 ret = 0;
1118 if (ret) {
1119 WARN_ON(1);
1120 send_sig(SIGKILL, current, 0);
1121 return -1;
1122 }
1123 buf[to_send] = '\0';
1124
1125 /* actually log it */
1126 audit_log_format(*ab, "a%d", arg_num);
1127 if (too_long)
1128 audit_log_format(*ab, "[%d]", i);
1129 audit_log_format(*ab, "=");
1130 if (has_cntl)
1131 audit_log_n_hex(*ab, buf, to_send);
1132 else
1133 audit_log_format(*ab, "\"%s\"", buf);
1134 audit_log_format(*ab, "\n");
1135
1136 p += to_send;
1137 len_left -= to_send;
1138 *len_sent += arg_num_len;
1139 if (has_cntl)
1140 *len_sent += to_send * 2;
1141 else
1142 *len_sent += to_send;
1143 }
1144 /* include the null we didn't log */
1145 return len + 1;
1146 }
1147
1148 static void audit_log_execve_info(struct audit_context *context,
1149 struct audit_buffer **ab,
1150 struct audit_aux_data_execve *axi)
1151 {
1152 int i;
1153 size_t len, len_sent = 0;
1154 const char __user *p;
1155 char *buf;
1156
1157 if (axi->mm != current->mm)
1158 return; /* execve failed, no additional info */
1159
1160 p = (const char __user *)axi->mm->arg_start;
1161
1162 audit_log_format(*ab, "argc=%d ", axi->argc);
1163
1164 /*
1165 * we need some kernel buffer to hold the userspace args. Just
1166 * allocate one big one rather than allocating one of the right size
1167 * for every single argument inside audit_log_single_execve_arg()
1168 * should be <8k allocation so should be pretty safe.
1169 */
1170 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1171 if (!buf) {
1172 audit_panic("out of memory for argv string\n");
1173 return;
1174 }
1175
1176 for (i = 0; i < axi->argc; i++) {
1177 len = audit_log_single_execve_arg(context, ab, i,
1178 &len_sent, p, buf);
1179 if (len <= 0)
1180 break;
1181 p += len;
1182 }
1183 kfree(buf);
1184 }
1185
1186 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1187 {
1188 int i;
1189
1190 audit_log_format(ab, " %s=", prefix);
1191 CAP_FOR_EACH_U32(i) {
1192 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1193 }
1194 }
1195
1196 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1197 {
1198 kernel_cap_t *perm = &name->fcap.permitted;
1199 kernel_cap_t *inh = &name->fcap.inheritable;
1200 int log = 0;
1201
1202 if (!cap_isclear(*perm)) {
1203 audit_log_cap(ab, "cap_fp", perm);
1204 log = 1;
1205 }
1206 if (!cap_isclear(*inh)) {
1207 audit_log_cap(ab, "cap_fi", inh);
1208 log = 1;
1209 }
1210
1211 if (log)
1212 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1213 }
1214
1215 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1216 {
1217 int i, call_panic = 0;
1218 struct audit_buffer *ab;
1219 struct audit_aux_data *aux;
1220 const char *tty;
1221
1222 /* tsk == current */
1223 context->pid = tsk->pid;
1224 if (!context->ppid)
1225 context->ppid = sys_getppid();
1226 context->uid = tsk->uid;
1227 context->gid = tsk->gid;
1228 context->euid = tsk->euid;
1229 context->suid = tsk->suid;
1230 context->fsuid = tsk->fsuid;
1231 context->egid = tsk->egid;
1232 context->sgid = tsk->sgid;
1233 context->fsgid = tsk->fsgid;
1234 context->personality = tsk->personality;
1235
1236 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1237 if (!ab)
1238 return; /* audit_panic has been called */
1239 audit_log_format(ab, "arch=%x syscall=%d",
1240 context->arch, context->major);
1241 if (context->personality != PER_LINUX)
1242 audit_log_format(ab, " per=%lx", context->personality);
1243 if (context->return_valid)
1244 audit_log_format(ab, " success=%s exit=%ld",
1245 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1246 context->return_code);
1247
1248 spin_lock_irq(&tsk->sighand->siglock);
1249 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1250 tty = tsk->signal->tty->name;
1251 else
1252 tty = "(none)";
1253 spin_unlock_irq(&tsk->sighand->siglock);
1254
1255 audit_log_format(ab,
1256 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1257 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1258 " euid=%u suid=%u fsuid=%u"
1259 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1260 context->argv[0],
1261 context->argv[1],
1262 context->argv[2],
1263 context->argv[3],
1264 context->name_count,
1265 context->ppid,
1266 context->pid,
1267 tsk->loginuid,
1268 context->uid,
1269 context->gid,
1270 context->euid, context->suid, context->fsuid,
1271 context->egid, context->sgid, context->fsgid, tty,
1272 tsk->sessionid);
1273
1274
1275 audit_log_task_info(ab, tsk);
1276 if (context->filterkey) {
1277 audit_log_format(ab, " key=");
1278 audit_log_untrustedstring(ab, context->filterkey);
1279 } else
1280 audit_log_format(ab, " key=(null)");
1281 audit_log_end(ab);
1282
1283 for (aux = context->aux; aux; aux = aux->next) {
1284
1285 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1286 if (!ab)
1287 continue; /* audit_panic has been called */
1288
1289 switch (aux->type) {
1290 case AUDIT_MQ_OPEN: {
1291 struct audit_aux_data_mq_open *axi = (void *)aux;
1292 audit_log_format(ab,
1293 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1294 "mq_msgsize=%ld mq_curmsgs=%ld",
1295 axi->oflag, axi->mode, axi->attr.mq_flags,
1296 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1297 axi->attr.mq_curmsgs);
1298 break; }
1299
1300 case AUDIT_MQ_SENDRECV: {
1301 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1302 audit_log_format(ab,
1303 "mqdes=%d msg_len=%zd msg_prio=%u "
