]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/auditsc.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69
70 #include "audit.h"
71
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
75
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95 };
96
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 const char *name;
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
112 u32 osid;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
115 };
116
117 struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120 };
121
122 #define AUDIT_AUX_IPCPERM 0
123
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
126
127 struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132 };
133
134 struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140 };
141
142 struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146 };
147
148 struct audit_aux_data_mq_getsetattr {
149 struct audit_aux_data d;
150 mqd_t mqdes;
151 struct mq_attr mqstat;
152 };
153
154 struct audit_aux_data_ipcctl {
155 struct audit_aux_data d;
156 struct ipc_perm p;
157 unsigned long qbytes;
158 uid_t uid;
159 gid_t gid;
160 mode_t mode;
161 u32 osid;
162 };
163
164 struct audit_aux_data_execve {
165 struct audit_aux_data d;
166 int argc;
167 int envc;
168 struct mm_struct *mm;
169 };
170
171 struct audit_aux_data_socketcall {
172 struct audit_aux_data d;
173 int nargs;
174 unsigned long args[0];
175 };
176
177 struct audit_aux_data_sockaddr {
178 struct audit_aux_data d;
179 int len;
180 char a[0];
181 };
182
183 struct audit_aux_data_fd_pair {
184 struct audit_aux_data d;
185 int fd[2];
186 };
187
188 struct audit_aux_data_pids {
189 struct audit_aux_data d;
190 pid_t target_pid[AUDIT_AUX_PIDS];
191 uid_t target_auid[AUDIT_AUX_PIDS];
192 uid_t target_uid[AUDIT_AUX_PIDS];
193 unsigned int target_sessionid[AUDIT_AUX_PIDS];
194 u32 target_sid[AUDIT_AUX_PIDS];
195 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
196 int pid_count;
197 };
198
199 struct audit_aux_data_bprm_fcaps {
200 struct audit_aux_data d;
201 struct audit_cap_data fcap;
202 unsigned int fcap_ver;
203 struct audit_cap_data old_pcap;
204 struct audit_cap_data new_pcap;
205 };
206
207 struct audit_aux_data_capset {
208 struct audit_aux_data d;
209 pid_t pid;
210 struct audit_cap_data cap;
211 };
212
213 struct audit_tree_refs {
214 struct audit_tree_refs *next;
215 struct audit_chunk *c[31];
216 };
217
218 /* The per-task audit context. */
219 struct audit_context {
220 int dummy; /* must be the first element */
221 int in_syscall; /* 1 if task is in a syscall */
222 enum audit_state state;
223 unsigned int serial; /* serial number for record */
224 struct timespec ctime; /* time of syscall entry */
225 int major; /* syscall number */
226 unsigned long argv[4]; /* syscall arguments */
227 int return_valid; /* return code is valid */
228 long return_code;/* syscall return code */
229 int auditable; /* 1 if record should be written */
230 int name_count;
231 struct audit_names names[AUDIT_NAMES];
232 char * filterkey; /* key for rule that triggered record */
233 struct path pwd;
234 struct audit_context *previous; /* For nested syscalls */
235 struct audit_aux_data *aux;
236 struct audit_aux_data *aux_pids;
237
238 /* Save things to print about task_struct */
239 pid_t pid, ppid;
240 uid_t uid, euid, suid, fsuid;
241 gid_t gid, egid, sgid, fsgid;
242 unsigned long personality;
243 int arch;
244
245 pid_t target_pid;
246 uid_t target_auid;
247 uid_t target_uid;
248 unsigned int target_sessionid;
249 u32 target_sid;
250 char target_comm[TASK_COMM_LEN];
251
252 struct audit_tree_refs *trees, *first_trees;
253 int tree_count;
254
255 #if AUDIT_DEBUG
256 int put_count;
257 int ino_count;
258 #endif
259 };
260
261 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
262 static inline int open_arg(int flags, int mask)
263 {
264 int n = ACC_MODE(flags);
265 if (flags & (O_TRUNC | O_CREAT))
266 n |= AUDIT_PERM_WRITE;
267 return n & mask;
268 }
269
270 static int audit_match_perm(struct audit_context *ctx, int mask)
271 {
272 unsigned n;
273 if (unlikely(!ctx))
274 return 0;
275 n = ctx->major;
276
277 switch (audit_classify_syscall(ctx->arch, n)) {
278 case 0: /* native */
279 if ((mask & AUDIT_PERM_WRITE) &&
280 audit_match_class(AUDIT_CLASS_WRITE, n))
281 return 1;
282 if ((mask & AUDIT_PERM_READ) &&
283 audit_match_class(AUDIT_CLASS_READ, n))
284 return 1;
285 if ((mask & AUDIT_PERM_ATTR) &&
286 audit_match_class(AUDIT_CLASS_CHATTR, n))
287 return 1;
288 return 0;
289 case 1: /* 32bit on biarch */
290 if ((mask & AUDIT_PERM_WRITE) &&
291 audit_match_class(AUDIT_CLASS_WRITE_32, n))
292 return 1;
293 if ((mask & AUDIT_PERM_READ) &&
294 audit_match_class(AUDIT_CLASS_READ_32, n))
295 return 1;
296 if ((mask & AUDIT_PERM_ATTR) &&
297 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
298 return 1;
299 return 0;
300 case 2: /* open */
301 return mask & ACC_MODE(ctx->argv[1]);
302 case 3: /* openat */
303 return mask & ACC_MODE(ctx->argv[2]);
304 case 4: /* socketcall */
305 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
306 case 5: /* execve */
307 return mask & AUDIT_PERM_EXEC;
308 default:
309 return 0;
310 }
311 }
312
313 static int audit_match_filetype(struct audit_context *ctx, int which)
314 {
315 unsigned index = which & ~S_IFMT;
316 mode_t mode = which & S_IFMT;
317
318 if (unlikely(!ctx))
319 return 0;
320
321 if (index >= ctx->name_count)
322 return 0;
323 if (ctx->names[index].ino == -1)
324 return 0;
325 if ((ctx->names[index].mode ^ mode) & S_IFMT)
326 return 0;
327 return 1;
328 }
329
330 /*
331 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
332 * ->first_trees points to its beginning, ->trees - to the current end of data.
333 * ->tree_count is the number of free entries in array pointed to by ->trees.
334 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
335 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
336 * it's going to remain 1-element for almost any setup) until we free context itself.
337 * References in it _are_ dropped - at the same time we free/drop aux stuff.
338 */
339
340 #ifdef CONFIG_AUDIT_TREE
341 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
342 {
343 struct audit_tree_refs *p = ctx->trees;
344 int left = ctx->tree_count;
345 if (likely(left)) {
346 p->c[--left] = chunk;
347 ctx->tree_count = left;
348 return 1;
349 }
350 if (!p)
351 return 0;
352 p = p->next;
353 if (p) {
354 p->c[30] = chunk;
355 ctx->trees = p;
356 ctx->tree_count = 30;
357 return 1;
358 }
359 return 0;
360 }
361
362 static int grow_tree_refs(struct audit_context *ctx)
363 {
364 struct audit_tree_refs *p = ctx->trees;
365 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
366 if (!ctx->trees) {
367 ctx->trees = p;
368 return 0;
369 }
370 if (p)
371 p->next = ctx->trees;
372 else
373 ctx->first_trees = ctx->trees;
374 ctx->tree_count = 31;
375 return 1;
376 }
377 #endif
378
379 static void unroll_tree_refs(struct audit_context *ctx,
380 struct audit_tree_refs *p, int count)
381 {
382 #ifdef CONFIG_AUDIT_TREE
383 struct audit_tree_refs *q;
384 int n;
385 if (!p) {
386 /* we started with empty chain */
387 p = ctx->first_trees;
388 count = 31;
389 /* if the very first allocation has failed, nothing to do */
390 if (!p)
391 return;
392 }
393 n = count;
394 for (q = p; q != ctx->trees; q = q->next, n = 31) {
395 while (n--) {
396 audit_put_chunk(q->c[n]);
397 q->c[n] = NULL;
398 }
399 }
400 while (n-- > ctx->tree_count) {
401 audit_put_chunk(q->c[n]);
402 q->c[n] = NULL;
403 }
404 ctx->trees = p;
405 ctx->tree_count = count;
406 #endif
407 }
408
409 static void free_tree_refs(struct audit_context *ctx)
410 {
411 struct audit_tree_refs *p, *q;
412 for (p = ctx->first_trees; p; p = q) {
413 q = p->next;
414 kfree(p);
415 }
416 }
417
418 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
