]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/auditsc.c
don't reallocate buffer in every audit_sockaddr()
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69
70 #include "audit.h"
71
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
75
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95 };
96
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 const char *name;
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
112 u32 osid;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
115 };
116
117 struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120 };
121
122 #define AUDIT_AUX_IPCPERM 0
123
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
126
127 struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132 };
133
134 struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140 };
141
142 struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146 };
147
148 struct audit_aux_data_mq_getsetattr {
149 struct audit_aux_data d;
150 mqd_t mqdes;
151 struct mq_attr mqstat;
152 };
153
154 struct audit_aux_data_ipcctl {
155 struct audit_aux_data d;
156 struct ipc_perm p;
157 unsigned long qbytes;
158 uid_t uid;
159 gid_t gid;
160 mode_t mode;
161 u32 osid;
162 };
163
164 struct audit_aux_data_execve {
165 struct audit_aux_data d;
166 int argc;
167 int envc;
168 struct mm_struct *mm;
169 };
170
171 struct audit_aux_data_socketcall {
172 struct audit_aux_data d;
173 int nargs;
174 unsigned long args[0];
175 };
176
177 struct audit_aux_data_fd_pair {
178 struct audit_aux_data d;
179 int fd[2];
180 };
181
182 struct audit_aux_data_pids {
183 struct audit_aux_data d;
184 pid_t target_pid[AUDIT_AUX_PIDS];
185 uid_t target_auid[AUDIT_AUX_PIDS];
186 uid_t target_uid[AUDIT_AUX_PIDS];
187 unsigned int target_sessionid[AUDIT_AUX_PIDS];
188 u32 target_sid[AUDIT_AUX_PIDS];
189 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
190 int pid_count;
191 };
192
193 struct audit_aux_data_bprm_fcaps {
194 struct audit_aux_data d;
195 struct audit_cap_data fcap;
196 unsigned int fcap_ver;
197 struct audit_cap_data old_pcap;
198 struct audit_cap_data new_pcap;
199 };
200
201 struct audit_aux_data_capset {
202 struct audit_aux_data d;
203 pid_t pid;
204 struct audit_cap_data cap;
205 };
206
207 struct audit_tree_refs {
208 struct audit_tree_refs *next;
209 struct audit_chunk *c[31];
210 };
211
212 /* The per-task audit context. */
213 struct audit_context {
214 int dummy; /* must be the first element */
215 int in_syscall; /* 1 if task is in a syscall */
216 enum audit_state state;
217 unsigned int serial; /* serial number for record */
218 struct timespec ctime; /* time of syscall entry */
219 int major; /* syscall number */
220 unsigned long argv[4]; /* syscall arguments */
221 int return_valid; /* return code is valid */
222 long return_code;/* syscall return code */
223 int auditable; /* 1 if record should be written */
224 int name_count;
225 struct audit_names names[AUDIT_NAMES];
226 char * filterkey; /* key for rule that triggered record */
227 struct path pwd;
228 struct audit_context *previous; /* For nested syscalls */
229 struct audit_aux_data *aux;
230 struct audit_aux_data *aux_pids;
231 struct sockaddr_storage *sockaddr;
232 size_t sockaddr_len;
233 /* Save things to print about task_struct */
234 pid_t pid, ppid;
235 uid_t uid, euid, suid, fsuid;
236 gid_t gid, egid, sgid, fsgid;
237 unsigned long personality;
238 int arch;
239
240 pid_t target_pid;
241 uid_t target_auid;
242 uid_t target_uid;
243 unsigned int target_sessionid;
244 u32 target_sid;
245 char target_comm[TASK_COMM_LEN];
246
247 struct audit_tree_refs *trees, *first_trees;
248 int tree_count;
249
250 #if AUDIT_DEBUG
251 int put_count;
252 int ino_count;
253 #endif
254 };
255
256 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
257 static inline int open_arg(int flags, int mask)
258 {
259 int n = ACC_MODE(flags);
260 if (flags & (O_TRUNC | O_CREAT))
261 n |= AUDIT_PERM_WRITE;
262 return n & mask;
263 }
264
265 static int audit_match_perm(struct audit_context *ctx, int mask)
266 {
267 unsigned n;
268 if (unlikely(!ctx))
269 return 0;
270 n = ctx->major;
271
272 switch (audit_classify_syscall(ctx->arch, n)) {
273 case 0: /* native */
274 if ((mask & AUDIT_PERM_WRITE) &&
275 audit_match_class(AUDIT_CLASS_WRITE, n))
276 return 1;
277 if ((mask & AUDIT_PERM_READ) &&
278 audit_match_class(AUDIT_CLASS_READ, n))
279 return 1;
280 if ((mask & AUDIT_PERM_ATTR) &&
281 audit_match_class(AUDIT_CLASS_CHATTR, n))
282 return 1;
283 return 0;
284 case 1: /* 32bit on biarch */
285 if ((mask & AUDIT_PERM_WRITE) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_READ) &&
289 audit_match_class(AUDIT_CLASS_READ_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_ATTR) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 return 1;
294 return 0;
295 case 2: /* open */
296 return mask & ACC_MODE(ctx->argv[1]);
297 case 3: /* openat */
298 return mask & ACC_MODE(ctx->argv[2]);
299 case 4: /* socketcall */
300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 case 5: /* execve */
302 return mask & AUDIT_PERM_EXEC;
303 default:
304 return 0;
305 }
306 }
307
308 static int audit_match_filetype(struct audit_context *ctx, int which)
309 {
310 unsigned index = which & ~S_IFMT;
311 mode_t mode = which & S_IFMT;
312
313 if (unlikely(!ctx))
314 return 0;
315
316 if (index >= ctx->name_count)
317 return 0;
318 if (ctx->names[index].ino == -1)
319 return 0;
320 if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 return 0;
322 return 1;
323 }
324
325 /*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335 #ifdef CONFIG_AUDIT_TREE
336 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
337 {
338 struct audit_tree_refs *p = ctx->trees;
339 int left = ctx->tree_count;
340 if (likely(left)) {
341 p->c[--left] = chunk;
342 ctx->tree_count = left;
343 return 1;
344 }
345 if (!p)
346 return 0;
347 p = p->next;
348 if (p) {
349 p->c[30] = chunk;
350 ctx->trees = p;
351 ctx->tree_count = 30;
352 return 1;
353 }
354 return 0;
355 }
356
357 static int grow_tree_refs(struct audit_context *ctx)
358 {
359 struct audit_tree_refs *p = ctx->trees;
360 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
361 if (!ctx->trees) {
362 ctx->trees = p;
363 return 0;
364 }
365 if (p)
366 p->next = ctx->trees;
367 else
368 ctx->first_trees = ctx->trees;
369 ctx->tree_count = 31;
370 return 1;
371 }
372 #endif
373
374 static void unroll_tree_refs(struct audit_context *ctx,
375 struct audit_tree_refs *p, int count)
376 {
377 #ifdef CONFIG_AUDIT_TREE
378 struct audit_tree_refs *q;
379 int n;
380 if (!p) {
381 /* we started with empty chain */
382 p = ctx->first_trees;
383 count = 31;
384 /* if the very first allocation has failed, nothing to do */
385 if (!p)
386 return;
387 }
388 n = count;
389 for (q = p; q != ctx->trees; q = q->next, n = 31) {
390 while (n--) {
391 audit_put_chunk(q->c[n]);
392 q->c[n] = NULL;
393 }
394 }
395 while (n-- > ctx->tree_count) {
396 audit_put_chunk(q->c[n]);
397 q->c[n] = NULL;
398 }
399 ctx->trees = p;
400 ctx->tree_count = count;
401 #endif
402 }
403
404 static void free_tree_refs(struct audit_context *ctx)
405 {
406 struct audit_tree_refs *p, *q;
407 for (p = ctx->first_trees; p; p = q) {
408 q = p->next;
409 kfree(p);
410 }
411 }
412
413 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
414 {
415 #ifdef CONFIG_AUDIT_TREE
416 struct audit_tree_refs *p;
417 int n;
418 if (!tree)
419 return 0;
420 /* full ones */
421 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
422 for (n = 0; n < 31; n++)
423 if (audit_tree_match(p->c[n], tree))
424 return 1;
425 }
426 /* partial */
427 if (p) {
428 for (n = ctx->tree_count; n < 31; n++)
429 if (audit_tree_match(p->c[n], tree))
430 return 1;
431 }
432 #endif
433 return 0;
434 }
435
436 /* Determine if any context name data matches a rule's watch data */
437 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
438 * otherwise. */
439 static int audit_filter_rules(struct task_struct *tsk,
440 struct audit_krule *rule,
441 struct audit_context *ctx,
442 struct audit_names *name,
443 enum audit_state *state)
444 {
445 const struct cred *cred = get_task_cred(tsk);
446 int i, j, need_sid = 1;
447 u32 sid;
448
449 for (i = 0; i < rule->field_count; i++) {
450 struct audit_field *f = &rule->fields[i];
451 int result = 0;
452
453 switch (f->type) {
454 case AUDIT_PID:
455 result = audit_comparator(tsk->pid, f->op, f->val);
456 break;
457 case AUDIT_PPID:
458 if (ctx) {
459 if (!ctx->ppid)
460 ctx->ppid = sys_getppid();
461 result = audit_comparator(ctx->ppid, f->op, f->val);
462 }
463 break;
464 case AUDIT_UID:
465 result = audit_comparator(cred->uid, f->op, f->val);
466 break;
467 case AUDIT_EUID:
468 result = audit_comparator(cred->euid, f->op, f->val);
469 break;
470 case AUDIT_SUID:
471 result = audit_comparator(cred->suid, f->op, f->val);
472 break;
473 case AUDIT_FSUID:
474 result = audit_comparator(cred->fsuid, f->op, f->val);
475 break;
476 case AUDIT_GID:
477 result = audit_comparator(cred->gid, f->op, f->val);
478 break;
479 case AUDIT_EGID:
480 result = audit_comparator(cred->egid, f->op, f->val);
481 break;
482 case AUDIT_SGID:
483 result = audit_comparator(cred->sgid, f->op, f->val);
484 break;
485 case AUDIT_FSGID:
486 result = audit_comparator(cred->fsgid, f->op, f->val);
487 break;
488 case AUDIT_PERS:
489 result = audit_comparator(tsk->personality, f->op, f->val);
490 break;
491 case AUDIT_ARCH:
492 if (ctx)
493 result = audit_comparator(ctx->arch, f->op, f->val);
494 break;
495
496 case AUDIT_EXIT:
497 if (ctx && ctx->return_valid)
498 result = audit_comparator(ctx->return_code, f->op, f->val);
499 break;
500 case AUDIT_SUCCESS:
501 if (ctx && ctx->return_valid) {
502 if (f->val)
503 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
504 else
505 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
506 }
