]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/auditsc.c
UBUNTU: SAUCE: LSM: Use lsmblob in security_cred_getsecid
[mirror_ubuntu-jammy-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79
80 #include "audit.h"
81
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93
94 /* number of audit rules */
95 int audit_n_rules;
96
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99
100 struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103 };
104
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
107
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 struct lsmblob target_lsm[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117 };
118
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125 };
126
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130 };
131
132 struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
134 const char *s;
135 };
136
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
158 };
159
160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 unsigned n;
163
164 if (unlikely(!ctx))
165 return 0;
166 n = ctx->major;
167
168 switch (audit_classify_syscall(ctx->arch, n)) {
169 case 0: /* native */
170 if ((mask & AUDIT_PERM_WRITE) &&
171 audit_match_class(AUDIT_CLASS_WRITE, n))
172 return 1;
173 if ((mask & AUDIT_PERM_READ) &&
174 audit_match_class(AUDIT_CLASS_READ, n))
175 return 1;
176 if ((mask & AUDIT_PERM_ATTR) &&
177 audit_match_class(AUDIT_CLASS_CHATTR, n))
178 return 1;
179 return 0;
180 case 1: /* 32bit on biarch */
181 if ((mask & AUDIT_PERM_WRITE) &&
182 audit_match_class(AUDIT_CLASS_WRITE_32, n))
183 return 1;
184 if ((mask & AUDIT_PERM_READ) &&
185 audit_match_class(AUDIT_CLASS_READ_32, n))
186 return 1;
187 if ((mask & AUDIT_PERM_ATTR) &&
188 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
189 return 1;
190 return 0;
191 case 2: /* open */
192 return mask & ACC_MODE(ctx->argv[1]);
193 case 3: /* openat */
194 return mask & ACC_MODE(ctx->argv[2]);
195 case 4: /* socketcall */
196 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
197 case 5: /* execve */
198 return mask & AUDIT_PERM_EXEC;
199 default:
200 return 0;
201 }
202 }
203
204 static int audit_match_filetype(struct audit_context *ctx, int val)
205 {
206 struct audit_names *n;
207 umode_t mode = (umode_t)val;
208
209 if (unlikely(!ctx))
210 return 0;
211
212 list_for_each_entry(n, &ctx->names_list, list) {
213 if ((n->ino != AUDIT_INO_UNSET) &&
214 ((n->mode & S_IFMT) == mode))
215 return 1;
216 }
217
218 return 0;
219 }
220
221 /*
222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
223 * ->first_trees points to its beginning, ->trees - to the current end of data.
224 * ->tree_count is the number of free entries in array pointed to by ->trees.
225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
226 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
227 * it's going to remain 1-element for almost any setup) until we free context itself.
228 * References in it _are_ dropped - at the same time we free/drop aux stuff.
229 */
230
231 static void audit_set_auditable(struct audit_context *ctx)
232 {
233 if (!ctx->prio) {
234 ctx->prio = 1;
235 ctx->current_state = AUDIT_STATE_RECORD;
236 }
237 }
238
239 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
240 {
241 struct audit_tree_refs *p = ctx->trees;
242 int left = ctx->tree_count;
243
244 if (likely(left)) {
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
247 return 1;
248 }
249 if (!p)
250 return 0;
251 p = p->next;
252 if (p) {
253 p->c[30] = chunk;
254 ctx->trees = p;
255 ctx->tree_count = 30;
256 return 1;
257 }
258 return 0;
259 }
260
261 static int grow_tree_refs(struct audit_context *ctx)
262 {
263 struct audit_tree_refs *p = ctx->trees;
264
265 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
266 if (!ctx->trees) {
267 ctx->trees = p;
268 return 0;
269 }
270 if (p)
271 p->next = ctx->trees;
272 else
273 ctx->first_trees = ctx->trees;
274 ctx->tree_count = 31;
275 return 1;
276 }
277
278 static void unroll_tree_refs(struct audit_context *ctx,
279 struct audit_tree_refs *p, int count)
280 {
281 struct audit_tree_refs *q;
282 int n;
283
284 if (!p) {
285 /* we started with empty chain */
286 p = ctx->first_trees;
287 count = 31;
288 /* if the very first allocation has failed, nothing to do */
289 if (!p)
290 return;
291 }
292 n = count;
293 for (q = p; q != ctx->trees; q = q->next, n = 31) {
294 while (n--) {
295 audit_put_chunk(q->c[n]);
296 q->c[n] = NULL;
297 }
298 }
299 while (n-- > ctx->tree_count) {
300 audit_put_chunk(q->c[n]);
301 q->c[n] = NULL;
302 }
303 ctx->trees = p;
304 ctx->tree_count = count;
305 }
306
307 static void free_tree_refs(struct audit_context *ctx)
308 {
309 struct audit_tree_refs *p, *q;
310
311 for (p = ctx->first_trees; p; p = q) {
312 q = p->next;
313 kfree(p);
314 }
315 }
316
317 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
318 {
319 struct audit_tree_refs *p;
320 int n;
321
322 if (!tree)
323 return 0;
324 /* full ones */
325 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
326 for (n = 0; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
328 return 1;
329 }
330 /* partial */
331 if (p) {
332 for (n = ctx->tree_count; n < 31; n++)
333 if (audit_tree_match(p->c[n], tree))
334 return 1;
335 }
336 return 0;
337 }
338
339 static int audit_compare_uid(kuid_t uid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
343 {
344 struct audit_names *n;
345 int rc;
346
347 if (name) {
348 rc = audit_uid_comparator(uid, f->op, name->uid);
349 if (rc)
350 return rc;
351 }
352
353 if (ctx) {
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_uid_comparator(uid, f->op, n->uid);
356 if (rc)
357 return rc;
358 }
359 }
360 return 0;
361 }
362
363 static int audit_compare_gid(kgid_t gid,
364 struct audit_names *name,
365 struct audit_field *f,
366 struct audit_context *ctx)
367 {
368 struct audit_names *n;
369 int rc;
370
371 if (name) {
372 rc = audit_gid_comparator(gid, f->op, name->gid);
373 if (rc)
374 return rc;
375 }
376
377 if (ctx) {
378 list_for_each_entry(n, &ctx->names_list, list) {
379 rc = audit_gid_comparator(gid, f->op, n->gid);
380 if (rc)
381 return rc;
382 }
383 }
384 return 0;
385 }
386
387 static int audit_field_compare(struct task_struct *tsk,
388 const struct cred *cred,
389 struct audit_field *f,
390 struct audit_context *ctx,
391 struct audit_names *name)
392 {
393 switch (f->val) {
394 /* process to file object comparisons */
395 case AUDIT_COMPARE_UID_TO_OBJ_UID:
396 return audit_compare_uid(cred->uid, name, f, ctx);
397 case AUDIT_COMPARE_GID_TO_OBJ_GID:
398 return audit_compare_gid(cred->gid, name, f, ctx);
399 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->euid, name, f, ctx);
401 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->egid, name, f, ctx);
403 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
404 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
405 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->suid, name, f, ctx);
407 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->sgid, name, f, ctx);
409 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
410 return audit_compare_uid(cred->fsuid, name, f, ctx);
411 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
412 return audit_compare_gid(cred->fsgid, name, f, ctx);
413 /* uid comparisons */
414 case AUDIT_COMPARE_UID_TO_AUID:
415 return audit_uid_comparator(cred->uid, f->op,
416 audit_get_loginuid(tsk));
417 case AUDIT_COMPARE_UID_TO_EUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->euid);
419 case AUDIT_COMPARE_UID_TO_SUID:
420 return audit_uid_comparator(cred->uid, f->op, cred->suid);
421 case AUDIT_COMPARE_UID_TO_FSUID:
422 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
423 /* auid comparisons */
424 case AUDIT_COMPARE_AUID_TO_EUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 cred->euid);
427 case AUDIT_COMPARE_AUID_TO_SUID:
428 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
429 cred->suid);
430 case AUDIT_COMPARE_AUID_TO_FSUID:
431 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
432 cred->fsuid);
433 /* euid comparisons */
434 case AUDIT_COMPARE_EUID_TO_SUID:
435 return audit_uid_comparator(cred->euid, f->op, cred->suid);
436 case AUDIT_COMPARE_EUID_TO_FSUID:
437 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
438 /* suid comparisons */
439 case AUDIT_COMPARE_SUID_TO_FSUID:
440 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
441 /* gid comparisons */
442 case AUDIT_COMPARE_GID_TO_EGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->egid);
444 case AUDIT_COMPARE_GID_TO_SGID:
445 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
446 case AUDIT_COMPARE_GID_TO_FSGID:
447 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
448 /* egid comparisons */
449 case AUDIT_COMPARE_EGID_TO_SGID:
450 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
451 case AUDIT_COMPARE_EGID_TO_FSGID:
452 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
453 /* sgid comparison */
454 case AUDIT_COMPARE_SGID_TO_FSGID:
455 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
456 default:
457 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
458 return 0;
459 }
460 return 0;
461 }
462
463 /* Determine if any context name data matches a rule's watch data */
464 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
465 * otherwise.
466 *
467 * If task_creation is true, this is an explicit indication that we are
468 * filtering a task rule at task creation time. This and tsk == current are
469 * the only situations where tsk->cred may be accessed without an rcu read lock.
