]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/auditsc.c
Merge tag 'i3c/for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux
[mirror_ubuntu-hirsute-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79
80 #include "audit.h"
81
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93
94 /* number of audit rules */
95 int audit_n_rules;
96
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99
100 struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103 };
104
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
107
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117 };
118
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125 };
126
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130 };
131
132 struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
134 const char *s;
135 };
136
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
158 };
159
160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 unsigned n;
163 if (unlikely(!ctx))
164 return 0;
165 n = ctx->major;
166
167 switch (audit_classify_syscall(ctx->arch, n)) {
168 case 0: /* native */
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE, n))
171 return 1;
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ, n))
174 return 1;
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR, n))
177 return 1;
178 return 0;
179 case 1: /* 32bit on biarch */
180 if ((mask & AUDIT_PERM_WRITE) &&
181 audit_match_class(AUDIT_CLASS_WRITE_32, n))
182 return 1;
183 if ((mask & AUDIT_PERM_READ) &&
184 audit_match_class(AUDIT_CLASS_READ_32, n))
185 return 1;
186 if ((mask & AUDIT_PERM_ATTR) &&
187 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
188 return 1;
189 return 0;
190 case 2: /* open */
191 return mask & ACC_MODE(ctx->argv[1]);
192 case 3: /* openat */
193 return mask & ACC_MODE(ctx->argv[2]);
194 case 4: /* socketcall */
195 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
196 case 5: /* execve */
197 return mask & AUDIT_PERM_EXEC;
198 default:
199 return 0;
200 }
201 }
202
203 static int audit_match_filetype(struct audit_context *ctx, int val)
204 {
205 struct audit_names *n;
206 umode_t mode = (umode_t)val;
207
208 if (unlikely(!ctx))
209 return 0;
210
211 list_for_each_entry(n, &ctx->names_list, list) {
212 if ((n->ino != AUDIT_INO_UNSET) &&
213 ((n->mode & S_IFMT) == mode))
214 return 1;
215 }
216
217 return 0;
218 }
219
220 /*
221 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
222 * ->first_trees points to its beginning, ->trees - to the current end of data.
223 * ->tree_count is the number of free entries in array pointed to by ->trees.
224 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
225 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
226 * it's going to remain 1-element for almost any setup) until we free context itself.
227 * References in it _are_ dropped - at the same time we free/drop aux stuff.
228 */
229
230 static void audit_set_auditable(struct audit_context *ctx)
231 {
232 if (!ctx->prio) {
233 ctx->prio = 1;
234 ctx->current_state = AUDIT_RECORD_CONTEXT;
235 }
236 }
237
238 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
239 {
240 struct audit_tree_refs *p = ctx->trees;
241 int left = ctx->tree_count;
242 if (likely(left)) {
243 p->c[--left] = chunk;
244 ctx->tree_count = left;
245 return 1;
246 }
247 if (!p)
248 return 0;
249 p = p->next;
250 if (p) {
251 p->c[30] = chunk;
252 ctx->trees = p;
253 ctx->tree_count = 30;
254 return 1;
255 }
256 return 0;
257 }
258
259 static int grow_tree_refs(struct audit_context *ctx)
260 {
261 struct audit_tree_refs *p = ctx->trees;
262 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
263 if (!ctx->trees) {
264 ctx->trees = p;
265 return 0;
266 }
267 if (p)
268 p->next = ctx->trees;
269 else
270 ctx->first_trees = ctx->trees;
271 ctx->tree_count = 31;
272 return 1;
273 }
274
275 static void unroll_tree_refs(struct audit_context *ctx,
276 struct audit_tree_refs *p, int count)
277 {
278 struct audit_tree_refs *q;
279 int n;
280 if (!p) {
281 /* we started with empty chain */
282 p = ctx->first_trees;
283 count = 31;
284 /* if the very first allocation has failed, nothing to do */
285 if (!p)
286 return;
287 }
288 n = count;
289 for (q = p; q != ctx->trees; q = q->next, n = 31) {
290 while (n--) {
291 audit_put_chunk(q->c[n]);
292 q->c[n] = NULL;
293 }
294 }
295 while (n-- > ctx->tree_count) {
296 audit_put_chunk(q->c[n]);
297 q->c[n] = NULL;
298 }
299 ctx->trees = p;
300 ctx->tree_count = count;
301 }
302
303 static void free_tree_refs(struct audit_context *ctx)
304 {
305 struct audit_tree_refs *p, *q;
306 for (p = ctx->first_trees; p; p = q) {
307 q = p->next;
308 kfree(p);
309 }
310 }
311
312 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
313 {
314 struct audit_tree_refs *p;
315 int n;
316 if (!tree)
317 return 0;
318 /* full ones */
319 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
320 for (n = 0; n < 31; n++)
321 if (audit_tree_match(p->c[n], tree))
322 return 1;
323 }
324 /* partial */
325 if (p) {
326 for (n = ctx->tree_count; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
328 return 1;
329 }
330 return 0;
331 }
332
333 static int audit_compare_uid(kuid_t uid,
334 struct audit_names *name,
335 struct audit_field *f,
336 struct audit_context *ctx)
337 {
338 struct audit_names *n;
339 int rc;
340
341 if (name) {
342 rc = audit_uid_comparator(uid, f->op, name->uid);
343 if (rc)
344 return rc;
345 }
346
347 if (ctx) {
348 list_for_each_entry(n, &ctx->names_list, list) {
349 rc = audit_uid_comparator(uid, f->op, n->uid);
350 if (rc)
351 return rc;
352 }
353 }
354 return 0;
355 }
356
357 static int audit_compare_gid(kgid_t gid,
358 struct audit_names *name,
359 struct audit_field *f,
360 struct audit_context *ctx)
361 {
362 struct audit_names *n;
363 int rc;
364
365 if (name) {
366 rc = audit_gid_comparator(gid, f->op, name->gid);
367 if (rc)
368 return rc;
369 }
370
371 if (ctx) {
372 list_for_each_entry(n, &ctx->names_list, list) {
373 rc = audit_gid_comparator(gid, f->op, n->gid);
374 if (rc)
375 return rc;
376 }
377 }
378 return 0;
379 }
380
381 static int audit_field_compare(struct task_struct *tsk,
382 const struct cred *cred,
383 struct audit_field *f,
384 struct audit_context *ctx,
385 struct audit_names *name)
386 {
387 switch (f->val) {
388 /* process to file object comparisons */
389 case AUDIT_COMPARE_UID_TO_OBJ_UID:
390 return audit_compare_uid(cred->uid, name, f, ctx);
391 case AUDIT_COMPARE_GID_TO_OBJ_GID:
392 return audit_compare_gid(cred->gid, name, f, ctx);
393 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
394 return audit_compare_uid(cred->euid, name, f, ctx);
395 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
396 return audit_compare_gid(cred->egid, name, f, ctx);
397 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
398 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
399 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->suid, name, f, ctx);
401 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->sgid, name, f, ctx);
403 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
404 return audit_compare_uid(cred->fsuid, name, f, ctx);
405 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
406 return audit_compare_gid(cred->fsgid, name, f, ctx);
407 /* uid comparisons */
408 case AUDIT_COMPARE_UID_TO_AUID:
409 return audit_uid_comparator(cred->uid, f->op,
410 audit_get_loginuid(tsk));
411 case AUDIT_COMPARE_UID_TO_EUID:
412 return audit_uid_comparator(cred->uid, f->op, cred->euid);
413 case AUDIT_COMPARE_UID_TO_SUID:
414 return audit_uid_comparator(cred->uid, f->op, cred->suid);
415 case AUDIT_COMPARE_UID_TO_FSUID:
416 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
417 /* auid comparisons */
418 case AUDIT_COMPARE_AUID_TO_EUID:
419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
420 cred->euid);
421 case AUDIT_COMPARE_AUID_TO_SUID:
422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
423 cred->suid);
424 case AUDIT_COMPARE_AUID_TO_FSUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 cred->fsuid);
427 /* euid comparisons */
428 case AUDIT_COMPARE_EUID_TO_SUID:
429 return audit_uid_comparator(cred->euid, f->op, cred->suid);
430 case AUDIT_COMPARE_EUID_TO_FSUID:
431 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
432 /* suid comparisons */
433 case AUDIT_COMPARE_SUID_TO_FSUID:
434 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
435 /* gid comparisons */
436 case AUDIT_COMPARE_GID_TO_EGID:
437 return audit_gid_comparator(cred->gid, f->op, cred->egid);
438 case AUDIT_COMPARE_GID_TO_SGID:
439 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
440 case AUDIT_COMPARE_GID_TO_FSGID:
441 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
442 /* egid comparisons */
443 case AUDIT_COMPARE_EGID_TO_SGID:
444 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
445 case AUDIT_COMPARE_EGID_TO_FSGID:
446 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
447 /* sgid comparison */
448 case AUDIT_COMPARE_SGID_TO_FSGID:
449 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
450 default:
451 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
452 return 0;
453 }
454 return 0;
455 }
456
457 /* Determine if any context name data matches a rule's watch data */
458 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
459 * otherwise.
460 *
461 * If task_creation is true, this is an explicit indication that we are
462 * filtering a task rule at task creation time. This and tsk == current are
463 * the only situations where tsk->cred may be accessed without an rcu read lock.