1304 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1305 axi->mqdes, axi->msg_len, axi->msg_prio,
1306 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1307 break; }
1308
1309 case AUDIT_MQ_NOTIFY: {
1310 struct audit_aux_data_mq_notify *axi = (void *)aux;
1311 audit_log_format(ab,
1312 "mqdes=%d sigev_signo=%d",
1313 axi->mqdes,
1314 axi->notification.sigev_signo);
1315 break; }
1316
1317 case AUDIT_MQ_GETSETATTR: {
1318 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1319 audit_log_format(ab,
1320 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1321 "mq_curmsgs=%ld ",
1322 axi->mqdes,
1323 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1324 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1325 break; }
1326
1327 case AUDIT_IPC: {
1328 struct audit_aux_data_ipcctl *axi = (void *)aux;
1329 audit_log_format(ab,
1330 "ouid=%u ogid=%u mode=%#o",
1331 axi->uid, axi->gid, axi->mode);
1332 if (axi->osid != 0) {
1333 char *ctx = NULL;
1334 u32 len;
1335 if (security_secid_to_secctx(
1336 axi->osid, &ctx, &len)) {
1337 audit_log_format(ab, " osid=%u",
1338 axi->osid);
1339 call_panic = 1;
1340 } else {
1341 audit_log_format(ab, " obj=%s", ctx);
1342 security_release_secctx(ctx, len);
1343 }
1344 }
1345 break; }
1346
1347 case AUDIT_IPC_SET_PERM: {
1348 struct audit_aux_data_ipcctl *axi = (void *)aux;
1349 audit_log_format(ab,
1350 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1351 axi->qbytes, axi->uid, axi->gid, axi->mode);
1352 break; }
1353
1354 case AUDIT_EXECVE: {
1355 struct audit_aux_data_execve *axi = (void *)aux;
1356 audit_log_execve_info(context, &ab, axi);
1357 break; }
1358
1359 case AUDIT_SOCKETCALL: {
1360 struct audit_aux_data_socketcall *axs = (void *)aux;
1361 audit_log_format(ab, "nargs=%d", axs->nargs);
1362 for (i=0; i<axs->nargs; i++)
1363 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1364 break; }
1365
1366 case AUDIT_SOCKADDR: {
1367 struct audit_aux_data_sockaddr *axs = (void *)aux;
1368
1369 audit_log_format(ab, "saddr=");
1370 audit_log_n_hex(ab, axs->a, axs->len);
1371 break; }
1372
1373 case AUDIT_FD_PAIR: {
1374 struct audit_aux_data_fd_pair *axs = (void *)aux;
1375 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1376 break; }
1377
1378 }
1379 audit_log_end(ab);
1380 }
1381
1382 for (aux = context->aux_pids; aux; aux = aux->next) {
1383 struct audit_aux_data_pids *axs = (void *)aux;
1384
1385 for (i = 0; i < axs->pid_count; i++)
1386 if (audit_log_pid_context(context, axs->target_pid[i],
1387 axs->target_auid[i],
1388 axs->target_uid[i],
1389 axs->target_sessionid[i],
1390 axs->target_sid[i],
1391 axs->target_comm[i]))
1392 call_panic = 1;
1393 }
1394
1395 if (context->target_pid &&
1396 audit_log_pid_context(context, context->target_pid,
1397 context->target_auid, context->target_uid,
1398 context->target_sessionid,
1399 context->target_sid, context->target_comm))
1400 call_panic = 1;
1401
1402 if (context->pwd.dentry && context->pwd.mnt) {
1403 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1404 if (ab) {
1405 audit_log_d_path(ab, "cwd=", &context->pwd);
1406 audit_log_end(ab);
1407 }
1408 }
1409 for (i = 0; i < context->name_count; i++) {
1410 struct audit_names *n = &context->names[i];
1411
1412 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1413 if (!ab)
1414 continue; /* audit_panic has been called */
1415
1416 audit_log_format(ab, "item=%d", i);
1417
1418 if (n->name) {
1419 switch(n->name_len) {
1420 case AUDIT_NAME_FULL:
1421 /* log the full path */
1422 audit_log_format(ab, " name=");
1423 audit_log_untrustedstring(ab, n->name);
1424 break;
1425 case 0:
1426 /* name was specified as a relative path and the
1427 * directory component is the cwd */
1428 audit_log_d_path(ab, " name=", &context->pwd);
1429 break;
1430 default:
1431 /* log the name's directory component */
1432 audit_log_format(ab, " name=");
1433 audit_log_n_untrustedstring(ab, n->name,
1434 n->name_len);
1435 }
1436 } else
1437 audit_log_format(ab, " name=(null)");
1438
1439 if (n->ino != (unsigned long)-1) {
1440 audit_log_format(ab, " inode=%lu"
1441 " dev=%02x:%02x mode=%#o"
1442 " ouid=%u ogid=%u rdev=%02x:%02x",
1443 n->ino,
1444 MAJOR(n->dev),
1445 MINOR(n->dev),
1446 n->mode,
1447 n->uid,
1448 n->gid,
1449 MAJOR(n->rdev),
1450 MINOR(n->rdev));
1451 }
1452 if (n->osid != 0) {
1453 char *ctx = NULL;
1454 u32 len;
1455 if (security_secid_to_secctx(
1456 n->osid, &ctx, &len)) {
1457 audit_log_format(ab, " osid=%u", n->osid);
1458 call_panic = 2;
1459 } else {
1460 audit_log_format(ab, " obj=%s", ctx);
1461 security_release_secctx(ctx, len);
1462 }
1463 }
1464
1465 audit_log_fcaps(ab, n);
1466
1467 audit_log_end(ab);
1468 }
1469
1470 /* Send end of event record to help user space know we are finished */
1471 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1472 if (ab)
1473 audit_log_end(ab);
1474 if (call_panic)
1475 audit_panic("error converting sid to string");
1476 }
1477
1478 /**
1479 * audit_free - free a per-task audit context
1480 * @tsk: task whose audit context block to free
1481 *
1482 * Called from copy_process and do_exit
1483 */
1484 void audit_free(struct task_struct *tsk)
1485 {
1486 struct audit_context *context;
1487
1488 context = audit_get_context(tsk, 0, 0);
1489 if (likely(!context))
1490 return;
1491
1492 /* Check for system calls that do not go through the exit
1493 * function (e.g., exit_group), then free context block.