419 {
420 #ifdef CONFIG_AUDIT_TREE
421 struct audit_tree_refs *p;
422 int n;
423 if (!tree)
424 return 0;
425 /* full ones */
426 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
427 for (n = 0; n < 31; n++)
428 if (audit_tree_match(p->c[n], tree))
429 return 1;
430 }
431 /* partial */
432 if (p) {
433 for (n = ctx->tree_count; n < 31; n++)
434 if (audit_tree_match(p->c[n], tree))
435 return 1;
436 }
437 #endif
438 return 0;
439 }
440
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
443 * otherwise. */
444 static int audit_filter_rules(struct task_struct *tsk,
445 struct audit_krule *rule,
446 struct audit_context *ctx,
447 struct audit_names *name,
448 enum audit_state *state)
449 {
450 const struct cred *cred = get_task_cred(tsk);
451 int i, j, need_sid = 1;
452 u32 sid;
453
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 int result = 0;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 result = audit_comparator(tsk->pid, f->op, f->val);
461 break;
462 case AUDIT_PPID:
463 if (ctx) {
464 if (!ctx->ppid)
465 ctx->ppid = sys_getppid();
466 result = audit_comparator(ctx->ppid, f->op, f->val);
467 }
468 break;
469 case AUDIT_UID:
470 result = audit_comparator(cred->uid, f->op, f->val);
471 break;
472 case AUDIT_EUID:
473 result = audit_comparator(cred->euid, f->op, f->val);
474 break;
475 case AUDIT_SUID:
476 result = audit_comparator(cred->suid, f->op, f->val);
477 break;
478 case AUDIT_FSUID:
479 result = audit_comparator(cred->fsuid, f->op, f->val);
480 break;
481 case AUDIT_GID:
482 result = audit_comparator(cred->gid, f->op, f->val);
483 break;
484 case AUDIT_EGID:
485 result = audit_comparator(cred->egid, f->op, f->val);
486 break;
487 case AUDIT_SGID:
488 result = audit_comparator(cred->sgid, f->op, f->val);
489 break;
490 case AUDIT_FSGID:
491 result = audit_comparator(cred->fsgid, f->op, f->val);
492 break;
493 case AUDIT_PERS:
494 result = audit_comparator(tsk->personality, f->op, f->val);
495 break;
496 case AUDIT_ARCH:
497 if (ctx)
498 result = audit_comparator(ctx->arch, f->op, f->val);
499 break;
500
501 case AUDIT_EXIT:
502 if (ctx && ctx->return_valid)
503 result = audit_comparator(ctx->return_code, f->op, f->val);
504 break;
505 case AUDIT_SUCCESS:
506 if (ctx && ctx->return_valid) {
507 if (f->val)
508 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
509 else
510 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
511 }
512 break;
513 case AUDIT_DEVMAJOR:
514 if (name)
515 result = audit_comparator(MAJOR(name->dev),
516 f->op, f->val);
517 else if (ctx) {
518 for (j = 0; j < ctx->name_count; j++) {
519 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
520 ++result;
521 break;
522 }
523 }
524 }
525 break;
526 case AUDIT_DEVMINOR:
527 if (name)
528 result = audit_comparator(MINOR(name->dev),
529 f->op, f->val);
530 else if (ctx) {
531 for (j = 0; j < ctx->name_count; j++) {
532 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
533 ++result;
534 break;
535 }
536 }
537 }
538 break;
539 case AUDIT_INODE:
540 if (name)
541 result = (name->ino == f->val);
542 else if (ctx) {
543 for (j = 0; j < ctx->name_count; j++) {
544 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
545 ++result;
546 break;
547 }
548 }
549 }
550 break;
551 case AUDIT_WATCH:
552 if (name && rule->watch->ino != (unsigned long)-1)
553 result = (name->dev == rule->watch->dev &&
554 name->ino == rule->watch->ino);
555 break;
556 case AUDIT_DIR:
557 if (ctx)
558 result = match_tree_refs(ctx, rule->tree);
559 break;
560 case AUDIT_LOGINUID:
561 result = 0;
562 if (ctx)
563 result = audit_comparator(tsk->loginuid, f->op, f->val);
564 break;
565 case AUDIT_SUBJ_USER:
566 case AUDIT_SUBJ_ROLE:
567 case AUDIT_SUBJ_TYPE:
568 case AUDIT_SUBJ_SEN:
569 case AUDIT_SUBJ_CLR:
570 /* NOTE: this may return negative values indicating
571 a temporary error. We simply treat this as a
572 match for now to avoid losing information that
573 may be wanted. An error message will also be
574 logged upon error */
575 if (f->lsm_rule) {
576 if (need_sid) {
577 security_task_getsecid(tsk, &sid);
578 need_sid = 0;
579 }
580 result = security_audit_rule_match(sid, f->type,
581 f->op,
582 f->lsm_rule,
583 ctx);
584 }
585 break;
586 case AUDIT_OBJ_USER:
587 case AUDIT_OBJ_ROLE:
588 case AUDIT_OBJ_TYPE:
589 case AUDIT_OBJ_LEV_LOW:
590 case AUDIT_OBJ_LEV_HIGH:
591 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
592 also applies here */
593 if (f->lsm_rule) {
594 /* Find files that match */
595 if (name) {
596 result = security_audit_rule_match(
597 name->osid, f->type, f->op,
598 f->lsm_rule, ctx);
599 } else if (ctx) {
600 for (j = 0; j < ctx->name_count; j++) {
601 if (security_audit_rule_match(
602 ctx->names[j].osid,
603 f->type, f->op,
604 f->lsm_rule, ctx)) {
605 ++result;
606 break;
607 }
608 }
609 }
610 /* Find ipc objects that match */
611 if (ctx) {
612 struct audit_aux_data *aux;
613 for (aux = ctx->aux; aux;
614 aux = aux->next) {
615 if (aux->type == AUDIT_IPC) {
616 struct audit_aux_data_ipcctl *axi = (void *)aux;
617 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
618 ++result;
619 break;
620 }
621 }
622 }
623 }
624 }
625 break;
626 case AUDIT_ARG0:
627 case AUDIT_ARG1:
628 case AUDIT_ARG2:
629 case AUDIT_ARG3:
630 if (ctx)
631 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
632 break;
633 case AUDIT_FILTERKEY:
634 /* ignore this field for filtering */
635 result = 1;
636 break;
637 case AUDIT_PERM:
638 result = audit_match_perm(ctx, f->val);
639 break;
640 case AUDIT_FILETYPE:
641 result = audit_match_filetype(ctx, f->val);
642 break;
643 }
644
645 if (!result) {
646 put_cred(cred);
647 return 0;
648 }
649 }
650 if (rule->filterkey && ctx)
651 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
652 switch (rule->action) {
653 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
654 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
655 }
656 put_cred(cred);
657 return 1;
658 }
659
660 /* At process creation time, we can determine if system-call auditing is
661 * completely disabled for this task. Since we only have the task
662 * structure at this point, we can only check uid and gid.
663 */
664 static enum audit_state audit_filter_task(struct task_struct *tsk)
665 {
666 struct audit_entry *e;
667 enum audit_state state;
668
669 rcu_read_lock();
670 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
671 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
672 rcu_read_unlock();
673 return state;
674 }
675 }
676 rcu_read_unlock();
677 return AUDIT_BUILD_CONTEXT;
678 }
679
680 /* At syscall entry and exit time, this filter is called if the
681 * audit_state is not low enough that auditing cannot take place, but is
682 * also not high enough that we already know we have to write an audit
683 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
684 */
685 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
686 struct audit_context *ctx,
687 struct list_head *list)
688 {
689 struct audit_entry *e;
690 enum audit_state state;
691
692 if (audit_pid && tsk->tgid == audit_pid)
693 return AUDIT_DISABLED;
694
695 rcu_read_lock();
696 if (!list_empty(list)) {
697 int word = AUDIT_WORD(ctx->major);
698 int bit = AUDIT_BIT(ctx->major);
699
700 list_for_each_entry_rcu(e, list, list) {
701 if ((e->rule.mask[word] & bit) == bit &&
702 audit_filter_rules(tsk, &e->rule, ctx, NULL,
703 &state)) {
704 rcu_read_unlock();
705 return state;
706 }
707 }
708 }
709 rcu_read_unlock();
710 return AUDIT_BUILD_CONTEXT;
711 }
712
713 /* At syscall exit time, this filter is called if any audit_names[] have been
714 * collected during syscall processing. We only check rules in sublists at hash
715 * buckets applicable to the inode numbers in audit_names[].
716 * Regarding audit_state, same rules apply as for audit_filter_syscall().