464 */
465 static int audit_filter_rules(struct task_struct *tsk,
466 struct audit_krule *rule,
467 struct audit_context *ctx,
468 struct audit_names *name,
469 enum audit_state *state,
470 bool task_creation)
471 {
472 const struct cred *cred;
473 int i, need_sid = 1;
474 u32 sid;
475 unsigned int sessionid;
476
477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
478
479 for (i = 0; i < rule->field_count; i++) {
480 struct audit_field *f = &rule->fields[i];
481 struct audit_names *n;
482 int result = 0;
483 pid_t pid;
484
485 switch (f->type) {
486 case AUDIT_PID:
487 pid = task_tgid_nr(tsk);
488 result = audit_comparator(pid, f->op, f->val);
489 break;
490 case AUDIT_PPID:
491 if (ctx) {
492 if (!ctx->ppid)
493 ctx->ppid = task_ppid_nr(tsk);
494 result = audit_comparator(ctx->ppid, f->op, f->val);
495 }
496 break;
497 case AUDIT_EXE:
498 result = audit_exe_compare(tsk, rule->exe);
499 if (f->op == Audit_not_equal)
500 result = !result;
501 break;
502 case AUDIT_UID:
503 result = audit_uid_comparator(cred->uid, f->op, f->uid);
504 break;
505 case AUDIT_EUID:
506 result = audit_uid_comparator(cred->euid, f->op, f->uid);
507 break;
508 case AUDIT_SUID:
509 result = audit_uid_comparator(cred->suid, f->op, f->uid);
510 break;
511 case AUDIT_FSUID:
512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
513 break;
514 case AUDIT_GID:
515 result = audit_gid_comparator(cred->gid, f->op, f->gid);
516 if (f->op == Audit_equal) {
517 if (!result)
518 result = groups_search(cred->group_info, f->gid);
519 } else if (f->op == Audit_not_equal) {
520 if (result)
521 result = !groups_search(cred->group_info, f->gid);
522 }
523 break;
524 case AUDIT_EGID:
525 result = audit_gid_comparator(cred->egid, f->op, f->gid);
526 if (f->op == Audit_equal) {
527 if (!result)
528 result = groups_search(cred->group_info, f->gid);
529 } else if (f->op == Audit_not_equal) {
530 if (result)
531 result = !groups_search(cred->group_info, f->gid);
532 }
533 break;
534 case AUDIT_SGID:
535 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
536 break;
537 case AUDIT_FSGID:
538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
539 break;
540 case AUDIT_SESSIONID:
541 sessionid = audit_get_sessionid(tsk);
542 result = audit_comparator(sessionid, f->op, f->val);
543 break;
544 case AUDIT_PERS:
545 result = audit_comparator(tsk->personality, f->op, f->val);
546 break;
547 case AUDIT_ARCH:
548 if (ctx)
549 result = audit_comparator(ctx->arch, f->op, f->val);
550 break;
551
552 case AUDIT_EXIT:
553 if (ctx && ctx->return_valid != AUDITSC_INVALID)
554 result = audit_comparator(ctx->return_code, f->op, f->val);
555 break;
556 case AUDIT_SUCCESS:
557 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
558 if (f->val)
559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
560 else
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
562 }
563 break;
564 case AUDIT_DEVMAJOR:
565 if (name) {
566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
567 audit_comparator(MAJOR(name->rdev), f->op, f->val))
568 ++result;
569 } else if (ctx) {
570 list_for_each_entry(n, &ctx->names_list, list) {
571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_DEVMINOR:
580 if (name) {
581 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
582 audit_comparator(MINOR(name->rdev), f->op, f->val))
583 ++result;
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
587 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
588 ++result;
589 break;
590 }
591 }
592 }
593 break;
594 case AUDIT_INODE:
595 if (name)
596 result = audit_comparator(name->ino, f->op, f->val);
597 else if (ctx) {
598 list_for_each_entry(n, &ctx->names_list, list) {
599 if (audit_comparator(n->ino, f->op, f->val)) {
600 ++result;
601 break;
602 }
603 }
604 }
605 break;
606 case AUDIT_OBJ_UID:
607 if (name) {
608 result = audit_uid_comparator(name->uid, f->op, f->uid);
609 } else if (ctx) {
610 list_for_each_entry(n, &ctx->names_list, list) {
611 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
612 ++result;
613 break;
614 }
615 }
616 }
617 break;
618 case AUDIT_OBJ_GID:
619 if (name) {
620 result = audit_gid_comparator(name->gid, f->op, f->gid);
621 } else if (ctx) {
622 list_for_each_entry(n, &ctx->names_list, list) {
623 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
624 ++result;
625 break;
626 }
627 }
628 }
629 break;
630 case AUDIT_WATCH:
631 if (name) {
632 result = audit_watch_compare(rule->watch,
633 name->ino,
634 name->dev);
635 if (f->op == Audit_not_equal)
636 result = !result;
637 }
638 break;
639 case AUDIT_DIR:
640 if (ctx) {
641 result = match_tree_refs(ctx, rule->tree);
642 if (f->op == Audit_not_equal)
643 result = !result;
644 }
645 break;
646 case AUDIT_LOGINUID:
647 result = audit_uid_comparator(audit_get_loginuid(tsk),
648 f->op, f->uid);
649 break;
650 case AUDIT_LOGINUID_SET:
651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
652 break;
653 case AUDIT_SADDR_FAM:
654 if (ctx->sockaddr)
655 result = audit_comparator(ctx->sockaddr->ss_family,
656 f->op, f->val);
657 break;
658 case AUDIT_SUBJ_USER:
659 case AUDIT_SUBJ_ROLE:
660 case AUDIT_SUBJ_TYPE:
661 case AUDIT_SUBJ_SEN:
662 case AUDIT_SUBJ_CLR:
663 /* NOTE: this may return negative values indicating
664 a temporary error. We simply treat this as a
665 match for now to avoid losing information that
666 may be wanted. An error message will also be
667 logged upon error */
668 if (f->lsm_rule) {
669 if (need_sid) {
670 security_task_getsecid(tsk, &sid);
671 need_sid = 0;
672 }
673 result = security_audit_rule_match(sid, f->type,
674 f->op,
675 f->lsm_rule);
676 }
677 break;
678 case AUDIT_OBJ_USER:
679 case AUDIT_OBJ_ROLE:
680 case AUDIT_OBJ_TYPE:
681 case AUDIT_OBJ_LEV_LOW:
682 case AUDIT_OBJ_LEV_HIGH:
683 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
684 also applies here */
685 if (f->lsm_rule) {
686 /* Find files that match */
687 if (name) {
688 result = security_audit_rule_match(
689 name->osid,
690 f->type,
691 f->op,
692 f->lsm_rule);
693 } else if (ctx) {
694 list_for_each_entry(n, &ctx->names_list, list) {
695 if (security_audit_rule_match(
696 n->osid,
697 f->type,
698 f->op,
699 f->lsm_rule)) {
700 ++result;
701 break;
702 }
703 }
704 }
705 /* Find ipc objects that match */
706 if (!ctx || ctx->type != AUDIT_IPC)
707 break;
708 if (security_audit_rule_match(ctx->ipc.osid,
709 f->type, f->op,
710 f->lsm_rule))
711 ++result;
712 }
713 break;
714 case AUDIT_ARG0:
715 case AUDIT_ARG1:
716 case AUDIT_ARG2:
717 case AUDIT_ARG3:
718 if (ctx)
719 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
720 break;
721 case AUDIT_FILTERKEY:
722 /* ignore this field for filtering */
723 result = 1;
724 break;
725 case AUDIT_PERM:
726 result = audit_match_perm(ctx, f->val);
727 if (f->op == Audit_not_equal)
728 result = !result;
729 break;
730 case AUDIT_FILETYPE:
731 result = audit_match_filetype(ctx, f->val);
732 if (f->op == Audit_not_equal)
733 result = !result;
734 break;
735 case AUDIT_FIELD_COMPARE:
736 result = audit_field_compare(tsk, cred, f, ctx, name);
737 break;
738 }
739 if (!result)
740 return 0;
741 }
742
743 if (ctx) {
744 if (rule->prio <= ctx->prio)
745 return 0;
746 if (rule->filterkey) {
747 kfree(ctx->filterkey);
748 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
749 }
750 ctx->prio = rule->prio;
751 }
752 switch (rule->action) {
753 case AUDIT_NEVER:
754 *state = AUDIT_DISABLED;
755 break;
756 case AUDIT_ALWAYS:
757 *state = AUDIT_RECORD_CONTEXT;
758 break;
759 }
760 return 1;
761 }
762
763 /* At process creation time, we can determine if system-call auditing is
764 * completely disabled for this task. Since we only have the task
765 * structure at this point, we can only check uid and gid.
766 */
767 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
768 {
769 struct audit_entry *e;
770 enum audit_state state;
771
772 rcu_read_lock();
773 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
774 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
775 &state, true)) {
776 if (state == AUDIT_RECORD_CONTEXT)
777 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
778 rcu_read_unlock();
779 return state;
780 }
781 }
782 rcu_read_unlock();
783 return AUDIT_BUILD_CONTEXT;
784 }
785
786 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
787 {
788 int word, bit;
789
790 if (val > 0xffffffff)
791 return false;
792
793 word = AUDIT_WORD(val);
794 if (word >= AUDIT_BITMASK_SIZE)
795 return false;
796
797 bit = AUDIT_BIT(val);
798
799 return rule->mask[word] & bit;
800 }
801
802 /* At syscall entry and exit time, this filter is called if the
803 * audit_state is not low enough that auditing cannot take place, but is
804 * also not high enough that we already know we have to write an audit
805 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
806 */
807 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
808 struct audit_context *ctx,
809 struct list_head *list)
810 {
811 struct audit_entry *e;
812 enum audit_state state;
813
814 if (auditd_test_task(tsk))
815 return AUDIT_DISABLED;
816
817 rcu_read_lock();
818 list_for_each_entry_rcu(e, list, list) {
819 if (audit_in_mask(&e->rule, ctx->major) &&
820 audit_filter_rules(tsk, &e->rule, ctx, NULL,
821 &state, false)) {
822 rcu_read_unlock();
823 ctx->current_state = state;
824 return state;
825 }
826 }
827 rcu_read_unlock();
828 return AUDIT_BUILD_CONTEXT;
829 }
830
831 /*
832 * Given an audit_name check the inode hash table to see if they match.