1494 * We use GFP_ATOMIC here because we might be doing this
1495 * in the context of the idle thread */
1496 /* that can happen only if we are called from do_exit() */
1497 if (context->in_syscall && context->auditable)
1498 audit_log_exit(context, tsk);
1499
1500 audit_free_context(context);
1501 }
1502
1503 /**
1504 * audit_syscall_entry - fill in an audit record at syscall entry
1505 * @tsk: task being audited
1506 * @arch: architecture type
1507 * @major: major syscall type (function)
1508 * @a1: additional syscall register 1
1509 * @a2: additional syscall register 2
1510 * @a3: additional syscall register 3
1511 * @a4: additional syscall register 4
1512 *
1513 * Fill in audit context at syscall entry. This only happens if the
1514 * audit context was created when the task was created and the state or
1515 * filters demand the audit context be built. If the state from the
1516 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1517 * then the record will be written at syscall exit time (otherwise, it
1518 * will only be written if another part of the kernel requests that it
1519 * be written).
1520 */
1521 void audit_syscall_entry(int arch, int major,
1522 unsigned long a1, unsigned long a2,
1523 unsigned long a3, unsigned long a4)
1524 {
1525 struct task_struct *tsk = current;
1526 struct audit_context *context = tsk->audit_context;
1527 enum audit_state state;
1528
1529 if (unlikely(!context))
1530 return;
1531
1532 /*
1533 * This happens only on certain architectures that make system
1534 * calls in kernel_thread via the entry.S interface, instead of
1535 * with direct calls. (If you are porting to a new
1536 * architecture, hitting this condition can indicate that you
1537 * got the _exit/_leave calls backward in entry.S.)
1538 *
1539 * i386 no
1540 * x86_64 no
1541 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1542 *
1543 * This also happens with vm86 emulation in a non-nested manner
1544 * (entries without exits), so this case must be caught.
1545 */
1546 if (context->in_syscall) {
1547 struct audit_context *newctx;
1548
1549 #if AUDIT_DEBUG
1550 printk(KERN_ERR
1551 "audit(:%d) pid=%d in syscall=%d;"
1552 " entering syscall=%d\n",
1553 context->serial, tsk->pid, context->major, major);
1554 #endif
1555 newctx = audit_alloc_context(context->state);
1556 if (newctx) {
1557 newctx->previous = context;
1558 context = newctx;
1559 tsk->audit_context = newctx;
1560 } else {
1561 /* If we can't alloc a new context, the best we
1562 * can do is to leak memory (any pending putname
1563 * will be lost). The only other alternative is
1564 * to abandon auditing. */
1565 audit_zero_context(context, context->state);
1566 }
1567 }
1568 BUG_ON(context->in_syscall || context->name_count);
1569
1570 if (!audit_enabled)
1571 return;
1572
1573 context->arch = arch;
1574 context->major = major;
1575 context->argv[0] = a1;
1576 context->argv[1] = a2;
1577 context->argv[2] = a3;
1578 context->argv[3] = a4;
1579
1580 state = context->state;
1581 context->dummy = !audit_n_rules;
1582 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1583 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1584 if (likely(state == AUDIT_DISABLED))
1585 return;
1586
1587 context->serial = 0;
1588 context->ctime = CURRENT_TIME;
1589 context->in_syscall = 1;
1590 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1591 context->ppid = 0;
1592 }
1593
1594 /**
1595 * audit_syscall_exit - deallocate audit context after a system call
1596 * @tsk: task being audited
1597 * @valid: success/failure flag
1598 * @return_code: syscall return value
1599 *
1600 * Tear down after system call. If the audit context has been marked as
1601 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1602 * filtering, or because some other part of the kernel write an audit
1603 * message), then write out the syscall information. In call cases,
1604 * free the names stored from getname().