717 */
718 enum audit_state audit_filter_inodes(struct task_struct *tsk,
719 struct audit_context *ctx)
720 {
721 int i;
722 struct audit_entry *e;
723 enum audit_state state;
724
725 if (audit_pid && tsk->tgid == audit_pid)
726 return AUDIT_DISABLED;
727
728 rcu_read_lock();
729 for (i = 0; i < ctx->name_count; i++) {
730 int word = AUDIT_WORD(ctx->major);
731 int bit = AUDIT_BIT(ctx->major);
732 struct audit_names *n = &ctx->names[i];
733 int h = audit_hash_ino((u32)n->ino);
734 struct list_head *list = &audit_inode_hash[h];
735
736 if (list_empty(list))
737 continue;
738
739 list_for_each_entry_rcu(e, list, list) {
740 if ((e->rule.mask[word] & bit) == bit &&
741 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
742 rcu_read_unlock();
743 return state;
744 }
745 }
746 }
747 rcu_read_unlock();
748 return AUDIT_BUILD_CONTEXT;
749 }
750
751 void audit_set_auditable(struct audit_context *ctx)
752 {
753 ctx->auditable = 1;
754 }
755
756 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
757 int return_valid,
758 int return_code)
759 {
760 struct audit_context *context = tsk->audit_context;
761
762 if (likely(!context))
763 return NULL;
764 context->return_valid = return_valid;
765
766 /*
767 * we need to fix up the return code in the audit logs if the actual
768 * return codes are later going to be fixed up by the arch specific
769 * signal handlers
770 *
771 * This is actually a test for:
772 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
773 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
774 *
775 * but is faster than a bunch of ||
776 */
777 if (unlikely(return_code <= -ERESTARTSYS) &&
778 (return_code >= -ERESTART_RESTARTBLOCK) &&
779 (return_code != -ENOIOCTLCMD))
780 context->return_code = -EINTR;
781 else
782 context->return_code = return_code;
783
784 if (context->in_syscall && !context->dummy && !context->auditable) {
785 enum audit_state state;
786
787 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
788 if (state == AUDIT_RECORD_CONTEXT) {
789 context->auditable = 1;
790 goto get_context;
791 }
792
793 state = audit_filter_inodes(tsk, context);
794 if (state == AUDIT_RECORD_CONTEXT)
795 context->auditable = 1;
796
797 }
798
799 get_context:
800
801 tsk->audit_context = NULL;
802 return context;
803 }
804
805 static inline void audit_free_names(struct audit_context *context)
806 {
807 int i;
808
809 #if AUDIT_DEBUG == 2
810 if (context->auditable
811 ||context->put_count + context->ino_count != context->name_count) {
812 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
813 " name_count=%d put_count=%d"
814 " ino_count=%d [NOT freeing]\n",
815 __FILE__, __LINE__,
816 context->serial, context->major, context->in_syscall,
817 context->name_count, context->put_count,
818 context->ino_count);
819 for (i = 0; i < context->name_count; i++) {
820 printk(KERN_ERR "names[%d] = %p = %s\n", i,
821 context->names[i].name,
822 context->names[i].name ?: "(null)");
823 }
824 dump_stack();
825 return;
826 }
827 #endif
828 #if AUDIT_DEBUG
829 context->put_count = 0;
830 context->ino_count = 0;
831 #endif
832
833 for (i = 0; i < context->name_count; i++) {
834 if (context->names[i].name && context->names[i].name_put)
835 __putname(context->names[i].name);
836 }
837 context->name_count = 0;
838 path_put(&context->pwd);
839 context->pwd.dentry = NULL;
840 context->pwd.mnt = NULL;
841 }
842
843 static inline void audit_free_aux(struct audit_context *context)
844 {
845 struct audit_aux_data *aux;
846
847 while ((aux = context->aux)) {
848 context->aux = aux->next;
849 kfree(aux);
850 }
851 while ((aux = context->aux_pids)) {
852 context->aux_pids = aux->next;
853 kfree(aux);
854 }
855 }
856
857 static inline void audit_zero_context(struct audit_context *context,
858 enum audit_state state)
859 {
860 memset(context, 0, sizeof(*context));
861 context->state = state;
862 }
863
864 static inline struct audit_context *audit_alloc_context(enum audit_state state)
865 {
866 struct audit_context *context;
867
868 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
869 return NULL;
870 audit_zero_context(context, state);
871 return context;
872 }
873
874 /**
875 * audit_alloc - allocate an audit context block for a task
876 * @tsk: task
877 *
878 * Filter on the task information and allocate a per-task audit context
879 * if necessary. Doing so turns on system call auditing for the
880 * specified task. This is called from copy_process, so no lock is
881 * needed.
882 */
883 int audit_alloc(struct task_struct *tsk)
884 {
885 struct audit_context *context;
886 enum audit_state state;
887
888 if (likely(!audit_ever_enabled))
889 return 0; /* Return if not auditing. */
890
891 state = audit_filter_task(tsk);
892 if (likely(state == AUDIT_DISABLED))
893 return 0;
894
895 if (!(context = audit_alloc_context(state))) {
896 audit_log_lost("out of memory in audit_alloc");
897 return -ENOMEM;
898 }
899
900 tsk->audit_context = context;
901 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
902 return 0;
903 }
904
905 static inline void audit_free_context(struct audit_context *context)
906 {
907 struct audit_context *previous;
908 int count = 0;
909
910 do {
911 previous = context->previous;
912 if (previous || (count && count < 10)) {
913 ++count;
914 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
915 " freeing multiple contexts (%d)\n",
916 context->serial, context->major,
917 context->name_count, count);
918 }
919 audit_free_names(context);
920 unroll_tree_refs(context, NULL, 0);
921 free_tree_refs(context);
922 audit_free_aux(context);
923 kfree(context->filterkey);
924 kfree(context);
925 context = previous;
926 } while (context);
927 if (count >= 10)
928 printk(KERN_ERR "audit: freed %d contexts\n", count);
929 }
930
931 void audit_log_task_context(struct audit_buffer *ab)
932 {
933 char *ctx = NULL;
934 unsigned len;
935 int error;
936 u32 sid;
937
938 security_task_getsecid(current, &sid);
939 if (!sid)
940 return;
941
942 error = security_secid_to_secctx(sid, &ctx, &len);
943 if (error) {
944 if (error != -EINVAL)
945 goto error_path;
946 return;
947 }
948
949 audit_log_format(ab, " subj=%s", ctx);
950 security_release_secctx(ctx, len);
951 return;
952
953 error_path:
954 audit_panic("error in audit_log_task_context");
955 return;
956 }
957
958 EXPORT_SYMBOL(audit_log_task_context);
959
960 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
961 {
962 char name[sizeof(tsk->comm)];
963 struct mm_struct *mm = tsk->mm;
964 struct vm_area_struct *vma;
965
966 /* tsk == current */
967
968 get_task_comm(name, tsk);
969 audit_log_format(ab, " comm=");
970 audit_log_untrustedstring(ab, name);
971
972 if (mm) {
973 down_read(&mm->mmap_sem);
974 vma = mm->mmap;
975 while (vma) {
976 if ((vma->vm_flags & VM_EXECUTABLE) &&
977 vma->vm_file) {
978 audit_log_d_path(ab, "exe=",
979 &vma->vm_file->f_path);
980 break;
981 }
982 vma = vma->vm_next;
983 }
984 up_read(&mm->mmap_sem);
985 }
986 audit_log_task_context(ab);
987 }
988
989 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 uid_t auid, uid_t uid, unsigned int sessionid,
991 u32 sid, char *comm)
992 {
993 struct audit_buffer *ab;
994 char *ctx = NULL;
995 u32 len;
996 int rc = 0;
997
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 if (!ab)
1000 return rc;
1001
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003 uid, sessionid);
1004 if (security_secid_to_secctx(sid, &ctx, &len)) {
1005 audit_log_format(ab, " obj=(none)");
1006 rc = 1;
1007 } else {
1008 audit_log_format(ab, " obj=%s", ctx);
1009 security_release_secctx(ctx, len);
1010 }
1011 audit_log_format(ab, " ocomm=");
1012 audit_log_untrustedstring(ab, comm);
1013 audit_log_end(ab);
1014
1015 return rc;
1016 }
1017
1018 /*
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundry)
1022 *
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029 static int audit_log_single_execve_arg(struct audit_context *context,
1030 struct audit_buffer **ab,
1031 int arg_num,
1032 size_t *len_sent,
1033 const char __user *p,
1034 char *buf)
1035 {
1036 char arg_num_len_buf[12];
1037 const char __user *tmp_p = p;
1038 /* how many digits are in arg_num? 3 is the length of a=\n */
1039 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1040 size_t len, len_left, to_send;
1041 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042 unsigned int i, has_cntl = 0, too_long = 0;
1043 int ret;
1044
1045 /* strnlen_user includes the null we don't want to send */
1046 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048 /*
1049 * We just created this mm, if we can't find the strings
1050 * we just copied into it something is _very_ wrong. Similar
1051 * for strings that are too long, we should not have created
1052 * any.
1053 */
1054 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055 WARN_ON(1);
1056 send_sig(SIGKILL, current, 0);
1057 return -1;
1058 }
1059
1060 /* walk the whole argument looking for non-ascii chars */
1061 do {
1062 if (len_left > MAX_EXECVE_AUDIT_LEN)
1063 to_send = MAX_EXECVE_AUDIT_LEN;
1064 else
1065 to_send = len_left;
1066 ret = copy_from_user(buf, tmp_p, to_send);
1067 /*
1068 * There is no reason for this copy to be short. We just
1069 * copied them here, and the mm hasn't been exposed to user-
1070 * space yet.
1071 */
1072 if (ret) {
1073 WARN_ON(1);
1074 send_sig(SIGKILL, current, 0);
1075 return -1;
1076 }
1077 buf[to_send] = '\0';
1078 has_cntl = audit_string_contains_control(buf, to_send);
1079 if (has_cntl) {
1080 /*
1081 * hex messages get logged as 2 bytes, so we can only
1082 * send half as much in each message
1083 */
1084 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085 break;
1086 }
1087 len_left -= to_send;
1088 tmp_p += to_send;
1089 } while (len_left > 0);
1090
1091 len_left = len;
1092
1093 if (len > max_execve_audit_len)
1094 too_long = 1;
1095
1096 /* rewalk the argument actually logging the message */
1097 for (i = 0; len_left > 0; i++) {
1098 int room_left;
1099
1100 if (len_left > max_execve_audit_len)
1101 to_send = max_execve_audit_len;
1102 else
1103 to_send = len_left;
1104
1105 /* do we have space left to send this argument in this ab? */
1106 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107 if (has_cntl)
1108 room_left -= (to_send * 2);
1109 else
1110 room_left -= to_send;
1111 if (room_left < 0) {
1112 *len_sent = 0;
1113 audit_log_end(*ab);
1114 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115 if (!*ab)
1116 return 0;
1117 }
1118
1119 /*
1120 * first record needs to say how long the original string was
1121 * so we can be sure nothing was lost.