470 */
471 static int audit_filter_rules(struct task_struct *tsk,
472 struct audit_krule *rule,
473 struct audit_context *ctx,
474 struct audit_names *name,
475 enum audit_state *state,
476 bool task_creation)
477 {
478 const struct cred *cred;
479 int i, need_sid = 1;
480 struct lsmblob blob;
481 unsigned int sessionid;
482
483 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
484
485 for (i = 0; i < rule->field_count; i++) {
486 struct audit_field *f = &rule->fields[i];
487 struct audit_names *n;
488 int result = 0;
489 pid_t pid;
490
491 switch (f->type) {
492 case AUDIT_PID:
493 pid = task_tgid_nr(tsk);
494 result = audit_comparator(pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = task_ppid_nr(tsk);
500 result = audit_comparator(ctx->ppid, f->op, f->val);
501 }
502 break;
503 case AUDIT_EXE:
504 result = audit_exe_compare(tsk, rule->exe);
505 if (f->op == Audit_not_equal)
506 result = !result;
507 break;
508 case AUDIT_UID:
509 result = audit_uid_comparator(cred->uid, f->op, f->uid);
510 break;
511 case AUDIT_EUID:
512 result = audit_uid_comparator(cred->euid, f->op, f->uid);
513 break;
514 case AUDIT_SUID:
515 result = audit_uid_comparator(cred->suid, f->op, f->uid);
516 break;
517 case AUDIT_FSUID:
518 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
519 break;
520 case AUDIT_GID:
521 result = audit_gid_comparator(cred->gid, f->op, f->gid);
522 if (f->op == Audit_equal) {
523 if (!result)
524 result = groups_search(cred->group_info, f->gid);
525 } else if (f->op == Audit_not_equal) {
526 if (result)
527 result = !groups_search(cred->group_info, f->gid);
528 }
529 break;
530 case AUDIT_EGID:
531 result = audit_gid_comparator(cred->egid, f->op, f->gid);
532 if (f->op == Audit_equal) {
533 if (!result)
534 result = groups_search(cred->group_info, f->gid);
535 } else if (f->op == Audit_not_equal) {
536 if (result)
537 result = !groups_search(cred->group_info, f->gid);
538 }
539 break;
540 case AUDIT_SGID:
541 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
542 break;
543 case AUDIT_FSGID:
544 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
545 break;
546 case AUDIT_SESSIONID:
547 sessionid = audit_get_sessionid(tsk);
548 result = audit_comparator(sessionid, f->op, f->val);
549 break;
550 case AUDIT_PERS:
551 result = audit_comparator(tsk->personality, f->op, f->val);
552 break;
553 case AUDIT_ARCH:
554 if (ctx)
555 result = audit_comparator(ctx->arch, f->op, f->val);
556 break;
557
558 case AUDIT_EXIT:
559 if (ctx && ctx->return_valid != AUDITSC_INVALID)
560 result = audit_comparator(ctx->return_code, f->op, f->val);
561 break;
562 case AUDIT_SUCCESS:
563 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
564 if (f->val)
565 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
566 else
567 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
568 }
569 break;
570 case AUDIT_DEVMAJOR:
571 if (name) {
572 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
573 audit_comparator(MAJOR(name->rdev), f->op, f->val))
574 ++result;
575 } else if (ctx) {
576 list_for_each_entry(n, &ctx->names_list, list) {
577 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
578 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
579 ++result;
580 break;
581 }
582 }
583 }
584 break;
585 case AUDIT_DEVMINOR:
586 if (name) {
587 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
588 audit_comparator(MINOR(name->rdev), f->op, f->val))
589 ++result;
590 } else if (ctx) {
591 list_for_each_entry(n, &ctx->names_list, list) {
592 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
593 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
594 ++result;
595 break;
596 }
597 }
598 }
599 break;
600 case AUDIT_INODE:
601 if (name)
602 result = audit_comparator(name->ino, f->op, f->val);
603 else if (ctx) {
604 list_for_each_entry(n, &ctx->names_list, list) {
605 if (audit_comparator(n->ino, f->op, f->val)) {
606 ++result;
607 break;
608 }
609 }
610 }
611 break;
612 case AUDIT_OBJ_UID:
613 if (name) {
614 result = audit_uid_comparator(name->uid, f->op, f->uid);
615 } else if (ctx) {
616 list_for_each_entry(n, &ctx->names_list, list) {
617 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
618 ++result;
619 break;
620 }
621 }
622 }
623 break;
624 case AUDIT_OBJ_GID:
625 if (name) {
626 result = audit_gid_comparator(name->gid, f->op, f->gid);
627 } else if (ctx) {
628 list_for_each_entry(n, &ctx->names_list, list) {
629 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
630 ++result;
631 break;
632 }
633 }
634 }
635 break;
636 case AUDIT_WATCH:
637 if (name) {
638 result = audit_watch_compare(rule->watch,
639 name->ino,
640 name->dev);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_DIR:
646 if (ctx) {
647 result = match_tree_refs(ctx, rule->tree);
648 if (f->op == Audit_not_equal)
649 result = !result;
650 }
651 break;
652 case AUDIT_LOGINUID:
653 result = audit_uid_comparator(audit_get_loginuid(tsk),
654 f->op, f->uid);
655 break;
656 case AUDIT_LOGINUID_SET:
657 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
658 break;
659 case AUDIT_SADDR_FAM:
660 if (ctx && ctx->sockaddr)
661 result = audit_comparator(ctx->sockaddr->ss_family,
662 f->op, f->val);
663 break;
664 case AUDIT_SUBJ_USER:
665 case AUDIT_SUBJ_ROLE:
666 case AUDIT_SUBJ_TYPE:
667 case AUDIT_SUBJ_SEN:
668 case AUDIT_SUBJ_CLR:
669 /* NOTE: this may return negative values indicating
670 a temporary error. We simply treat this as a
671 match for now to avoid losing information that
672 may be wanted. An error message will also be
673 logged upon error */
674 if (f->lsm_isset) {
675 if (need_sid) {
676 security_task_getsecid_subj(tsk, &blob);
677 need_sid = 0;
678 }
679 result = security_audit_rule_match(&blob,
680 f->type,
681 f->op,
682 f->lsm_rules);
683 }
684 break;
685 case AUDIT_OBJ_USER:
686 case AUDIT_OBJ_ROLE:
687 case AUDIT_OBJ_TYPE:
688 case AUDIT_OBJ_LEV_LOW:
689 case AUDIT_OBJ_LEV_HIGH:
690 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
691 also applies here */
692 if (f->lsm_isset) {
693 /* Find files that match */
694 if (name) {
695 /*
696 * lsmblob_init sets all values in the
697 * lsmblob to sid. This is temporary
698 * until name->osid is converted to a
699 * lsmblob, which happens later in
700 * this patch set.
701 */
702 lsmblob_init(&blob, name->osid);
703 result = security_audit_rule_match(
704 &blob,
705 f->type,
706 f->op,
707 f->lsm_rules);
708 } else if (ctx) {
709 list_for_each_entry(n, &ctx->names_list, list) {
710 lsmblob_init(&blob, name->osid);
711 if (security_audit_rule_match(
712 &blob,
713 f->type,
714 f->op,
715 f->lsm_rules)) {
716 ++result;
717 break;
718 }
719 }
720 }
721 /* Find ipc objects that match */
722 if (!ctx || ctx->type != AUDIT_IPC)
723 break;
724 lsmblob_init(&blob, ctx->ipc.osid);
725 if (security_audit_rule_match(&blob,
726 f->type, f->op,
727 f->lsm_rules))
728 ++result;
729 }
730 break;
731 case AUDIT_ARG0:
732 case AUDIT_ARG1:
733 case AUDIT_ARG2:
734 case AUDIT_ARG3:
735 if (ctx)
736 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
737 break;
738 case AUDIT_FILTERKEY:
739 /* ignore this field for filtering */
740 result = 1;
741 break;
742 case AUDIT_PERM:
743 result = audit_match_perm(ctx, f->val);
744 if (f->op == Audit_not_equal)
745 result = !result;
746 break;
747 case AUDIT_FILETYPE:
748 result = audit_match_filetype(ctx, f->val);
749 if (f->op == Audit_not_equal)
750 result = !result;
751 break;
752 case AUDIT_FIELD_COMPARE:
753 result = audit_field_compare(tsk, cred, f, ctx, name);
754 break;
755 }
756 if (!result)
757 return 0;
758 }
759
760 if (ctx) {
761 if (rule->prio <= ctx->prio)
762 return 0;
763 if (rule->filterkey) {
764 kfree(ctx->filterkey);
765 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
766 }
767 ctx->prio = rule->prio;
768 }
769 switch (rule->action) {
770 case AUDIT_NEVER:
771 *state = AUDIT_STATE_DISABLED;
772 break;
773 case AUDIT_ALWAYS:
774 *state = AUDIT_STATE_RECORD;
775 break;
776 }
777 return 1;
778 }
779
780 /* At process creation time, we can determine if system-call auditing is
781 * completely disabled for this task. Since we only have the task
782 * structure at this point, we can only check uid and gid.
783 */
784 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
785 {
786 struct audit_entry *e;
787 enum audit_state state;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
791 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
792 &state, true)) {
793 if (state == AUDIT_STATE_RECORD)
794 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
795 rcu_read_unlock();
796 return state;
797 }
798 }
799 rcu_read_unlock();
800 return AUDIT_STATE_BUILD;
801 }
802
803 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
804 {
805 int word, bit;
806
807 if (val > 0xffffffff)
808 return false;
809
810 word = AUDIT_WORD(val);
811 if (word >= AUDIT_BITMASK_SIZE)
812 return false;
813
814 bit = AUDIT_BIT(val);
815
816 return rule->mask[word] & bit;
817 }
818
819 /* At syscall exit time, this filter is called if the audit_state is
820 * not low enough that auditing cannot take place, but is also not
821 * high enough that we already know we have to write an audit record
822 * (i.e., the state is AUDIT_STATE_BUILD).
823 */
824 static void audit_filter_syscall(struct task_struct *tsk,
825 struct audit_context *ctx)
826 {
827 struct audit_entry *e;
828 enum audit_state state;
829
830 if (auditd_test_task(tsk))
831 return;
832
833 rcu_read_lock();
834 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
835 if (audit_in_mask(&e->rule, ctx->major) &&
836 audit_filter_rules(tsk, &e->rule, ctx, NULL,
837 &state, false)) {
838 rcu_read_unlock();
839 ctx->current_state = state;
840 return;
841 }
842 }
843 rcu_read_unlock();
844 return;
845 }
846
847 /*
848 * Given an audit_name check the inode hash table to see if they match.