833 * Called holding the rcu read lock to protect the use of audit_inode_hash
834 */
835 static int audit_filter_inode_name(struct task_struct *tsk,
836 struct audit_names *n,
837 struct audit_context *ctx) {
838 int h = audit_hash_ino((u32)n->ino);
839 struct list_head *list = &audit_inode_hash[h];
840 struct audit_entry *e;
841 enum audit_state state;
842
843 list_for_each_entry_rcu(e, list, list) {
844 if (audit_in_mask(&e->rule, ctx->major) &&
845 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
846 ctx->current_state = state;
847 return 1;
848 }
849 }
850 return 0;
851 }
852
853 /* At syscall exit time, this filter is called if any audit_names have been
854 * collected during syscall processing. We only check rules in sublists at hash
855 * buckets applicable to the inode numbers in audit_names.
856 * Regarding audit_state, same rules apply as for audit_filter_syscall().
857 */
858 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
859 {
860 struct audit_names *n;
861
862 if (auditd_test_task(tsk))
863 return;
864
865 rcu_read_lock();
866
867 list_for_each_entry(n, &ctx->names_list, list) {
868 if (audit_filter_inode_name(tsk, n, ctx))
869 break;
870 }
871 rcu_read_unlock();
872 }
873
874 static inline void audit_proctitle_free(struct audit_context *context)
875 {
876 kfree(context->proctitle.value);
877 context->proctitle.value = NULL;
878 context->proctitle.len = 0;
879 }
880
881 static inline void audit_free_module(struct audit_context *context)
882 {
883 if (context->type == AUDIT_KERN_MODULE) {
884 kfree(context->module.name);
885 context->module.name = NULL;
886 }
887 }
888 static inline void audit_free_names(struct audit_context *context)
889 {
890 struct audit_names *n, *next;
891
892 list_for_each_entry_safe(n, next, &context->names_list, list) {
893 list_del(&n->list);
894 if (n->name)
895 putname(n->name);
896 if (n->should_free)
897 kfree(n);
898 }
899 context->name_count = 0;
900 path_put(&context->pwd);
901 context->pwd.dentry = NULL;
902 context->pwd.mnt = NULL;
903 }
904
905 static inline void audit_free_aux(struct audit_context *context)
906 {
907 struct audit_aux_data *aux;
908
909 while ((aux = context->aux)) {
910 context->aux = aux->next;
911 kfree(aux);
912 }
913 while ((aux = context->aux_pids)) {
914 context->aux_pids = aux->next;
915 kfree(aux);
916 }
917 }
918
919 static inline struct audit_context *audit_alloc_context(enum audit_state state)
920 {
921 struct audit_context *context;
922
923 context = kzalloc(sizeof(*context), GFP_KERNEL);
924 if (!context)
925 return NULL;
926 context->state = state;
927 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
928 INIT_LIST_HEAD(&context->killed_trees);
929 INIT_LIST_HEAD(&context->names_list);
930 context->fds[0] = -1;
931 context->return_valid = AUDITSC_INVALID;
932 return context;
933 }
934
935 /**
936 * audit_alloc - allocate an audit context block for a task
937 * @tsk: task
938 *
939 * Filter on the task information and allocate a per-task audit context
940 * if necessary. Doing so turns on system call auditing for the
941 * specified task. This is called from copy_process, so no lock is
942 * needed.
943 */
944 int audit_alloc(struct task_struct *tsk)
945 {
946 struct audit_context *context;
947 enum audit_state state;
948 char *key = NULL;
949
950 if (likely(!audit_ever_enabled))
951 return 0; /* Return if not auditing. */
952
953 state = audit_filter_task(tsk, &key);
954 if (state == AUDIT_DISABLED) {
955 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
956 return 0;
957 }
958
959 if (!(context = audit_alloc_context(state))) {
960 kfree(key);
961 audit_log_lost("out of memory in audit_alloc");
962 return -ENOMEM;
963 }
964 context->filterkey = key;
965
966 audit_set_context(tsk, context);
967 set_task_syscall_work(tsk, SYSCALL_AUDIT);
968 return 0;
969 }
970
971 static inline void audit_free_context(struct audit_context *context)
972 {
973 audit_free_module(context);
974 audit_free_names(context);
975 unroll_tree_refs(context, NULL, 0);
976 free_tree_refs(context);
977 audit_free_aux(context);
978 kfree(context->filterkey);
979 kfree(context->sockaddr);
980 audit_proctitle_free(context);
981 kfree(context);
982 }
983
984 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
985 kuid_t auid, kuid_t uid, unsigned int sessionid,
986 u32 sid, char *comm)
987 {
988 struct audit_buffer *ab;
989 char *ctx = NULL;
990 u32 len;
991 int rc = 0;
992
993 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
994 if (!ab)
995 return rc;
996
997 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
998 from_kuid(&init_user_ns, auid),
999 from_kuid(&init_user_ns, uid), sessionid);
1000 if (sid) {
1001 if (security_secid_to_secctx(sid, &ctx, &len)) {
1002 audit_log_format(ab, " obj=(none)");
1003 rc = 1;
1004 } else {
1005 audit_log_format(ab, " obj=%s", ctx);
1006 security_release_secctx(ctx, len);
1007 }
1008 }
1009 audit_log_format(ab, " ocomm=");
1010 audit_log_untrustedstring(ab, comm);
1011 audit_log_end(ab);
1012
1013 return rc;
1014 }
1015
1016 static void audit_log_execve_info(struct audit_context *context,
1017 struct audit_buffer **ab)
1018 {
1019 long len_max;
1020 long len_rem;
1021 long len_full;
1022 long len_buf;
1023 long len_abuf = 0;
1024 long len_tmp;
1025 bool require_data;
1026 bool encode;
1027 unsigned int iter;
1028 unsigned int arg;
1029 char *buf_head;
1030 char *buf;
1031 const char __user *p = (const char __user *)current->mm->arg_start;
1032
1033 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1034 * data we put in the audit record for this argument (see the
1035 * code below) ... at this point in time 96 is plenty */
1036 char abuf[96];
1037
1038 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039 * current value of 7500 is not as important as the fact that it
1040 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1041 * room if we go over a little bit in the logging below */
1042 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043 len_max = MAX_EXECVE_AUDIT_LEN;
1044
1045 /* scratch buffer to hold the userspace args */
1046 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047 if (!buf_head) {
1048 audit_panic("out of memory for argv string");
1049 return;
1050 }
1051 buf = buf_head;
1052
1053 audit_log_format(*ab, "argc=%d", context->execve.argc);
1054
1055 len_rem = len_max;
1056 len_buf = 0;
1057 len_full = 0;
1058 require_data = true;
1059 encode = false;
1060 iter = 0;
1061 arg = 0;
1062 do {
1063 /* NOTE: we don't ever want to trust this value for anything
1064 * serious, but the audit record format insists we
1065 * provide an argument length for really long arguments,
1066 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067 * to use strncpy_from_user() to obtain this value for
1068 * recording in the log, although we don't use it
1069 * anywhere here to avoid a double-fetch problem */
1070 if (len_full == 0)
1071 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072
1073 /* read more data from userspace */
1074 if (require_data) {
1075 /* can we make more room in the buffer? */
1076 if (buf != buf_head) {
1077 memmove(buf_head, buf, len_buf);
1078 buf = buf_head;
1079 }
1080
1081 /* fetch as much as we can of the argument */
1082 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083 len_max - len_buf);
1084 if (len_tmp == -EFAULT) {
1085 /* unable to copy from userspace */
1086 send_sig(SIGKILL, current, 0);
1087 goto out;
1088 } else if (len_tmp == (len_max - len_buf)) {
1089 /* buffer is not large enough */
1090 require_data = true;
1091 /* NOTE: if we are going to span multiple
1092 * buffers force the encoding so we stand
1093 * a chance at a sane len_full value and
1094 * consistent record encoding */
1095 encode = true;
1096 len_full = len_full * 2;
1097 p += len_tmp;
1098 } else {
1099 require_data = false;
1100 if (!encode)
1101 encode = audit_string_contains_control(
1102 buf, len_tmp);
1103 /* try to use a trusted value for len_full */
1104 if (len_full < len_max)
1105 len_full = (encode ?