1122 */
1123 if ((i == 0) && (too_long))
1124 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1125 has_cntl ? 2*len : len);
1126
1127 /*
1128 * normally arguments are small enough to fit and we already
1129 * filled buf above when we checked for control characters
1130 * so don't bother with another copy_from_user
1131 */
1132 if (len >= max_execve_audit_len)
1133 ret = copy_from_user(buf, p, to_send);
1134 else
1135 ret = 0;
1136 if (ret) {
1137 WARN_ON(1);
1138 send_sig(SIGKILL, current, 0);
1139 return -1;
1140 }
1141 buf[to_send] = '\0';
1142
1143 /* actually log it */
1144 audit_log_format(*ab, "a%d", arg_num);
1145 if (too_long)
1146 audit_log_format(*ab, "[%d]", i);
1147 audit_log_format(*ab, "=");
1148 if (has_cntl)
1149 audit_log_n_hex(*ab, buf, to_send);
1150 else
1151 audit_log_format(*ab, "\"%s\"", buf);
1152 audit_log_format(*ab, "\n");
1153
1154 p += to_send;
1155 len_left -= to_send;
1156 *len_sent += arg_num_len;
1157 if (has_cntl)
1158 *len_sent += to_send * 2;
1159 else
1160 *len_sent += to_send;
1161 }
1162 /* include the null we didn't log */
1163 return len + 1;
1164 }
1165
1166 static void audit_log_execve_info(struct audit_context *context,
1167 struct audit_buffer **ab,
1168 struct audit_aux_data_execve *axi)
1169 {
1170 int i;
1171 size_t len, len_sent = 0;
1172 const char __user *p;
1173 char *buf;
1174
1175 if (axi->mm != current->mm)
1176 return; /* execve failed, no additional info */
1177
1178 p = (const char __user *)axi->mm->arg_start;
1179
1180 audit_log_format(*ab, "argc=%d ", axi->argc);
1181
1182 /*
1183 * we need some kernel buffer to hold the userspace args. Just
1184 * allocate one big one rather than allocating one of the right size
1185 * for every single argument inside audit_log_single_execve_arg()
1186 * should be <8k allocation so should be pretty safe.
1187 */
1188 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1189 if (!buf) {
1190 audit_panic("out of memory for argv string\n");
1191 return;
1192 }
1193
1194 for (i = 0; i < axi->argc; i++) {
1195 len = audit_log_single_execve_arg(context, ab, i,
1196 &len_sent, p, buf);
1197 if (len <= 0)
1198 break;
1199 p += len;
1200 }
1201 kfree(buf);
1202 }
1203
1204 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1205 {
1206 int i;
1207
1208 audit_log_format(ab, " %s=", prefix);
1209 CAP_FOR_EACH_U32(i) {
1210 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1211 }
1212 }
1213
1214 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1215 {
1216 kernel_cap_t *perm = &name->fcap.permitted;
1217 kernel_cap_t *inh = &name->fcap.inheritable;
1218 int log = 0;
1219
1220 if (!cap_isclear(*perm)) {
1221 audit_log_cap(ab, "cap_fp", perm);
1222 log = 1;
1223 }
1224 if (!cap_isclear(*inh)) {
1225 audit_log_cap(ab, "cap_fi", inh);
1226 log = 1;
1227 }
1228
1229 if (log)
1230 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1231 }
1232
1233 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1234 {
1235 const struct cred *cred;
1236 int i, call_panic = 0;
1237 struct audit_buffer *ab;
1238 struct audit_aux_data *aux;
1239 const char *tty;
1240
1241 /* tsk == current */
1242 context->pid = tsk->pid;
1243 if (!context->ppid)
1244 context->ppid = sys_getppid();
1245 cred = current_cred();
1246 context->uid = cred->uid;
1247 context->gid = cred->gid;
1248 context->euid = cred->euid;
1249 context->suid = cred->suid;
1250 context->fsuid = cred->fsuid;
1251 context->egid = cred->egid;
1252 context->sgid = cred->sgid;
1253 context->fsgid = cred->fsgid;
1254 context->personality = tsk->personality;
1255
1256 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1257 if (!ab)
1258 return; /* audit_panic has been called */
1259 audit_log_format(ab, "arch=%x syscall=%d",
1260 context->arch, context->major);
1261 if (context->personality != PER_LINUX)
1262 audit_log_format(ab, " per=%lx", context->personality);
1263 if (context->return_valid)
1264 audit_log_format(ab, " success=%s exit=%ld",
1265 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1266 context->return_code);
1267
1268 spin_lock_irq(&tsk->sighand->siglock);
1269 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1270 tty = tsk->signal->tty->name;
1271 else
1272 tty = "(none)";
1273 spin_unlock_irq(&tsk->sighand->siglock);
1274
1275 audit_log_format(ab,
1276 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1277 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1278 " euid=%u suid=%u fsuid=%u"
1279 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1280 context->argv[0],
1281 context->argv[1],
1282 context->argv[2],
1283 context->argv[3],
1284 context->name_count,
1285 context->ppid,
1286 context->pid,
1287 tsk->loginuid,
1288 context->uid,
1289 context->gid,
1290 context->euid, context->suid, context->fsuid,
1291 context->egid, context->sgid, context->fsgid, tty,
1292 tsk->sessionid);
1293
1294
1295 audit_log_task_info(ab, tsk);
1296 if (context->filterkey) {
1297 audit_log_format(ab, " key=");
1298 audit_log_untrustedstring(ab, context->filterkey);
1299 } else
1300 audit_log_format(ab, " key=(null)");
1301 audit_log_end(ab);
1302
1303 for (aux = context->aux; aux; aux = aux->next) {
1304
1305 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1306 if (!ab)
1307 continue; /* audit_panic has been called */
1308
1309 switch (aux->type) {
1310 case AUDIT_MQ_OPEN: {
1311 struct audit_aux_data_mq_open *axi = (void *)aux;
1312 audit_log_format(ab,
1313 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1314 "mq_msgsize=%ld mq_curmsgs=%ld",
1315 axi->oflag, axi->mode, axi->attr.mq_flags,
1316 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1317 axi->attr.mq_curmsgs);
1318 break; }
1319
1320 case AUDIT_MQ_SENDRECV: {
1321 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1322 audit_log_format(ab,
1323 "mqdes=%d msg_len=%zd msg_prio=%u "
1324 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1325 axi->mqdes, axi->msg_len, axi->msg_prio,
1326 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1327 break; }
1328
1329 case AUDIT_MQ_NOTIFY: {
1330 struct audit_aux_data_mq_notify *axi = (void *)aux;
1331 audit_log_format(ab,
1332 "mqdes=%d sigev_signo=%d",
1333 axi->mqdes,
1334 axi->notification.sigev_signo);
1335 break; }
1336
1337 case AUDIT_MQ_GETSETATTR: {
1338 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1339 audit_log_format(ab,
1340 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1341 "mq_curmsgs=%ld ",
1342 axi->mqdes,
1343 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1344 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1345 break; }
1346
1347 case AUDIT_IPC: {
1348 struct audit_aux_data_ipcctl *axi = (void *)aux;
1349 audit_log_format(ab,
1350 "ouid=%u ogid=%u mode=%#o",
1351 axi->uid, axi->gid, axi->mode);
1352 if (axi->osid != 0) {
1353 char *ctx = NULL;
1354 u32 len;
1355 if (security_secid_to_secctx(
1356 axi->osid, &ctx, &len)) {
1357 audit_log_format(ab, " osid=%u",
1358 axi->osid);
1359 call_panic = 1;
1360 } else {
1361 audit_log_format(ab, " obj=%s", ctx);
1362 security_release_secctx(ctx, len);
1363 }
1364 }
1365 break; }
1366
1367 case AUDIT_IPC_SET_PERM: {
1368 struct audit_aux_data_ipcctl *axi = (void *)aux;
1369 audit_log_format(ab,
1370 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1371 axi->qbytes, axi->uid, axi->gid, axi->mode);
1372 break; }
1373
1374 case AUDIT_EXECVE: {
1375 struct audit_aux_data_execve *axi = (void *)aux;
1376 audit_log_execve_info(context, &ab, axi);
1377 break; }
1378
1379 case AUDIT_SOCKETCALL: {
1380 struct audit_aux_data_socketcall *axs = (void *)aux;
1381 audit_log_format(ab, "nargs=%d", axs->nargs);
1382 for (i=0; i<axs->nargs; i++)
1383 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1384 break; }
1385
1386 case AUDIT_SOCKADDR: {
1387 struct audit_aux_data_sockaddr *axs = (void *)aux;
1388
1389 audit_log_format(ab, "saddr=");
1390 audit_log_n_hex(ab, axs->a, axs->len);
1391 break; }
1392
1393 case AUDIT_FD_PAIR: {
1394 struct audit_aux_data_fd_pair *axs = (void *)aux;
1395 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1396 break; }
1397
1398 case AUDIT_BPRM_FCAPS: {
1399 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1400 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1401 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1402 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1403 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1404 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1405 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1406 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1407 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1408 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1409 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1410 break; }
1411
1412 case AUDIT_CAPSET: {
1413 struct audit_aux_data_capset *axs = (void *)aux;
1414 audit_log_format(ab, "pid=%d", axs->pid);
1415 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1416 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1417 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1418 break; }
1419
1420 }
1421 audit_log_end(ab);
1422 }
1423
1424 for (aux = context->aux_pids; aux; aux = aux->next) {
1425 struct audit_aux_data_pids *axs = (void *)aux;
1426
1427 for (i = 0; i < axs->pid_count; i++)
1428 if (audit_log_pid_context(context, axs->target_pid[i],
1429 axs->target_auid[i],
1430 axs->target_uid[i],
1431 axs->target_sessionid[i],
1432 axs->target_sid[i],
1433 axs->target_comm[i]))
1434 call_panic = 1;
1435 }
1436
1437 if (context->target_pid &&
1438 audit_log_pid_context(context, context->target_pid,
1439 context->target_auid, context->target_uid,
1440 context->target_sessionid,
1441 context->target_sid, context->target_comm))
1442 call_panic = 1;
1443
1444 if (context->pwd.dentry && context->pwd.mnt) {
1445 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1446 if (ab) {
1447 audit_log_d_path(ab, "cwd=", &context->pwd);
1448 audit_log_end(ab);
1449 }
1450 }
1451 for (i = 0; i < context->name_count; i++) {
1452 struct audit_names *n = &context->names[i];