849 * Called holding the rcu read lock to protect the use of audit_inode_hash
850 */
851 static int audit_filter_inode_name(struct task_struct *tsk,
852 struct audit_names *n,
853 struct audit_context *ctx) {
854 int h = audit_hash_ino((u32)n->ino);
855 struct list_head *list = &audit_inode_hash[h];
856 struct audit_entry *e;
857 enum audit_state state;
858
859 list_for_each_entry_rcu(e, list, list) {
860 if (audit_in_mask(&e->rule, ctx->major) &&
861 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
862 ctx->current_state = state;
863 return 1;
864 }
865 }
866 return 0;
867 }
868
869 /* At syscall exit time, this filter is called if any audit_names have been
870 * collected during syscall processing. We only check rules in sublists at hash
871 * buckets applicable to the inode numbers in audit_names.
872 * Regarding audit_state, same rules apply as for audit_filter_syscall().
873 */
874 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
875 {
876 struct audit_names *n;
877
878 if (auditd_test_task(tsk))
879 return;
880
881 rcu_read_lock();
882
883 list_for_each_entry(n, &ctx->names_list, list) {
884 if (audit_filter_inode_name(tsk, n, ctx))
885 break;
886 }
887 rcu_read_unlock();
888 }
889
890 static inline void audit_proctitle_free(struct audit_context *context)
891 {
892 kfree(context->proctitle.value);
893 context->proctitle.value = NULL;
894 context->proctitle.len = 0;
895 }
896
897 static inline void audit_free_module(struct audit_context *context)
898 {
899 if (context->type == AUDIT_KERN_MODULE) {
900 kfree(context->module.name);
901 context->module.name = NULL;
902 }
903 }
904 static inline void audit_free_names(struct audit_context *context)
905 {
906 struct audit_names *n, *next;
907
908 list_for_each_entry_safe(n, next, &context->names_list, list) {
909 list_del(&n->list);
910 if (n->name)
911 putname(n->name);
912 if (n->should_free)
913 kfree(n);
914 }
915 context->name_count = 0;
916 path_put(&context->pwd);
917 context->pwd.dentry = NULL;
918 context->pwd.mnt = NULL;
919 }
920
921 static inline void audit_free_aux(struct audit_context *context)
922 {
923 struct audit_aux_data *aux;
924
925 while ((aux = context->aux)) {
926 context->aux = aux->next;
927 kfree(aux);
928 }
929 while ((aux = context->aux_pids)) {
930 context->aux_pids = aux->next;
931 kfree(aux);
932 }
933 }
934
935 static inline struct audit_context *audit_alloc_context(enum audit_state state)
936 {
937 struct audit_context *context;
938
939 context = kzalloc(sizeof(*context), GFP_KERNEL);
940 if (!context)
941 return NULL;
942 context->state = state;
943 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
944 INIT_LIST_HEAD(&context->killed_trees);
945 INIT_LIST_HEAD(&context->names_list);
946 context->fds[0] = -1;
947 context->return_valid = AUDITSC_INVALID;
948 return context;
949 }
950
951 /**
952 * audit_alloc - allocate an audit context block for a task
953 * @tsk: task
954 *
955 * Filter on the task information and allocate a per-task audit context
956 * if necessary. Doing so turns on system call auditing for the
957 * specified task. This is called from copy_process, so no lock is
958 * needed.
959 */
960 int audit_alloc(struct task_struct *tsk)
961 {
962 struct audit_context *context;
963 enum audit_state state;
964 char *key = NULL;
965
966 if (likely(!audit_ever_enabled))
967 return 0; /* Return if not auditing. */
968
969 state = audit_filter_task(tsk, &key);
970 if (state == AUDIT_STATE_DISABLED) {
971 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
972 return 0;
973 }
974
975 if (!(context = audit_alloc_context(state))) {
976 kfree(key);
977 audit_log_lost("out of memory in audit_alloc");
978 return -ENOMEM;
979 }
980 context->filterkey = key;
981
982 audit_set_context(tsk, context);
983 set_task_syscall_work(tsk, SYSCALL_AUDIT);
984 return 0;
985 }
986
987 static inline void audit_free_context(struct audit_context *context)
988 {
989 audit_free_module(context);
990 audit_free_names(context);
991 unroll_tree_refs(context, NULL, 0);
992 free_tree_refs(context);
993 audit_free_aux(context);
994 kfree(context->filterkey);
995 kfree(context->sockaddr);
996 audit_proctitle_free(context);
997 kfree(context);
998 }
999
1000 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1001 kuid_t auid, kuid_t uid,
1002 unsigned int sessionid,
1003 struct lsmblob *blob, char *comm)
1004 {
1005 struct audit_buffer *ab;
1006 char *ctx = NULL;
1007 u32 len;
1008 int rc = 0;
1009
1010 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1011 if (!ab)
1012 return rc;
1013
1014 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1015 from_kuid(&init_user_ns, auid),
1016 from_kuid(&init_user_ns, uid), sessionid);
1017 if (lsmblob_is_set(blob)) {
1018 if (security_secid_to_secctx(blob, &ctx, &len)) {
1019 audit_log_format(ab, " obj=(none)");
1020 rc = 1;
1021 } else {
1022 audit_log_format(ab, " obj=%s", ctx);
1023 security_release_secctx(ctx, len);
1024 }
1025 }
1026 audit_log_format(ab, " ocomm=");
1027 audit_log_untrustedstring(ab, comm);
1028 audit_log_end(ab);
1029
1030 return rc;
1031 }
1032
1033 static void audit_log_execve_info(struct audit_context *context,
1034 struct audit_buffer **ab)
1035 {
1036 long len_max;
1037 long len_rem;
1038 long len_full;
1039 long len_buf;
1040 long len_abuf = 0;
1041 long len_tmp;
1042 bool require_data;
1043 bool encode;
1044 unsigned int iter;
1045 unsigned int arg;
1046 char *buf_head;
1047 char *buf;
1048 const char __user *p = (const char __user *)current->mm->arg_start;
1049
1050 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1051 * data we put in the audit record for this argument (see the
1052 * code below) ... at this point in time 96 is plenty */
1053 char abuf[96];
1054
1055 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1056 * current value of 7500 is not as important as the fact that it
1057 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1058 * room if we go over a little bit in the logging below */
1059 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1060 len_max = MAX_EXECVE_AUDIT_LEN;
1061
1062 /* scratch buffer to hold the userspace args */
1063 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1064 if (!buf_head) {
1065 audit_panic("out of memory for argv string");
1066 return;
1067 }
1068 buf = buf_head;
1069
1070 audit_log_format(*ab, "argc=%d", context->execve.argc);
1071
1072 len_rem = len_max;
1073 len_buf = 0;
1074 len_full = 0;
1075 require_data = true;
1076 encode = false;
1077 iter = 0;
1078 arg = 0;
1079 do {
1080 /* NOTE: we don't ever want to trust this value for anything
1081 * serious, but the audit record format insists we
1082 * provide an argument length for really long arguments,
1083 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1084 * to use strncpy_from_user() to obtain this value for
1085 * recording in the log, although we don't use it
1086 * anywhere here to avoid a double-fetch problem */
1087 if (len_full == 0)
1088 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1089
1090 /* read more data from userspace */
1091 if (require_data) {
1092 /* can we make more room in the buffer? */
1093 if (buf != buf_head) {
1094 memmove(buf_head, buf, len_buf);
1095 buf = buf_head;
1096 }
1097
1098 /* fetch as much as we can of the argument */
1099 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1100 len_max - len_buf);
1101 if (len_tmp == -EFAULT) {
1102 /* unable to copy from userspace */
1103 send_sig(SIGKILL, current, 0);
1104 goto out;
1105 } else if (len_tmp == (len_max - len_buf)) {
1106 /* buffer is not large enough */
1107 require_data = true;
1108 /* NOTE: if we are going to span multiple
1109 * buffers force the encoding so we stand
1110 * a chance at a sane len_full value and
1111 * consistent record encoding */
1112 encode = true;
1113 len_full = len_full * 2;
1114 p += len_tmp;
1115 } else {
1116 require_data = false;
1117 if (!encode)
1118 encode = audit_string_contains_control(
1119 buf, len_tmp);
1120 /* try to use a trusted value for len_full */
1121 if (len_full < len_max)
1122 len_full = (encode ?