1106 len_tmp * 2 : len_tmp);
1107 p += len_tmp + 1;
1108 }
1109 len_buf += len_tmp;
1110 buf_head[len_buf] = '\0';
1111
1112 /* length of the buffer in the audit record? */
1113 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114 }
1115
1116 /* write as much as we can to the audit log */
1117 if (len_buf >= 0) {
1118 /* NOTE: some magic numbers here - basically if we
1119 * can't fit a reasonable amount of data into the
1120 * existing audit buffer, flush it and start with
1121 * a new buffer */
1122 if ((sizeof(abuf) + 8) > len_rem) {
1123 len_rem = len_max;
1124 audit_log_end(*ab);
1125 *ab = audit_log_start(context,
1126 GFP_KERNEL, AUDIT_EXECVE);
1127 if (!*ab)
1128 goto out;
1129 }
1130
1131 /* create the non-arg portion of the arg record */
1132 len_tmp = 0;
1133 if (require_data || (iter > 0) ||
1134 ((len_abuf + sizeof(abuf)) > len_rem)) {
1135 if (iter == 0) {
1136 len_tmp += snprintf(&abuf[len_tmp],
1137 sizeof(abuf) - len_tmp,
1138 " a%d_len=%lu",
1139 arg, len_full);
1140 }
1141 len_tmp += snprintf(&abuf[len_tmp],
1142 sizeof(abuf) - len_tmp,
1143 " a%d[%d]=", arg, iter++);
1144 } else
1145 len_tmp += snprintf(&abuf[len_tmp],
1146 sizeof(abuf) - len_tmp,
1147 " a%d=", arg);
1148 WARN_ON(len_tmp >= sizeof(abuf));
1149 abuf[sizeof(abuf) - 1] = '\0';
1150
1151 /* log the arg in the audit record */
1152 audit_log_format(*ab, "%s", abuf);
1153 len_rem -= len_tmp;
1154 len_tmp = len_buf;
1155 if (encode) {
1156 if (len_abuf > len_rem)
1157 len_tmp = len_rem / 2; /* encoding */
1158 audit_log_n_hex(*ab, buf, len_tmp);
1159 len_rem -= len_tmp * 2;
1160 len_abuf -= len_tmp * 2;
1161 } else {
1162 if (len_abuf > len_rem)
1163 len_tmp = len_rem - 2; /* quotes */
1164 audit_log_n_string(*ab, buf, len_tmp);
1165 len_rem -= len_tmp + 2;
1166 /* don't subtract the "2" because we still need
1167 * to add quotes to the remaining string */
1168 len_abuf -= len_tmp;
1169 }
1170 len_buf -= len_tmp;
1171 buf += len_tmp;
1172 }
1173
1174 /* ready to move to the next argument? */
1175 if ((len_buf == 0) && !require_data) {
1176 arg++;
1177 iter = 0;
1178 len_full = 0;
1179 require_data = true;
1180 encode = false;
1181 }
1182 } while (arg < context->execve.argc);
1183
1184 /* NOTE: the caller handles the final audit_log_end() call */
1185
1186 out:
1187 kfree(buf_head);
1188 }
1189
1190 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191 kernel_cap_t *cap)
1192 {
1193 int i;
1194
1195 if (cap_isclear(*cap)) {
1196 audit_log_format(ab, " %s=0", prefix);
1197 return;
1198 }
1199 audit_log_format(ab, " %s=", prefix);
1200 CAP_FOR_EACH_U32(i)
1201 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202 }
1203
1204 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205 {
1206 if (name->fcap_ver == -1) {
1207 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208 return;
1209 }
1210 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213 name->fcap.fE, name->fcap_ver,
1214 from_kuid(&init_user_ns, name->fcap.rootid));
1215 }
1216
1217 static void show_special(struct audit_context *context, int *call_panic)
1218 {
1219 struct audit_buffer *ab;
1220 int i;
1221
1222 ab = audit_log_start(context, GFP_KERNEL, context->type);
1223 if (!ab)
1224 return;
1225
1226 switch (context->type) {
1227 case AUDIT_SOCKETCALL: {
1228 int nargs = context->socketcall.nargs;
1229 audit_log_format(ab, "nargs=%d", nargs);
1230 for (i = 0; i < nargs; i++)
1231 audit_log_format(ab, " a%d=%lx", i,
1232 context->socketcall.args[i]);
1233 break; }
1234 case AUDIT_IPC: {
1235 u32 osid = context->ipc.osid;
1236
1237 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238 from_kuid(&init_user_ns, context->ipc.uid),
1239 from_kgid(&init_user_ns, context->ipc.gid),
1240 context->ipc.mode);
1241 if (osid) {
1242 char *ctx = NULL;
1243 u32 len;
1244 if (security_secid_to_secctx(osid, &ctx, &len)) {
1245 audit_log_format(ab, " osid=%u", osid);
1246 *call_panic = 1;
1247 } else {
1248 audit_log_format(ab, " obj=%s", ctx);
1249 security_release_secctx(ctx, len);
1250 }
1251 }
1252 if (context->ipc.has_perm) {
1253 audit_log_end(ab);
1254 ab = audit_log_start(context, GFP_KERNEL,
1255 AUDIT_IPC_SET_PERM);
1256 if (unlikely(!ab))
1257 return;
1258 audit_log_format(ab,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260 context->ipc.qbytes,
1261 context->ipc.perm_uid,
1262 context->ipc.perm_gid,
1263 context->ipc.perm_mode);
1264 }
1265 break; }
1266 case AUDIT_MQ_OPEN:
1267 audit_log_format(ab,
1268 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269 "mq_msgsize=%ld mq_curmsgs=%ld",
1270 context->mq_open.oflag, context->mq_open.mode,
1271 context->mq_open.attr.mq_flags,
1272 context->mq_open.attr.mq_maxmsg,
1273 context->mq_open.attr.mq_msgsize,
1274 context->mq_open.attr.mq_curmsgs);
1275 break;
1276 case AUDIT_MQ_SENDRECV:
1277 audit_log_format(ab,
1278 "mqdes=%d msg_len=%zd msg_prio=%u "
1279 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280 context->mq_sendrecv.mqdes,
1281 context->mq_sendrecv.msg_len,
1282 context->mq_sendrecv.msg_prio,
1283 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1284 context->mq_sendrecv.abs_timeout.tv_nsec);
1285 break;
1286 case AUDIT_MQ_NOTIFY:
1287 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1288 context->mq_notify.mqdes,
1289 context->mq_notify.sigev_signo);
1290 break;
1291 case AUDIT_MQ_GETSETATTR: {
1292 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1293 audit_log_format(ab,
1294 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295 "mq_curmsgs=%ld ",
1296 context->mq_getsetattr.mqdes,
1297 attr->mq_flags, attr->mq_maxmsg,
1298 attr->mq_msgsize, attr->mq_curmsgs);
1299 break; }
1300 case AUDIT_CAPSET:
1301 audit_log_format(ab, "pid=%d", context->capset.pid);
1302 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1303 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1304 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1305 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1306 break;
1307 case AUDIT_MMAP:
1308 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1309 context->mmap.flags);
1310 break;
1311 case AUDIT_EXECVE:
1312 audit_log_execve_info(context, &ab);
1313 break;
1314 case AUDIT_KERN_MODULE:
1315 audit_log_format(ab, "name=");
1316 if (context->module.name) {
1317 audit_log_untrustedstring(ab, context->module.name);
1318 } else
1319 audit_log_format(ab, "(null)");
1320
1321 break;
1322 }
1323 audit_log_end(ab);
1324 }
1325
1326 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327 {
1328 char *end = proctitle + len - 1;
1329 while (end > proctitle && !isprint(*end))
1330 end--;
1331
1332 /* catch the case where proctitle is only 1 non-print character */
1333 len = end - proctitle + 1;
1334 len -= isprint(proctitle[len-1]) == 0;
1335 return len;
1336 }
1337
1338 /*
1339 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1340 * @context: audit_context for the task
1341 * @n: audit_names structure with reportable details
1342 * @path: optional path to report instead of audit_names->name
1343 * @record_num: record number to report when handling a list of names
1344 * @call_panic: optional pointer to int that will be updated if secid fails
1345 */
1346 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1347 const struct path *path, int record_num, int *call_panic)
1348 {
1349 struct audit_buffer *ab;
1350
1351 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1352 if (!ab)
1353 return;
1354
1355 audit_log_format(ab, "item=%d", record_num);
1356
1357 if (path)
1358 audit_log_d_path(ab, " name=", path);
1359 else if (n->name) {
1360 switch (n->name_len) {
1361 case AUDIT_NAME_FULL:
1362 /* log the full path */
1363 audit_log_format(ab, " name=");
1364 audit_log_untrustedstring(ab, n->name->name);
1365 break;
1366 case 0:
1367 /* name was specified as a relative path and the
1368 * directory component is the cwd
1369 */
1370 if (context->pwd.dentry && context->pwd.mnt)
1371 audit_log_d_path(ab, " name=", &context->pwd);
1372 else
1373 audit_log_format(ab, " name=(null)");
1374 break;
1375 default:
1376 /* log the name's directory component */
1377 audit_log_format(ab, " name=");
1378 audit_log_n_untrustedstring(ab, n->name->name,
1379 n->name_len);
1380 }
1381 } else
1382 audit_log_format(ab, " name=(null)");
1383
1384 if (n->ino != AUDIT_INO_UNSET)
1385 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1386 n->ino,
1387 MAJOR(n->dev),
1388 MINOR(n->dev),
1389 n->mode,
1390 from_kuid(&init_user_ns, n->uid),
1391 from_kgid(&init_user_ns, n->gid),
1392 MAJOR(n->rdev),
1393 MINOR(n->rdev));
1394 if (n->osid != 0) {
1395 char *ctx = NULL;
1396 u32 len;
1397
1398 if (security_secid_to_secctx(
1399 n->osid, &ctx, &len)) {
1400 audit_log_format(ab, " osid=%u", n->osid);
1401 if (call_panic)
1402 *call_panic = 2;
1403 } else {
1404 audit_log_format(ab, " obj=%s", ctx);
1405 security_release_secctx(ctx, len);
1406 }
1407 }
1408
1409 /* log the audit_names record type */
1410 switch (n->type) {
1411 case AUDIT_TYPE_NORMAL:
1412 audit_log_format(ab, " nametype=NORMAL");