1605 */
1606 void audit_syscall_exit(int valid, long return_code)
1607 {
1608 struct task_struct *tsk = current;
1609 struct audit_context *context;
1610
1611 context = audit_get_context(tsk, valid, return_code);
1612
1613 if (likely(!context))
1614 return;
1615
1616 if (context->in_syscall && context->auditable)
1617 audit_log_exit(context, tsk);
1618
1619 context->in_syscall = 0;
1620 context->auditable = 0;
1621
1622 if (context->previous) {
1623 struct audit_context *new_context = context->previous;
1624 context->previous = NULL;
1625 audit_free_context(context);
1626 tsk->audit_context = new_context;
1627 } else {
1628 audit_free_names(context);
1629 unroll_tree_refs(context, NULL, 0);
1630 audit_free_aux(context);
1631 context->aux = NULL;
1632 context->aux_pids = NULL;
1633 context->target_pid = 0;
1634 context->target_sid = 0;
1635 kfree(context->filterkey);
1636 context->filterkey = NULL;
1637 tsk->audit_context = context;
1638 }
1639 }
1640
1641 static inline void handle_one(const struct inode *inode)
1642 {
1643 #ifdef CONFIG_AUDIT_TREE
1644 struct audit_context *context;
1645 struct audit_tree_refs *p;
1646 struct audit_chunk *chunk;
1647 int count;
1648 if (likely(list_empty(&inode->inotify_watches)))
1649 return;
1650 context = current->audit_context;
1651 p = context->trees;
1652 count = context->tree_count;
1653 rcu_read_lock();
1654 chunk = audit_tree_lookup(inode);
1655 rcu_read_unlock();
1656 if (!chunk)
1657 return;
1658 if (likely(put_tree_ref(context, chunk)))
1659 return;
1660 if (unlikely(!grow_tree_refs(context))) {
1661 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1662 audit_set_auditable(context);
1663 audit_put_chunk(chunk);
1664 unroll_tree_refs(context, p, count);
1665 return;
1666 }
1667 put_tree_ref(context, chunk);
1668 #endif
1669 }
1670
1671 static void handle_path(const struct dentry *dentry)
1672 {
1673 #ifdef CONFIG_AUDIT_TREE
1674 struct audit_context *context;
1675 struct audit_tree_refs *p;
1676 const struct dentry *d, *parent;
1677 struct audit_chunk *drop;
1678 unsigned long seq;
1679 int count;
1680
1681 context = current->audit_context;
1682 p = context->trees;
1683 count = context->tree_count;
1684 retry:
1685 drop = NULL;
1686 d = dentry;
1687 rcu_read_lock();
1688 seq = read_seqbegin(&rename_lock);
1689 for(;;) {
1690 struct inode *inode = d->d_inode;
1691 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1692 struct audit_chunk *chunk;
1693 chunk = audit_tree_lookup(inode);
1694 if (chunk) {
1695 if (unlikely(!put_tree_ref(context, chunk))) {
1696 drop = chunk;
1697 break;
1698 }
1699 }
1700 }
1701 parent = d->d_parent;
1702 if (parent == d)
1703 break;
1704 d = parent;
1705 }
1706 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1707 rcu_read_unlock();
1708 if (!drop) {
1709 /* just a race with rename */
1710 unroll_tree_refs(context, p, count);
1711 goto retry;
1712 }
1713 audit_put_chunk(drop);
1714 if (grow_tree_refs(context)) {
1715 /* OK, got more space */
1716 unroll_tree_refs(context, p, count);
1717 goto retry;
1718 }
1719 /* too bad */
1720 printk(KERN_WARNING
1721 "out of memory, audit has lost a tree reference\n");
1722 unroll_tree_refs(context, p, count);
1723 audit_set_auditable(context);
1724 return;
1725 }
1726 rcu_read_unlock();
1727 #endif
1728 }
1729
1730 /**
1731 * audit_getname - add a name to the list
1732 * @name: name to add
1733 *
1734 * Add a name to the list of audit names for this context.
1735 * Called from fs/namei.c:getname().
1736 */
1737 void __audit_getname(const char *name)
1738 {
1739 struct audit_context *context = current->audit_context;
1740
1741 if (IS_ERR(name) || !name)
1742 return;
1743
1744 if (!context->in_syscall) {
1745 #if AUDIT_DEBUG == 2
1746 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1747 __FILE__, __LINE__, context->serial, name);
1748 dump_stack();
1749 #endif
1750 return;
1751 }
1752 BUG_ON(context->name_count >= AUDIT_NAMES);
1753 context->names[context->name_count].name = name;
1754 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1755 context->names[context->name_count].name_put = 1;
1756 context->names[context->name_count].ino = (unsigned long)-1;
1757 context->names[context->name_count].osid = 0;
1758 ++context->name_count;
1759 if (!context->pwd.dentry) {
1760 read_lock(&current->fs->lock);
1761 context->pwd = current->fs->pwd;
1762 path_get(&current->fs->pwd);
1763 read_unlock(&current->fs->lock);
1764 }
1765
1766 }
1767
1768 /* audit_putname - intercept a putname request
1769 * @name: name to intercept and delay for putname
1770 *
1771 * If we have stored the name from getname in the audit context,
1772 * then we delay the putname until syscall exit.
1773 * Called from include/linux/fs.h:putname().