1123 len_tmp * 2 : len_tmp);
1124 p += len_tmp + 1;
1125 }
1126 len_buf += len_tmp;
1127 buf_head[len_buf] = '\0';
1128
1129 /* length of the buffer in the audit record? */
1130 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1131 }
1132
1133 /* write as much as we can to the audit log */
1134 if (len_buf >= 0) {
1135 /* NOTE: some magic numbers here - basically if we
1136 * can't fit a reasonable amount of data into the
1137 * existing audit buffer, flush it and start with
1138 * a new buffer */
1139 if ((sizeof(abuf) + 8) > len_rem) {
1140 len_rem = len_max;
1141 audit_log_end(*ab);
1142 *ab = audit_log_start(context,
1143 GFP_KERNEL, AUDIT_EXECVE);
1144 if (!*ab)
1145 goto out;
1146 }
1147
1148 /* create the non-arg portion of the arg record */
1149 len_tmp = 0;
1150 if (require_data || (iter > 0) ||
1151 ((len_abuf + sizeof(abuf)) > len_rem)) {
1152 if (iter == 0) {
1153 len_tmp += snprintf(&abuf[len_tmp],
1154 sizeof(abuf) - len_tmp,
1155 " a%d_len=%lu",
1156 arg, len_full);
1157 }
1158 len_tmp += snprintf(&abuf[len_tmp],
1159 sizeof(abuf) - len_tmp,
1160 " a%d[%d]=", arg, iter++);
1161 } else
1162 len_tmp += snprintf(&abuf[len_tmp],
1163 sizeof(abuf) - len_tmp,
1164 " a%d=", arg);
1165 WARN_ON(len_tmp >= sizeof(abuf));
1166 abuf[sizeof(abuf) - 1] = '\0';
1167
1168 /* log the arg in the audit record */
1169 audit_log_format(*ab, "%s", abuf);
1170 len_rem -= len_tmp;
1171 len_tmp = len_buf;
1172 if (encode) {
1173 if (len_abuf > len_rem)
1174 len_tmp = len_rem / 2; /* encoding */
1175 audit_log_n_hex(*ab, buf, len_tmp);
1176 len_rem -= len_tmp * 2;
1177 len_abuf -= len_tmp * 2;
1178 } else {
1179 if (len_abuf > len_rem)
1180 len_tmp = len_rem - 2; /* quotes */
1181 audit_log_n_string(*ab, buf, len_tmp);
1182 len_rem -= len_tmp + 2;
1183 /* don't subtract the "2" because we still need
1184 * to add quotes to the remaining string */
1185 len_abuf -= len_tmp;
1186 }
1187 len_buf -= len_tmp;
1188 buf += len_tmp;
1189 }
1190
1191 /* ready to move to the next argument? */
1192 if ((len_buf == 0) && !require_data) {
1193 arg++;
1194 iter = 0;
1195 len_full = 0;
1196 require_data = true;
1197 encode = false;
1198 }
1199 } while (arg < context->execve.argc);
1200
1201 /* NOTE: the caller handles the final audit_log_end() call */
1202
1203 out:
1204 kfree(buf_head);
1205 }
1206
1207 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1208 kernel_cap_t *cap)
1209 {
1210 int i;
1211
1212 if (cap_isclear(*cap)) {
1213 audit_log_format(ab, " %s=0", prefix);
1214 return;
1215 }
1216 audit_log_format(ab, " %s=", prefix);
1217 CAP_FOR_EACH_U32(i)
1218 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1219 }
1220
1221 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1222 {
1223 if (name->fcap_ver == -1) {
1224 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1225 return;
1226 }
1227 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1228 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1229 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1230 name->fcap.fE, name->fcap_ver,
1231 from_kuid(&init_user_ns, name->fcap.rootid));
1232 }
1233
1234 static void show_special(struct audit_context *context, int *call_panic)
1235 {
1236 struct audit_buffer *ab;
1237 int i;
1238
1239 ab = audit_log_start(context, GFP_KERNEL, context->type);
1240 if (!ab)
1241 return;
1242
1243 switch (context->type) {
1244 case AUDIT_SOCKETCALL: {
1245 int nargs = context->socketcall.nargs;
1246
1247 audit_log_format(ab, "nargs=%d", nargs);
1248 for (i = 0; i < nargs; i++)
1249 audit_log_format(ab, " a%d=%lx", i,
1250 context->socketcall.args[i]);
1251 break; }
1252 case AUDIT_IPC: {
1253 u32 osid = context->ipc.osid;
1254
1255 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1256 from_kuid(&init_user_ns, context->ipc.uid),
1257 from_kgid(&init_user_ns, context->ipc.gid),
1258 context->ipc.mode);
1259 if (osid) {
1260 char *ctx = NULL;
1261 u32 len;
1262 struct lsmblob blob;
1263
1264 lsmblob_init(&blob, osid);
1265 if (security_secid_to_secctx(&blob, &ctx, &len)) {
1266 audit_log_format(ab, " osid=%u", osid);
1267 *call_panic = 1;
1268 } else {
1269 audit_log_format(ab, " obj=%s", ctx);
1270 security_release_secctx(ctx, len);
1271 }
1272 }
1273 if (context->ipc.has_perm) {
1274 audit_log_end(ab);
1275 ab = audit_log_start(context, GFP_KERNEL,
1276 AUDIT_IPC_SET_PERM);
1277 if (unlikely(!ab))
1278 return;
1279 audit_log_format(ab,
1280 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1281 context->ipc.qbytes,
1282 context->ipc.perm_uid,
1283 context->ipc.perm_gid,
1284 context->ipc.perm_mode);
1285 }
1286 break; }
1287 case AUDIT_MQ_OPEN:
1288 audit_log_format(ab,
1289 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1290 "mq_msgsize=%ld mq_curmsgs=%ld",
1291 context->mq_open.oflag, context->mq_open.mode,
1292 context->mq_open.attr.mq_flags,
1293 context->mq_open.attr.mq_maxmsg,
1294 context->mq_open.attr.mq_msgsize,
1295 context->mq_open.attr.mq_curmsgs);
1296 break;
1297 case AUDIT_MQ_SENDRECV:
1298 audit_log_format(ab,
1299 "mqdes=%d msg_len=%zd msg_prio=%u "
1300 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1301 context->mq_sendrecv.mqdes,
1302 context->mq_sendrecv.msg_len,
1303 context->mq_sendrecv.msg_prio,
1304 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1305 context->mq_sendrecv.abs_timeout.tv_nsec);
1306 break;
1307 case AUDIT_MQ_NOTIFY:
1308 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1309 context->mq_notify.mqdes,
1310 context->mq_notify.sigev_signo);
1311 break;
1312 case AUDIT_MQ_GETSETATTR: {
1313 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1314
1315 audit_log_format(ab,
1316 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1317 "mq_curmsgs=%ld ",
1318 context->mq_getsetattr.mqdes,
1319 attr->mq_flags, attr->mq_maxmsg,
1320 attr->mq_msgsize, attr->mq_curmsgs);
1321 break; }
1322 case AUDIT_CAPSET:
1323 audit_log_format(ab, "pid=%d", context->capset.pid);
1324 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1325 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1326 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1327 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1328 break;
1329 case AUDIT_MMAP:
1330 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1331 context->mmap.flags);
1332 break;
1333 case AUDIT_EXECVE:
1334 audit_log_execve_info(context, &ab);
1335 break;
1336 case AUDIT_KERN_MODULE:
1337 audit_log_format(ab, "name=");
1338 if (context->module.name) {
1339 audit_log_untrustedstring(ab, context->module.name);
1340 } else
1341 audit_log_format(ab, "(null)");
1342
1343 break;
1344 }
1345 audit_log_end(ab);
1346 }
1347
1348 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1349 {
1350 char *end = proctitle + len - 1;
1351
1352 while (end > proctitle && !isprint(*end))
1353 end--;
1354
1355 /* catch the case where proctitle is only 1 non-print character */
1356 len = end - proctitle + 1;
1357 len -= isprint(proctitle[len-1]) == 0;
1358 return len;
1359 }
1360
1361 /*
1362 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1363 * @context: audit_context for the task
1364 * @n: audit_names structure with reportable details
1365 * @path: optional path to report instead of audit_names->name
1366 * @record_num: record number to report when handling a list of names
1367 * @call_panic: optional pointer to int that will be updated if secid fails
1368 */
1369 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1370 const struct path *path, int record_num, int *call_panic)
1371 {
1372 struct audit_buffer *ab;
1373
1374 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1375 if (!ab)
1376 return;
1377
1378 audit_log_format(ab, "item=%d", record_num);
1379
1380 if (path)
1381 audit_log_d_path(ab, " name=", path);
1382 else if (n->name) {
1383 switch (n->name_len) {
1384 case AUDIT_NAME_FULL:
1385 /* log the full path */
1386 audit_log_format(ab, " name=");
1387 audit_log_untrustedstring(ab, n->name->name);
1388 break;
1389 case 0:
1390 /* name was specified as a relative path and the
1391 * directory component is the cwd
1392 */
1393 if (context->pwd.dentry && context->pwd.mnt)
1394 audit_log_d_path(ab, " name=", &context->pwd);
1395 else
1396 audit_log_format(ab, " name=(null)");
1397 break;
1398 default:
1399 /* log the name's directory component */
1400 audit_log_format(ab, " name=");
1401 audit_log_n_untrustedstring(ab, n->name->name,
1402 n->name_len);
1403 }
1404 } else
1405 audit_log_format(ab, " name=(null)");
1406
1407 if (n->ino != AUDIT_INO_UNSET)
1408 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1409 n->ino,
1410 MAJOR(n->dev),
1411 MINOR(n->dev),
1412 n->mode,
1413 from_kuid(&init_user_ns, n->uid),
1414 from_kgid(&init_user_ns, n->gid),
1415 MAJOR(n->rdev),
1416 MINOR(n->rdev));
1417 if (n->osid != 0) {
1418 char *ctx = NULL;
1419 u32 len;
1420 struct lsmblob blob;
1421
1422 lsmblob_init(&blob, n->osid);
1423 if (security_secid_to_secctx(&blob, &ctx, &len)) {
1424 audit_log_format(ab, " osid=%u", n->osid);
1425 if (call_panic)
1426 *call_panic = 2;
1427 } else {
1428 audit_log_format(ab, " obj=%s", ctx);
1429 security_release_secctx(ctx, len);