507 break;
508 case AUDIT_DEVMAJOR:
509 if (name)
510 result = audit_comparator(MAJOR(name->dev),
511 f->op, f->val);
512 else if (ctx) {
513 for (j = 0; j < ctx->name_count; j++) {
514 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
515 ++result;
516 break;
517 }
518 }
519 }
520 break;
521 case AUDIT_DEVMINOR:
522 if (name)
523 result = audit_comparator(MINOR(name->dev),
524 f->op, f->val);
525 else if (ctx) {
526 for (j = 0; j < ctx->name_count; j++) {
527 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
528 ++result;
529 break;
530 }
531 }
532 }
533 break;
534 case AUDIT_INODE:
535 if (name)
536 result = (name->ino == f->val);
537 else if (ctx) {
538 for (j = 0; j < ctx->name_count; j++) {
539 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
540 ++result;
541 break;
542 }
543 }
544 }
545 break;
546 case AUDIT_WATCH:
547 if (name && rule->watch->ino != (unsigned long)-1)
548 result = (name->dev == rule->watch->dev &&
549 name->ino == rule->watch->ino);
550 break;
551 case AUDIT_DIR:
552 if (ctx)
553 result = match_tree_refs(ctx, rule->tree);
554 break;
555 case AUDIT_LOGINUID:
556 result = 0;
557 if (ctx)
558 result = audit_comparator(tsk->loginuid, f->op, f->val);
559 break;
560 case AUDIT_SUBJ_USER:
561 case AUDIT_SUBJ_ROLE:
562 case AUDIT_SUBJ_TYPE:
563 case AUDIT_SUBJ_SEN:
564 case AUDIT_SUBJ_CLR:
565 /* NOTE: this may return negative values indicating
566 a temporary error. We simply treat this as a
567 match for now to avoid losing information that
568 may be wanted. An error message will also be
569 logged upon error */
570 if (f->lsm_rule) {
571 if (need_sid) {
572 security_task_getsecid(tsk, &sid);
573 need_sid = 0;
574 }
575 result = security_audit_rule_match(sid, f->type,
576 f->op,
577 f->lsm_rule,
578 ctx);
579 }
580 break;
581 case AUDIT_OBJ_USER:
582 case AUDIT_OBJ_ROLE:
583 case AUDIT_OBJ_TYPE:
584 case AUDIT_OBJ_LEV_LOW:
585 case AUDIT_OBJ_LEV_HIGH:
586 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
587 also applies here */
588 if (f->lsm_rule) {
589 /* Find files that match */
590 if (name) {
591 result = security_audit_rule_match(
592 name->osid, f->type, f->op,
593 f->lsm_rule, ctx);
594 } else if (ctx) {
595 for (j = 0; j < ctx->name_count; j++) {
596 if (security_audit_rule_match(
597 ctx->names[j].osid,
598 f->type, f->op,
599 f->lsm_rule, ctx)) {
600 ++result;
601 break;
602 }
603 }
604 }
605 /* Find ipc objects that match */
606 if (ctx) {
607 struct audit_aux_data *aux;
608 for (aux = ctx->aux; aux;
609 aux = aux->next) {
610 if (aux->type == AUDIT_IPC) {
611 struct audit_aux_data_ipcctl *axi = (void *)aux;
612 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
613 ++result;
614 break;
615 }
616 }
617 }
618 }
619 }
620 break;
621 case AUDIT_ARG0:
622 case AUDIT_ARG1:
623 case AUDIT_ARG2:
624 case AUDIT_ARG3:
625 if (ctx)
626 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
627 break;
628 case AUDIT_FILTERKEY:
629 /* ignore this field for filtering */
630 result = 1;
631 break;
632 case AUDIT_PERM:
633 result = audit_match_perm(ctx, f->val);
634 break;
635 case AUDIT_FILETYPE:
636 result = audit_match_filetype(ctx, f->val);
637 break;
638 }
639
640 if (!result) {
641 put_cred(cred);
642 return 0;
643 }
644 }
645 if (rule->filterkey && ctx)
646 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
647 switch (rule->action) {
648 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
649 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
650 }
651 put_cred(cred);
652 return 1;
653 }
654
655 /* At process creation time, we can determine if system-call auditing is
656 * completely disabled for this task. Since we only have the task
657 * structure at this point, we can only check uid and gid.
658 */
659 static enum audit_state audit_filter_task(struct task_struct *tsk)
660 {
661 struct audit_entry *e;
662 enum audit_state state;
663
664 rcu_read_lock();
665 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
666 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
667 rcu_read_unlock();
668 return state;
669 }
670 }
671 rcu_read_unlock();
672 return AUDIT_BUILD_CONTEXT;
673 }
674
675 /* At syscall entry and exit time, this filter is called if the
676 * audit_state is not low enough that auditing cannot take place, but is
677 * also not high enough that we already know we have to write an audit
678 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
679 */
680 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
681 struct audit_context *ctx,
682 struct list_head *list)
683 {
684 struct audit_entry *e;
685 enum audit_state state;
686
687 if (audit_pid && tsk->tgid == audit_pid)
688 return AUDIT_DISABLED;
689
690 rcu_read_lock();
691 if (!list_empty(list)) {
692 int word = AUDIT_WORD(ctx->major);
693 int bit = AUDIT_BIT(ctx->major);
694
695 list_for_each_entry_rcu(e, list, list) {
696 if ((e->rule.mask[word] & bit) == bit &&
697 audit_filter_rules(tsk, &e->rule, ctx, NULL,
698 &state)) {
699 rcu_read_unlock();
700 return state;
701 }
702 }
703 }
704 rcu_read_unlock();
705 return AUDIT_BUILD_CONTEXT;
706 }
707
708 /* At syscall exit time, this filter is called if any audit_names[] have been
709 * collected during syscall processing. We only check rules in sublists at hash
710 * buckets applicable to the inode numbers in audit_names[].
711 * Regarding audit_state, same rules apply as for audit_filter_syscall().
712 */
713 enum audit_state audit_filter_inodes(struct task_struct *tsk,
714 struct audit_context *ctx)
715 {
716 int i;
717 struct audit_entry *e;
718 enum audit_state state;
719
720 if (audit_pid && tsk->tgid == audit_pid)
721 return AUDIT_DISABLED;
722
723 rcu_read_lock();
724 for (i = 0; i < ctx->name_count; i++) {
725 int word = AUDIT_WORD(ctx->major);
726 int bit = AUDIT_BIT(ctx->major);
727 struct audit_names *n = &ctx->names[i];
728 int h = audit_hash_ino((u32)n->ino);
729 struct list_head *list = &audit_inode_hash[h];
730
731 if (list_empty(list))
732 continue;
733
734 list_for_each_entry_rcu(e, list, list) {
735 if ((e->rule.mask[word] & bit) == bit &&
736 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
737 rcu_read_unlock();
738 return state;
739 }
740 }
741 }
742 rcu_read_unlock();
743 return AUDIT_BUILD_CONTEXT;
744 }
745
746 void audit_set_auditable(struct audit_context *ctx)
747 {
748 ctx->auditable = 1;
749 }
750
751 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
752 int return_valid,
753 int return_code)
754 {
755 struct audit_context *context = tsk->audit_context;
756
757 if (likely(!context))
758 return NULL;
759 context->return_valid = return_valid;
760
761 /*
762 * we need to fix up the return code in the audit logs if the actual
763 * return codes are later going to be fixed up by the arch specific
764 * signal handlers
765 *
766 * This is actually a test for:
767 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
768 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
769 *
770 * but is faster than a bunch of ||
771 */
772 if (unlikely(return_code <= -ERESTARTSYS) &&
773 (return_code >= -ERESTART_RESTARTBLOCK) &&
774 (return_code != -ENOIOCTLCMD))
775 context->return_code = -EINTR;
776 else
777 context->return_code = return_code;
778
779 if (context->in_syscall && !context->dummy && !context->auditable) {
780 enum audit_state state;
781
782 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
783 if (state == AUDIT_RECORD_CONTEXT) {
784 context->auditable = 1;
785 goto get_context;
786 }
787
788 state = audit_filter_inodes(tsk, context);
789 if (state == AUDIT_RECORD_CONTEXT)
790 context->auditable = 1;
791
792 }
793
794 get_context:
795
796 tsk->audit_context = NULL;
797 return context;
798 }
799
800 static inline void audit_free_names(struct audit_context *context)
801 {
802 int i;
803
804 #if AUDIT_DEBUG == 2
805 if (context->auditable
806 ||context->put_count + context->ino_count != context->name_count) {
807 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
808 " name_count=%d put_count=%d"
809 " ino_count=%d [NOT freeing]\n",
810 __FILE__, __LINE__,
811 context->serial, context->major, context->in_syscall,
812 context->name_count, context->put_count,
813 context->ino_count);
814 for (i = 0; i < context->name_count; i++) {
815 printk(KERN_ERR "names[%d] = %p = %s\n", i,
816 context->names[i].name,
817 context->names[i].name ?: "(null)");
818 }
819 dump_stack();
820 return;
821 }
822 #endif
823 #if AUDIT_DEBUG
824 context->put_count = 0;
825 context->ino_count = 0;
826 #endif
827
828 for (i = 0; i < context->name_count; i++) {
829 if (context->names[i].name && context->names[i].name_put)
830 __putname(context->names[i].name);
831 }
832 context->name_count = 0;
833 path_put(&context->pwd);
834 context->pwd.dentry = NULL;
835 context->pwd.mnt = NULL;
836 }
837
838 static inline void audit_free_aux(struct audit_context *context)
839 {
840 struct audit_aux_data *aux;
841
842 while ((aux = context->aux)) {
843 context->aux = aux->next;
844 kfree(aux);
845 }
846 while ((aux = context->aux_pids)) {
847 context->aux_pids = aux->next;
848 kfree(aux);
849 }
850 }
851
852 static inline void audit_zero_context(struct audit_context *context,
853 enum audit_state state)
854 {
855 memset(context, 0, sizeof(*context));
856 context->state = state;
857 }
858
859 static inline struct audit_context *audit_alloc_context(enum audit_state state)
860 {
861 struct audit_context *context;
862
863 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864 return NULL;
865 audit_zero_context(context, state);
866 return context;
867 }
868
869 /**
870 * audit_alloc - allocate an audit context block for a task
871 * @tsk: task
872 *
873 * Filter on the task information and allocate a per-task audit context
874 * if necessary. Doing so turns on system call auditing for the
875 * specified task. This is called from copy_process, so no lock is
876 * needed.