1774 */
1775 void audit_putname(const char *name)
1776 {
1777 struct audit_context *context = current->audit_context;
1778
1779 BUG_ON(!context);
1780 if (!context->in_syscall) {
1781 #if AUDIT_DEBUG == 2
1782 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1783 __FILE__, __LINE__, context->serial, name);
1784 if (context->name_count) {
1785 int i;
1786 for (i = 0; i < context->name_count; i++)
1787 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1788 context->names[i].name,
1789 context->names[i].name ?: "(null)");
1790 }
1791 #endif
1792 __putname(name);
1793 }
1794 #if AUDIT_DEBUG
1795 else {
1796 ++context->put_count;
1797 if (context->put_count > context->name_count) {
1798 printk(KERN_ERR "%s:%d(:%d): major=%d"
1799 " in_syscall=%d putname(%p) name_count=%d"
1800 " put_count=%d\n",
1801 __FILE__, __LINE__,
1802 context->serial, context->major,
1803 context->in_syscall, name, context->name_count,
1804 context->put_count);
1805 dump_stack();
1806 }
1807 }
1808 #endif
1809 }
1810
1811 static int audit_inc_name_count(struct audit_context *context,
1812 const struct inode *inode)
1813 {
1814 if (context->name_count >= AUDIT_NAMES) {
1815 if (inode)
1816 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1817 "dev=%02x:%02x, inode=%lu\n",
1818 MAJOR(inode->i_sb->s_dev),
1819 MINOR(inode->i_sb->s_dev),
1820 inode->i_ino);
1821
1822 else
1823 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1824 return 1;
1825 }
1826 context->name_count++;
1827 #if AUDIT_DEBUG
1828 context->ino_count++;
1829 #endif
1830 return 0;
1831 }
1832
1833
1834 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1835 {
1836 struct cpu_vfs_cap_data caps;
1837 int rc;
1838
1839 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1840 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1841 name->fcap.fE = 0;
1842 name->fcap_ver = 0;
1843
1844 if (!dentry)
1845 return 0;
1846
1847 rc = get_vfs_caps_from_disk(dentry, &caps);
1848 if (rc)
1849 return rc;
1850
1851 name->fcap.permitted = caps.permitted;
1852 name->fcap.inheritable = caps.inheritable;
1853 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1854 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1855
1856 return 0;
1857 }
1858
1859
1860 /* Copy inode data into an audit_names. */
1861 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1862 const struct inode *inode)
1863 {
1864 name->ino = inode->i_ino;
1865 name->dev = inode->i_sb->s_dev;
1866 name->mode = inode->i_mode;
1867 name->uid = inode->i_uid;
1868 name->gid = inode->i_gid;
1869 name->rdev = inode->i_rdev;
1870 security_inode_getsecid(inode, &name->osid);
1871 audit_copy_fcaps(name, dentry);
1872 }
1873
1874 /**
1875 * audit_inode - store the inode and device from a lookup
1876 * @name: name being audited
1877 * @dentry: dentry being audited
1878 *
1879 * Called from fs/namei.c:path_lookup().
1880 */
1881 void __audit_inode(const char *name, const struct dentry *dentry)
1882 {
1883 int idx;
1884 struct audit_context *context = current->audit_context;
1885 const struct inode *inode = dentry->d_inode;
1886
1887 if (!context->in_syscall)
1888 return;
1889 if (context->name_count
1890 && context->names[context->name_count-1].name
1891 && context->names[context->name_count-1].name == name)
1892 idx = context->name_count - 1;
1893 else if (context->name_count > 1
1894 && context->names[context->name_count-2].name
1895 && context->names[context->name_count-2].name == name)
1896 idx = context->name_count - 2;
1897 else {
1898 /* FIXME: how much do we care about inodes that have no
1899 * associated name? */
1900 if (audit_inc_name_count(context, inode))
1901 return;
1902 idx = context->name_count - 1;
1903 context->names[idx].name = NULL;
1904 }
1905 handle_path(dentry);
1906 audit_copy_inode(&context->names[idx], dentry, inode);
1907 }
1908
1909 /**
1910 * audit_inode_child - collect inode info for created/removed objects
1911 * @dname: inode's dentry name
1912 * @dentry: dentry being audited
1913 * @parent: inode of dentry parent
1914 *
1915 * For syscalls that create or remove filesystem objects, audit_inode
1916 * can only collect information for the filesystem object's parent.
1917 * This call updates the audit context with the child's information.
1918 * Syscalls that create a new filesystem object must be hooked after
1919 * the object is created. Syscalls that remove a filesystem object
1920 * must be hooked prior, in order to capture the target inode during
1921 * unsuccessful attempts.
1922 */
1923 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1924 const struct inode *parent)
1925 {
1926 int idx;
1927 struct audit_context *context = current->audit_context;
1928 const char *found_parent = NULL, *found_child = NULL;
1929 const struct inode *inode = dentry->d_inode;
1930 int dirlen = 0;
1931
1932 if (!context->in_syscall)
1933 return;
1934
1935 if (inode)
1936 handle_one(inode);
1937 /* determine matching parent */
1938 if (!dname)
1939 goto add_names;
1940
1941 /* parent is more likely, look for it first */
1942 for (idx = 0; idx < context->name_count; idx++) {
1943 struct audit_names *n = &context->names[idx];
1944
1945 if (!n->name)
1946 continue;
1947
1948 if (n->ino == parent->i_ino &&
1949 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1950 n->name_len = dirlen; /* update parent data in place */
1951 found_parent = n->name;
1952 goto add_names;
1953 }
1954 }
1955
1956 /* no matching parent, look for matching child */
1957 for (idx = 0; idx < context->name_count; idx++) {
1958 struct audit_names *n = &context->names[idx];
1959
1960 if (!n->name)
1961 continue;
1962
1963 /* strcmp() is the more likely scenario */
1964 if (!strcmp(dname, n->name) ||
1965 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1966 if (inode)
1967 audit_copy_inode(n, NULL, inode);
1968 else
1969 n->ino = (unsigned long)-1;
1970 found_child = n->name;
1971 goto add_names;
1972 }
1973 }
1974
1975 add_names:
1976 if (!found_parent) {
1977 if (audit_inc_name_count(context, parent))
1978 return;
1979 idx = context->name_count - 1;
1980 context->names[idx].name = NULL;
1981 audit_copy_inode(&context->names[idx], NULL, parent);
1982 }
1983
1984 if (!found_child) {
1985 if (audit_inc_name_count(context, inode))
1986 return;
1987 idx = context->name_count - 1;
1988
1989 /* Re-use the name belonging to the slot for a matching parent
1990 * directory. All names for this context are relinquished in
1991 * audit_free_names() */
1992 if (found_parent) {
1993 context->names[idx].name = found_parent;
1994 context->names[idx].name_len = AUDIT_NAME_FULL;
1995 /* don't call __putname() */
1996 context->names[idx].name_put = 0;
1997 } else {
1998 context->names[idx].name = NULL;
1999 }
2000
2001 if (inode)
2002 audit_copy_inode(&context->names[idx], NULL, inode);
2003 else
2004 context->names[idx].ino = (unsigned long)-1;
2005 }
2006 }
2007 EXPORT_SYMBOL_GPL(__audit_inode_child);
2008
2009 /**
2010 * auditsc_get_stamp - get local copies of audit_context values
2011 * @ctx: audit_context for the task
2012 * @t: timespec to store time recorded in the audit_context
2013 * @serial: serial value that is recorded in the audit_context
2014 *
2015 * Also sets the context as auditable.