1430 }
1431 }
1432
1433 /* log the audit_names record type */
1434 switch (n->type) {
1435 case AUDIT_TYPE_NORMAL:
1436 audit_log_format(ab, " nametype=NORMAL");
1437 break;
1438 case AUDIT_TYPE_PARENT:
1439 audit_log_format(ab, " nametype=PARENT");
1440 break;
1441 case AUDIT_TYPE_CHILD_DELETE:
1442 audit_log_format(ab, " nametype=DELETE");
1443 break;
1444 case AUDIT_TYPE_CHILD_CREATE:
1445 audit_log_format(ab, " nametype=CREATE");
1446 break;
1447 default:
1448 audit_log_format(ab, " nametype=UNKNOWN");
1449 break;
1450 }
1451
1452 audit_log_fcaps(ab, n);
1453 audit_log_end(ab);
1454 }
1455
1456 static void audit_log_proctitle(void)
1457 {
1458 int res;
1459 char *buf;
1460 char *msg = "(null)";
1461 int len = strlen(msg);
1462 struct audit_context *context = audit_context();
1463 struct audit_buffer *ab;
1464
1465 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1466 if (!ab)
1467 return; /* audit_panic or being filtered */
1468
1469 audit_log_format(ab, "proctitle=");
1470
1471 /* Not cached */
1472 if (!context->proctitle.value) {
1473 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1474 if (!buf)
1475 goto out;
1476 /* Historically called this from procfs naming */
1477 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1478 if (res == 0) {
1479 kfree(buf);
1480 goto out;
1481 }
1482 res = audit_proctitle_rtrim(buf, res);
1483 if (res == 0) {
1484 kfree(buf);
1485 goto out;
1486 }
1487 context->proctitle.value = buf;
1488 context->proctitle.len = res;
1489 }
1490 msg = context->proctitle.value;
1491 len = context->proctitle.len;
1492 out:
1493 audit_log_n_untrustedstring(ab, msg, len);
1494 audit_log_end(ab);
1495 }
1496
1497 static void audit_log_exit(void)
1498 {
1499 int i, call_panic = 0;
1500 struct audit_context *context = audit_context();
1501 struct audit_buffer *ab;
1502 struct audit_aux_data *aux;
1503 struct audit_names *n;
1504
1505 context->personality = current->personality;
1506
1507 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1508 if (!ab)
1509 return; /* audit_panic has been called */
1510 audit_log_format(ab, "arch=%x syscall=%d",
1511 context->arch, context->major);
1512 if (context->personality != PER_LINUX)
1513 audit_log_format(ab, " per=%lx", context->personality);
1514 if (context->return_valid != AUDITSC_INVALID)
1515 audit_log_format(ab, " success=%s exit=%ld",
1516 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1517 context->return_code);
1518
1519 audit_log_format(ab,
1520 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1521 context->argv[0],
1522 context->argv[1],
1523 context->argv[2],
1524 context->argv[3],
1525 context->name_count);
1526
1527 audit_log_task_info(ab);
1528 audit_log_key(ab, context->filterkey);
1529 audit_log_end(ab);
1530
1531 for (aux = context->aux; aux; aux = aux->next) {
1532
1533 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1534 if (!ab)
1535 continue; /* audit_panic has been called */
1536
1537 switch (aux->type) {
1538
1539 case AUDIT_BPRM_FCAPS: {
1540 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1541
1542 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1543 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1544 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1545 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1546 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1547 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1548 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1549 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1550 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1551 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1552 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1553 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1554 audit_log_format(ab, " frootid=%d",
1555 from_kuid(&init_user_ns,
1556 axs->fcap.rootid));
1557 break; }
1558
1559 }
1560 audit_log_end(ab);
1561 }
1562
1563 if (context->type)
1564 show_special(context, &call_panic);
1565
1566 if (context->fds[0] >= 0) {
1567 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1568 if (ab) {
1569 audit_log_format(ab, "fd0=%d fd1=%d",
1570 context->fds[0], context->fds[1]);
1571 audit_log_end(ab);
1572 }
1573 }
1574
1575 if (context->sockaddr_len) {
1576 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1577 if (ab) {
1578 audit_log_format(ab, "saddr=");
1579 audit_log_n_hex(ab, (void *)context->sockaddr,
1580 context->sockaddr_len);
1581 audit_log_end(ab);
1582 }
1583 }
1584
1585 for (aux = context->aux_pids; aux; aux = aux->next) {
1586 struct audit_aux_data_pids *axs = (void *)aux;
1587
1588 for (i = 0; i < axs->pid_count; i++)
1589 if (audit_log_pid_context(context, axs->target_pid[i],
1590 axs->target_auid[i],
1591 axs->target_uid[i],
1592 axs->target_sessionid[i],
1593 &axs->target_lsm[i],
1594 axs->target_comm[i]))
1595 call_panic = 1;
1596 }
1597
1598 if (context->target_pid &&
1599 audit_log_pid_context(context, context->target_pid,
1600 context->target_auid, context->target_uid,
1601 context->target_sessionid,
1602 &context->target_lsm, context->target_comm))
1603 call_panic = 1;
1604
1605 if (context->pwd.dentry && context->pwd.mnt) {
1606 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1607 if (ab) {
1608 audit_log_d_path(ab, "cwd=", &context->pwd);
1609 audit_log_end(ab);
1610 }
1611 }
1612
1613 i = 0;
1614 list_for_each_entry(n, &context->names_list, list) {
1615 if (n->hidden)
1616 continue;
1617 audit_log_name(context, n, NULL, i++, &call_panic);
1618 }
1619
1620 audit_log_proctitle();
1621
1622 /* Send end of event record to help user space know we are finished */
1623 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1624 if (ab)
1625 audit_log_end(ab);
1626 if (call_panic)
1627 audit_panic("error converting sid to string");
1628 }
1629
1630 /**
1631 * __audit_free - free a per-task audit context
1632 * @tsk: task whose audit context block to free
1633 *
1634 * Called from copy_process and do_exit
1635 */
1636 void __audit_free(struct task_struct *tsk)
1637 {
1638 struct audit_context *context = tsk->audit_context;
1639
1640 if (!context)
1641 return;
1642
1643 if (!list_empty(&context->killed_trees))
1644 audit_kill_trees(context);
1645
1646 /* We are called either by do_exit() or the fork() error handling code;
1647 * in the former case tsk == current and in the latter tsk is a
1648 * random task_struct that doesn't doesn't have any meaningful data we
1649 * need to log via audit_log_exit().
1650 */
1651 if (tsk == current && !context->dummy && context->in_syscall) {
1652 context->return_valid = AUDITSC_INVALID;
1653 context->return_code = 0;
1654
1655 audit_filter_syscall(tsk, context);
1656 audit_filter_inodes(tsk, context);
1657 if (context->current_state == AUDIT_STATE_RECORD)
1658 audit_log_exit();
1659 }
1660
1661 audit_set_context(tsk, NULL);
1662 audit_free_context(context);
1663 }
1664
1665 /**
1666 * __audit_syscall_entry - fill in an audit record at syscall entry
1667 * @major: major syscall type (function)
1668 * @a1: additional syscall register 1
1669 * @a2: additional syscall register 2
1670 * @a3: additional syscall register 3
1671 * @a4: additional syscall register 4
1672 *
1673 * Fill in audit context at syscall entry. This only happens if the
1674 * audit context was created when the task was created and the state or
1675 * filters demand the audit context be built. If the state from the
1676 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1677 * then the record will be written at syscall exit time (otherwise, it
1678 * will only be written if another part of the kernel requests that it
1679 * be written).
1680 */
1681 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1682 unsigned long a3, unsigned long a4)
1683 {
1684 struct audit_context *context = audit_context();
1685 enum audit_state state;
1686
1687 if (!audit_enabled || !context)
1688 return;
1689
1690 BUG_ON(context->in_syscall || context->name_count);
1691
1692 state = context->state;
1693 if (state == AUDIT_STATE_DISABLED)
1694 return;
1695
1696 context->dummy = !audit_n_rules;
1697 if (!context->dummy && state == AUDIT_STATE_BUILD) {
1698 context->prio = 0;
1699 if (auditd_test_task(current))
1700 return;
1701 }
1702
1703 context->arch = syscall_get_arch(current);
1704 context->major = major;
1705 context->argv[0] = a1;
1706 context->argv[1] = a2;
1707 context->argv[2] = a3;
1708 context->argv[3] = a4;
1709 context->serial = 0;
1710 context->in_syscall = 1;
1711 context->current_state = state;
1712 context->ppid = 0;
1713 ktime_get_coarse_real_ts64(&context->ctime);
1714 }
1715
1716 /**
1717 * __audit_syscall_exit - deallocate audit context after a system call
1718 * @success: success value of the syscall
1719 * @return_code: return value of the syscall
1720 *
1721 * Tear down after system call. If the audit context has been marked as
1722 * auditable (either because of the AUDIT_STATE_RECORD state from
1723 * filtering, or because some other part of the kernel wrote an audit
1724 * message), then write out the syscall information. In call cases,
1725 * free the names stored from getname().