877 */
878 int audit_alloc(struct task_struct *tsk)
879 {
880 struct audit_context *context;
881 enum audit_state state;
882
883 if (likely(!audit_ever_enabled))
884 return 0; /* Return if not auditing. */
885
886 state = audit_filter_task(tsk);
887 if (likely(state == AUDIT_DISABLED))
888 return 0;
889
890 if (!(context = audit_alloc_context(state))) {
891 audit_log_lost("out of memory in audit_alloc");
892 return -ENOMEM;
893 }
894
895 tsk->audit_context = context;
896 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
897 return 0;
898 }
899
900 static inline void audit_free_context(struct audit_context *context)
901 {
902 struct audit_context *previous;
903 int count = 0;
904
905 do {
906 previous = context->previous;
907 if (previous || (count && count < 10)) {
908 ++count;
909 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
910 " freeing multiple contexts (%d)\n",
911 context->serial, context->major,
912 context->name_count, count);
913 }
914 audit_free_names(context);
915 unroll_tree_refs(context, NULL, 0);
916 free_tree_refs(context);
917 audit_free_aux(context);
918 kfree(context->filterkey);
919 kfree(context->sockaddr);
920 kfree(context);
921 context = previous;
922 } while (context);
923 if (count >= 10)
924 printk(KERN_ERR "audit: freed %d contexts\n", count);
925 }
926
927 void audit_log_task_context(struct audit_buffer *ab)
928 {
929 char *ctx = NULL;
930 unsigned len;
931 int error;
932 u32 sid;
933
934 security_task_getsecid(current, &sid);
935 if (!sid)
936 return;
937
938 error = security_secid_to_secctx(sid, &ctx, &len);
939 if (error) {
940 if (error != -EINVAL)
941 goto error_path;
942 return;
943 }
944
945 audit_log_format(ab, " subj=%s", ctx);
946 security_release_secctx(ctx, len);
947 return;
948
949 error_path:
950 audit_panic("error in audit_log_task_context");
951 return;
952 }
953
954 EXPORT_SYMBOL(audit_log_task_context);
955
956 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
957 {
958 char name[sizeof(tsk->comm)];
959 struct mm_struct *mm = tsk->mm;
960 struct vm_area_struct *vma;
961
962 /* tsk == current */
963
964 get_task_comm(name, tsk);
965 audit_log_format(ab, " comm=");
966 audit_log_untrustedstring(ab, name);
967
968 if (mm) {
969 down_read(&mm->mmap_sem);
970 vma = mm->mmap;
971 while (vma) {
972 if ((vma->vm_flags & VM_EXECUTABLE) &&
973 vma->vm_file) {
974 audit_log_d_path(ab, "exe=",
975 &vma->vm_file->f_path);
976 break;
977 }
978 vma = vma->vm_next;
979 }
980 up_read(&mm->mmap_sem);
981 }
982 audit_log_task_context(ab);
983 }
984
985 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
986 uid_t auid, uid_t uid, unsigned int sessionid,
987 u32 sid, char *comm)
988 {
989 struct audit_buffer *ab;
990 char *ctx = NULL;
991 u32 len;
992 int rc = 0;
993
994 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
995 if (!ab)
996 return rc;
997
998 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
999 uid, sessionid);
1000 if (security_secid_to_secctx(sid, &ctx, &len)) {
1001 audit_log_format(ab, " obj=(none)");
1002 rc = 1;
1003 } else {
1004 audit_log_format(ab, " obj=%s", ctx);
1005 security_release_secctx(ctx, len);
1006 }
1007 audit_log_format(ab, " ocomm=");
1008 audit_log_untrustedstring(ab, comm);
1009 audit_log_end(ab);
1010
1011 return rc;
1012 }
1013
1014 /*
1015 * to_send and len_sent accounting are very loose estimates. We aren't
1016 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1017 * within about 500 bytes (next page boundry)
1018 *
1019 * why snprintf? an int is up to 12 digits long. if we just assumed when
1020 * logging that a[%d]= was going to be 16 characters long we would be wasting
1021 * space in every audit message. In one 7500 byte message we can log up to
1022 * about 1000 min size arguments. That comes down to about 50% waste of space
1023 * if we didn't do the snprintf to find out how long arg_num_len was.
1024 */
1025 static int audit_log_single_execve_arg(struct audit_context *context,
1026 struct audit_buffer **ab,
1027 int arg_num,
1028 size_t *len_sent,
1029 const char __user *p,
1030 char *buf)
1031 {
1032 char arg_num_len_buf[12];
1033 const char __user *tmp_p = p;
1034 /* how many digits are in arg_num? 3 is the length of a=\n */
1035 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1036 size_t len, len_left, to_send;
1037 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1038 unsigned int i, has_cntl = 0, too_long = 0;
1039 int ret;
1040
1041 /* strnlen_user includes the null we don't want to send */
1042 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043
1044 /*
1045 * We just created this mm, if we can't find the strings
1046 * we just copied into it something is _very_ wrong. Similar
1047 * for strings that are too long, we should not have created
1048 * any.
1049 */
1050 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1051 WARN_ON(1);
1052 send_sig(SIGKILL, current, 0);
1053 return -1;
1054 }
1055
1056 /* walk the whole argument looking for non-ascii chars */
1057 do {
1058 if (len_left > MAX_EXECVE_AUDIT_LEN)
1059 to_send = MAX_EXECVE_AUDIT_LEN;
1060 else
1061 to_send = len_left;
1062 ret = copy_from_user(buf, tmp_p, to_send);
1063 /*
1064 * There is no reason for this copy to be short. We just
1065 * copied them here, and the mm hasn't been exposed to user-
1066 * space yet.
1067 */
1068 if (ret) {
1069 WARN_ON(1);
1070 send_sig(SIGKILL, current, 0);
1071 return -1;
1072 }
1073 buf[to_send] = '\0';
1074 has_cntl = audit_string_contains_control(buf, to_send);
1075 if (has_cntl) {
1076 /*
1077 * hex messages get logged as 2 bytes, so we can only
1078 * send half as much in each message
1079 */
1080 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1081 break;
1082 }
1083 len_left -= to_send;
1084 tmp_p += to_send;
1085 } while (len_left > 0);
1086
1087 len_left = len;
1088
1089 if (len > max_execve_audit_len)
1090 too_long = 1;
1091
1092 /* rewalk the argument actually logging the message */
1093 for (i = 0; len_left > 0; i++) {
1094 int room_left;
1095
1096 if (len_left > max_execve_audit_len)
1097 to_send = max_execve_audit_len;
1098 else
1099 to_send = len_left;
1100
1101 /* do we have space left to send this argument in this ab? */
1102 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1103 if (has_cntl)
1104 room_left -= (to_send * 2);
1105 else
1106 room_left -= to_send;
1107 if (room_left < 0) {
1108 *len_sent = 0;
1109 audit_log_end(*ab);
1110 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1111 if (!*ab)
1112 return 0;
1113 }
1114
1115 /*
1116 * first record needs to say how long the original string was
1117 * so we can be sure nothing was lost.