1453
1454 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1455 if (!ab)
1456 continue; /* audit_panic has been called */
1457
1458 audit_log_format(ab, "item=%d", i);
1459
1460 if (n->name) {
1461 switch(n->name_len) {
1462 case AUDIT_NAME_FULL:
1463 /* log the full path */
1464 audit_log_format(ab, " name=");
1465 audit_log_untrustedstring(ab, n->name);
1466 break;
1467 case 0:
1468 /* name was specified as a relative path and the
1469 * directory component is the cwd */
1470 audit_log_d_path(ab, " name=", &context->pwd);
1471 break;
1472 default:
1473 /* log the name's directory component */
1474 audit_log_format(ab, " name=");
1475 audit_log_n_untrustedstring(ab, n->name,
1476 n->name_len);
1477 }
1478 } else
1479 audit_log_format(ab, " name=(null)");
1480
1481 if (n->ino != (unsigned long)-1) {
1482 audit_log_format(ab, " inode=%lu"
1483 " dev=%02x:%02x mode=%#o"
1484 " ouid=%u ogid=%u rdev=%02x:%02x",
1485 n->ino,
1486 MAJOR(n->dev),
1487 MINOR(n->dev),
1488 n->mode,
1489 n->uid,
1490 n->gid,
1491 MAJOR(n->rdev),
1492 MINOR(n->rdev));
1493 }
1494 if (n->osid != 0) {
1495 char *ctx = NULL;
1496 u32 len;
1497 if (security_secid_to_secctx(
1498 n->osid, &ctx, &len)) {
1499 audit_log_format(ab, " osid=%u", n->osid);
1500 call_panic = 2;
1501 } else {
1502 audit_log_format(ab, " obj=%s", ctx);
1503 security_release_secctx(ctx, len);
1504 }
1505 }
1506
1507 audit_log_fcaps(ab, n);
1508
1509 audit_log_end(ab);
1510 }
1511
1512 /* Send end of event record to help user space know we are finished */
1513 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1514 if (ab)
1515 audit_log_end(ab);
1516 if (call_panic)
1517 audit_panic("error converting sid to string");
1518 }
1519
1520 /**
1521 * audit_free - free a per-task audit context
1522 * @tsk: task whose audit context block to free
1523 *
1524 * Called from copy_process and do_exit
1525 */
1526 void audit_free(struct task_struct *tsk)
1527 {
1528 struct audit_context *context;
1529
1530 context = audit_get_context(tsk, 0, 0);
1531 if (likely(!context))
1532 return;
1533
1534 /* Check for system calls that do not go through the exit
1535 * function (e.g., exit_group), then free context block.
1536 * We use GFP_ATOMIC here because we might be doing this
1537 * in the context of the idle thread */
1538 /* that can happen only if we are called from do_exit() */
1539 if (context->in_syscall && context->auditable)
1540 audit_log_exit(context, tsk);
1541
1542 audit_free_context(context);
1543 }
1544
1545 /**
1546 * audit_syscall_entry - fill in an audit record at syscall entry
1547 * @arch: architecture type
1548 * @major: major syscall type (function)
1549 * @a1: additional syscall register 1
1550 * @a2: additional syscall register 2
1551 * @a3: additional syscall register 3
1552 * @a4: additional syscall register 4
1553 *
1554 * Fill in audit context at syscall entry. This only happens if the
1555 * audit context was created when the task was created and the state or
1556 * filters demand the audit context be built. If the state from the
1557 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1558 * then the record will be written at syscall exit time (otherwise, it
1559 * will only be written if another part of the kernel requests that it
1560 * be written).
1561 */
1562 void audit_syscall_entry(int arch, int major,
1563 unsigned long a1, unsigned long a2,
1564 unsigned long a3, unsigned long a4)
1565 {
1566 struct task_struct *tsk = current;
1567 struct audit_context *context = tsk->audit_context;
1568 enum audit_state state;
1569
1570 if (unlikely(!context))
1571 return;
1572
1573 /*
1574 * This happens only on certain architectures that make system
1575 * calls in kernel_thread via the entry.S interface, instead of
1576 * with direct calls. (If you are porting to a new
1577 * architecture, hitting this condition can indicate that you
1578 * got the _exit/_leave calls backward in entry.S.)
1579 *
1580 * i386 no
1581 * x86_64 no
1582 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1583 *
1584 * This also happens with vm86 emulation in a non-nested manner
1585 * (entries without exits), so this case must be caught.
1586 */
1587 if (context->in_syscall) {
1588 struct audit_context *newctx;
1589
1590 #if AUDIT_DEBUG
1591 printk(KERN_ERR
1592 "audit(:%d) pid=%d in syscall=%d;"
1593 " entering syscall=%d\n",
1594 context->serial, tsk->pid, context->major, major);
1595 #endif
1596 newctx = audit_alloc_context(context->state);
1597 if (newctx) {
1598 newctx->previous = context;
1599 context = newctx;
1600 tsk->audit_context = newctx;
1601 } else {
1602 /* If we can't alloc a new context, the best we
1603 * can do is to leak memory (any pending putname
1604 * will be lost). The only other alternative is
1605 * to abandon auditing. */
1606 audit_zero_context(context, context->state);
1607 }
1608 }
1609 BUG_ON(context->in_syscall || context->name_count);
1610
1611 if (!audit_enabled)
1612 return;
1613
1614 context->arch = arch;
1615 context->major = major;
1616 context->argv[0] = a1;
1617 context->argv[1] = a2;
1618 context->argv[2] = a3;
1619 context->argv[3] = a4;
1620
1621 state = context->state;
1622 context->dummy = !audit_n_rules;
1623 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1624 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1625 if (likely(state == AUDIT_DISABLED))
1626 return;
1627
1628 context->serial = 0;
1629 context->ctime = CURRENT_TIME;
1630 context->in_syscall = 1;
1631 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1632 context->ppid = 0;
1633 }
1634
1635 void audit_finish_fork(struct task_struct *child)
1636 {
1637 struct audit_context *ctx = current->audit_context;
1638 struct audit_context *p = child->audit_context;
1639 if (!p || !ctx || !ctx->auditable)
1640 return;
1641 p->arch = ctx->arch;
1642 p->major = ctx->major;
1643 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1644 p->ctime = ctx->ctime;
1645 p->dummy = ctx->dummy;
1646 p->auditable = ctx->auditable;
1647 p->in_syscall = ctx->in_syscall;
1648 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1649 p->ppid = current->pid;
1650 }
1651
1652 /**
1653 * audit_syscall_exit - deallocate audit context after a system call
1654 * @valid: success/failure flag
1655 * @return_code: syscall return value
1656 *
1657 * Tear down after system call. If the audit context has been marked as
1658 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1659 * filtering, or because some other part of the kernel write an audit
1660 * message), then write out the syscall information. In call cases,
1661 * free the names stored from getname().
1662 */
1663 void audit_syscall_exit(int valid, long return_code)
1664 {
1665 struct task_struct *tsk = current;
1666 struct audit_context *context;
1667
1668 context = audit_get_context(tsk, valid, return_code);
1669
1670 if (likely(!context))
1671 return;
1672
1673 if (context->in_syscall && context->auditable)
1674 audit_log_exit(context, tsk);
1675
1676 context->in_syscall = 0;
1677 context->auditable = 0;
1678
1679 if (context->previous) {
1680 struct audit_context *new_context = context->previous;
1681 context->previous = NULL;
1682 audit_free_context(context);
1683 tsk->audit_context = new_context;
1684 } else {
1685 audit_free_names(context);
1686 unroll_tree_refs(context, NULL, 0);
1687 audit_free_aux(context);
1688 context->aux = NULL;
1689 context->aux_pids = NULL;
1690 context->target_pid = 0;
1691 context->target_sid = 0;
1692 kfree(context->filterkey);
1693 context->filterkey = NULL;
1694 tsk->audit_context = context;
1695 }
1696 }
1697
1698 static inline void handle_one(const struct inode *inode)
1699 {
1700 #ifdef CONFIG_AUDIT_TREE
1701 struct audit_context *context;
1702 struct audit_tree_refs *p;
1703 struct audit_chunk *chunk;
1704 int count;
1705 if (likely(list_empty(&inode->inotify_watches)))
1706 return;
1707 context = current->audit_context;
1708 p = context->trees;
1709 count = context->tree_count;
1710 rcu_read_lock();
1711 chunk = audit_tree_lookup(inode);
1712 rcu_read_unlock();
1713 if (!chunk)
1714 return;
1715 if (likely(put_tree_ref(context, chunk)))
1716 return;
1717 if (unlikely(!grow_tree_refs(context))) {
1718 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1719 audit_set_auditable(context);
1720 audit_put_chunk(chunk);
1721 unroll_tree_refs(context, p, count);
1722 return;
1723 }
1724 put_tree_ref(context, chunk);
1725 #endif
1726 }
1727
1728 static void handle_path(const struct dentry *dentry)
1729 {
1730 #ifdef CONFIG_AUDIT_TREE
1731 struct audit_context *context;
1732 struct audit_tree_refs *p;
1733 const struct dentry *d, *parent;
1734 struct audit_chunk *drop;
1735 unsigned long seq;
1736 int count;
1737
1738 context = current->audit_context;
1739 p = context->trees;
1740 count = context->tree_count;
1741 retry:
1742 drop = NULL;
1743 d = dentry;
1744 rcu_read_lock();
1745 seq = read_seqbegin(&rename_lock);
1746 for(;;) {
1747 struct inode *inode = d->d_inode;
1748 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1749 struct audit_chunk *chunk;
1750 chunk = audit_tree_lookup(inode);
1751 if (chunk) {
1752 if (unlikely(!put_tree_ref(context, chunk))) {
1753 drop = chunk;
1754 break;
1755 }
1756 }
1757 }
1758 parent = d->d_parent;
1759 if (parent == d)
1760 break;
1761 d = parent;
1762 }
1763 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1764 rcu_read_unlock();
1765 if (!drop) {
1766 /* just a race with rename */
1767 unroll_tree_refs(context, p, count);
1768 goto retry;
1769 }
1770 audit_put_chunk(drop);
1771 if (grow_tree_refs(context)) {
1772 /* OK, got more space */
1773 unroll_tree_refs(context, p, count);
1774 goto retry;
1775 }
1776 /* too bad */
1777 printk(KERN_WARNING
1778 "out of memory, audit has lost a tree reference\n");
1779 unroll_tree_refs(context, p, count);
1780 audit_set_auditable(context);
1781 return;
1782 }
1783 rcu_read_unlock();
1784 #endif
1785 }
1786
1787 /**
1788 * audit_getname - add a name to the list
1789 * @name: name to add
1790 *
1791 * Add a name to the list of audit names for this context.