1726 */
1727 void __audit_syscall_exit(int success, long return_code)
1728 {
1729 struct audit_context *context;
1730
1731 context = audit_context();
1732 if (!context)
1733 return;
1734
1735 if (!list_empty(&context->killed_trees))
1736 audit_kill_trees(context);
1737
1738 if (!context->dummy && context->in_syscall) {
1739 if (success)
1740 context->return_valid = AUDITSC_SUCCESS;
1741 else
1742 context->return_valid = AUDITSC_FAILURE;
1743
1744 /*
1745 * we need to fix up the return code in the audit logs if the
1746 * actual return codes are later going to be fixed up by the
1747 * arch specific signal handlers
1748 *
1749 * This is actually a test for:
1750 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1751 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1752 *
1753 * but is faster than a bunch of ||
1754 */
1755 if (unlikely(return_code <= -ERESTARTSYS) &&
1756 (return_code >= -ERESTART_RESTARTBLOCK) &&
1757 (return_code != -ENOIOCTLCMD))
1758 context->return_code = -EINTR;
1759 else
1760 context->return_code = return_code;
1761
1762 audit_filter_syscall(current, context);
1763 audit_filter_inodes(current, context);
1764 if (context->current_state == AUDIT_STATE_RECORD)
1765 audit_log_exit();
1766 }
1767
1768 context->in_syscall = 0;
1769 context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1770
1771 audit_free_module(context);
1772 audit_free_names(context);
1773 unroll_tree_refs(context, NULL, 0);
1774 audit_free_aux(context);
1775 context->aux = NULL;
1776 context->aux_pids = NULL;
1777 context->target_pid = 0;
1778 lsmblob_init(&context->target_lsm, 0);
1779 context->sockaddr_len = 0;
1780 context->type = 0;
1781 context->fds[0] = -1;
1782 if (context->state != AUDIT_STATE_RECORD) {
1783 kfree(context->filterkey);
1784 context->filterkey = NULL;
1785 }
1786 }
1787
1788 static inline void handle_one(const struct inode *inode)
1789 {
1790 struct audit_context *context;
1791 struct audit_tree_refs *p;
1792 struct audit_chunk *chunk;
1793 int count;
1794
1795 if (likely(!inode->i_fsnotify_marks))
1796 return;
1797 context = audit_context();
1798 p = context->trees;
1799 count = context->tree_count;
1800 rcu_read_lock();
1801 chunk = audit_tree_lookup(inode);
1802 rcu_read_unlock();
1803 if (!chunk)
1804 return;
1805 if (likely(put_tree_ref(context, chunk)))
1806 return;
1807 if (unlikely(!grow_tree_refs(context))) {
1808 pr_warn("out of memory, audit has lost a tree reference\n");
1809 audit_set_auditable(context);
1810 audit_put_chunk(chunk);
1811 unroll_tree_refs(context, p, count);
1812 return;
1813 }
1814 put_tree_ref(context, chunk);
1815 }
1816
1817 static void handle_path(const struct dentry *dentry)
1818 {
1819 struct audit_context *context;
1820 struct audit_tree_refs *p;
1821 const struct dentry *d, *parent;
1822 struct audit_chunk *drop;
1823 unsigned long seq;
1824 int count;
1825
1826 context = audit_context();
1827 p = context->trees;
1828 count = context->tree_count;
1829 retry:
1830 drop = NULL;
1831 d = dentry;
1832 rcu_read_lock();
1833 seq = read_seqbegin(&rename_lock);
1834 for(;;) {
1835 struct inode *inode = d_backing_inode(d);
1836
1837 if (inode && unlikely(inode->i_fsnotify_marks)) {
1838 struct audit_chunk *chunk;
1839
1840 chunk = audit_tree_lookup(inode);
1841 if (chunk) {
1842 if (unlikely(!put_tree_ref(context, chunk))) {
1843 drop = chunk;
1844 break;
1845 }
1846 }
1847 }
1848 parent = d->d_parent;
1849 if (parent == d)
1850 break;
1851 d = parent;
1852 }
1853 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1854 rcu_read_unlock();
1855 if (!drop) {
1856 /* just a race with rename */
1857 unroll_tree_refs(context, p, count);
1858 goto retry;
1859 }
1860 audit_put_chunk(drop);
1861 if (grow_tree_refs(context)) {
1862 /* OK, got more space */
1863 unroll_tree_refs(context, p, count);
1864 goto retry;
1865 }
1866 /* too bad */
1867 pr_warn("out of memory, audit has lost a tree reference\n");
1868 unroll_tree_refs(context, p, count);
1869 audit_set_auditable(context);
1870 return;
1871 }
1872 rcu_read_unlock();
1873 }
1874
1875 static struct audit_names *audit_alloc_name(struct audit_context *context,
1876 unsigned char type)
1877 {
1878 struct audit_names *aname;
1879
1880 if (context->name_count < AUDIT_NAMES) {
1881 aname = &context->preallocated_names[context->name_count];
1882 memset(aname, 0, sizeof(*aname));
1883 } else {
1884 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1885 if (!aname)
1886 return NULL;
1887 aname->should_free = true;
1888 }
1889
1890 aname->ino = AUDIT_INO_UNSET;
1891 aname->type = type;
1892 list_add_tail(&aname->list, &context->names_list);
1893
1894 context->name_count++;
1895 if (!context->pwd.dentry)
1896 get_fs_pwd(current->fs, &context->pwd);
1897 return aname;
1898 }
1899
1900 /**
1901 * __audit_reusename - fill out filename with info from existing entry
1902 * @uptr: userland ptr to pathname
1903 *
1904 * Search the audit_names list for the current audit context. If there is an
1905 * existing entry with a matching "uptr" then return the filename
1906 * associated with that audit_name. If not, return NULL.
1907 */
1908 struct filename *
1909 __audit_reusename(const __user char *uptr)
1910 {
1911 struct audit_context *context = audit_context();
1912 struct audit_names *n;
1913
1914 list_for_each_entry(n, &context->names_list, list) {
1915 if (!n->name)
1916 continue;
1917 if (n->name->uptr == uptr) {
1918 n->name->refcnt++;
1919 return n->name;
1920 }
1921 }
1922 return NULL;
1923 }
1924
1925 /**
1926 * __audit_getname - add a name to the list
1927 * @name: name to add
1928 *
1929 * Add a name to the list of audit names for this context.
1930 * Called from fs/namei.c:getname().
1931 */
1932 void __audit_getname(struct filename *name)
1933 {
1934 struct audit_context *context = audit_context();
1935 struct audit_names *n;
1936
1937 if (!context->in_syscall)
1938 return;
1939
1940 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1941 if (!n)
1942 return;
1943
1944 n->name = name;
1945 n->name_len = AUDIT_NAME_FULL;
1946 name->aname = n;
1947 name->refcnt++;
1948 }
1949
1950 static inline int audit_copy_fcaps(struct audit_names *name,
1951 const struct dentry *dentry)
1952 {
1953 struct cpu_vfs_cap_data caps;
1954 int rc;
1955
1956 if (!dentry)
1957 return 0;
1958
1959 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1960 if (rc)
1961 return rc;
1962
1963 name->fcap.permitted = caps.permitted;
1964 name->fcap.inheritable = caps.inheritable;
1965 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1966 name->fcap.rootid = caps.rootid;
1967 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1968 VFS_CAP_REVISION_SHIFT;
1969
1970 return 0;
1971 }
1972
1973 /* Copy inode data into an audit_names. */
1974 static void audit_copy_inode(struct audit_names *name,
1975 const struct dentry *dentry,
1976 struct inode *inode, unsigned int flags)
1977 {
1978 struct lsmblob blob;
1979
1980 name->ino = inode->i_ino;
1981 name->dev = inode->i_sb->s_dev;
1982 name->mode = inode->i_mode;
1983 name->uid = inode->i_uid;
1984 name->gid = inode->i_gid;
1985 name->rdev = inode->i_rdev;
1986 security_inode_getsecid(inode, &blob);
1987 /* scaffolding until osid is updated */
1988 name->osid = blob.secid[0];
1989 if (flags & AUDIT_INODE_NOEVAL) {
1990 name->fcap_ver = -1;
1991 return;
1992 }
1993 audit_copy_fcaps(name, dentry);
1994 }
1995
1996 /**
1997 * __audit_inode - store the inode and device from a lookup
1998 * @name: name being audited
1999 * @dentry: dentry being audited
2000 * @flags: attributes for this particular entry
2001 */
2002 void __audit_inode(struct filename *name, const struct dentry *dentry,
2003 unsigned int flags)
2004 {
2005 struct audit_context *context = audit_context();
2006 struct inode *inode = d_backing_inode(dentry);
2007 struct audit_names *n;
2008 bool parent = flags & AUDIT_INODE_PARENT;
2009 struct audit_entry *e;
2010 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2011 int i;
2012
2013 if (!context->in_syscall)
2014 return;
2015
2016 rcu_read_lock();
2017 list_for_each_entry_rcu(e, list, list) {
2018 for (i = 0; i < e->rule.field_count; i++) {
2019 struct audit_field *f = &e->rule.fields[i];
2020
2021 if (f->type == AUDIT_FSTYPE
2022 && audit_comparator(inode->i_sb->s_magic,
2023 f->op, f->val)
2024 && e->rule.action == AUDIT_NEVER) {
2025 rcu_read_unlock();
2026 return;
2027 }
2028 }
2029 }
2030 rcu_read_unlock();
2031
2032 if (!name)
2033 goto out_alloc;
2034
2035 /*
2036 * If we have a pointer to an audit_names entry already, then we can
2037 * just use it directly if the type is correct.
2038 */
2039 n = name->aname;
2040 if (n) {
2041 if (parent) {
2042 if (n->type == AUDIT_TYPE_PARENT ||
2043 n->type == AUDIT_TYPE_UNKNOWN)
2044 goto out;
2045 } else {
2046 if (n->type != AUDIT_TYPE_PARENT)
2047 goto out;
2048 }
2049 }
2050
2051 list_for_each_entry_reverse(n, &context->names_list, list) {
2052 if (n->ino) {
2053 /* valid inode number, use that for the comparison */
2054 if (n->ino != inode->i_ino ||
2055 n->dev != inode->i_sb->s_dev)
2056 continue;
2057 } else if (n->name) {
2058 /* inode number has not been set, check the name */
2059 if (strcmp(n->name->name, name->name))
2060 continue;
2061 } else
2062 /* no inode and no name (?!) ... this is odd ... */
2063 continue;
2064
2065 /* match the correct record type */
2066 if (parent) {
2067 if (n->type == AUDIT_TYPE_PARENT ||
2068 n->type == AUDIT_TYPE_UNKNOWN)
2069 goto out;
2070 } else {
2071 if (n->type != AUDIT_TYPE_PARENT)
2072 goto out;
2073 }
2074 }
2075
2076 out_alloc:
2077 /* unable to find an entry with both a matching name and type */
2078 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2079 if (!n)
2080 return;
2081 if (name) {
2082 n->name = name;
2083 name->refcnt++;
2084 }
2085
2086 out:
2087 if (parent) {
2088 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2089 n->type = AUDIT_TYPE_PARENT;
2090 if (flags & AUDIT_INODE_HIDDEN)
2091 n->hidden = true;
2092 } else {
2093 n->name_len = AUDIT_NAME_FULL;
2094 n->type = AUDIT_TYPE_NORMAL;
2095 }
2096 handle_path(dentry);
2097 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2098 }
2099
2100 void __audit_file(const struct file *file)
2101 {
2102 __audit_inode(NULL, file->f_path.dentry, 0);
2103 }
2104
2105 /**
2106 * __audit_inode_child - collect inode info for created/removed objects
2107 * @parent: inode of dentry parent
2108 * @dentry: dentry being audited
2109 * @type: AUDIT_TYPE_* value that we're looking for
2110 *
2111 * For syscalls that create or remove filesystem objects, audit_inode
2112 * can only collect information for the filesystem object's parent.