1118 */
1119 if ((i == 0) && (too_long))
1120 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1121 has_cntl ? 2*len : len);
1122
1123 /*
1124 * normally arguments are small enough to fit and we already
1125 * filled buf above when we checked for control characters
1126 * so don't bother with another copy_from_user
1127 */
1128 if (len >= max_execve_audit_len)
1129 ret = copy_from_user(buf, p, to_send);
1130 else
1131 ret = 0;
1132 if (ret) {
1133 WARN_ON(1);
1134 send_sig(SIGKILL, current, 0);
1135 return -1;
1136 }
1137 buf[to_send] = '\0';
1138
1139 /* actually log it */
1140 audit_log_format(*ab, "a%d", arg_num);
1141 if (too_long)
1142 audit_log_format(*ab, "[%d]", i);
1143 audit_log_format(*ab, "=");
1144 if (has_cntl)
1145 audit_log_n_hex(*ab, buf, to_send);
1146 else
1147 audit_log_format(*ab, "\"%s\"", buf);
1148 audit_log_format(*ab, "\n");
1149
1150 p += to_send;
1151 len_left -= to_send;
1152 *len_sent += arg_num_len;
1153 if (has_cntl)
1154 *len_sent += to_send * 2;
1155 else
1156 *len_sent += to_send;
1157 }
1158 /* include the null we didn't log */
1159 return len + 1;
1160 }
1161
1162 static void audit_log_execve_info(struct audit_context *context,
1163 struct audit_buffer **ab,
1164 struct audit_aux_data_execve *axi)
1165 {
1166 int i;
1167 size_t len, len_sent = 0;
1168 const char __user *p;
1169 char *buf;
1170
1171 if (axi->mm != current->mm)
1172 return; /* execve failed, no additional info */
1173
1174 p = (const char __user *)axi->mm->arg_start;
1175
1176 audit_log_format(*ab, "argc=%d ", axi->argc);
1177
1178 /*
1179 * we need some kernel buffer to hold the userspace args. Just
1180 * allocate one big one rather than allocating one of the right size
1181 * for every single argument inside audit_log_single_execve_arg()
1182 * should be <8k allocation so should be pretty safe.
1183 */
1184 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1185 if (!buf) {
1186 audit_panic("out of memory for argv string\n");
1187 return;
1188 }
1189
1190 for (i = 0; i < axi->argc; i++) {
1191 len = audit_log_single_execve_arg(context, ab, i,
1192 &len_sent, p, buf);
1193 if (len <= 0)
1194 break;
1195 p += len;
1196 }
1197 kfree(buf);
1198 }
1199
1200 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1201 {
1202 int i;
1203
1204 audit_log_format(ab, " %s=", prefix);
1205 CAP_FOR_EACH_U32(i) {
1206 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1207 }
1208 }
1209
1210 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1211 {
1212 kernel_cap_t *perm = &name->fcap.permitted;
1213 kernel_cap_t *inh = &name->fcap.inheritable;
1214 int log = 0;
1215
1216 if (!cap_isclear(*perm)) {
1217 audit_log_cap(ab, "cap_fp", perm);
1218 log = 1;
1219 }
1220 if (!cap_isclear(*inh)) {
1221 audit_log_cap(ab, "cap_fi", inh);
1222 log = 1;
1223 }
1224
1225 if (log)
1226 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1227 }
1228
1229 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1230 {
1231 const struct cred *cred;
1232 int i, call_panic = 0;
1233 struct audit_buffer *ab;
1234 struct audit_aux_data *aux;
1235 const char *tty;
1236
1237 /* tsk == current */
1238 context->pid = tsk->pid;
1239 if (!context->ppid)
1240 context->ppid = sys_getppid();
1241 cred = current_cred();
1242 context->uid = cred->uid;
1243 context->gid = cred->gid;
1244 context->euid = cred->euid;
1245 context->suid = cred->suid;
1246 context->fsuid = cred->fsuid;
1247 context->egid = cred->egid;
1248 context->sgid = cred->sgid;
1249 context->fsgid = cred->fsgid;
1250 context->personality = tsk->personality;
1251
1252 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1253 if (!ab)
1254 return; /* audit_panic has been called */
1255 audit_log_format(ab, "arch=%x syscall=%d",
1256 context->arch, context->major);
1257 if (context->personality != PER_LINUX)
1258 audit_log_format(ab, " per=%lx", context->personality);
1259 if (context->return_valid)
1260 audit_log_format(ab, " success=%s exit=%ld",
1261 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1262 context->return_code);
1263
1264 spin_lock_irq(&tsk->sighand->siglock);
1265 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1266 tty = tsk->signal->tty->name;
1267 else
1268 tty = "(none)";
1269 spin_unlock_irq(&tsk->sighand->siglock);
1270
1271 audit_log_format(ab,
1272 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1273 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1274 " euid=%u suid=%u fsuid=%u"
1275 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1276 context->argv[0],
1277 context->argv[1],
1278 context->argv[2],
1279 context->argv[3],
1280 context->name_count,
1281 context->ppid,
1282 context->pid,
1283 tsk->loginuid,
1284 context->uid,
1285 context->gid,
1286 context->euid, context->suid, context->fsuid,
1287 context->egid, context->sgid, context->fsgid, tty,
1288 tsk->sessionid);
1289
1290
1291 audit_log_task_info(ab, tsk);
1292 if (context->filterkey) {
1293 audit_log_format(ab, " key=");
1294 audit_log_untrustedstring(ab, context->filterkey);
1295 } else
1296 audit_log_format(ab, " key=(null)");
1297 audit_log_end(ab);
1298
1299 for (aux = context->aux; aux; aux = aux->next) {
1300
1301 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1302 if (!ab)
1303 continue; /* audit_panic has been called */
1304
1305 switch (aux->type) {
1306 case AUDIT_MQ_OPEN: {
1307 struct audit_aux_data_mq_open *axi = (void *)aux;
1308 audit_log_format(ab,
1309 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1310 "mq_msgsize=%ld mq_curmsgs=%ld",
1311 axi->oflag, axi->mode, axi->attr.mq_flags,
1312 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1313 axi->attr.mq_curmsgs);
1314 break; }
1315
1316 case AUDIT_MQ_SENDRECV: {
1317 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1318 audit_log_format(ab,
1319 "mqdes=%d msg_len=%zd msg_prio=%u "
1320 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1321 axi->mqdes, axi->msg_len, axi->msg_prio,
1322 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1323 break; }
1324
1325 case AUDIT_MQ_NOTIFY: {
1326 struct audit_aux_data_mq_notify *axi = (void *)aux;
1327 audit_log_format(ab,
1328 "mqdes=%d sigev_signo=%d",
1329 axi->mqdes,
1330 axi->notification.sigev_signo);
1331 break; }
1332
1333 case AUDIT_MQ_GETSETATTR: {
1334 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1335 audit_log_format(ab,
1336 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1337 "mq_curmsgs=%ld ",
1338 axi->mqdes,
1339 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1340 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1341 break; }
1342
1343 case AUDIT_IPC: {
1344 struct audit_aux_data_ipcctl *axi = (void *)aux;
1345 audit_log_format(ab,
1346 "ouid=%u ogid=%u mode=%#o",
1347 axi->uid, axi->gid, axi->mode);
1348 if (axi->osid != 0) {
1349 char *ctx = NULL;
1350 u32 len;
1351 if (security_secid_to_secctx(
1352 axi->osid, &ctx, &len)) {
1353 audit_log_format(ab, " osid=%u",
1354 axi->osid);
1355 call_panic = 1;
1356 } else {
1357 audit_log_format(ab, " obj=%s", ctx);
1358 security_release_secctx(ctx, len);
1359 }
1360 }
1361 break; }
1362
1363 case AUDIT_IPC_SET_PERM: {
1364 struct audit_aux_data_ipcctl *axi = (void *)aux;
1365 audit_log_format(ab,
1366 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1367 axi->qbytes, axi->uid, axi->gid, axi->mode);
1368 break; }
1369
1370 case AUDIT_EXECVE: {
1371 struct audit_aux_data_execve *axi = (void *)aux;
1372 audit_log_execve_info(context, &ab, axi);
1373 break; }
1374
1375 case AUDIT_SOCKETCALL: {
1376 struct audit_aux_data_socketcall *axs = (void *)aux;
1377 audit_log_format(ab, "nargs=%d", axs->nargs);
1378 for (i=0; i<axs->nargs; i++)
1379 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1380 break; }
1381
1382 case AUDIT_FD_PAIR: {
1383 struct audit_aux_data_fd_pair *axs = (void *)aux;
1384 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1385 break; }
1386
1387 case AUDIT_BPRM_FCAPS: {
1388 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1389 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1390 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1391 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1392 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1393 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1394 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1395 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1396 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1397 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1398 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1399 break; }
1400
1401 case AUDIT_CAPSET: {
1402 struct audit_aux_data_capset *axs = (void *)aux;
1403 audit_log_format(ab, "pid=%d", axs->pid);
1404 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1405 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1406 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1407 break; }
1408
1409 }
1410 audit_log_end(ab);
1411 }
1412
1413 if (context->sockaddr_len) {
1414 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1415 if (ab) {
1416 audit_log_format(ab, "saddr=");
1417 audit_log_n_hex(ab, (void *)context->sockaddr,
1418 context->sockaddr_len);
1419 audit_log_end(ab);
1420 }
1421 }
1422
1423 for (aux = context->aux_pids; aux; aux = aux->next) {
1424 struct audit_aux_data_pids *axs = (void *)aux;
1425
1426 for (i = 0; i < axs->pid_count; i++)
1427 if (audit_log_pid_context(context, axs->target_pid[i],
1428 axs->target_auid[i],
1429 axs->target_uid[i],
1430 axs->target_sessionid[i],
1431 axs->target_sid[i],
1432 axs->target_comm[i]))
1433 call_panic = 1;
1434 }
1435
1436 if (context->target_pid &&
1437 audit_log_pid_context(context, context->target_pid,
1438 context->target_auid, context->target_uid,
1439 context->target_sessionid,
1440 context->target_sid, context->target_comm))
1441 call_panic = 1;
1442
1443 if (context->pwd.dentry && context->pwd.mnt) {
1444 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1445 if (ab) {
1446 audit_log_d_path(ab, "cwd=", &context->pwd);
1447 audit_log_end(ab);
1448 }
1449 }
1450 for (i = 0; i < context->name_count; i++) {
1451 struct audit_names *n = &context->names[i];