1792 * Called from fs/namei.c:getname().
1793 */
1794 void __audit_getname(const char *name)
1795 {
1796 struct audit_context *context = current->audit_context;
1797
1798 if (IS_ERR(name) || !name)
1799 return;
1800
1801 if (!context->in_syscall) {
1802 #if AUDIT_DEBUG == 2
1803 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1804 __FILE__, __LINE__, context->serial, name);
1805 dump_stack();
1806 #endif
1807 return;
1808 }
1809 BUG_ON(context->name_count >= AUDIT_NAMES);
1810 context->names[context->name_count].name = name;
1811 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1812 context->names[context->name_count].name_put = 1;
1813 context->names[context->name_count].ino = (unsigned long)-1;
1814 context->names[context->name_count].osid = 0;
1815 ++context->name_count;
1816 if (!context->pwd.dentry) {
1817 read_lock(&current->fs->lock);
1818 context->pwd = current->fs->pwd;
1819 path_get(&current->fs->pwd);
1820 read_unlock(&current->fs->lock);
1821 }
1822
1823 }
1824
1825 /* audit_putname - intercept a putname request
1826 * @name: name to intercept and delay for putname
1827 *
1828 * If we have stored the name from getname in the audit context,
1829 * then we delay the putname until syscall exit.
1830 * Called from include/linux/fs.h:putname().
1831 */
1832 void audit_putname(const char *name)
1833 {
1834 struct audit_context *context = current->audit_context;
1835
1836 BUG_ON(!context);
1837 if (!context->in_syscall) {
1838 #if AUDIT_DEBUG == 2
1839 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1840 __FILE__, __LINE__, context->serial, name);
1841 if (context->name_count) {
1842 int i;
1843 for (i = 0; i < context->name_count; i++)
1844 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1845 context->names[i].name,
1846 context->names[i].name ?: "(null)");
1847 }
1848 #endif
1849 __putname(name);
1850 }
1851 #if AUDIT_DEBUG
1852 else {
1853 ++context->put_count;
1854 if (context->put_count > context->name_count) {
1855 printk(KERN_ERR "%s:%d(:%d): major=%d"
1856 " in_syscall=%d putname(%p) name_count=%d"
1857 " put_count=%d\n",
1858 __FILE__, __LINE__,
1859 context->serial, context->major,
1860 context->in_syscall, name, context->name_count,
1861 context->put_count);
1862 dump_stack();
1863 }
1864 }
1865 #endif
1866 }
1867
1868 static int audit_inc_name_count(struct audit_context *context,
1869 const struct inode *inode)
1870 {
1871 if (context->name_count >= AUDIT_NAMES) {
1872 if (inode)
1873 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1874 "dev=%02x:%02x, inode=%lu\n",
1875 MAJOR(inode->i_sb->s_dev),
1876 MINOR(inode->i_sb->s_dev),
1877 inode->i_ino);
1878
1879 else
1880 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1881 return 1;
1882 }
1883 context->name_count++;
1884 #if AUDIT_DEBUG
1885 context->ino_count++;
1886 #endif
1887 return 0;
1888 }
1889
1890
1891 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1892 {
1893 struct cpu_vfs_cap_data caps;
1894 int rc;
1895
1896 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1897 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1898 name->fcap.fE = 0;
1899 name->fcap_ver = 0;
1900
1901 if (!dentry)
1902 return 0;
1903
1904 rc = get_vfs_caps_from_disk(dentry, &caps);
1905 if (rc)
1906 return rc;
1907
1908 name->fcap.permitted = caps.permitted;
1909 name->fcap.inheritable = caps.inheritable;
1910 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1911 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1912
1913 return 0;
1914 }
1915
1916
1917 /* Copy inode data into an audit_names. */
1918 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1919 const struct inode *inode)
1920 {
1921 name->ino = inode->i_ino;
1922 name->dev = inode->i_sb->s_dev;
1923 name->mode = inode->i_mode;
1924 name->uid = inode->i_uid;
1925 name->gid = inode->i_gid;
1926 name->rdev = inode->i_rdev;
1927 security_inode_getsecid(inode, &name->osid);
1928 audit_copy_fcaps(name, dentry);
1929 }
1930
1931 /**
1932 * audit_inode - store the inode and device from a lookup
1933 * @name: name being audited
1934 * @dentry: dentry being audited
1935 *
1936 * Called from fs/namei.c:path_lookup().
1937 */
1938 void __audit_inode(const char *name, const struct dentry *dentry)
1939 {
1940 int idx;
1941 struct audit_context *context = current->audit_context;
1942 const struct inode *inode = dentry->d_inode;
1943
1944 if (!context->in_syscall)
1945 return;
1946 if (context->name_count
1947 && context->names[context->name_count-1].name
1948 && context->names[context->name_count-1].name == name)
1949 idx = context->name_count - 1;
1950 else if (context->name_count > 1
1951 && context->names[context->name_count-2].name
1952 && context->names[context->name_count-2].name == name)
1953 idx = context->name_count - 2;
1954 else {
1955 /* FIXME: how much do we care about inodes that have no
1956 * associated name? */
1957 if (audit_inc_name_count(context, inode))
1958 return;
1959 idx = context->name_count - 1;
1960 context->names[idx].name = NULL;
1961 }
1962 handle_path(dentry);
1963 audit_copy_inode(&context->names[idx], dentry, inode);
1964 }
1965
1966 /**
1967 * audit_inode_child - collect inode info for created/removed objects
1968 * @dname: inode's dentry name
1969 * @dentry: dentry being audited
1970 * @parent: inode of dentry parent
1971 *
1972 * For syscalls that create or remove filesystem objects, audit_inode
1973 * can only collect information for the filesystem object's parent.
1974 * This call updates the audit context with the child's information.
1975 * Syscalls that create a new filesystem object must be hooked after
1976 * the object is created. Syscalls that remove a filesystem object
1977 * must be hooked prior, in order to capture the target inode during
1978 * unsuccessful attempts.
1979 */
1980 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1981 const struct inode *parent)
1982 {
1983 int idx;
1984 struct audit_context *context = current->audit_context;
1985 const char *found_parent = NULL, *found_child = NULL;
1986 const struct inode *inode = dentry->d_inode;
1987 int dirlen = 0;
1988
1989 if (!context->in_syscall)
1990 return;
1991
1992 if (inode)
1993 handle_one(inode);
1994 /* determine matching parent */
1995 if (!dname)
1996 goto add_names;
1997
1998 /* parent is more likely, look for it first */
1999 for (idx = 0; idx < context->name_count; idx++) {
2000 struct audit_names *n = &context->names[idx];
2001
2002 if (!n->name)
2003 continue;
2004
2005 if (n->ino == parent->i_ino &&
2006 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2007 n->name_len = dirlen; /* update parent data in place */
2008 found_parent = n->name;
2009 goto add_names;
2010 }
2011 }
2012
2013 /* no matching parent, look for matching child */
2014 for (idx = 0; idx < context->name_count; idx++) {
2015 struct audit_names *n = &context->names[idx];
2016
2017 if (!n->name)
2018 continue;
2019
2020 /* strcmp() is the more likely scenario */
2021 if (!strcmp(dname, n->name) ||
2022 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2023 if (inode)
2024 audit_copy_inode(n, NULL, inode);
2025 else
2026 n->ino = (unsigned long)-1;
2027 found_child = n->name;
2028 goto add_names;
2029 }
2030 }
2031
2032 add_names:
2033 if (!found_parent) {
2034 if (audit_inc_name_count(context, parent))
2035 return;
2036 idx = context->name_count - 1;
2037 context->names[idx].name = NULL;
2038 audit_copy_inode(&context->names[idx], NULL, parent);
2039 }
2040
2041 if (!found_child) {
2042 if (audit_inc_name_count(context, inode))
2043 return;
2044 idx = context->name_count - 1;
2045
2046 /* Re-use the name belonging to the slot for a matching parent
2047 * directory. All names for this context are relinquished in
2048 * audit_free_names() */
2049 if (found_parent) {
2050 context->names[idx].name = found_parent;
2051 context->names[idx].name_len = AUDIT_NAME_FULL;
2052 /* don't call __putname() */
2053 context->names[idx].name_put = 0;
2054 } else {
2055 context->names[idx].name = NULL;
2056 }
2057
2058 if (inode)
2059 audit_copy_inode(&context->names[idx], NULL, inode);
2060 else
2061 context->names[idx].ino = (unsigned long)-1;
2062 }
2063 }
2064 EXPORT_SYMBOL_GPL(__audit_inode_child);
2065
2066 /**
2067 * auditsc_get_stamp - get local copies of audit_context values
2068 * @ctx: audit_context for the task
2069 * @t: timespec to store time recorded in the audit_context
2070 * @serial: serial value that is recorded in the audit_context
2071 *
2072 * Also sets the context as auditable.