2016 */
2017 void auditsc_get_stamp(struct audit_context *ctx,
2018 struct timespec *t, unsigned int *serial)
2019 {
2020 if (!ctx->serial)
2021 ctx->serial = audit_serial();
2022 t->tv_sec = ctx->ctime.tv_sec;
2023 t->tv_nsec = ctx->ctime.tv_nsec;
2024 *serial = ctx->serial;
2025 ctx->auditable = 1;
2026 }
2027
2028 /* global counter which is incremented every time something logs in */
2029 static atomic_t session_id = ATOMIC_INIT(0);
2030
2031 /**
2032 * audit_set_loginuid - set a task's audit_context loginuid
2033 * @task: task whose audit context is being modified
2034 * @loginuid: loginuid value
2035 *
2036 * Returns 0.
2037 *
2038 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2039 */
2040 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2041 {
2042 unsigned int sessionid = atomic_inc_return(&session_id);
2043 struct audit_context *context = task->audit_context;
2044
2045 if (context && context->in_syscall) {
2046 struct audit_buffer *ab;
2047
2048 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2049 if (ab) {
2050 audit_log_format(ab, "login pid=%d uid=%u "
2051 "old auid=%u new auid=%u"
2052 " old ses=%u new ses=%u",
2053 task->pid, task->uid,
2054 task->loginuid, loginuid,
2055 task->sessionid, sessionid);
2056 audit_log_end(ab);
2057 }
2058 }
2059 task->sessionid = sessionid;
2060 task->loginuid = loginuid;
2061 return 0;
2062 }
2063
2064 /**
2065 * __audit_mq_open - record audit data for a POSIX MQ open
2066 * @oflag: open flag
2067 * @mode: mode bits
2068 * @u_attr: queue attributes
2069 *
2070 * Returns 0 for success or NULL context or < 0 on error.
2071 */
2072 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2073 {
2074 struct audit_aux_data_mq_open *ax;
2075 struct audit_context *context = current->audit_context;
2076
2077 if (!audit_enabled)
2078 return 0;
2079
2080 if (likely(!context))
2081 return 0;
2082
2083 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2084 if (!ax)
2085 return -ENOMEM;
2086
2087 if (u_attr != NULL) {
2088 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2089 kfree(ax);
2090 return -EFAULT;
2091 }
2092 } else
2093 memset(&ax->attr, 0, sizeof(ax->attr));
2094
2095 ax->oflag = oflag;
2096 ax->mode = mode;
2097
2098 ax->d.type = AUDIT_MQ_OPEN;
2099 ax->d.next = context->aux;
2100 context->aux = (void *)ax;
2101 return 0;
2102 }
2103
2104 /**
2105 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2106 * @mqdes: MQ descriptor
2107 * @msg_len: Message length
2108 * @msg_prio: Message priority
2109 * @u_abs_timeout: Message timeout in absolute time
2110 *
2111 * Returns 0 for success or NULL context or < 0 on error.
2112 */
2113 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2114 const struct timespec __user *u_abs_timeout)
2115 {
2116 struct audit_aux_data_mq_sendrecv *ax;
2117 struct audit_context *context = current->audit_context;
2118
2119 if (!audit_enabled)
2120 return 0;
2121
2122 if (likely(!context))
2123 return 0;
2124
2125 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2126 if (!ax)
2127 return -ENOMEM;
2128
2129 if (u_abs_timeout != NULL) {
2130 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2131 kfree(ax);
2132 return -EFAULT;
2133 }
2134 } else
2135 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2136
2137 ax->mqdes = mqdes;
2138 ax->msg_len = msg_len;
2139 ax->msg_prio = msg_prio;
2140
2141 ax->d.type = AUDIT_MQ_SENDRECV;
2142 ax->d.next = context->aux;
2143 context->aux = (void *)ax;
2144 return 0;
2145 }
2146
2147 /**
2148 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2149 * @mqdes: MQ descriptor
2150 * @msg_len: Message length
2151 * @u_msg_prio: Message priority
2152 * @u_abs_timeout: Message timeout in absolute time
2153 *
2154 * Returns 0 for success or NULL context or < 0 on error.