1452
1453 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1454 if (!ab)
1455 continue; /* audit_panic has been called */
1456
1457 audit_log_format(ab, "item=%d", i);
1458
1459 if (n->name) {
1460 switch(n->name_len) {
1461 case AUDIT_NAME_FULL:
1462 /* log the full path */
1463 audit_log_format(ab, " name=");
1464 audit_log_untrustedstring(ab, n->name);
1465 break;
1466 case 0:
1467 /* name was specified as a relative path and the
1468 * directory component is the cwd */
1469 audit_log_d_path(ab, " name=", &context->pwd);
1470 break;
1471 default:
1472 /* log the name's directory component */
1473 audit_log_format(ab, " name=");
1474 audit_log_n_untrustedstring(ab, n->name,
1475 n->name_len);
1476 }
1477 } else
1478 audit_log_format(ab, " name=(null)");
1479
1480 if (n->ino != (unsigned long)-1) {
1481 audit_log_format(ab, " inode=%lu"
1482 " dev=%02x:%02x mode=%#o"
1483 " ouid=%u ogid=%u rdev=%02x:%02x",
1484 n->ino,
1485 MAJOR(n->dev),
1486 MINOR(n->dev),
1487 n->mode,
1488 n->uid,
1489 n->gid,
1490 MAJOR(n->rdev),
1491 MINOR(n->rdev));
1492 }
1493 if (n->osid != 0) {
1494 char *ctx = NULL;
1495 u32 len;
1496 if (security_secid_to_secctx(
1497 n->osid, &ctx, &len)) {
1498 audit_log_format(ab, " osid=%u", n->osid);
1499 call_panic = 2;
1500 } else {
1501 audit_log_format(ab, " obj=%s", ctx);
1502 security_release_secctx(ctx, len);
1503 }
1504 }
1505
1506 audit_log_fcaps(ab, n);
1507
1508 audit_log_end(ab);
1509 }
1510
1511 /* Send end of event record to help user space know we are finished */
1512 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1513 if (ab)
1514 audit_log_end(ab);
1515 if (call_panic)
1516 audit_panic("error converting sid to string");
1517 }
1518
1519 /**
1520 * audit_free - free a per-task audit context
1521 * @tsk: task whose audit context block to free
1522 *
1523 * Called from copy_process and do_exit
1524 */
1525 void audit_free(struct task_struct *tsk)
1526 {
1527 struct audit_context *context;
1528
1529 context = audit_get_context(tsk, 0, 0);
1530 if (likely(!context))
1531 return;
1532
1533 /* Check for system calls that do not go through the exit
1534 * function (e.g., exit_group), then free context block.
1535 * We use GFP_ATOMIC here because we might be doing this
1536 * in the context of the idle thread */
1537 /* that can happen only if we are called from do_exit() */
1538 if (context->in_syscall && context->auditable)
1539 audit_log_exit(context, tsk);
1540
1541 audit_free_context(context);
1542 }
1543
1544 /**
1545 * audit_syscall_entry - fill in an audit record at syscall entry
1546 * @arch: architecture type
1547 * @major: major syscall type (function)
1548 * @a1: additional syscall register 1
1549 * @a2: additional syscall register 2
1550 * @a3: additional syscall register 3
1551 * @a4: additional syscall register 4
1552 *
1553 * Fill in audit context at syscall entry. This only happens if the
1554 * audit context was created when the task was created and the state or
1555 * filters demand the audit context be built. If the state from the
1556 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1557 * then the record will be written at syscall exit time (otherwise, it
1558 * will only be written if another part of the kernel requests that it
1559 * be written).
1560 */
1561 void audit_syscall_entry(int arch, int major,
1562 unsigned long a1, unsigned long a2,
1563 unsigned long a3, unsigned long a4)
1564 {
1565 struct task_struct *tsk = current;
1566 struct audit_context *context = tsk->audit_context;
1567 enum audit_state state;
1568
1569 if (unlikely(!context))
1570 return;
1571
1572 /*
1573 * This happens only on certain architectures that make system
1574 * calls in kernel_thread via the entry.S interface, instead of
1575 * with direct calls. (If you are porting to a new
1576 * architecture, hitting this condition can indicate that you
1577 * got the _exit/_leave calls backward in entry.S.)
1578 *
1579 * i386 no
1580 * x86_64 no
1581 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1582 *
1583 * This also happens with vm86 emulation in a non-nested manner
1584 * (entries without exits), so this case must be caught.
1585 */
1586 if (context->in_syscall) {
1587 struct audit_context *newctx;
1588
1589 #if AUDIT_DEBUG
1590 printk(KERN_ERR
1591 "audit(:%d) pid=%d in syscall=%d;"
1592 " entering syscall=%d\n",
1593 context->serial, tsk->pid, context->major, major);
1594 #endif
1595 newctx = audit_alloc_context(context->state);
1596 if (newctx) {
1597 newctx->previous = context;
1598 context = newctx;
1599 tsk->audit_context = newctx;
1600 } else {
1601 /* If we can't alloc a new context, the best we
1602 * can do is to leak memory (any pending putname
1603 * will be lost). The only other alternative is
1604 * to abandon auditing. */
1605 audit_zero_context(context, context->state);
1606 }
1607 }
1608 BUG_ON(context->in_syscall || context->name_count);
1609
1610 if (!audit_enabled)
1611 return;
1612
1613 context->arch = arch;
1614 context->major = major;
1615 context->argv[0] = a1;
1616 context->argv[1] = a2;
1617 context->argv[2] = a3;
1618 context->argv[3] = a4;
1619
1620 state = context->state;
1621 context->dummy = !audit_n_rules;
1622 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1623 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1624 if (likely(state == AUDIT_DISABLED))
1625 return;
1626
1627 context->serial = 0;
1628 context->ctime = CURRENT_TIME;
1629 context->in_syscall = 1;
1630 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1631 context->ppid = 0;
1632 }
1633
1634 void audit_finish_fork(struct task_struct *child)
1635 {
1636 struct audit_context *ctx = current->audit_context;
1637 struct audit_context *p = child->audit_context;
1638 if (!p || !ctx || !ctx->auditable)
1639 return;
1640 p->arch = ctx->arch;
1641 p->major = ctx->major;
1642 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1643 p->ctime = ctx->ctime;
1644 p->dummy = ctx->dummy;
1645 p->auditable = ctx->auditable;
1646 p->in_syscall = ctx->in_syscall;
1647 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1648 p->ppid = current->pid;
1649 }
1650
1651 /**
1652 * audit_syscall_exit - deallocate audit context after a system call
1653 * @valid: success/failure flag
1654 * @return_code: syscall return value
1655 *
1656 * Tear down after system call. If the audit context has been marked as
1657 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1658 * filtering, or because some other part of the kernel write an audit
1659 * message), then write out the syscall information. In call cases,
1660 * free the names stored from getname().
1661 */
1662 void audit_syscall_exit(int valid, long return_code)
1663 {
1664 struct task_struct *tsk = current;
1665 struct audit_context *context;
1666
1667 context = audit_get_context(tsk, valid, return_code);
1668
1669 if (likely(!context))
1670 return;
1671
1672 if (context->in_syscall && context->auditable)
1673 audit_log_exit(context, tsk);
1674
1675 context->in_syscall = 0;
1676 context->auditable = 0;
1677
1678 if (context->previous) {
1679 struct audit_context *new_context = context->previous;
1680 context->previous = NULL;
1681 audit_free_context(context);
1682 tsk->audit_context = new_context;
1683 } else {
1684 audit_free_names(context);
1685 unroll_tree_refs(context, NULL, 0);
1686 audit_free_aux(context);
1687 context->aux = NULL;
1688 context->aux_pids = NULL;
1689 context->target_pid = 0;
1690 context->target_sid = 0;
1691 context->sockaddr_len = 0;
1692 kfree(context->filterkey);
1693 context->filterkey = NULL;
1694 tsk->audit_context = context;
1695 }
1696 }
1697
1698 static inline void handle_one(const struct inode *inode)
1699 {
1700 #ifdef CONFIG_AUDIT_TREE
1701 struct audit_context *context;
1702 struct audit_tree_refs *p;
1703 struct audit_chunk *chunk;
1704 int count;
1705 if (likely(list_empty(&inode->inotify_watches)))
1706 return;
1707 context = current->audit_context;
1708 p = context->trees;
1709 count = context->tree_count;
1710 rcu_read_lock();
1711 chunk = audit_tree_lookup(inode);
1712 rcu_read_unlock();
1713 if (!chunk)
1714 return;
1715 if (likely(put_tree_ref(context, chunk)))
1716 return;
1717 if (unlikely(!grow_tree_refs(context))) {
1718 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1719 audit_set_auditable(context);
1720 audit_put_chunk(chunk);
1721 unroll_tree_refs(context, p, count);
1722 return;
1723 }
1724 put_tree_ref(context, chunk);
1725 #endif
1726 }
1727
1728 static void handle_path(const struct dentry *dentry)
1729 {
1730 #ifdef CONFIG_AUDIT_TREE
1731 struct audit_context *context;
1732 struct audit_tree_refs *p;
1733 const struct dentry *d, *parent;
1734 struct audit_chunk *drop;
1735 unsigned long seq;
1736 int count;
1737
1738 context = current->audit_context;
1739 p = context->trees;
1740 count = context->tree_count;
1741 retry:
1742 drop = NULL;
1743 d = dentry;
1744 rcu_read_lock();
1745 seq = read_seqbegin(&rename_lock);
1746 for(;;) {
1747 struct inode *inode = d->d_inode;
1748 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1749 struct audit_chunk *chunk;
1750 chunk = audit_tree_lookup(inode);
1751 if (chunk) {
1752 if (unlikely(!put_tree_ref(context, chunk))) {
1753 drop = chunk;
1754 break;
1755 }
1756 }
1757 }
1758 parent = d->d_parent;
1759 if (parent == d)
1760 break;
1761 d = parent;
1762 }
1763 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1764 rcu_read_unlock();
1765 if (!drop) {
1766 /* just a race with rename */
1767 unroll_tree_refs(context, p, count);
1768 goto retry;
1769 }
1770 audit_put_chunk(drop);
1771 if (grow_tree_refs(context)) {
1772 /* OK, got more space */
1773 unroll_tree_refs(context, p, count);
1774 goto retry;
1775 }
1776 /* too bad */
1777 printk(KERN_WARNING
1778 "out of memory, audit has lost a tree reference\n");
1779 unroll_tree_refs(context, p, count);
1780 audit_set_auditable(context);
1781 return;
1782 }
1783 rcu_read_unlock();
1784 #endif
1785 }
1786
1787 /**
1788 * audit_getname - add a name to the list
1789 * @name: name to add
1790 *
1791 * Add a name to the list of audit names for this context.