2073 */
2074 int auditsc_get_stamp(struct audit_context *ctx,
2075 struct timespec *t, unsigned int *serial)
2076 {
2077 if (!ctx->in_syscall)
2078 return 0;
2079 if (!ctx->serial)
2080 ctx->serial = audit_serial();
2081 t->tv_sec = ctx->ctime.tv_sec;
2082 t->tv_nsec = ctx->ctime.tv_nsec;
2083 *serial = ctx->serial;
2084 ctx->auditable = 1;
2085 return 1;
2086 }
2087
2088 /* global counter which is incremented every time something logs in */
2089 static atomic_t session_id = ATOMIC_INIT(0);
2090
2091 /**
2092 * audit_set_loginuid - set a task's audit_context loginuid
2093 * @task: task whose audit context is being modified
2094 * @loginuid: loginuid value
2095 *
2096 * Returns 0.
2097 *
2098 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2099 */
2100 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2101 {
2102 unsigned int sessionid = atomic_inc_return(&session_id);
2103 struct audit_context *context = task->audit_context;
2104
2105 if (context && context->in_syscall) {
2106 struct audit_buffer *ab;
2107
2108 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2109 if (ab) {
2110 audit_log_format(ab, "login pid=%d uid=%u "
2111 "old auid=%u new auid=%u"
2112 " old ses=%u new ses=%u",
2113 task->pid, task_uid(task),
2114 task->loginuid, loginuid,
2115 task->sessionid, sessionid);
2116 audit_log_end(ab);
2117 }
2118 }
2119 task->sessionid = sessionid;
2120 task->loginuid = loginuid;
2121 return 0;
2122 }
2123
2124 /**
2125 * __audit_mq_open - record audit data for a POSIX MQ open
2126 * @oflag: open flag
2127 * @mode: mode bits
2128 * @u_attr: queue attributes
2129 *
2130 * Returns 0 for success or NULL context or < 0 on error.
2131 */
2132 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2133 {
2134 struct audit_aux_data_mq_open *ax;
2135 struct audit_context *context = current->audit_context;
2136
2137 if (!audit_enabled)
2138 return 0;
2139
2140 if (likely(!context))
2141 return 0;
2142
2143 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2144 if (!ax)
2145 return -ENOMEM;
2146
2147 if (u_attr != NULL) {
2148 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2149 kfree(ax);
2150 return -EFAULT;
2151 }
2152 } else
2153 memset(&ax->attr, 0, sizeof(ax->attr));
2154
2155 ax->oflag = oflag;
2156 ax->mode = mode;
2157
2158 ax->d.type = AUDIT_MQ_OPEN;
2159 ax->d.next = context->aux;
2160 context->aux = (void *)ax;
2161 return 0;
2162 }
2163
2164 /**
2165 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2166 * @mqdes: MQ descriptor
2167 * @msg_len: Message length
2168 * @msg_prio: Message priority
2169 * @u_abs_timeout: Message timeout in absolute time
2170 *
2171 * Returns 0 for success or NULL context or < 0 on error.
2172 */
2173 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2174 const struct timespec __user *u_abs_timeout)
2175 {
2176 struct audit_aux_data_mq_sendrecv *ax;
2177 struct audit_context *context = current->audit_context;
2178
2179 if (!audit_enabled)
2180 return 0;
2181
2182 if (likely(!context))
2183 return 0;
2184
2185 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2186 if (!ax)
2187 return -ENOMEM;
2188
2189 if (u_abs_timeout != NULL) {
2190 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2191 kfree(ax);
2192 return -EFAULT;
2193 }
2194 } else
2195 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2196
2197 ax->mqdes = mqdes;
2198 ax->msg_len = msg_len;
2199 ax->msg_prio = msg_prio;
2200
2201 ax->d.type = AUDIT_MQ_SENDRECV;
2202 ax->d.next = context->aux;
2203 context->aux = (void *)ax;
2204 return 0;
2205 }
2206
2207 /**
2208 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2209 * @mqdes: MQ descriptor
2210 * @msg_len: Message length
2211 * @u_msg_prio: Message priority
2212 * @u_abs_timeout: Message timeout in absolute time
2213 *
2214 * Returns 0 for success or NULL context or < 0 on error.
2215 */
2216 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2217 unsigned int __user *u_msg_prio,
2218 const struct timespec __user *u_abs_timeout)
2219 {
2220 struct audit_aux_data_mq_sendrecv *ax;
2221 struct audit_context *context = current->audit_context;
2222
2223 if (!audit_enabled)
2224 return 0;
2225
2226 if (likely(!context))
2227 return 0;
2228
2229 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2230 if (!ax)
2231 return -ENOMEM;
2232
2233 if (u_msg_prio != NULL) {
2234 if (get_user(ax->msg_prio, u_msg_prio)) {
2235 kfree(ax);
2236 return -EFAULT;
2237 }
2238 } else
2239 ax->msg_prio = 0;
2240
2241 if (u_abs_timeout != NULL) {
2242 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2243 kfree(ax);
2244 return -EFAULT;
2245 }
2246 } else
2247 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2248
2249 ax->mqdes = mqdes;
2250 ax->msg_len = msg_len;
2251
2252 ax->d.type = AUDIT_MQ_SENDRECV;
2253 ax->d.next = context->aux;
2254 context->aux = (void *)ax;
2255 return 0;
2256 }
2257
2258 /**
2259 * __audit_mq_notify - record audit data for a POSIX MQ notify
2260 * @mqdes: MQ descriptor
2261 * @u_notification: Notification event
2262 *
2263 * Returns 0 for success or NULL context or < 0 on error.
2264 */
2265
2266 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2267 {
2268 struct audit_aux_data_mq_notify *ax;
2269 struct audit_context *context = current->audit_context;
2270
2271 if (!audit_enabled)
2272 return 0;
2273
2274 if (likely(!context))
2275 return 0;
2276
2277 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2278 if (!ax)
2279 return -ENOMEM;
2280
2281 if (u_notification != NULL) {
2282 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2283 kfree(ax);
2284 return -EFAULT;
2285 }
2286 } else
2287 memset(&ax->notification, 0, sizeof(ax->notification));
2288
2289 ax->mqdes = mqdes;
2290
2291 ax->d.type = AUDIT_MQ_NOTIFY;
2292 ax->d.next = context->aux;
2293 context->aux = (void *)ax;
2294 return 0;
2295 }
2296
2297 /**
2298 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2299 * @mqdes: MQ descriptor
2300 * @mqstat: MQ flags
2301 *
2302 * Returns 0 for success or NULL context or < 0 on error.
2303 */
2304 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2305 {
2306 struct audit_aux_data_mq_getsetattr *ax;
2307 struct audit_context *context = current->audit_context;
2308
2309 if (!audit_enabled)
2310 return 0;
2311
2312 if (likely(!context))
2313 return 0;
2314
2315 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2316 if (!ax)
2317 return -ENOMEM;
2318
2319 ax->mqdes = mqdes;
2320 ax->mqstat = *mqstat;
2321
2322 ax->d.type = AUDIT_MQ_GETSETATTR;
2323 ax->d.next = context->aux;
2324 context->aux = (void *)ax;
2325 return 0;
2326 }
2327
2328 /**
2329 * audit_ipc_obj - record audit data for ipc object
2330 * @ipcp: ipc permissions
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2335 {
2336 struct audit_aux_data_ipcctl *ax;
2337 struct audit_context *context = current->audit_context;
2338
2339 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2340 if (!ax)
2341 return -ENOMEM;
2342
2343 ax->uid = ipcp->uid;
2344 ax->gid = ipcp->gid;
2345 ax->mode = ipcp->mode;
2346 security_ipc_getsecid(ipcp, &ax->osid);
2347 ax->d.type = AUDIT_IPC;
2348 ax->d.next = context->aux;
2349 context->aux = (void *)ax;
2350 return 0;
2351 }
2352
2353 /**
2354 * audit_ipc_set_perm - record audit data for new ipc permissions
2355 * @qbytes: msgq bytes
2356 * @uid: msgq user id
2357 * @gid: msgq group id
2358 * @mode: msgq mode (permissions)
2359 *
2360 * Returns 0 for success or NULL context or < 0 on error.