2113 * This call updates the audit context with the child's information.
2114 * Syscalls that create a new filesystem object must be hooked after
2115 * the object is created. Syscalls that remove a filesystem object
2116 * must be hooked prior, in order to capture the target inode during
2117 * unsuccessful attempts.
2118 */
2119 void __audit_inode_child(struct inode *parent,
2120 const struct dentry *dentry,
2121 const unsigned char type)
2122 {
2123 struct audit_context *context = audit_context();
2124 struct inode *inode = d_backing_inode(dentry);
2125 const struct qstr *dname = &dentry->d_name;
2126 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2127 struct audit_entry *e;
2128 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2129 int i;
2130
2131 if (!context->in_syscall)
2132 return;
2133
2134 rcu_read_lock();
2135 list_for_each_entry_rcu(e, list, list) {
2136 for (i = 0; i < e->rule.field_count; i++) {
2137 struct audit_field *f = &e->rule.fields[i];
2138
2139 if (f->type == AUDIT_FSTYPE
2140 && audit_comparator(parent->i_sb->s_magic,
2141 f->op, f->val)
2142 && e->rule.action == AUDIT_NEVER) {
2143 rcu_read_unlock();
2144 return;
2145 }
2146 }
2147 }
2148 rcu_read_unlock();
2149
2150 if (inode)
2151 handle_one(inode);
2152
2153 /* look for a parent entry first */
2154 list_for_each_entry(n, &context->names_list, list) {
2155 if (!n->name ||
2156 (n->type != AUDIT_TYPE_PARENT &&
2157 n->type != AUDIT_TYPE_UNKNOWN))
2158 continue;
2159
2160 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2161 !audit_compare_dname_path(dname,
2162 n->name->name, n->name_len)) {
2163 if (n->type == AUDIT_TYPE_UNKNOWN)
2164 n->type = AUDIT_TYPE_PARENT;
2165 found_parent = n;
2166 break;
2167 }
2168 }
2169
2170 /* is there a matching child entry? */
2171 list_for_each_entry(n, &context->names_list, list) {
2172 /* can only match entries that have a name */
2173 if (!n->name ||
2174 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2175 continue;
2176
2177 if (!strcmp(dname->name, n->name->name) ||
2178 !audit_compare_dname_path(dname, n->name->name,
2179 found_parent ?
2180 found_parent->name_len :
2181 AUDIT_NAME_FULL)) {
2182 if (n->type == AUDIT_TYPE_UNKNOWN)
2183 n->type = type;
2184 found_child = n;
2185 break;
2186 }
2187 }
2188
2189 if (!found_parent) {
2190 /* create a new, "anonymous" parent record */
2191 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2192 if (!n)
2193 return;
2194 audit_copy_inode(n, NULL, parent, 0);
2195 }
2196
2197 if (!found_child) {
2198 found_child = audit_alloc_name(context, type);
2199 if (!found_child)
2200 return;
2201
2202 /* Re-use the name belonging to the slot for a matching parent
2203 * directory. All names for this context are relinquished in
2204 * audit_free_names() */
2205 if (found_parent) {
2206 found_child->name = found_parent->name;
2207 found_child->name_len = AUDIT_NAME_FULL;
2208 found_child->name->refcnt++;
2209 }
2210 }
2211
2212 if (inode)
2213 audit_copy_inode(found_child, dentry, inode, 0);
2214 else
2215 found_child->ino = AUDIT_INO_UNSET;
2216 }
2217 EXPORT_SYMBOL_GPL(__audit_inode_child);
2218
2219 /**
2220 * auditsc_get_stamp - get local copies of audit_context values
2221 * @ctx: audit_context for the task
2222 * @t: timespec64 to store time recorded in the audit_context
2223 * @serial: serial value that is recorded in the audit_context
2224 *
2225 * Also sets the context as auditable.
2226 */
2227 int auditsc_get_stamp(struct audit_context *ctx,
2228 struct timespec64 *t, unsigned int *serial)
2229 {
2230 if (!ctx->in_syscall)
2231 return 0;
2232 if (!ctx->serial)
2233 ctx->serial = audit_serial();
2234 t->tv_sec = ctx->ctime.tv_sec;
2235 t->tv_nsec = ctx->ctime.tv_nsec;
2236 *serial = ctx->serial;
2237 if (!ctx->prio) {
2238 ctx->prio = 1;
2239 ctx->current_state = AUDIT_STATE_RECORD;
2240 }
2241 return 1;
2242 }
2243
2244 /**
2245 * __audit_mq_open - record audit data for a POSIX MQ open
2246 * @oflag: open flag
2247 * @mode: mode bits
2248 * @attr: queue attributes
2249 *
2250 */
2251 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2252 {
2253 struct audit_context *context = audit_context();
2254
2255 if (attr)
2256 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2257 else
2258 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2259
2260 context->mq_open.oflag = oflag;
2261 context->mq_open.mode = mode;
2262
2263 context->type = AUDIT_MQ_OPEN;
2264 }
2265
2266 /**
2267 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2268 * @mqdes: MQ descriptor
2269 * @msg_len: Message length
2270 * @msg_prio: Message priority
2271 * @abs_timeout: Message timeout in absolute time
2272 *
2273 */
2274 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2275 const struct timespec64 *abs_timeout)
2276 {
2277 struct audit_context *context = audit_context();
2278 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2279
2280 if (abs_timeout)
2281 memcpy(p, abs_timeout, sizeof(*p));
2282 else
2283 memset(p, 0, sizeof(*p));
2284
2285 context->mq_sendrecv.mqdes = mqdes;
2286 context->mq_sendrecv.msg_len = msg_len;
2287 context->mq_sendrecv.msg_prio = msg_prio;
2288
2289 context->type = AUDIT_MQ_SENDRECV;
2290 }
2291
2292 /**
2293 * __audit_mq_notify - record audit data for a POSIX MQ notify
2294 * @mqdes: MQ descriptor
2295 * @notification: Notification event
2296 *
2297 */
2298
2299 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2300 {
2301 struct audit_context *context = audit_context();
2302
2303 if (notification)
2304 context->mq_notify.sigev_signo = notification->sigev_signo;
2305 else
2306 context->mq_notify.sigev_signo = 0;
2307
2308 context->mq_notify.mqdes = mqdes;
2309 context->type = AUDIT_MQ_NOTIFY;
2310 }
2311
2312 /**
2313 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2314 * @mqdes: MQ descriptor
2315 * @mqstat: MQ flags
2316 *
2317 */
2318 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2319 {
2320 struct audit_context *context = audit_context();
2321
2322 context->mq_getsetattr.mqdes = mqdes;
2323 context->mq_getsetattr.mqstat = *mqstat;
2324 context->type = AUDIT_MQ_GETSETATTR;
2325 }
2326
2327 /**
2328 * __audit_ipc_obj - record audit data for ipc object
2329 * @ipcp: ipc permissions
2330 *
2331 */
2332 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2333 {
2334 struct audit_context *context = audit_context();
2335 struct lsmblob blob;
2336 context->ipc.uid = ipcp->uid;
2337 context->ipc.gid = ipcp->gid;
2338 context->ipc.mode = ipcp->mode;
2339 context->ipc.has_perm = 0;
2340 security_ipc_getsecid(ipcp, &blob);
2341 /* context->ipc.osid will be changed to a lsmblob later in
2342 * the patch series. This will allow auditing of all the object
2343 * labels associated with the ipc object. */
2344 context->ipc.osid = lsmblob_value(&blob);
2345 context->type = AUDIT_IPC;
2346 }
2347
2348 /**
2349 * __audit_ipc_set_perm - record audit data for new ipc permissions
2350 * @qbytes: msgq bytes
2351 * @uid: msgq user id
2352 * @gid: msgq group id
2353 * @mode: msgq mode (permissions)
2354 *
2355 * Called only after audit_ipc_obj().
2356 */
2357 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2358 {
2359 struct audit_context *context = audit_context();
2360
2361 context->ipc.qbytes = qbytes;
2362 context->ipc.perm_uid = uid;
2363 context->ipc.perm_gid = gid;
2364 context->ipc.perm_mode = mode;
2365 context->ipc.has_perm = 1;
2366 }
2367
2368 void __audit_bprm(struct linux_binprm *bprm)
2369 {
2370 struct audit_context *context = audit_context();
2371
2372 context->type = AUDIT_EXECVE;
2373 context->execve.argc = bprm->argc;
2374 }
2375
2376
2377 /**
2378 * __audit_socketcall - record audit data for sys_socketcall
2379 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2380 * @args: args array
2381 *
2382 */
2383 int __audit_socketcall(int nargs, unsigned long *args)
2384 {
2385 struct audit_context *context = audit_context();
2386
2387 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2388 return -EINVAL;
2389 context->type = AUDIT_SOCKETCALL;
2390 context->socketcall.nargs = nargs;
2391 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2392 return 0;
2393 }
2394
2395 /**
2396 * __audit_fd_pair - record audit data for pipe and socketpair
2397 * @fd1: the first file descriptor
2398 * @fd2: the second file descriptor
2399 *
2400 */
2401 void __audit_fd_pair(int fd1, int fd2)
2402 {
2403 struct audit_context *context = audit_context();
2404
2405 context->fds[0] = fd1;
2406 context->fds[1] = fd2;
2407 }
2408
2409 /**
2410 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2411 * @len: data length in user space
2412 * @a: data address in kernel space
2413 *
2414 * Returns 0 for success or NULL context or < 0 on error.