1413 break;
1414 case AUDIT_TYPE_PARENT:
1415 audit_log_format(ab, " nametype=PARENT");
1416 break;
1417 case AUDIT_TYPE_CHILD_DELETE:
1418 audit_log_format(ab, " nametype=DELETE");
1419 break;
1420 case AUDIT_TYPE_CHILD_CREATE:
1421 audit_log_format(ab, " nametype=CREATE");
1422 break;
1423 default:
1424 audit_log_format(ab, " nametype=UNKNOWN");
1425 break;
1426 }
1427
1428 audit_log_fcaps(ab, n);
1429 audit_log_end(ab);
1430 }
1431
1432 static void audit_log_proctitle(void)
1433 {
1434 int res;
1435 char *buf;
1436 char *msg = "(null)";
1437 int len = strlen(msg);
1438 struct audit_context *context = audit_context();
1439 struct audit_buffer *ab;
1440
1441 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442 if (!ab)
1443 return; /* audit_panic or being filtered */
1444
1445 audit_log_format(ab, "proctitle=");
1446
1447 /* Not cached */
1448 if (!context->proctitle.value) {
1449 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1450 if (!buf)
1451 goto out;
1452 /* Historically called this from procfs naming */
1453 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1454 if (res == 0) {
1455 kfree(buf);
1456 goto out;
1457 }
1458 res = audit_proctitle_rtrim(buf, res);
1459 if (res == 0) {
1460 kfree(buf);
1461 goto out;
1462 }
1463 context->proctitle.value = buf;
1464 context->proctitle.len = res;
1465 }
1466 msg = context->proctitle.value;
1467 len = context->proctitle.len;
1468 out:
1469 audit_log_n_untrustedstring(ab, msg, len);
1470 audit_log_end(ab);
1471 }
1472
1473 static void audit_log_exit(void)
1474 {
1475 int i, call_panic = 0;
1476 struct audit_context *context = audit_context();
1477 struct audit_buffer *ab;
1478 struct audit_aux_data *aux;
1479 struct audit_names *n;
1480
1481 context->personality = current->personality;
1482
1483 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484 if (!ab)
1485 return; /* audit_panic has been called */
1486 audit_log_format(ab, "arch=%x syscall=%d",
1487 context->arch, context->major);
1488 if (context->personality != PER_LINUX)
1489 audit_log_format(ab, " per=%lx", context->personality);
1490 if (context->return_valid != AUDITSC_INVALID)
1491 audit_log_format(ab, " success=%s exit=%ld",
1492 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1493 context->return_code);
1494
1495 audit_log_format(ab,
1496 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1497 context->argv[0],
1498 context->argv[1],
1499 context->argv[2],
1500 context->argv[3],
1501 context->name_count);
1502
1503 audit_log_task_info(ab);
1504 audit_log_key(ab, context->filterkey);
1505 audit_log_end(ab);
1506
1507 for (aux = context->aux; aux; aux = aux->next) {
1508
1509 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510 if (!ab)
1511 continue; /* audit_panic has been called */
1512
1513 switch (aux->type) {
1514
1515 case AUDIT_BPRM_FCAPS: {
1516 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1517 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1518 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1519 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1520 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1521 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1522 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1523 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1524 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1525 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1526 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1527 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1528 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1529 audit_log_format(ab, " frootid=%d",
1530 from_kuid(&init_user_ns,
1531 axs->fcap.rootid));
1532 break; }
1533
1534 }
1535 audit_log_end(ab);
1536 }
1537
1538 if (context->type)
1539 show_special(context, &call_panic);
1540
1541 if (context->fds[0] >= 0) {
1542 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543 if (ab) {
1544 audit_log_format(ab, "fd0=%d fd1=%d",
1545 context->fds[0], context->fds[1]);
1546 audit_log_end(ab);
1547 }
1548 }
1549
1550 if (context->sockaddr_len) {
1551 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552 if (ab) {
1553 audit_log_format(ab, "saddr=");
1554 audit_log_n_hex(ab, (void *)context->sockaddr,
1555 context->sockaddr_len);
1556 audit_log_end(ab);
1557 }
1558 }
1559
1560 for (aux = context->aux_pids; aux; aux = aux->next) {
1561 struct audit_aux_data_pids *axs = (void *)aux;
1562
1563 for (i = 0; i < axs->pid_count; i++)
1564 if (audit_log_pid_context(context, axs->target_pid[i],
1565 axs->target_auid[i],
1566 axs->target_uid[i],
1567 axs->target_sessionid[i],
1568 axs->target_sid[i],
1569 axs->target_comm[i]))
1570 call_panic = 1;
1571 }
1572
1573 if (context->target_pid &&
1574 audit_log_pid_context(context, context->target_pid,
1575 context->target_auid, context->target_uid,
1576 context->target_sessionid,
1577 context->target_sid, context->target_comm))
1578 call_panic = 1;
1579
1580 if (context->pwd.dentry && context->pwd.mnt) {
1581 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582 if (ab) {
1583 audit_log_d_path(ab, "cwd=", &context->pwd);
1584 audit_log_end(ab);
1585 }
1586 }
1587
1588 i = 0;
1589 list_for_each_entry(n, &context->names_list, list) {
1590 if (n->hidden)
1591 continue;
1592 audit_log_name(context, n, NULL, i++, &call_panic);
1593 }
1594
1595 audit_log_proctitle();
1596
1597 /* Send end of event record to help user space know we are finished */
1598 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1599 if (ab)
1600 audit_log_end(ab);
1601 if (call_panic)
1602 audit_panic("error converting sid to string");
1603 }
1604
1605 /**
1606 * __audit_free - free a per-task audit context
1607 * @tsk: task whose audit context block to free
1608 *
1609 * Called from copy_process and do_exit
1610 */
1611 void __audit_free(struct task_struct *tsk)
1612 {
1613 struct audit_context *context = tsk->audit_context;
1614
1615 if (!context)
1616 return;
1617
1618 if (!list_empty(&context->killed_trees))
1619 audit_kill_trees(context);
1620
1621 /* We are called either by do_exit() or the fork() error handling code;
1622 * in the former case tsk == current and in the latter tsk is a
1623 * random task_struct that doesn't doesn't have any meaningful data we
1624 * need to log via audit_log_exit().
1625 */
1626 if (tsk == current && !context->dummy && context->in_syscall) {
1627 context->return_valid = AUDITSC_INVALID;
1628 context->return_code = 0;
1629
1630 audit_filter_syscall(tsk, context,
1631 &audit_filter_list[AUDIT_FILTER_EXIT]);
1632 audit_filter_inodes(tsk, context);
1633 if (context->current_state == AUDIT_RECORD_CONTEXT)
1634 audit_log_exit();
1635 }
1636
1637 audit_set_context(tsk, NULL);
1638 audit_free_context(context);
1639 }
1640
1641 /**
1642 * __audit_syscall_entry - fill in an audit record at syscall entry
1643 * @major: major syscall type (function)
1644 * @a1: additional syscall register 1
1645 * @a2: additional syscall register 2
1646 * @a3: additional syscall register 3
1647 * @a4: additional syscall register 4
1648 *
1649 * Fill in audit context at syscall entry. This only happens if the
1650 * audit context was created when the task was created and the state or
1651 * filters demand the audit context be built. If the state from the
1652 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1653 * then the record will be written at syscall exit time (otherwise, it
1654 * will only be written if another part of the kernel requests that it
1655 * be written).
1656 */
1657 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1658 unsigned long a3, unsigned long a4)
1659 {
1660 struct audit_context *context = audit_context();
1661 enum audit_state state;
1662
1663 if (!audit_enabled || !context)
1664 return;
1665
1666 BUG_ON(context->in_syscall || context->name_count);
1667
1668 state = context->state;
1669 if (state == AUDIT_DISABLED)
1670 return;
1671
1672 context->dummy = !audit_n_rules;
1673 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1674 context->prio = 0;
1675 if (auditd_test_task(current))
1676 return;
1677 }
1678
1679 context->arch = syscall_get_arch(current);
1680 context->major = major;
1681 context->argv[0] = a1;
1682 context->argv[1] = a2;
1683 context->argv[2] = a3;
1684 context->argv[3] = a4;
1685 context->serial = 0;
1686 context->in_syscall = 1;
1687 context->current_state = state;
1688 context->ppid = 0;
1689 ktime_get_coarse_real_ts64(&context->ctime);
1690 }
1691
1692 /**
1693 * __audit_syscall_exit - deallocate audit context after a system call
1694 * @success: success value of the syscall
1695 * @return_code: return value of the syscall
1696 *
1697 * Tear down after system call. If the audit context has been marked as
1698 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699 * filtering, or because some other part of the kernel wrote an audit
1700 * message), then write out the syscall information. In call cases,
1701 * free the names stored from getname().