2361 */
2362 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2363 {
2364 struct audit_aux_data_ipcctl *ax;
2365 struct audit_context *context = current->audit_context;
2366
2367 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2368 if (!ax)
2369 return -ENOMEM;
2370
2371 ax->qbytes = qbytes;
2372 ax->uid = uid;
2373 ax->gid = gid;
2374 ax->mode = mode;
2375
2376 ax->d.type = AUDIT_IPC_SET_PERM;
2377 ax->d.next = context->aux;
2378 context->aux = (void *)ax;
2379 return 0;
2380 }
2381
2382 int audit_bprm(struct linux_binprm *bprm)
2383 {
2384 struct audit_aux_data_execve *ax;
2385 struct audit_context *context = current->audit_context;
2386
2387 if (likely(!audit_enabled || !context || context->dummy))
2388 return 0;
2389
2390 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2391 if (!ax)
2392 return -ENOMEM;
2393
2394 ax->argc = bprm->argc;
2395 ax->envc = bprm->envc;
2396 ax->mm = bprm->mm;
2397 ax->d.type = AUDIT_EXECVE;
2398 ax->d.next = context->aux;
2399 context->aux = (void *)ax;
2400 return 0;
2401 }
2402
2403
2404 /**
2405 * audit_socketcall - record audit data for sys_socketcall
2406 * @nargs: number of args
2407 * @args: args array
2408 *
2409 * Returns 0 for success or NULL context or < 0 on error.
2410 */
2411 int audit_socketcall(int nargs, unsigned long *args)
2412 {
2413 struct audit_aux_data_socketcall *ax;
2414 struct audit_context *context = current->audit_context;
2415
2416 if (likely(!context || context->dummy))
2417 return 0;
2418
2419 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2420 if (!ax)
2421 return -ENOMEM;
2422
2423 ax->nargs = nargs;
2424 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2425
2426 ax->d.type = AUDIT_SOCKETCALL;
2427 ax->d.next = context->aux;
2428 context->aux = (void *)ax;
2429 return 0;
2430 }
2431
2432 /**
2433 * __audit_fd_pair - record audit data for pipe and socketpair
2434 * @fd1: the first file descriptor
2435 * @fd2: the second file descriptor
2436 *
2437 * Returns 0 for success or NULL context or < 0 on error.
2438 */
2439 int __audit_fd_pair(int fd1, int fd2)
2440 {
2441 struct audit_context *context = current->audit_context;
2442 struct audit_aux_data_fd_pair *ax;
2443
2444 if (likely(!context)) {
2445 return 0;
2446 }
2447
2448 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2449 if (!ax) {
2450 return -ENOMEM;
2451 }
2452
2453 ax->fd[0] = fd1;
2454 ax->fd[1] = fd2;
2455
2456 ax->d.type = AUDIT_FD_PAIR;
2457 ax->d.next = context->aux;
2458 context->aux = (void *)ax;
2459 return 0;
2460 }
2461
2462 /**
2463 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2464 * @len: data length in user space
2465 * @a: data address in kernel space
2466 *
2467 * Returns 0 for success or NULL context or < 0 on error.
2468 */
2469 int audit_sockaddr(int len, void *a)
2470 {
2471 struct audit_aux_data_sockaddr *ax;
2472 struct audit_context *context = current->audit_context;
2473
2474 if (likely(!context || context->dummy))
2475 return 0;
2476
2477 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2478 if (!ax)
2479 return -ENOMEM;
2480
2481 ax->len = len;
2482 memcpy(ax->a, a, len);
2483
2484 ax->d.type = AUDIT_SOCKADDR;
2485 ax->d.next = context->aux;
2486 context->aux = (void *)ax;
2487 return 0;
2488 }
2489
2490 void __audit_ptrace(struct task_struct *t)
2491 {
2492 struct audit_context *context = current->audit_context;
2493
2494 context->target_pid = t->pid;
2495 context->target_auid = audit_get_loginuid(t);
2496 context->target_uid = task_uid(t);
2497 context->target_sessionid = audit_get_sessionid(t);
2498 security_task_getsecid(t, &context->target_sid);
2499 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2500 }
2501
2502 /**
2503 * audit_signal_info - record signal info for shutting down audit subsystem
2504 * @sig: signal value
2505 * @t: task being signaled
2506 *
2507 * If the audit subsystem is being terminated, record the task (pid)
2508 * and uid that is doing that.
2509 */
2510 int __audit_signal_info(int sig, struct task_struct *t)
2511 {
2512 struct audit_aux_data_pids *axp;
2513 struct task_struct *tsk = current;
2514 struct audit_context *ctx = tsk->audit_context;
2515 uid_t uid = current_uid(), t_uid = task_uid(t);
2516
2517 if (audit_pid && t->tgid == audit_pid) {
2518 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2519 audit_sig_pid = tsk->pid;
2520 if (tsk->loginuid != -1)
2521 audit_sig_uid = tsk->loginuid;
2522 else
2523 audit_sig_uid = uid;
2524 security_task_getsecid(tsk, &audit_sig_sid);
2525 }
2526 if (!audit_signals || audit_dummy_context())
2527 return 0;
2528 }
2529
2530 /* optimize the common case by putting first signal recipient directly
2531 * in audit_context */
2532 if (!ctx->target_pid) {
2533 ctx->target_pid = t->tgid;
2534 ctx->target_auid = audit_get_loginuid(t);
2535 ctx->target_uid = t_uid;
2536 ctx->target_sessionid = audit_get_sessionid(t);
2537 security_task_getsecid(t, &ctx->target_sid);
2538 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2539 return 0;
2540 }
2541
2542 axp = (void *)ctx->aux_pids;
2543 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2544 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2545 if (!axp)
2546 return -ENOMEM;
2547
2548 axp->d.type = AUDIT_OBJ_PID;
2549 axp->d.next = ctx->aux_pids;
2550 ctx->aux_pids = (void *)axp;
2551 }
2552 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2553
2554 axp->target_pid[axp->pid_count] = t->tgid;
2555 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2556 axp->target_uid[axp->pid_count] = t_uid;
2557 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2558 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2559 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2560 axp->pid_count++;
2561
2562 return 0;
2563 }
2564
2565 /**
2566 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2567 * @bprm: pointer to the bprm being processed
2568 * @new: the proposed new credentials
2569 * @old: the old credentials
2570 *
2571 * Simply check if the proc already has the caps given by the file and if not
2572 * store the priv escalation info for later auditing at the end of the syscall
2573 *
2574 * -Eric
2575 */
2576 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2577 const struct cred *new, const struct cred *old)
2578 {
2579 struct audit_aux_data_bprm_fcaps *ax;
2580 struct audit_context *context = current->audit_context;
2581 struct cpu_vfs_cap_data vcaps;
2582 struct dentry *dentry;
2583
2584 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2585 if (!ax)
2586 return -ENOMEM;
2587
2588 ax->d.type = AUDIT_BPRM_FCAPS;
2589 ax->d.next = context->aux;
2590 context->aux = (void *)ax;
2591
2592 dentry = dget(bprm->file->f_dentry);
2593 get_vfs_caps_from_disk(dentry, &vcaps);
2594 dput(dentry);
2595
2596 ax->fcap.permitted = vcaps.permitted;
2597 ax->fcap.inheritable = vcaps.inheritable;
2598 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2599 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2600
2601 ax->old_pcap.permitted = old->cap_permitted;
2602 ax->old_pcap.inheritable = old->cap_inheritable;
2603 ax->old_pcap.effective = old->cap_effective;
2604
2605 ax->new_pcap.permitted = new->cap_permitted;
2606 ax->new_pcap.inheritable = new->cap_inheritable;
2607 ax->new_pcap.effective = new->cap_effective;
2608 return 0;
2609 }
2610
2611 /**
2612 * __audit_log_capset - store information about the arguments to the capset syscall
2613 * @pid: target pid of the capset call
2614 * @new: the new credentials
2615 * @old: the old (current) credentials
2616 *
2617 * Record the aguments userspace sent to sys_capset for later printing by the
2618 * audit system if applicable
2619 */
2620 int __audit_log_capset(pid_t pid,
2621 const struct cred *new, const struct cred *old)
2622 {
2623 struct audit_aux_data_capset *ax;
2624 struct audit_context *context = current->audit_context;
2625
2626 if (likely(!audit_enabled || !context || context->dummy))
2627 return 0;
2628
2629 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2630 if (!ax)
2631 return -ENOMEM;
2632
2633 ax->d.type = AUDIT_CAPSET;
2634 ax->d.next = context->aux;
2635 context->aux = (void *)ax;
2636
2637 ax->pid = pid;
2638 ax->cap.effective = new->cap_effective;
2639 ax->cap.inheritable = new->cap_effective;
2640 ax->cap.permitted = new->cap_permitted;
2641
2642 return 0;
2643 }
2644
2645 /**
2646 * audit_core_dumps - record information about processes that end abnormally
2647 * @signr: signal value
2648 *
2649 * If a process ends with a core dump, something fishy is going on and we
2650 * should record the event for investigation.
2651 */
2652 void audit_core_dumps(long signr)
2653 {
2654 struct audit_buffer *ab;
2655 u32 sid;
2656 uid_t auid = audit_get_loginuid(current), uid;
2657 gid_t gid;
2658 unsigned int sessionid = audit_get_sessionid(current);
2659
2660 if (!audit_enabled)
2661 return;
2662
2663 if (signr == SIGQUIT) /* don't care for those */
2664 return;
2665
2666 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2667 current_uid_gid(&uid, &gid);
2668 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2669 auid, uid, gid, sessionid);
2670 security_task_getsecid(current, &sid);
2671 if (sid) {
2672 char *ctx = NULL;
2673 u32 len;
2674
2675 if (security_secid_to_secctx(sid, &ctx, &len))
2676 audit_log_format(ab, " ssid=%u", sid);
2677 else {
2678 audit_log_format(ab, " subj=%s", ctx);
2679 security_release_secctx(ctx, len);
2680 }
2681 }
2682 audit_log_format(ab, " pid=%d comm=", current->pid);
2683 audit_log_untrustedstring(ab, current->comm);
2684 audit_log_format(ab, " sig=%ld", signr);
2685 audit_log_end(ab);
2686 }