1792 * Called from fs/namei.c:getname().
1793 */
1794 void __audit_getname(const char *name)
1795 {
1796 struct audit_context *context = current->audit_context;
1797
1798 if (IS_ERR(name) || !name)
1799 return;
1800
1801 if (!context->in_syscall) {
1802 #if AUDIT_DEBUG == 2
1803 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1804 __FILE__, __LINE__, context->serial, name);
1805 dump_stack();
1806 #endif
1807 return;
1808 }
1809 BUG_ON(context->name_count >= AUDIT_NAMES);
1810 context->names[context->name_count].name = name;
1811 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1812 context->names[context->name_count].name_put = 1;
1813 context->names[context->name_count].ino = (unsigned long)-1;
1814 context->names[context->name_count].osid = 0;
1815 ++context->name_count;
1816 if (!context->pwd.dentry) {
1817 read_lock(&current->fs->lock);
1818 context->pwd = current->fs->pwd;
1819 path_get(&current->fs->pwd);
1820 read_unlock(&current->fs->lock);
1821 }
1822
1823 }
1824
1825 /* audit_putname - intercept a putname request
1826 * @name: name to intercept and delay for putname
1827 *
1828 * If we have stored the name from getname in the audit context,
1829 * then we delay the putname until syscall exit.
1830 * Called from include/linux/fs.h:putname().
1831 */
1832 void audit_putname(const char *name)
1833 {
1834 struct audit_context *context = current->audit_context;
1835
1836 BUG_ON(!context);
1837 if (!context->in_syscall) {
1838 #if AUDIT_DEBUG == 2
1839 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1840 __FILE__, __LINE__, context->serial, name);
1841 if (context->name_count) {
1842 int i;
1843 for (i = 0; i < context->name_count; i++)
1844 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1845 context->names[i].name,
1846 context->names[i].name ?: "(null)");
1847 }
1848 #endif
1849 __putname(name);
1850 }
1851 #if AUDIT_DEBUG
1852 else {
1853 ++context->put_count;
1854 if (context->put_count > context->name_count) {
1855 printk(KERN_ERR "%s:%d(:%d): major=%d"
1856 " in_syscall=%d putname(%p) name_count=%d"
1857 " put_count=%d\n",
1858 __FILE__, __LINE__,
1859 context->serial, context->major,
1860 context->in_syscall, name, context->name_count,
1861 context->put_count);
1862 dump_stack();
1863 }
1864 }
1865 #endif
1866 }
1867
1868 static int audit_inc_name_count(struct audit_context *context,
1869 const struct inode *inode)
1870 {
1871 if (context->name_count >= AUDIT_NAMES) {
1872 if (inode)
1873 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1874 "dev=%02x:%02x, inode=%lu\n",
1875 MAJOR(inode->i_sb->s_dev),
1876 MINOR(inode->i_sb->s_dev),
1877 inode->i_ino);
1878
1879 else
1880 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1881 return 1;
1882 }
1883 context->name_count++;
1884 #if AUDIT_DEBUG
1885 context->ino_count++;
1886 #endif
1887 return 0;
1888 }
1889
1890
1891 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1892 {
1893 struct cpu_vfs_cap_data caps;
1894 int rc;
1895
1896 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1897 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1898 name->fcap.fE = 0;
1899 name->fcap_ver = 0;
1900
1901 if (!dentry)
1902 return 0;
1903
1904 rc = get_vfs_caps_from_disk(dentry, &caps);
1905 if (rc)
1906 return rc;
1907
1908 name->fcap.permitted = caps.permitted;
1909 name->fcap.inheritable = caps.inheritable;
1910 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1911 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1912
1913 return 0;
1914 }
1915
1916
1917 /* Copy inode data into an audit_names. */
1918 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1919 const struct inode *inode)
1920 {
1921 name->ino = inode->i_ino;
1922 name->dev = inode->i_sb->s_dev;
1923 name->mode = inode->i_mode;
1924 name->uid = inode->i_uid;
1925 name->gid = inode->i_gid;
1926 name->rdev = inode->i_rdev;
1927 security_inode_getsecid(inode, &name->osid);
1928 audit_copy_fcaps(name, dentry);
1929 }
1930
1931 /**
1932 * audit_inode - store the inode and device from a lookup
1933 * @name: name being audited
1934 * @dentry: dentry being audited
1935 *
1936 * Called from fs/namei.c:path_lookup().
1937 */
1938 void __audit_inode(const char *name, const struct dentry *dentry)
1939 {
1940 int idx;
1941 struct audit_context *context = current->audit_context;
1942 const struct inode *inode = dentry->d_inode;
1943
1944 if (!context->in_syscall)
1945 return;
1946 if (context->name_count
1947 && context->names[context->name_count-1].name
1948 && context->names[context->name_count-1].name == name)
1949 idx = context->name_count - 1;
1950 else if (context->name_count > 1
1951 && context->names[context->name_count-2].name
1952 && context->names[context->name_count-2].name == name)
1953 idx = context->name_count - 2;
1954 else {
1955 /* FIXME: how much do we care about inodes that have no
1956 * associated name? */
1957 if (audit_inc_name_count(context, inode))
1958 return;
1959 idx = context->name_count - 1;
1960 context->names[idx].name = NULL;
1961 }
1962 handle_path(dentry);
1963 audit_copy_inode(&context->names[idx], dentry, inode);
1964 }
1965
1966 /**
1967 * audit_inode_child - collect inode info for created/removed objects
1968 * @dname: inode's dentry name
1969 * @dentry: dentry being audited
1970 * @parent: inode of dentry parent
1971 *
1972 * For syscalls that create or remove filesystem objects, audit_inode
1973 * can only collect information for the filesystem object's parent.
1974 * This call updates the audit context with the child's information.
1975 * Syscalls that create a new filesystem object must be hooked after
1976 * the object is created. Syscalls that remove a filesystem object
1977 * must be hooked prior, in order to capture the target inode during
1978 * unsuccessful attempts.
1979 */
1980 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1981 const struct inode *parent)
1982 {
1983 int idx;
1984 struct audit_context *context = current->audit_context;
1985 const char *found_parent = NULL, *found_child = NULL;
1986 const struct inode *inode = dentry->d_inode;
1987 int dirlen = 0;
1988
1989 if (!context->in_syscall)
1990 return;
1991
1992 if (inode)
1993 handle_one(inode);
1994 /* determine matching parent */
1995 if (!dname)
1996 goto add_names;
1997
1998 /* parent is more likely, look for it first */
1999 for (idx = 0; idx < context->name_count; idx++) {
2000 struct audit_names *n = &context->names[idx];
2001
2002 if (!n->name)
2003 continue;
2004
2005 if (n->ino == parent->i_ino &&
2006 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2007 n->name_len = dirlen; /* update parent data in place */
2008 found_parent = n->name;
2009 goto add_names;
2010 }
2011 }
2012
2013 /* no matching parent, look for matching child */
2014 for (idx = 0; idx < context->name_count; idx++) {
2015 struct audit_names *n = &context->names[idx];
2016
2017 if (!n->name)
2018 continue;
2019
2020 /* strcmp() is the more likely scenario */
2021 if (!strcmp(dname, n->name) ||
2022 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2023 if (inode)
2024 audit_copy_inode(n, NULL, inode);
2025 else
2026 n->ino = (unsigned long)-1;
2027 found_child = n->name;
2028 goto add_names;
2029 }
2030 }
2031
2032 add_names:
2033 if (!found_parent) {
2034 if (audit_inc_name_count(context, parent))
2035 return;
2036 idx = context->name_count - 1;
2037 context->names[idx].name = NULL;
2038 audit_copy_inode(&context->names[idx], NULL, parent);
2039 }
2040
2041 if (!found_child) {
2042 if (audit_inc_name_count(context, inode))
2043 return;
2044 idx = context->name_count - 1;
2045
2046 /* Re-use the name belonging to the slot for a matching parent
2047 * directory. All names for this context are relinquished in
2048 * audit_free_names() */
2049 if (found_parent) {
2050 context->names[idx].name = found_parent;
2051 context->names[idx].name_len = AUDIT_NAME_FULL;
2052 /* don't call __putname() */
2053 context->names[idx].name_put = 0;
2054 } else {
2055 context->names[idx].name = NULL;
2056 }
2057
2058 if (inode)
2059 audit_copy_inode(&context->names[idx], NULL, inode);
2060 else
2061 context->names[idx].ino = (unsigned long)-1;
2062 }
2063 }
2064 EXPORT_SYMBOL_GPL(__audit_inode_child);
2065
2066 /**
2067 * auditsc_get_stamp - get local copies of audit_context values
2068 * @ctx: audit_context for the task
2069 * @t: timespec to store time recorded in the audit_context
2070 * @serial: serial value that is recorded in the audit_context
2071 *
2072 * Also sets the context as auditable.