1702 */
1703 void __audit_syscall_exit(int success, long return_code)
1704 {
1705 struct audit_context *context;
1706
1707 context = audit_context();
1708 if (!context)
1709 return;
1710
1711 if (!list_empty(&context->killed_trees))
1712 audit_kill_trees(context);
1713
1714 if (!context->dummy && context->in_syscall) {
1715 if (success)
1716 context->return_valid = AUDITSC_SUCCESS;
1717 else
1718 context->return_valid = AUDITSC_FAILURE;
1719
1720 /*
1721 * we need to fix up the return code in the audit logs if the
1722 * actual return codes are later going to be fixed up by the
1723 * arch specific signal handlers
1724 *
1725 * This is actually a test for:
1726 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1727 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1728 *
1729 * but is faster than a bunch of ||
1730 */
1731 if (unlikely(return_code <= -ERESTARTSYS) &&
1732 (return_code >= -ERESTART_RESTARTBLOCK) &&
1733 (return_code != -ENOIOCTLCMD))
1734 context->return_code = -EINTR;
1735 else
1736 context->return_code = return_code;
1737
1738 audit_filter_syscall(current, context,
1739 &audit_filter_list[AUDIT_FILTER_EXIT]);
1740 audit_filter_inodes(current, context);
1741 if (context->current_state == AUDIT_RECORD_CONTEXT)
1742 audit_log_exit();
1743 }
1744
1745 context->in_syscall = 0;
1746 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1747
1748 audit_free_module(context);
1749 audit_free_names(context);
1750 unroll_tree_refs(context, NULL, 0);
1751 audit_free_aux(context);
1752 context->aux = NULL;
1753 context->aux_pids = NULL;
1754 context->target_pid = 0;
1755 context->target_sid = 0;
1756 context->sockaddr_len = 0;
1757 context->type = 0;
1758 context->fds[0] = -1;
1759 if (context->state != AUDIT_RECORD_CONTEXT) {
1760 kfree(context->filterkey);
1761 context->filterkey = NULL;
1762 }
1763 }
1764
1765 static inline void handle_one(const struct inode *inode)
1766 {
1767 struct audit_context *context;
1768 struct audit_tree_refs *p;
1769 struct audit_chunk *chunk;
1770 int count;
1771 if (likely(!inode->i_fsnotify_marks))
1772 return;
1773 context = audit_context();
1774 p = context->trees;
1775 count = context->tree_count;
1776 rcu_read_lock();
1777 chunk = audit_tree_lookup(inode);
1778 rcu_read_unlock();
1779 if (!chunk)
1780 return;
1781 if (likely(put_tree_ref(context, chunk)))
1782 return;
1783 if (unlikely(!grow_tree_refs(context))) {
1784 pr_warn("out of memory, audit has lost a tree reference\n");
1785 audit_set_auditable(context);
1786 audit_put_chunk(chunk);
1787 unroll_tree_refs(context, p, count);
1788 return;
1789 }
1790 put_tree_ref(context, chunk);
1791 }
1792
1793 static void handle_path(const struct dentry *dentry)
1794 {
1795 struct audit_context *context;
1796 struct audit_tree_refs *p;
1797 const struct dentry *d, *parent;
1798 struct audit_chunk *drop;
1799 unsigned long seq;
1800 int count;
1801
1802 context = audit_context();
1803 p = context->trees;
1804 count = context->tree_count;
1805 retry:
1806 drop = NULL;
1807 d = dentry;
1808 rcu_read_lock();
1809 seq = read_seqbegin(&rename_lock);
1810 for(;;) {
1811 struct inode *inode = d_backing_inode(d);
1812 if (inode && unlikely(inode->i_fsnotify_marks)) {
1813 struct audit_chunk *chunk;
1814 chunk = audit_tree_lookup(inode);
1815 if (chunk) {
1816 if (unlikely(!put_tree_ref(context, chunk))) {
1817 drop = chunk;
1818 break;
1819 }
1820 }
1821 }
1822 parent = d->d_parent;
1823 if (parent == d)
1824 break;
1825 d = parent;
1826 }
1827 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1828 rcu_read_unlock();
1829 if (!drop) {
1830 /* just a race with rename */
1831 unroll_tree_refs(context, p, count);
1832 goto retry;
1833 }
1834 audit_put_chunk(drop);
1835 if (grow_tree_refs(context)) {
1836 /* OK, got more space */
1837 unroll_tree_refs(context, p, count);
1838 goto retry;
1839 }
1840 /* too bad */
1841 pr_warn("out of memory, audit has lost a tree reference\n");
1842 unroll_tree_refs(context, p, count);
1843 audit_set_auditable(context);
1844 return;
1845 }
1846 rcu_read_unlock();
1847 }
1848
1849 static struct audit_names *audit_alloc_name(struct audit_context *context,
1850 unsigned char type)
1851 {
1852 struct audit_names *aname;
1853
1854 if (context->name_count < AUDIT_NAMES) {
1855 aname = &context->preallocated_names[context->name_count];
1856 memset(aname, 0, sizeof(*aname));
1857 } else {
1858 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1859 if (!aname)
1860 return NULL;
1861 aname->should_free = true;
1862 }
1863
1864 aname->ino = AUDIT_INO_UNSET;
1865 aname->type = type;
1866 list_add_tail(&aname->list, &context->names_list);
1867
1868 context->name_count++;
1869 if (!context->pwd.dentry)
1870 get_fs_pwd(current->fs, &context->pwd);
1871 return aname;
1872 }
1873
1874 /**
1875 * __audit_reusename - fill out filename with info from existing entry
1876 * @uptr: userland ptr to pathname
1877 *
1878 * Search the audit_names list for the current audit context. If there is an
1879 * existing entry with a matching "uptr" then return the filename
1880 * associated with that audit_name. If not, return NULL.
1881 */
1882 struct filename *
1883 __audit_reusename(const __user char *uptr)
1884 {
1885 struct audit_context *context = audit_context();
1886 struct audit_names *n;
1887
1888 list_for_each_entry(n, &context->names_list, list) {
1889 if (!n->name)
1890 continue;
1891 if (n->name->uptr == uptr) {
1892 n->name->refcnt++;
1893 return n->name;
1894 }
1895 }
1896 return NULL;
1897 }
1898
1899 /**
1900 * __audit_getname - add a name to the list
1901 * @name: name to add
1902 *
1903 * Add a name to the list of audit names for this context.
1904 * Called from fs/namei.c:getname().
1905 */
1906 void __audit_getname(struct filename *name)
1907 {
1908 struct audit_context *context = audit_context();
1909 struct audit_names *n;
1910
1911 if (!context->in_syscall)
1912 return;
1913
1914 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1915 if (!n)
1916 return;
1917
1918 n->name = name;
1919 n->name_len = AUDIT_NAME_FULL;
1920 name->aname = n;
1921 name->refcnt++;
1922 }
1923
1924 static inline int audit_copy_fcaps(struct audit_names *name,
1925 const struct dentry *dentry)
1926 {
1927 struct cpu_vfs_cap_data caps;
1928 int rc;
1929
1930 if (!dentry)
1931 return 0;
1932
1933 rc = get_vfs_caps_from_disk(dentry, &caps);
1934 if (rc)
1935 return rc;
1936
1937 name->fcap.permitted = caps.permitted;
1938 name->fcap.inheritable = caps.inheritable;
1939 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1940 name->fcap.rootid = caps.rootid;
1941 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1942 VFS_CAP_REVISION_SHIFT;
1943
1944 return 0;
1945 }
1946
1947 /* Copy inode data into an audit_names. */
1948 static void audit_copy_inode(struct audit_names *name,
1949 const struct dentry *dentry,
1950 struct inode *inode, unsigned int flags)
1951 {
1952 name->ino = inode->i_ino;
1953 name->dev = inode->i_sb->s_dev;
1954 name->mode = inode->i_mode;
1955 name->uid = inode->i_uid;
1956 name->gid = inode->i_gid;
1957 name->rdev = inode->i_rdev;
1958 security_inode_getsecid(inode, &name->osid);
1959 if (flags & AUDIT_INODE_NOEVAL) {
1960 name->fcap_ver = -1;
1961 return;
1962 }
1963 audit_copy_fcaps(name, dentry);
1964 }
1965
1966 /**
1967 * __audit_inode - store the inode and device from a lookup
1968 * @name: name being audited
1969 * @dentry: dentry being audited
1970 * @flags: attributes for this particular entry
1971 */
1972 void __audit_inode(struct filename *name, const struct dentry *dentry,
1973 unsigned int flags)
1974 {
1975 struct audit_context *context = audit_context();
1976 struct inode *inode = d_backing_inode(dentry);
1977 struct audit_names *n;
1978 bool parent = flags & AUDIT_INODE_PARENT;
1979 struct audit_entry *e;
1980 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1981 int i;
1982
1983 if (!context->in_syscall)
1984 return;
1985
1986 rcu_read_lock();
1987 list_for_each_entry_rcu(e, list, list) {
1988 for (i = 0; i < e->rule.field_count; i++) {
1989 struct audit_field *f = &e->rule.fields[i];
1990
1991 if (f->type == AUDIT_FSTYPE
1992 && audit_comparator(inode->i_sb->s_magic,
1993 f->op, f->val)
1994 && e->rule.action == AUDIT_NEVER) {
1995 rcu_read_unlock();
1996 return;
1997 }
1998 }
1999 }
2000 rcu_read_unlock();
2001
2002 if (!name)
2003 goto out_alloc;
2004
2005 /*
2006 * If we have a pointer to an audit_names entry already, then we can
2007 * just use it directly if the type is correct.
2008 */
2009 n = name->aname;
2010 if (n) {
2011 if (parent) {
2012 if (n->type == AUDIT_TYPE_PARENT ||
2013 n->type == AUDIT_TYPE_UNKNOWN)
2014 goto out;
2015 } else {
2016 if (n->type != AUDIT_TYPE_PARENT)
2017 goto out;
2018 }
2019 }
2020
2021 list_for_each_entry_reverse(n, &context->names_list, list) {
2022 if (n->ino) {
2023 /* valid inode number, use that for the comparison */
2024 if (n->ino != inode->i_ino ||
2025 n->dev != inode->i_sb->s_dev)
2026 continue;
2027 } else if (n->name) {
2028 /* inode number has not been set, check the name */
2029 if (strcmp(n->name->name, name->name))
2030 continue;
2031 } else
2032 /* no inode and no name (?!) ... this is odd ... */
2033 continue;
2034
2035 /* match the correct record type */
2036 if (parent) {
2037 if (n->type == AUDIT_TYPE_PARENT ||
2038 n->type == AUDIT_TYPE_UNKNOWN)
2039 goto out;
2040 } else {
2041 if (n->type != AUDIT_TYPE_PARENT)
2042 goto out;
2043 }
2044 }
2045
2046 out_alloc:
2047 /* unable to find an entry with both a matching name and type */
2048 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2049 if (!n)
2050 return;
2051 if (name) {
2052 n->name = name;
2053 name->refcnt++;
2054 }
2055
2056 out:
2057 if (parent) {
2058 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2059 n->type = AUDIT_TYPE_PARENT;
2060 if (flags & AUDIT_INODE_HIDDEN)
2061 n->hidden = true;
2062 } else {
2063 n->name_len = AUDIT_NAME_FULL;
2064 n->type = AUDIT_TYPE_NORMAL;
2065 }
2066 handle_path(dentry);
2067 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2068 }
2069
2070 void __audit_file(const struct file *file)
2071 {
2072 __audit_inode(NULL, file->f_path.dentry, 0);
2073 }
2074
2075 /**
2076 * __audit_inode_child - collect inode info for created/removed objects
2077 * @parent: inode of dentry parent
2078 * @dentry: dentry being audited
2079 * @type: AUDIT_TYPE_* value that we're looking for
2080 *
2081 * For syscalls that create or remove filesystem objects, audit_inode
2082 * can only collect information for the filesystem object's parent.