2155 */
2156 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2157 unsigned int __user *u_msg_prio,
2158 const struct timespec __user *u_abs_timeout)
2159 {
2160 struct audit_aux_data_mq_sendrecv *ax;
2161 struct audit_context *context = current->audit_context;
2162
2163 if (!audit_enabled)
2164 return 0;
2165
2166 if (likely(!context))
2167 return 0;
2168
2169 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2170 if (!ax)
2171 return -ENOMEM;
2172
2173 if (u_msg_prio != NULL) {
2174 if (get_user(ax->msg_prio, u_msg_prio)) {
2175 kfree(ax);
2176 return -EFAULT;
2177 }
2178 } else
2179 ax->msg_prio = 0;
2180
2181 if (u_abs_timeout != NULL) {
2182 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2183 kfree(ax);
2184 return -EFAULT;
2185 }
2186 } else
2187 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2188
2189 ax->mqdes = mqdes;
2190 ax->msg_len = msg_len;
2191
2192 ax->d.type = AUDIT_MQ_SENDRECV;
2193 ax->d.next = context->aux;
2194 context->aux = (void *)ax;
2195 return 0;
2196 }
2197
2198 /**
2199 * __audit_mq_notify - record audit data for a POSIX MQ notify
2200 * @mqdes: MQ descriptor
2201 * @u_notification: Notification event
2202 *
2203 * Returns 0 for success or NULL context or < 0 on error.
2204 */
2205
2206 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2207 {
2208 struct audit_aux_data_mq_notify *ax;
2209 struct audit_context *context = current->audit_context;
2210
2211 if (!audit_enabled)
2212 return 0;
2213
2214 if (likely(!context))
2215 return 0;
2216
2217 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2218 if (!ax)
2219 return -ENOMEM;
2220
2221 if (u_notification != NULL) {
2222 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2223 kfree(ax);
2224 return -EFAULT;
2225 }
2226 } else
2227 memset(&ax->notification, 0, sizeof(ax->notification));
2228
2229 ax->mqdes = mqdes;
2230
2231 ax->d.type = AUDIT_MQ_NOTIFY;
2232 ax->d.next = context->aux;
2233 context->aux = (void *)ax;
2234 return 0;
2235 }
2236
2237 /**
2238 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2239 * @mqdes: MQ descriptor
2240 * @mqstat: MQ flags
2241 *
2242 * Returns 0 for success or NULL context or < 0 on error.
2243 */
2244 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2245 {
2246 struct audit_aux_data_mq_getsetattr *ax;
2247 struct audit_context *context = current->audit_context;
2248
2249 if (!audit_enabled)
2250 return 0;
2251
2252 if (likely(!context))
2253 return 0;
2254
2255 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2256 if (!ax)
2257 return -ENOMEM;
2258
2259 ax->mqdes = mqdes;
2260 ax->mqstat = *mqstat;
2261
2262 ax->d.type = AUDIT_MQ_GETSETATTR;
2263 ax->d.next = context->aux;
2264 context->aux = (void *)ax;
2265 return 0;
2266 }
2267
2268 /**
2269 * audit_ipc_obj - record audit data for ipc object
2270 * @ipcp: ipc permissions
2271 *
2272 * Returns 0 for success or NULL context or < 0 on error.
2273 */
2274 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2275 {
2276 struct audit_aux_data_ipcctl *ax;
2277 struct audit_context *context = current->audit_context;
2278
2279 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2280 if (!ax)
2281 return -ENOMEM;
2282
2283 ax->uid = ipcp->uid;
2284 ax->gid = ipcp->gid;
2285 ax->mode = ipcp->mode;
2286 security_ipc_getsecid(ipcp, &ax->osid);
2287 ax->d.type = AUDIT_IPC;
2288 ax->d.next = context->aux;
2289 context->aux = (void *)ax;
2290 return 0;
2291 }
2292
2293 /**
2294 * audit_ipc_set_perm - record audit data for new ipc permissions
2295 * @qbytes: msgq bytes
2296 * @uid: msgq user id
2297 * @gid: msgq group id
2298 * @mode: msgq mode (permissions)
2299 *
2300 * Returns 0 for success or NULL context or < 0 on error.
2301 */
2302 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2303 {
2304 struct audit_aux_data_ipcctl *ax;
2305 struct audit_context *context = current->audit_context;
2306
2307 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2308 if (!ax)
2309 return -ENOMEM;
2310
2311 ax->qbytes = qbytes;
2312 ax->uid = uid;
2313 ax->gid = gid;
2314 ax->mode = mode;
2315
2316 ax->d.type = AUDIT_IPC_SET_PERM;
2317 ax->d.next = context->aux;
2318 context->aux = (void *)ax;
2319 return 0;
2320 }
2321
2322 int audit_bprm(struct linux_binprm *bprm)
2323 {
2324 struct audit_aux_data_execve *ax;
2325 struct audit_context *context = current->audit_context;
2326
2327 if (likely(!audit_enabled || !context || context->dummy))
2328 return 0;
2329
2330 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2331 if (!ax)
2332 return -ENOMEM;
2333
2334 ax->argc = bprm->argc;
2335 ax->envc = bprm->envc;
2336 ax->mm = bprm->mm;
2337 ax->d.type = AUDIT_EXECVE;
2338 ax->d.next = context->aux;
2339 context->aux = (void *)ax;
2340 return 0;
2341 }
2342
2343
2344 /**
2345 * audit_socketcall - record audit data for sys_socketcall
2346 * @nargs: number of args
2347 * @args: args array
2348 *
2349 * Returns 0 for success or NULL context or < 0 on error.
2350 */
2351 int audit_socketcall(int nargs, unsigned long *args)
2352 {
2353 struct audit_aux_data_socketcall *ax;
2354 struct audit_context *context = current->audit_context;
2355
2356 if (likely(!context || context->dummy))
2357 return 0;
2358
2359 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2360 if (!ax)
2361 return -ENOMEM;
2362
2363 ax->nargs = nargs;
2364 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2365
2366 ax->d.type = AUDIT_SOCKETCALL;
2367 ax->d.next = context->aux;
2368 context->aux = (void *)ax;
2369 return 0;
2370 }
2371
2372 /**
2373 * __audit_fd_pair - record audit data for pipe and socketpair
2374 * @fd1: the first file descriptor
2375 * @fd2: the second file descriptor
2376 *
2377 * Returns 0 for success or NULL context or < 0 on error.