2415 */
2416 int __audit_sockaddr(int len, void *a)
2417 {
2418 struct audit_context *context = audit_context();
2419
2420 if (!context->sockaddr) {
2421 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2422
2423 if (!p)
2424 return -ENOMEM;
2425 context->sockaddr = p;
2426 }
2427
2428 context->sockaddr_len = len;
2429 memcpy(context->sockaddr, a, len);
2430 return 0;
2431 }
2432
2433 void __audit_ptrace(struct task_struct *t)
2434 {
2435 struct audit_context *context = audit_context();
2436
2437 context->target_pid = task_tgid_nr(t);
2438 context->target_auid = audit_get_loginuid(t);
2439 context->target_uid = task_uid(t);
2440 context->target_sessionid = audit_get_sessionid(t);
2441 security_task_getsecid_obj(t, &context->target_lsm);
2442 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2443 }
2444
2445 /**
2446 * audit_signal_info_syscall - record signal info for syscalls
2447 * @t: task being signaled
2448 *
2449 * If the audit subsystem is being terminated, record the task (pid)
2450 * and uid that is doing that.
2451 */
2452 int audit_signal_info_syscall(struct task_struct *t)
2453 {
2454 struct audit_aux_data_pids *axp;
2455 struct audit_context *ctx = audit_context();
2456 kuid_t t_uid = task_uid(t);
2457
2458 if (!audit_signals || audit_dummy_context())
2459 return 0;
2460
2461 /* optimize the common case by putting first signal recipient directly
2462 * in audit_context */
2463 if (!ctx->target_pid) {
2464 ctx->target_pid = task_tgid_nr(t);
2465 ctx->target_auid = audit_get_loginuid(t);
2466 ctx->target_uid = t_uid;
2467 ctx->target_sessionid = audit_get_sessionid(t);
2468 security_task_getsecid_obj(t, &ctx->target_lsm);
2469 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2470 return 0;
2471 }
2472
2473 axp = (void *)ctx->aux_pids;
2474 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2475 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2476 if (!axp)
2477 return -ENOMEM;
2478
2479 axp->d.type = AUDIT_OBJ_PID;
2480 axp->d.next = ctx->aux_pids;
2481 ctx->aux_pids = (void *)axp;
2482 }
2483 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2484
2485 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2486 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2487 axp->target_uid[axp->pid_count] = t_uid;
2488 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2489 security_task_getsecid_obj(t, &axp->target_lsm[axp->pid_count]);
2490 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2491 axp->pid_count++;
2492
2493 return 0;
2494 }
2495
2496 /**
2497 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2498 * @bprm: pointer to the bprm being processed
2499 * @new: the proposed new credentials
2500 * @old: the old credentials
2501 *
2502 * Simply check if the proc already has the caps given by the file and if not
2503 * store the priv escalation info for later auditing at the end of the syscall
2504 *
2505 * -Eric
2506 */
2507 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2508 const struct cred *new, const struct cred *old)
2509 {
2510 struct audit_aux_data_bprm_fcaps *ax;
2511 struct audit_context *context = audit_context();
2512 struct cpu_vfs_cap_data vcaps;
2513
2514 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2515 if (!ax)
2516 return -ENOMEM;
2517
2518 ax->d.type = AUDIT_BPRM_FCAPS;
2519 ax->d.next = context->aux;
2520 context->aux = (void *)ax;
2521
2522 get_vfs_caps_from_disk(&init_user_ns,
2523 bprm->file->f_path.dentry, &vcaps);
2524
2525 ax->fcap.permitted = vcaps.permitted;
2526 ax->fcap.inheritable = vcaps.inheritable;
2527 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2528 ax->fcap.rootid = vcaps.rootid;
2529 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2530
2531 ax->old_pcap.permitted = old->cap_permitted;
2532 ax->old_pcap.inheritable = old->cap_inheritable;
2533 ax->old_pcap.effective = old->cap_effective;
2534 ax->old_pcap.ambient = old->cap_ambient;
2535
2536 ax->new_pcap.permitted = new->cap_permitted;
2537 ax->new_pcap.inheritable = new->cap_inheritable;
2538 ax->new_pcap.effective = new->cap_effective;
2539 ax->new_pcap.ambient = new->cap_ambient;
2540 return 0;
2541 }
2542
2543 /**
2544 * __audit_log_capset - store information about the arguments to the capset syscall
2545 * @new: the new credentials
2546 * @old: the old (current) credentials
2547 *
2548 * Record the arguments userspace sent to sys_capset for later printing by the
2549 * audit system if applicable
2550 */
2551 void __audit_log_capset(const struct cred *new, const struct cred *old)
2552 {
2553 struct audit_context *context = audit_context();
2554
2555 context->capset.pid = task_tgid_nr(current);
2556 context->capset.cap.effective = new->cap_effective;
2557 context->capset.cap.inheritable = new->cap_effective;
2558 context->capset.cap.permitted = new->cap_permitted;
2559 context->capset.cap.ambient = new->cap_ambient;
2560 context->type = AUDIT_CAPSET;
2561 }
2562
2563 void __audit_mmap_fd(int fd, int flags)
2564 {
2565 struct audit_context *context = audit_context();
2566
2567 context->mmap.fd = fd;
2568 context->mmap.flags = flags;
2569 context->type = AUDIT_MMAP;
2570 }
2571
2572 void __audit_log_kern_module(char *name)
2573 {
2574 struct audit_context *context = audit_context();
2575
2576 context->module.name = kstrdup(name, GFP_KERNEL);
2577 if (!context->module.name)
2578 audit_log_lost("out of memory in __audit_log_kern_module");
2579 context->type = AUDIT_KERN_MODULE;
2580 }
2581
2582 void __audit_fanotify(unsigned int response)
2583 {
2584 audit_log(audit_context(), GFP_KERNEL,
2585 AUDIT_FANOTIFY, "resp=%u", response);
2586 }
2587
2588 void __audit_tk_injoffset(struct timespec64 offset)
2589 {
2590 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2591 "sec=%lli nsec=%li",
2592 (long long)offset.tv_sec, offset.tv_nsec);
2593 }
2594
2595 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2596 const char *op, enum audit_ntp_type type)
2597 {
2598 const struct audit_ntp_val *val = &ad->vals[type];
2599
2600 if (val->newval == val->oldval)
2601 return;
2602
2603 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2604 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2605 }
2606
2607 void __audit_ntp_log(const struct audit_ntp_data *ad)
2608 {
2609 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2610 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2611 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2612 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2613 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2614 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2615 }
2616
2617 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2618 enum audit_nfcfgop op, gfp_t gfp)
2619 {
2620 struct audit_buffer *ab;
2621 char comm[sizeof(current->comm)];
2622
2623 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2624 if (!ab)
2625 return;
2626 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2627 name, af, nentries, audit_nfcfgs[op].s);
2628
2629 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2630 audit_log_task_context(ab); /* subj= */
2631 audit_log_format(ab, " comm=");
2632 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2633 audit_log_end(ab);
2634 }
2635 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2636
2637 static void audit_log_task(struct audit_buffer *ab)
2638 {
2639 kuid_t auid, uid;
2640 kgid_t gid;
2641 unsigned int sessionid;
2642 char comm[sizeof(current->comm)];
2643
2644 auid = audit_get_loginuid(current);
2645 sessionid = audit_get_sessionid(current);
2646 current_uid_gid(&uid, &gid);
2647
2648 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2649 from_kuid(&init_user_ns, auid),
2650 from_kuid(&init_user_ns, uid),
2651 from_kgid(&init_user_ns, gid),
2652 sessionid);
2653 audit_log_task_context(ab);
2654 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2655 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2656 audit_log_d_path_exe(ab, current->mm);
2657 }
2658
2659 /**
2660 * audit_core_dumps - record information about processes that end abnormally
2661 * @signr: signal value
2662 *
2663 * If a process ends with a core dump, something fishy is going on and we
2664 * should record the event for investigation.
2665 */
2666 void audit_core_dumps(long signr)
2667 {
2668 struct audit_buffer *ab;
2669
2670 if (!audit_enabled)
2671 return;
2672
2673 if (signr == SIGQUIT) /* don't care for those */
2674 return;
2675
2676 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2677 if (unlikely(!ab))
2678 return;
2679 audit_log_task(ab);
2680 audit_log_format(ab, " sig=%ld res=1", signr);
2681 audit_log_end(ab);
2682 }
2683
2684 /**
2685 * audit_seccomp - record information about a seccomp action
2686 * @syscall: syscall number
2687 * @signr: signal value
2688 * @code: the seccomp action
2689 *
2690 * Record the information associated with a seccomp action. Event filtering for
2691 * seccomp actions that are not to be logged is done in seccomp_log().
2692 * Therefore, this function forces auditing independent of the audit_enabled
2693 * and dummy context state because seccomp actions should be logged even when
2694 * audit is not in use.
2695 */
2696 void audit_seccomp(unsigned long syscall, long signr, int code)
2697 {
2698 struct audit_buffer *ab;
2699
2700 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2701 if (unlikely(!ab))
2702 return;
2703 audit_log_task(ab);
2704 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2705 signr, syscall_get_arch(current), syscall,
2706 in_compat_syscall(), KSTK_EIP(current), code);
2707 audit_log_end(ab);
2708 }
2709
2710 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2711 int res)
2712 {
2713 struct audit_buffer *ab;
2714
2715 if (!audit_enabled)
2716 return;
2717
2718 ab = audit_log_start(audit_context(), GFP_KERNEL,
2719 AUDIT_CONFIG_CHANGE);
2720 if (unlikely(!ab))
2721 return;
2722
2723 audit_log_format(ab,
2724 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2725 names, old_names, res);
2726 audit_log_end(ab);
2727 }
2728
2729 struct list_head *audit_killed_trees(void)
2730 {
2731 struct audit_context *ctx = audit_context();
2732
2733 if (likely(!ctx || !ctx->in_syscall))
2734 return NULL;
2735 return &ctx->killed_trees;
2736 }