2083 * This call updates the audit context with the child's information.
2084 * Syscalls that create a new filesystem object must be hooked after
2085 * the object is created. Syscalls that remove a filesystem object
2086 * must be hooked prior, in order to capture the target inode during
2087 * unsuccessful attempts.
2088 */
2089 void __audit_inode_child(struct inode *parent,
2090 const struct dentry *dentry,
2091 const unsigned char type)
2092 {
2093 struct audit_context *context = audit_context();
2094 struct inode *inode = d_backing_inode(dentry);
2095 const struct qstr *dname = &dentry->d_name;
2096 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2097 struct audit_entry *e;
2098 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2099 int i;
2100
2101 if (!context->in_syscall)
2102 return;
2103
2104 rcu_read_lock();
2105 list_for_each_entry_rcu(e, list, list) {
2106 for (i = 0; i < e->rule.field_count; i++) {
2107 struct audit_field *f = &e->rule.fields[i];
2108
2109 if (f->type == AUDIT_FSTYPE
2110 && audit_comparator(parent->i_sb->s_magic,
2111 f->op, f->val)
2112 && e->rule.action == AUDIT_NEVER) {
2113 rcu_read_unlock();
2114 return;
2115 }
2116 }
2117 }
2118 rcu_read_unlock();
2119
2120 if (inode)
2121 handle_one(inode);
2122
2123 /* look for a parent entry first */
2124 list_for_each_entry(n, &context->names_list, list) {
2125 if (!n->name ||
2126 (n->type != AUDIT_TYPE_PARENT &&
2127 n->type != AUDIT_TYPE_UNKNOWN))
2128 continue;
2129
2130 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2131 !audit_compare_dname_path(dname,
2132 n->name->name, n->name_len)) {
2133 if (n->type == AUDIT_TYPE_UNKNOWN)
2134 n->type = AUDIT_TYPE_PARENT;
2135 found_parent = n;
2136 break;
2137 }
2138 }
2139
2140 /* is there a matching child entry? */
2141 list_for_each_entry(n, &context->names_list, list) {
2142 /* can only match entries that have a name */
2143 if (!n->name ||
2144 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2145 continue;
2146
2147 if (!strcmp(dname->name, n->name->name) ||
2148 !audit_compare_dname_path(dname, n->name->name,
2149 found_parent ?
2150 found_parent->name_len :
2151 AUDIT_NAME_FULL)) {
2152 if (n->type == AUDIT_TYPE_UNKNOWN)
2153 n->type = type;
2154 found_child = n;
2155 break;
2156 }
2157 }
2158
2159 if (!found_parent) {
2160 /* create a new, "anonymous" parent record */
2161 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2162 if (!n)
2163 return;
2164 audit_copy_inode(n, NULL, parent, 0);
2165 }
2166
2167 if (!found_child) {
2168 found_child = audit_alloc_name(context, type);
2169 if (!found_child)
2170 return;
2171
2172 /* Re-use the name belonging to the slot for a matching parent
2173 * directory. All names for this context are relinquished in
2174 * audit_free_names() */
2175 if (found_parent) {
2176 found_child->name = found_parent->name;
2177 found_child->name_len = AUDIT_NAME_FULL;
2178 found_child->name->refcnt++;
2179 }
2180 }
2181
2182 if (inode)
2183 audit_copy_inode(found_child, dentry, inode, 0);
2184 else
2185 found_child->ino = AUDIT_INO_UNSET;
2186 }
2187 EXPORT_SYMBOL_GPL(__audit_inode_child);
2188
2189 /**
2190 * auditsc_get_stamp - get local copies of audit_context values
2191 * @ctx: audit_context for the task
2192 * @t: timespec64 to store time recorded in the audit_context
2193 * @serial: serial value that is recorded in the audit_context
2194 *
2195 * Also sets the context as auditable.
2196 */
2197 int auditsc_get_stamp(struct audit_context *ctx,
2198 struct timespec64 *t, unsigned int *serial)
2199 {
2200 if (!ctx->in_syscall)
2201 return 0;
2202 if (!ctx->serial)
2203 ctx->serial = audit_serial();
2204 t->tv_sec = ctx->ctime.tv_sec;
2205 t->tv_nsec = ctx->ctime.tv_nsec;
2206 *serial = ctx->serial;
2207 if (!ctx->prio) {
2208 ctx->prio = 1;
2209 ctx->current_state = AUDIT_RECORD_CONTEXT;
2210 }
2211 return 1;
2212 }
2213
2214 /**
2215 * __audit_mq_open - record audit data for a POSIX MQ open
2216 * @oflag: open flag
2217 * @mode: mode bits
2218 * @attr: queue attributes
2219 *
2220 */
2221 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2222 {
2223 struct audit_context *context = audit_context();
2224
2225 if (attr)
2226 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2227 else
2228 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2229
2230 context->mq_open.oflag = oflag;
2231 context->mq_open.mode = mode;
2232
2233 context->type = AUDIT_MQ_OPEN;
2234 }
2235
2236 /**
2237 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2238 * @mqdes: MQ descriptor
2239 * @msg_len: Message length
2240 * @msg_prio: Message priority
2241 * @abs_timeout: Message timeout in absolute time
2242 *
2243 */
2244 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2245 const struct timespec64 *abs_timeout)
2246 {
2247 struct audit_context *context = audit_context();
2248 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2249
2250 if (abs_timeout)
2251 memcpy(p, abs_timeout, sizeof(*p));
2252 else
2253 memset(p, 0, sizeof(*p));
2254
2255 context->mq_sendrecv.mqdes = mqdes;
2256 context->mq_sendrecv.msg_len = msg_len;
2257 context->mq_sendrecv.msg_prio = msg_prio;
2258
2259 context->type = AUDIT_MQ_SENDRECV;
2260 }
2261
2262 /**
2263 * __audit_mq_notify - record audit data for a POSIX MQ notify
2264 * @mqdes: MQ descriptor
2265 * @notification: Notification event
2266 *
2267 */
2268
2269 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2270 {
2271 struct audit_context *context = audit_context();
2272
2273 if (notification)
2274 context->mq_notify.sigev_signo = notification->sigev_signo;
2275 else
2276 context->mq_notify.sigev_signo = 0;
2277
2278 context->mq_notify.mqdes = mqdes;
2279 context->type = AUDIT_MQ_NOTIFY;
2280 }
2281
2282 /**
2283 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2284 * @mqdes: MQ descriptor
2285 * @mqstat: MQ flags
2286 *
2287 */
2288 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2289 {
2290 struct audit_context *context = audit_context();
2291 context->mq_getsetattr.mqdes = mqdes;
2292 context->mq_getsetattr.mqstat = *mqstat;
2293 context->type = AUDIT_MQ_GETSETATTR;
2294 }
2295
2296 /**
2297 * __audit_ipc_obj - record audit data for ipc object
2298 * @ipcp: ipc permissions
2299 *
2300 */
2301 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2302 {
2303 struct audit_context *context = audit_context();
2304 context->ipc.uid = ipcp->uid;
2305 context->ipc.gid = ipcp->gid;
2306 context->ipc.mode = ipcp->mode;
2307 context->ipc.has_perm = 0;
2308 security_ipc_getsecid(ipcp, &context->ipc.osid);
2309 context->type = AUDIT_IPC;
2310 }
2311
2312 /**
2313 * __audit_ipc_set_perm - record audit data for new ipc permissions
2314 * @qbytes: msgq bytes
2315 * @uid: msgq user id
2316 * @gid: msgq group id
2317 * @mode: msgq mode (permissions)
2318 *
2319 * Called only after audit_ipc_obj().
2320 */
2321 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2322 {
2323 struct audit_context *context = audit_context();
2324
2325 context->ipc.qbytes = qbytes;
2326 context->ipc.perm_uid = uid;
2327 context->ipc.perm_gid = gid;
2328 context->ipc.perm_mode = mode;
2329 context->ipc.has_perm = 1;
2330 }
2331
2332 void __audit_bprm(struct linux_binprm *bprm)
2333 {
2334 struct audit_context *context = audit_context();
2335
2336 context->type = AUDIT_EXECVE;
2337 context->execve.argc = bprm->argc;
2338 }
2339
2340
2341 /**
2342 * __audit_socketcall - record audit data for sys_socketcall
2343 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2344 * @args: args array
2345 *
2346 */
2347 int __audit_socketcall(int nargs, unsigned long *args)
2348 {
2349 struct audit_context *context = audit_context();
2350
2351 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2352 return -EINVAL;
2353 context->type = AUDIT_SOCKETCALL;
2354 context->socketcall.nargs = nargs;
2355 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2356 return 0;
2357 }
2358
2359 /**
2360 * __audit_fd_pair - record audit data for pipe and socketpair
2361 * @fd1: the first file descriptor
2362 * @fd2: the second file descriptor
2363 *
2364 */
2365 void __audit_fd_pair(int fd1, int fd2)
2366 {
2367 struct audit_context *context = audit_context();
2368 context->fds[0] = fd1;
2369 context->fds[1] = fd2;
2370 }
2371
2372 /**
2373 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2374 * @len: data length in user space
2375 * @a: data address in kernel space
2376 *
2377 * Returns 0 for success or NULL context or < 0 on error.