2073 */
2074 int auditsc_get_stamp(struct audit_context *ctx,
2075 struct timespec *t, unsigned int *serial)
2076 {
2077 if (!ctx->in_syscall)
2078 return 0;
2079 if (!ctx->serial)
2080 ctx->serial = audit_serial();
2081 t->tv_sec = ctx->ctime.tv_sec;
2082 t->tv_nsec = ctx->ctime.tv_nsec;
2083 *serial = ctx->serial;
2084 ctx->auditable = 1;
2085 return 1;
2086 }
2087
2088 /* global counter which is incremented every time something logs in */
2089 static atomic_t session_id = ATOMIC_INIT(0);
2090
2091 /**
2092 * audit_set_loginuid - set a task's audit_context loginuid
2093 * @task: task whose audit context is being modified
2094 * @loginuid: loginuid value
2095 *
2096 * Returns 0.
2097 *
2098 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2099 */
2100 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2101 {
2102 unsigned int sessionid = atomic_inc_return(&session_id);
2103 struct audit_context *context = task->audit_context;
2104
2105 if (context && context->in_syscall) {
2106 struct audit_buffer *ab;
2107
2108 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2109 if (ab) {
2110 audit_log_format(ab, "login pid=%d uid=%u "
2111 "old auid=%u new auid=%u"
2112 " old ses=%u new ses=%u",
2113 task->pid, task_uid(task),
2114 task->loginuid, loginuid,
2115 task->sessionid, sessionid);
2116 audit_log_end(ab);
2117 }
2118 }
2119 task->sessionid = sessionid;
2120 task->loginuid = loginuid;
2121 return 0;
2122 }
2123
2124 /**
2125 * __audit_mq_open - record audit data for a POSIX MQ open
2126 * @oflag: open flag
2127 * @mode: mode bits
2128 * @u_attr: queue attributes
2129 *
2130 * Returns 0 for success or NULL context or < 0 on error.
2131 */
2132 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2133 {
2134 struct audit_aux_data_mq_open *ax;
2135 struct audit_context *context = current->audit_context;
2136
2137 if (!audit_enabled)
2138 return 0;
2139
2140 if (likely(!context))
2141 return 0;
2142
2143 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2144 if (!ax)
2145 return -ENOMEM;
2146
2147 if (u_attr != NULL) {
2148 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2149 kfree(ax);
2150 return -EFAULT;
2151 }
2152 } else
2153 memset(&ax->attr, 0, sizeof(ax->attr));
2154
2155 ax->oflag = oflag;
2156 ax->mode = mode;
2157
2158 ax->d.type = AUDIT_MQ_OPEN;
2159 ax->d.next = context->aux;
2160 context->aux = (void *)ax;
2161 return 0;
2162 }
2163
2164 /**
2165 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2166 * @mqdes: MQ descriptor
2167 * @msg_len: Message length
2168 * @msg_prio: Message priority
2169 * @u_abs_timeout: Message timeout in absolute time
2170 *
2171 * Returns 0 for success or NULL context or < 0 on error.
2172 */
2173 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2174 const struct timespec __user *u_abs_timeout)
2175 {
2176 struct audit_aux_data_mq_sendrecv *ax;
2177 struct audit_context *context = current->audit_context;
2178
2179 if (!audit_enabled)
2180 return 0;
2181
2182 if (likely(!context))
2183 return 0;
2184
2185 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2186 if (!ax)
2187 return -ENOMEM;
2188
2189 if (u_abs_timeout != NULL) {
2190 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2191 kfree(ax);
2192 return -EFAULT;
2193 }
2194 } else
2195 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2196
2197 ax->mqdes = mqdes;
2198 ax->msg_len = msg_len;
2199 ax->msg_prio = msg_prio;
2200
2201 ax->d.type = AUDIT_MQ_SENDRECV;
2202 ax->d.next = context->aux;
2203 context->aux = (void *)ax;
2204 return 0;
2205 }
2206
2207 /**
2208 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2209 * @mqdes: MQ descriptor
2210 * @msg_len: Message length
2211 * @u_msg_prio: Message priority
2212 * @u_abs_timeout: Message timeout in absolute time
2213 *
2214 * Returns 0 for success or NULL context or < 0 on error.
2215 */
2216 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2217 unsigned int __user *u_msg_prio,
2218 const struct timespec __user *u_abs_timeout)
2219 {
2220 struct audit_aux_data_mq_sendrecv *ax;
2221 struct audit_context *context = current->audit_context;
2222
2223 if (!audit_enabled)
2224 return 0;
2225
2226 if (likely(!context))
2227 return 0;
2228
2229 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2230 if (!ax)
2231 return -ENOMEM;
2232
2233 if (u_msg_prio != NULL) {
2234 if (get_user(ax->msg_prio, u_msg_prio)) {
2235 kfree(ax);
2236 return -EFAULT;
2237 }
2238 } else
2239 ax->msg_prio = 0;
2240
2241 if (u_abs_timeout != NULL) {
2242 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2243 kfree(ax);
2244 return -EFAULT;
2245 }
2246 } else
2247 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2248
2249 ax->mqdes = mqdes;
2250 ax->msg_len = msg_len;
2251
2252 ax->d.type = AUDIT_MQ_SENDRECV;
2253 ax->d.next = context->aux;
2254 context->aux = (void *)ax;
2255 return 0;
2256 }
2257
2258 /**
2259 * __audit_mq_notify - record audit data for a POSIX MQ notify
2260 * @mqdes: MQ descriptor
2261 * @u_notification: Notification event
2262 *
2263 * Returns 0 for success or NULL context or < 0 on error.
2264 */
2265
2266 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2267 {
2268 struct audit_aux_data_mq_notify *ax;
2269 struct audit_context *context = current->audit_context;
2270
2271 if (!audit_enabled)
2272 return 0;
2273
2274 if (likely(!context))
2275 return 0;
2276
2277 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2278 if (!ax)
2279 return -ENOMEM;
2280
2281 if (u_notification != NULL) {
2282 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2283 kfree(ax);
2284 return -EFAULT;
2285 }
2286 } else
2287 memset(&ax->notification, 0, sizeof(ax->notification));
2288
2289 ax->mqdes = mqdes;
2290
2291 ax->d.type = AUDIT_MQ_NOTIFY;
2292 ax->d.next = context->aux;
2293 context->aux = (void *)ax;
2294 return 0;
2295 }
2296
2297 /**
2298 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2299 * @mqdes: MQ descriptor
2300 * @mqstat: MQ flags
2301 *
2302 * Returns 0 for success or NULL context or < 0 on error.
2303 */
2304 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2305 {
2306 struct audit_aux_data_mq_getsetattr *ax;
2307 struct audit_context *context = current->audit_context;
2308
2309 if (!audit_enabled)
2310 return 0;
2311
2312 if (likely(!context))
2313 return 0;
2314
2315 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2316 if (!ax)
2317 return -ENOMEM;
2318
2319 ax->mqdes = mqdes;
2320 ax->mqstat = *mqstat;
2321
2322 ax->d.type = AUDIT_MQ_GETSETATTR;
2323 ax->d.next = context->aux;
2324 context->aux = (void *)ax;
2325 return 0;
2326 }
2327
2328 /**
2329 * audit_ipc_obj - record audit data for ipc object
2330 * @ipcp: ipc permissions
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2335 {
2336 struct audit_aux_data_ipcctl *ax;
2337 struct audit_context *context = current->audit_context;
2338
2339 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2340 if (!ax)
2341 return -ENOMEM;
2342
2343 ax->uid = ipcp->uid;
2344 ax->gid = ipcp->gid;
2345 ax->mode = ipcp->mode;
2346 security_ipc_getsecid(ipcp, &ax->osid);
2347 ax->d.type = AUDIT_IPC;
2348 ax->d.next = context->aux;
2349 context->aux = (void *)ax;
2350 return 0;
2351 }
2352
2353 /**
2354 * audit_ipc_set_perm - record audit data for new ipc permissions
2355 * @qbytes: msgq bytes
2356 * @uid: msgq user id
2357 * @gid: msgq group id
2358 * @mode: msgq mode (permissions)
2359 *
2360 * Returns 0 for success or NULL context or < 0 on error.