2378 */
2379 int __audit_fd_pair(int fd1, int fd2)
2380 {
2381 struct audit_context *context = current->audit_context;
2382 struct audit_aux_data_fd_pair *ax;
2383
2384 if (likely(!context)) {
2385 return 0;
2386 }
2387
2388 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2389 if (!ax) {
2390 return -ENOMEM;
2391 }
2392
2393 ax->fd[0] = fd1;
2394 ax->fd[1] = fd2;
2395
2396 ax->d.type = AUDIT_FD_PAIR;
2397 ax->d.next = context->aux;
2398 context->aux = (void *)ax;
2399 return 0;
2400 }
2401
2402 /**
2403 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2404 * @len: data length in user space
2405 * @a: data address in kernel space
2406 *
2407 * Returns 0 for success or NULL context or < 0 on error.
2408 */
2409 int audit_sockaddr(int len, void *a)
2410 {
2411 struct audit_aux_data_sockaddr *ax;
2412 struct audit_context *context = current->audit_context;
2413
2414 if (likely(!context || context->dummy))
2415 return 0;
2416
2417 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2418 if (!ax)
2419 return -ENOMEM;
2420
2421 ax->len = len;
2422 memcpy(ax->a, a, len);
2423
2424 ax->d.type = AUDIT_SOCKADDR;
2425 ax->d.next = context->aux;
2426 context->aux = (void *)ax;
2427 return 0;
2428 }
2429
2430 void __audit_ptrace(struct task_struct *t)
2431 {
2432 struct audit_context *context = current->audit_context;
2433
2434 context->target_pid = t->pid;
2435 context->target_auid = audit_get_loginuid(t);
2436 context->target_uid = t->uid;
2437 context->target_sessionid = audit_get_sessionid(t);
2438 security_task_getsecid(t, &context->target_sid);
2439 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2440 }
2441
2442 /**
2443 * audit_signal_info - record signal info for shutting down audit subsystem
2444 * @sig: signal value
2445 * @t: task being signaled
2446 *
2447 * If the audit subsystem is being terminated, record the task (pid)
2448 * and uid that is doing that.
2449 */
2450 int __audit_signal_info(int sig, struct task_struct *t)
2451 {
2452 struct audit_aux_data_pids *axp;
2453 struct task_struct *tsk = current;
2454 struct audit_context *ctx = tsk->audit_context;
2455
2456 if (audit_pid && t->tgid == audit_pid) {
2457 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2458 audit_sig_pid = tsk->pid;
2459 if (tsk->loginuid != -1)
2460 audit_sig_uid = tsk->loginuid;
2461 else
2462 audit_sig_uid = tsk->uid;
2463 security_task_getsecid(tsk, &audit_sig_sid);
2464 }
2465 if (!audit_signals || audit_dummy_context())
2466 return 0;
2467 }
2468
2469 /* optimize the common case by putting first signal recipient directly
2470 * in audit_context */
2471 if (!ctx->target_pid) {
2472 ctx->target_pid = t->tgid;
2473 ctx->target_auid = audit_get_loginuid(t);
2474 ctx->target_uid = t->uid;
2475 ctx->target_sessionid = audit_get_sessionid(t);
2476 security_task_getsecid(t, &ctx->target_sid);
2477 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2478 return 0;
2479 }
2480
2481 axp = (void *)ctx->aux_pids;
2482 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2483 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2484 if (!axp)
2485 return -ENOMEM;
2486
2487 axp->d.type = AUDIT_OBJ_PID;
2488 axp->d.next = ctx->aux_pids;
2489 ctx->aux_pids = (void *)axp;
2490 }
2491 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2492
2493 axp->target_pid[axp->pid_count] = t->tgid;
2494 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2495 axp->target_uid[axp->pid_count] = t->uid;
2496 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2497 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2498 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2499 axp->pid_count++;
2500
2501 return 0;
2502 }
2503
2504 /**
2505 * audit_core_dumps - record information about processes that end abnormally
2506 * @signr: signal value
2507 *
2508 * If a process ends with a core dump, something fishy is going on and we
2509 * should record the event for investigation.
2510 */
2511 void audit_core_dumps(long signr)
2512 {
2513 struct audit_buffer *ab;
2514 u32 sid;
2515 uid_t auid = audit_get_loginuid(current);
2516 unsigned int sessionid = audit_get_sessionid(current);
2517
2518 if (!audit_enabled)
2519 return;
2520
2521 if (signr == SIGQUIT) /* don't care for those */
2522 return;
2523
2524 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2525 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526 auid, current->uid, current->gid, sessionid);
2527 security_task_getsecid(current, &sid);
2528 if (sid) {
2529 char *ctx = NULL;
2530 u32 len;
2531
2532 if (security_secid_to_secctx(sid, &ctx, &len))
2533 audit_log_format(ab, " ssid=%u", sid);
2534 else {
2535 audit_log_format(ab, " subj=%s", ctx);
2536 security_release_secctx(ctx, len);
2537 }
2538 }
2539 audit_log_format(ab, " pid=%d comm=", current->pid);
2540 audit_log_untrustedstring(ab, current->comm);
2541 audit_log_format(ab, " sig=%ld", signr);
2542 audit_log_end(ab);
2543 }