2378 */
2379 int __audit_sockaddr(int len, void *a)
2380 {
2381 struct audit_context *context = audit_context();
2382
2383 if (!context->sockaddr) {
2384 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2385 if (!p)
2386 return -ENOMEM;
2387 context->sockaddr = p;
2388 }
2389
2390 context->sockaddr_len = len;
2391 memcpy(context->sockaddr, a, len);
2392 return 0;
2393 }
2394
2395 void __audit_ptrace(struct task_struct *t)
2396 {
2397 struct audit_context *context = audit_context();
2398
2399 context->target_pid = task_tgid_nr(t);
2400 context->target_auid = audit_get_loginuid(t);
2401 context->target_uid = task_uid(t);
2402 context->target_sessionid = audit_get_sessionid(t);
2403 security_task_getsecid(t, &context->target_sid);
2404 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2405 }
2406
2407 /**
2408 * audit_signal_info_syscall - record signal info for syscalls
2409 * @t: task being signaled
2410 *
2411 * If the audit subsystem is being terminated, record the task (pid)
2412 * and uid that is doing that.
2413 */
2414 int audit_signal_info_syscall(struct task_struct *t)
2415 {
2416 struct audit_aux_data_pids *axp;
2417 struct audit_context *ctx = audit_context();
2418 kuid_t t_uid = task_uid(t);
2419
2420 if (!audit_signals || audit_dummy_context())
2421 return 0;
2422
2423 /* optimize the common case by putting first signal recipient directly
2424 * in audit_context */
2425 if (!ctx->target_pid) {
2426 ctx->target_pid = task_tgid_nr(t);
2427 ctx->target_auid = audit_get_loginuid(t);
2428 ctx->target_uid = t_uid;
2429 ctx->target_sessionid = audit_get_sessionid(t);
2430 security_task_getsecid(t, &ctx->target_sid);
2431 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2432 return 0;
2433 }
2434
2435 axp = (void *)ctx->aux_pids;
2436 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2437 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2438 if (!axp)
2439 return -ENOMEM;
2440
2441 axp->d.type = AUDIT_OBJ_PID;
2442 axp->d.next = ctx->aux_pids;
2443 ctx->aux_pids = (void *)axp;
2444 }
2445 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2446
2447 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2448 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2449 axp->target_uid[axp->pid_count] = t_uid;
2450 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2451 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2452 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2453 axp->pid_count++;
2454
2455 return 0;
2456 }
2457
2458 /**
2459 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2460 * @bprm: pointer to the bprm being processed
2461 * @new: the proposed new credentials
2462 * @old: the old credentials
2463 *
2464 * Simply check if the proc already has the caps given by the file and if not
2465 * store the priv escalation info for later auditing at the end of the syscall
2466 *
2467 * -Eric
2468 */
2469 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2470 const struct cred *new, const struct cred *old)
2471 {
2472 struct audit_aux_data_bprm_fcaps *ax;
2473 struct audit_context *context = audit_context();
2474 struct cpu_vfs_cap_data vcaps;
2475
2476 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2477 if (!ax)
2478 return -ENOMEM;
2479
2480 ax->d.type = AUDIT_BPRM_FCAPS;
2481 ax->d.next = context->aux;
2482 context->aux = (void *)ax;
2483
2484 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2485
2486 ax->fcap.permitted = vcaps.permitted;
2487 ax->fcap.inheritable = vcaps.inheritable;
2488 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2489 ax->fcap.rootid = vcaps.rootid;
2490 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2491
2492 ax->old_pcap.permitted = old->cap_permitted;
2493 ax->old_pcap.inheritable = old->cap_inheritable;
2494 ax->old_pcap.effective = old->cap_effective;
2495 ax->old_pcap.ambient = old->cap_ambient;
2496
2497 ax->new_pcap.permitted = new->cap_permitted;
2498 ax->new_pcap.inheritable = new->cap_inheritable;
2499 ax->new_pcap.effective = new->cap_effective;
2500 ax->new_pcap.ambient = new->cap_ambient;
2501 return 0;
2502 }
2503
2504 /**
2505 * __audit_log_capset - store information about the arguments to the capset syscall
2506 * @new: the new credentials
2507 * @old: the old (current) credentials
2508 *
2509 * Record the arguments userspace sent to sys_capset for later printing by the
2510 * audit system if applicable
2511 */
2512 void __audit_log_capset(const struct cred *new, const struct cred *old)
2513 {
2514 struct audit_context *context = audit_context();
2515 context->capset.pid = task_tgid_nr(current);
2516 context->capset.cap.effective = new->cap_effective;
2517 context->capset.cap.inheritable = new->cap_effective;
2518 context->capset.cap.permitted = new->cap_permitted;
2519 context->capset.cap.ambient = new->cap_ambient;
2520 context->type = AUDIT_CAPSET;
2521 }
2522
2523 void __audit_mmap_fd(int fd, int flags)
2524 {
2525 struct audit_context *context = audit_context();
2526 context->mmap.fd = fd;
2527 context->mmap.flags = flags;
2528 context->type = AUDIT_MMAP;
2529 }
2530
2531 void __audit_log_kern_module(char *name)
2532 {
2533 struct audit_context *context = audit_context();
2534
2535 context->module.name = kstrdup(name, GFP_KERNEL);
2536 if (!context->module.name)
2537 audit_log_lost("out of memory in __audit_log_kern_module");
2538 context->type = AUDIT_KERN_MODULE;
2539 }
2540
2541 void __audit_fanotify(unsigned int response)
2542 {
2543 audit_log(audit_context(), GFP_KERNEL,
2544 AUDIT_FANOTIFY, "resp=%u", response);
2545 }
2546
2547 void __audit_tk_injoffset(struct timespec64 offset)
2548 {
2549 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2550 "sec=%lli nsec=%li",
2551 (long long)offset.tv_sec, offset.tv_nsec);
2552 }
2553
2554 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2555 const char *op, enum audit_ntp_type type)
2556 {
2557 const struct audit_ntp_val *val = &ad->vals[type];
2558
2559 if (val->newval == val->oldval)
2560 return;
2561
2562 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2563 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2564 }
2565
2566 void __audit_ntp_log(const struct audit_ntp_data *ad)
2567 {
2568 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2569 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2570 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2571 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2572 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2573 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2574 }
2575
2576 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2577 enum audit_nfcfgop op, gfp_t gfp)
2578 {
2579 struct audit_buffer *ab;
2580 char comm[sizeof(current->comm)];
2581
2582 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2583 if (!ab)
2584 return;
2585 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2586 name, af, nentries, audit_nfcfgs[op].s);
2587
2588 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2589 audit_log_task_context(ab); /* subj= */
2590 audit_log_format(ab, " comm=");
2591 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2592 audit_log_end(ab);
2593 }
2594 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2595
2596 static void audit_log_task(struct audit_buffer *ab)
2597 {
2598 kuid_t auid, uid;
2599 kgid_t gid;
2600 unsigned int sessionid;
2601 char comm[sizeof(current->comm)];
2602
2603 auid = audit_get_loginuid(current);
2604 sessionid = audit_get_sessionid(current);
2605 current_uid_gid(&uid, &gid);
2606
2607 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2608 from_kuid(&init_user_ns, auid),
2609 from_kuid(&init_user_ns, uid),
2610 from_kgid(&init_user_ns, gid),
2611 sessionid);
2612 audit_log_task_context(ab);
2613 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2614 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2615 audit_log_d_path_exe(ab, current->mm);
2616 }
2617
2618 /**
2619 * audit_core_dumps - record information about processes that end abnormally
2620 * @signr: signal value
2621 *
2622 * If a process ends with a core dump, something fishy is going on and we
2623 * should record the event for investigation.
2624 */
2625 void audit_core_dumps(long signr)
2626 {
2627 struct audit_buffer *ab;
2628
2629 if (!audit_enabled)
2630 return;
2631
2632 if (signr == SIGQUIT) /* don't care for those */
2633 return;
2634
2635 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2636 if (unlikely(!ab))
2637 return;
2638 audit_log_task(ab);
2639 audit_log_format(ab, " sig=%ld res=1", signr);
2640 audit_log_end(ab);
2641 }
2642
2643 /**
2644 * audit_seccomp - record information about a seccomp action
2645 * @syscall: syscall number
2646 * @signr: signal value
2647 * @code: the seccomp action
2648 *
2649 * Record the information associated with a seccomp action. Event filtering for
2650 * seccomp actions that are not to be logged is done in seccomp_log().
2651 * Therefore, this function forces auditing independent of the audit_enabled
2652 * and dummy context state because seccomp actions should be logged even when
2653 * audit is not in use.
2654 */
2655 void audit_seccomp(unsigned long syscall, long signr, int code)
2656 {
2657 struct audit_buffer *ab;
2658
2659 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2660 if (unlikely(!ab))
2661 return;
2662 audit_log_task(ab);
2663 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2664 signr, syscall_get_arch(current), syscall,
2665 in_compat_syscall(), KSTK_EIP(current), code);
2666 audit_log_end(ab);
2667 }
2668
2669 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2670 int res)
2671 {
2672 struct audit_buffer *ab;
2673
2674 if (!audit_enabled)
2675 return;
2676
2677 ab = audit_log_start(audit_context(), GFP_KERNEL,
2678 AUDIT_CONFIG_CHANGE);
2679 if (unlikely(!ab))
2680 return;
2681
2682 audit_log_format(ab,
2683 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2684 names, old_names, res);
2685 audit_log_end(ab);
2686 }
2687
2688 struct list_head *audit_killed_trees(void)
2689 {
2690 struct audit_context *ctx = audit_context();
2691 if (likely(!ctx || !ctx->in_syscall))
2692 return NULL;
2693 return &ctx->killed_trees;
2694 }