2361 */
2362 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2363 {
2364 struct audit_aux_data_ipcctl *ax;
2365 struct audit_context *context = current->audit_context;
2366
2367 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2368 if (!ax)
2369 return -ENOMEM;
2370
2371 ax->qbytes = qbytes;
2372 ax->uid = uid;
2373 ax->gid = gid;
2374 ax->mode = mode;
2375
2376 ax->d.type = AUDIT_IPC_SET_PERM;
2377 ax->d.next = context->aux;
2378 context->aux = (void *)ax;
2379 return 0;
2380 }
2381
2382 int audit_bprm(struct linux_binprm *bprm)
2383 {
2384 struct audit_aux_data_execve *ax;
2385 struct audit_context *context = current->audit_context;
2386
2387 if (likely(!audit_enabled || !context || context->dummy))
2388 return 0;
2389
2390 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2391 if (!ax)
2392 return -ENOMEM;
2393
2394 ax->argc = bprm->argc;
2395 ax->envc = bprm->envc;
2396 ax->mm = bprm->mm;
2397 ax->d.type = AUDIT_EXECVE;
2398 ax->d.next = context->aux;
2399 context->aux = (void *)ax;
2400 return 0;
2401 }
2402
2403
2404 /**
2405 * audit_socketcall - record audit data for sys_socketcall
2406 * @nargs: number of args
2407 * @args: args array
2408 *
2409 * Returns 0 for success or NULL context or < 0 on error.
2410 */
2411 int audit_socketcall(int nargs, unsigned long *args)
2412 {
2413 struct audit_aux_data_socketcall *ax;
2414 struct audit_context *context = current->audit_context;
2415
2416 if (likely(!context || context->dummy))
2417 return 0;
2418
2419 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2420 if (!ax)
2421 return -ENOMEM;
2422
2423 ax->nargs = nargs;
2424 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2425
2426 ax->d.type = AUDIT_SOCKETCALL;
2427 ax->d.next = context->aux;
2428 context->aux = (void *)ax;
2429 return 0;
2430 }
2431
2432 /**
2433 * __audit_fd_pair - record audit data for pipe and socketpair
2434 * @fd1: the first file descriptor
2435 * @fd2: the second file descriptor
2436 *
2437 * Returns 0 for success or NULL context or < 0 on error.
2438 */
2439 int __audit_fd_pair(int fd1, int fd2)
2440 {
2441 struct audit_context *context = current->audit_context;
2442 struct audit_aux_data_fd_pair *ax;
2443
2444 if (likely(!context)) {
2445 return 0;
2446 }
2447
2448 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2449 if (!ax) {
2450 return -ENOMEM;
2451 }
2452
2453 ax->fd[0] = fd1;
2454 ax->fd[1] = fd2;
2455
2456 ax->d.type = AUDIT_FD_PAIR;
2457 ax->d.next = context->aux;
2458 context->aux = (void *)ax;
2459 return 0;
2460 }
2461
2462 /**
2463 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2464 * @len: data length in user space
2465 * @a: data address in kernel space
2466 *
2467 * Returns 0 for success or NULL context or < 0 on error.
2468 */
2469 int audit_sockaddr(int len, void *a)
2470 {
2471 struct audit_context *context = current->audit_context;
2472
2473 if (likely(!context || context->dummy))
2474 return 0;
2475
2476 if (!context->sockaddr) {
2477 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2478 if (!p)
2479 return -ENOMEM;
2480 context->sockaddr = p;
2481 }
2482
2483 context->sockaddr_len = len;
2484 memcpy(context->sockaddr, a, len);
2485 return 0;
2486 }
2487
2488 void __audit_ptrace(struct task_struct *t)
2489 {
2490 struct audit_context *context = current->audit_context;
2491
2492 context->target_pid = t->pid;
2493 context->target_auid = audit_get_loginuid(t);
2494 context->target_uid = task_uid(t);
2495 context->target_sessionid = audit_get_sessionid(t);
2496 security_task_getsecid(t, &context->target_sid);
2497 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2498 }
2499
2500 /**
2501 * audit_signal_info - record signal info for shutting down audit subsystem
2502 * @sig: signal value
2503 * @t: task being signaled
2504 *
2505 * If the audit subsystem is being terminated, record the task (pid)
2506 * and uid that is doing that.
2507 */
2508 int __audit_signal_info(int sig, struct task_struct *t)
2509 {
2510 struct audit_aux_data_pids *axp;
2511 struct task_struct *tsk = current;
2512 struct audit_context *ctx = tsk->audit_context;
2513 uid_t uid = current_uid(), t_uid = task_uid(t);
2514
2515 if (audit_pid && t->tgid == audit_pid) {
2516 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2517 audit_sig_pid = tsk->pid;
2518 if (tsk->loginuid != -1)
2519 audit_sig_uid = tsk->loginuid;
2520 else
2521 audit_sig_uid = uid;
2522 security_task_getsecid(tsk, &audit_sig_sid);
2523 }
2524 if (!audit_signals || audit_dummy_context())
2525 return 0;
2526 }
2527
2528 /* optimize the common case by putting first signal recipient directly
2529 * in audit_context */
2530 if (!ctx->target_pid) {
2531 ctx->target_pid = t->tgid;
2532 ctx->target_auid = audit_get_loginuid(t);
2533 ctx->target_uid = t_uid;
2534 ctx->target_sessionid = audit_get_sessionid(t);
2535 security_task_getsecid(t, &ctx->target_sid);
2536 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2537 return 0;
2538 }
2539
2540 axp = (void *)ctx->aux_pids;
2541 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2542 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2543 if (!axp)
2544 return -ENOMEM;
2545
2546 axp->d.type = AUDIT_OBJ_PID;
2547 axp->d.next = ctx->aux_pids;
2548 ctx->aux_pids = (void *)axp;
2549 }
2550 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2551
2552 axp->target_pid[axp->pid_count] = t->tgid;
2553 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2554 axp->target_uid[axp->pid_count] = t_uid;
2555 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2556 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2557 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2558 axp->pid_count++;
2559
2560 return 0;
2561 }
2562
2563 /**
2564 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2565 * @bprm: pointer to the bprm being processed
2566 * @new: the proposed new credentials
2567 * @old: the old credentials
2568 *
2569 * Simply check if the proc already has the caps given by the file and if not
2570 * store the priv escalation info for later auditing at the end of the syscall
2571 *
2572 * -Eric
2573 */
2574 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2575 const struct cred *new, const struct cred *old)
2576 {
2577 struct audit_aux_data_bprm_fcaps *ax;
2578 struct audit_context *context = current->audit_context;
2579 struct cpu_vfs_cap_data vcaps;
2580 struct dentry *dentry;
2581
2582 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2583 if (!ax)
2584 return -ENOMEM;
2585
2586 ax->d.type = AUDIT_BPRM_FCAPS;
2587 ax->d.next = context->aux;
2588 context->aux = (void *)ax;
2589
2590 dentry = dget(bprm->file->f_dentry);
2591 get_vfs_caps_from_disk(dentry, &vcaps);
2592 dput(dentry);
2593
2594 ax->fcap.permitted = vcaps.permitted;
2595 ax->fcap.inheritable = vcaps.inheritable;
2596 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2597 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2598
2599 ax->old_pcap.permitted = old->cap_permitted;
2600 ax->old_pcap.inheritable = old->cap_inheritable;
2601 ax->old_pcap.effective = old->cap_effective;
2602
2603 ax->new_pcap.permitted = new->cap_permitted;
2604 ax->new_pcap.inheritable = new->cap_inheritable;
2605 ax->new_pcap.effective = new->cap_effective;
2606 return 0;
2607 }
2608
2609 /**
2610 * __audit_log_capset - store information about the arguments to the capset syscall
2611 * @pid: target pid of the capset call
2612 * @new: the new credentials
2613 * @old: the old (current) credentials
2614 *
2615 * Record the aguments userspace sent to sys_capset for later printing by the
2616 * audit system if applicable
2617 */
2618 int __audit_log_capset(pid_t pid,
2619 const struct cred *new, const struct cred *old)
2620 {
2621 struct audit_aux_data_capset *ax;
2622 struct audit_context *context = current->audit_context;
2623
2624 if (likely(!audit_enabled || !context || context->dummy))
2625 return 0;
2626
2627 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2628 if (!ax)
2629 return -ENOMEM;
2630
2631 ax->d.type = AUDIT_CAPSET;
2632 ax->d.next = context->aux;
2633 context->aux = (void *)ax;
2634
2635 ax->pid = pid;
2636 ax->cap.effective = new->cap_effective;
2637 ax->cap.inheritable = new->cap_effective;
2638 ax->cap.permitted = new->cap_permitted;
2639
2640 return 0;
2641 }
2642
2643 /**
2644 * audit_core_dumps - record information about processes that end abnormally
2645 * @signr: signal value
2646 *
2647 * If a process ends with a core dump, something fishy is going on and we
2648 * should record the event for investigation.
2649 */
2650 void audit_core_dumps(long signr)
2651 {
2652 struct audit_buffer *ab;
2653 u32 sid;
2654 uid_t auid = audit_get_loginuid(current), uid;
2655 gid_t gid;
2656 unsigned int sessionid = audit_get_sessionid(current);
2657
2658 if (!audit_enabled)
2659 return;
2660
2661 if (signr == SIGQUIT) /* don't care for those */
2662 return;
2663
2664 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2665 current_uid_gid(&uid, &gid);
2666 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2667 auid, uid, gid, sessionid);
2668 security_task_getsecid(current, &sid);
2669 if (sid) {
2670 char *ctx = NULL;
2671 u32 len;
2672
2673 if (security_secid_to_secctx(sid, &ctx, &len))
2674 audit_log_format(ab, " ssid=%u", sid);
2675 else {
2676 audit_log_format(ab, " subj=%s", ctx);
2677 security_release_secctx(ctx, len);
2678 }
2679 }
2680 audit_log_format(ab, " pid=%d comm=", current->pid);
2681 audit_log_untrustedstring(ab, current->comm);
2682 audit_log_format(ab, " sig=%ld", signr);
2683 audit_log_end(ab);
2684 }